
1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2556663, IEEE
Transactions on Knowledge and Data Engineering

TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING 1

Counting Triangles in Large Graphs by Random
Sampling

Bin Wu, Ke Yi, and Zhenguo Li

Abstract—The problem of counting triangles in graphs has been well studied in the literature. However, all existing algorithms, exact or
approximate, spend at least linear time in the size of the graph (except a recent theoretical result), which can be prohibitive on today’s large
graphs. Nevertheless, we observe that the ideas in many existing triangle counting algorithms can be coupled with random sampling to yield
potentially sublinear-time algorithms that return an approximation of the triangle count without looking at the whole graph. This paper makes
these random sampling algorithms more explicit, and presents an experimental and analytical comparison of different approaches, identifying
the best performers among a number of candidates.

Index Terms—Triangle counting, random sampling

F

1 INTRODUCTION

G RAPHS are a ubiquitous form to represent and model
complex relationships between entities in various fields,

including biochemistry, information systems, and social net-
works. Triangle is one of the most fundamental substructures
of a graph. In social network analysis, two fundamental mea-
surements, the clustering coefficient [1] and the triangle connectiv-
ity [2], are both derived from the number of triangles. Various
applications depend on triangle listing and counting, such as
uncovering hidden thematic structures [3], detecting Web spam
[4], and community detection [5].

The problems of both listing and counting (exactly or
approximately) all triangles in a given graph have been exten-
sively studied in the literature, from as early as a 1977 STOC
paper [6] to the 2013 SIGMOD best paper [7]. However, all
existing algorithms, exact or approximate, spend at least linear
time, visiting each vertex and edge of the graph at least once
(except a recent theoretical result [8]). The motivation of our
study is that sublinear time is actually possible to obtain a good
estimate of triangle count, and this is important in a number
of scenarios. First, as today’s graphs easily contain billions of
vertices and edges, even linear time can be prohibitive. Second,
as the number of triangles is often used in analyzing some
statistical properties of the graph, very often we do not need
an exact answer. An approximation (say, within 10% of the
true count) would be just as good. Third, when the graph is
dynamically changing (i.e., insertion/deletion of vertices and
edges), and we would like to count the triangles periodically
so as to monitor the dynamics of the graph, using a linear-
time algorithm to do the counting every time would be too
expensive and compromises the timeliness of the monitoring.

Nevertheless, although prior work has not explicitly con-
sidered the sublinear-time triangle counting problem, we ob-
serve that the ideas in many existing linear or super-linear
algorithms can actually be coupled with random sampling
to make the algorithm potentially sublinear-time. In this pa-
per, we make this connection clearer, and more importantly,

• B. Wu and K. Yi are with the Department of Computer Science and Engi-
neering, Hong Kong University of Science and Technology Clear Water Bay,
Hong Kong, China. Email: {bwuac,yike}@cse.ust.hk.

• Z. Li is with Huawei Noah’s Ark Lab, Hong Kong, China. Email:
li.zhenguo@huawei.com.

provide a detailed analytical and experimental comparison
of different random sampling strategies to the approximate
triangle counting problem, identifying the best performers
among a number of candidates.

2 PRIOR WORK

We classify the existing algorithms into those that count the
number of triangles exactly and those that do so approximately.

2.1 Exact counting algorithms

Most exact counting algorithms actually solve the listing prob-
lem, i.e., they enumerate all the triangles in the graph, thus
obtain the triangle count as a by-product [6], [9], [10]. These
algorithms run in O(n3) or O(m1.5) time. Here, n denotes
the number of vertices and m the number of edges. This
running time is optimal in the worst case since there can be
as many as O(n3) or O(m1.5) triangles in the graph. There are
also algorithms that count the triangles without listing them
by using matrix multiplication [6]. They have running time
O(n2.37), which is better than the listing algorithms but only if
the graph is dense enough. There is an extensive experimental
study on the performance of these exact counting and listing
algorithms [10]. Recently, as the graphs get even larger, it also
has attracted a lot of interests to extend the these algorithms
to the external memory model [7], [11], [12], [13], [14], [15] and
the MapReduce model [16], [17], [18], [19], [20].

2.2 Approximate counting algorithms

In view of the high running times of the exact counting
algorithms and the fact that an approximate count satisfies
the need of most applications, faster approximation algorithms
have been sought for. The easiest method is to sample a small
subgraph from the whole graph, count the number of triangles
in the subgraph, and scale up the count. In particular, Doulion
[21] forms the subgraph by sampling each edge with probabil-
ity p. Since each triangle in the original graph appears in the
sampled subgraph with probability p3, the number of triangles
in the subgraph is multiplied by 1/p3 to get an unbiased
estimator of the true count. Flipping a coin with probability p

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2556663, IEEE
Transactions on Knowledge and Data Engineering

TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING 2

1

2 3

4

56

7

8

Fig. 1. An example graph

for each edge in the graph requires at least a linear scan of the
whole graph, so this is not a sublinear-time algorithm, strictly
speaking. Nevertheless, this can be avoided by sampling the
edges with (or without) replacement. We describe this version
of Doulion more explicitly in Section 4.

Another sampling method proposed in the literature is
wedge sampling. A wedge is any length-2 path in the graph,
thus a triangle is formed when a wedge is closed. Assuming
that a wedge can be randomly sampled from the graph, then
a sublinear-time algorithm can be obtained [22]. However,
common graph representations (e.g., adjacency list or adja-
cency matrix) do not support wedge sampling. To support this
operation, the graph has to be preprocessed in O(n) time, and
the preprocessing needs to be done again every time the graph
has changed.

The problem has also received a lot of attention in the
streaming model [23], [24], [25], [26], [27], [28], [29], [30], and
all streaming algorithms return approximate triangle counts
(exact counting is known to be impossible in the streaming
model). Since any streaming algorithm makes at least one
pass over the whole input, they do not yield sublinear-time
algorithms. Nevertheless, some of the streaming algorithms,
such as the one in [28], can be modified to run in sublinear time,
and we describe this modification in more detail in Section 4.

Very recently, there have been some theoretical studies
on approximating the number of triangles in sublinear time
[8], [31]. However, those algorithms are far from practical,
according to our experimental evaluation.

3 PRELIMINARIES

Let G = (V,E) be a simple undirected graph with n vertices
and m edges. A triangle in G is a triple of 3 vertices (u, v, w)
such that {(u, v), (v, w), (u,w)} ⊆ E. We denote by ∆(G) the
set of all triangles in G, and denote the triangle count as T3 =
|∆(G)|. For any v ∈ V , let N(v) = {u ∈ V | (u, v) ∈ E}
denote the neighbors of v. The degree of v is d(v) = |N(v)|. For
any vertex v ∈ V , let λ(v) be the number of triangles having
v as one of the vertices; similarly for any edge e ∈ E, λ(e)
denotes the number of triangles having e as one of the edges.
Note that for any e = (u, v), λ(e) = |N(v)∩N(u)|. We assume
that each vertex has a unique integer id.

Example: For the example graph in Figure 1, we have λ(1) =
0, λ(8) = 3 (triangles (7, 8, 5), (4, 5, 8) and (3, 4, 8) have 8 as a
vertex), λ(5, 8) = 2 (triangles (5, 7, 8) and (4, 5, 8) have (5, 8)
as an edge).

We assume the adjacency list representation for the graph,
the most commonly used storage format for graphs. But de-
pending on whether the graph is static or dynamic, there can be
two different implementations. The first one is the “textbook”

1 2 3 4 5 6 7 8

2

6

1

7

3 4

8

2

5

8

3

6

8

2

8

7

6

5

7

1

5

4

3

754

Fig. 2. The adjacency list representation

1 2 3 4 5 6 7 8

2 6 1 7 3 2 8 4 3 8 5 3 4 5 7· · ·

Fig. 3. The edge array representation

method, which uses an array indexed by the vertices. (This as-
sumes that the vertices are numbered from 1 to n. If the vertex
id’s are arbitrary, another level of indirection is needed to map
the vertex id’s to numbers from 1 to n using a hash table.)
Each cell in the vertex array points to a linked list that stores
all the neighbors of that vertex. For example, the adjacency list
representation of the graph in Figure 1 is shown in Figure 2.
We assume that each neighbor list maintains the size of the list,
which is equal to the degree of the corresponding vertex. Such
a representation easily supports dynamic changes to the graph,
i.e., inserting or deleting an edge.

The other implementation simply concatenates all the
neighbor lists into one big array, which we call the edge array.
Each pointer in the vertex array now points to the first neighbor
of the corresponding vertex in the edge array (Figure 3). This
implementation does not easily support changes to the graph,
but it is more compact. In particular, since we no longer
need the pointers inside each neighbor list, the space usage
is reduced to half (or 1/3 if doubly-linked lists are used in the
adjacency list representation). Furthermore, for each vertex, all
its neighbors are stored consecutively in memory (or on disk),
so traversal of its neighbors is much more cache-efficient than
in the adjacency list representation. Thus, this is the preferred
storage format for graphs which see no (or few) changes. Also
note that in this representation, we no longer need to store the
degree for each vertex vi explicitly, as it can be computed from
the starting address of N(vi) and that of N(vi+1).

When it comes to random sampling algorithms, these two
representations allows different sampling strategies to explore
the graph. Both representations allow us to uniformly sample
a vertex. After a vertex v is sampled, we can retrieve all
its neighbors in O(d(v)) time. The edge array representation
also allows us to sample a neighbor of a specific vertex more
efficiently, as well as sample an edge uniformly from the edge
array. This turns out to be an important operation that can lead
to more accurate estimation of the triangle count.

Finally, all algorithms presented in this paper report an
unbiased estimator of T3 with each sampling step. Then we
simply take the average of multiple estimators to improve
the accuracy. This immediately brings two benefits: (1) The
algorithm itself “knows” how well it has been doing: One
can use standard statistical formulas to estimate the standard

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2556663, IEEE
Transactions on Knowledge and Data Engineering

TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING 3

deviation and confidence intervals of the result from these
estimates, and stop the algorithm when the accuracy is good
enough; (2) The algorithm is “embarrassingly parallel”, and
can be easily implemented in a parallel/distributed graph
management system like Pregel [32] or GraphLab [33].

4 ALGORITHMS

4.1 Subgraph sampling

As mentioned in Section 2, Doulion [21] samples a subgraph
from G by picking every edge with probability p, counts the
number of triangles in the sampled subgraph, and then scales
up the count by a factor of 1/p3. It has been shown [21] that
this algorithm returns an unbiased estimator with variance
T3(p

3−p6)+2s(p5−p6)
p6 where s is the number of pairs of triangles

that share a common edge.
This algorithm, as stated, is not a sublinear-time algorithm

as it flips a coin for every edge of the graph. Nevertheless,
we can replace this coin-flip sampling by sampling without
replacement. More precisely, we randomly pick a subset of k
edges from all m edges to form the subgraph. Note that the
probability of a triangle appearing in the subgraph under this
sampling method is p′ =

(
k
3

)
/
(
m
3

)
, so we scale up the triangle

count by 1/p′.
The variance of the estimator under this sampling method

is hard to compute exactly, because in sampling without re-
placement, the edges are not independently picked. But the
leading term, T3/p′ is still correct, which we use as a good
approximation of the actual variance.

This algorithm only works in the edge array model, because
it needs to sample the edges uniformly at random.

4.2 Vertex sampling

The basic idea of vertex sampling roots from an exact triangle
counting algorithm called vertex iterator [6]. Recall that λ(v)
is the number of triangles that contain vertex v. To count all
triangles, the vertex iterator algorithm simply counts λ(v) for
each v, and adds them up. Since each triangle is counted three
times, the final sum is divided by 3 to obtain T3, i.e., T3 =
1
3

∑
v λ(v).

To turn this idea into a sublinear-time algorithm, we ran-
domly sample a vertex v and compute λ(v). Then we scale it
up by a factor of n/3, which will be an unbiased estimator of
T3. We do this multiple times, and take the average.

To compute λ(v), we first build a hash table on N(v). Then
for each vi ∈ N(v), we compute |N(vi) ∩ N(v)| by probing
the hash table on N(v) with each u ∈ N(vi). The detailed
algorithm (for one sampling step) is given in Algorithm 1. The
algorithm returns tn/6 in the end because each triangle having
v as a vertex is counted twice when summing up |N(vi)∩N(v)|
over all neighbors vi of v.

Algorithm 1: Vertex sampling

t← 0;
sample a vertex v uniformly from V ;
build a hash table on N(v);
foreach vi ∈ N(v) do

t← t+ |N(v) ∩N(vi)|;
report tn/6;

In practice, when N(v) and N(vi) are small enough, it is ac-
tually faster to sort and merge them to compute |N(v)∩N(vi)|
(i.e., a “sort-merge join”), instead of using a hash table (i.e.,
“hash join”). In our implementation, we use the “hash join”
method when the adjacency list is long enough (≥ 700), and
use the “sort-merge join” method when the lists are shorter. It
should be clear that this algorithm works in both the adjacency
list and the edge array model.

4.2.1 Analysis
It is straightforward to see that the output is always an unbi-
ased estimator of T3: When v is chosen uniformly at random,
we have

Ev[λ(v)] =
∑
v∈V

λ(v) · 1

n
=

3T3
n
.

Thus, nλ(v)/3 is an unbiased estimator of T3.
The variance of the estimator is just the variance of λ(v)

times n2/9. The variance of λ(v) is

Varv[λ(v)] = Ev[λ(v)2]− Ev[λ(v)]2

=
∑
v

λ(v)2/n− (3T3/n)2.

The running time of the algorithm per sampling step is (the
big-Oh of)

d(v) +
∑

vi∈N(v)

d(vi) =
∑

vi∈N(v)

d(vi).

Since v is randomly chosen from all vertices, the expected
running time is

1

n

∑
v

∑
vi∈N(v)

d(vi) =
1

n

∑
v

d(v)2.

Proposition 1. The vertex sampling algorithm returns an unbiased
estimator of T3 with variance n

9

∑
v λ(v)2 − T 2

3 . Its running time
per sampling step is O(1

n

∑
v d(v)2).

4.3 Edge sampling

The edge sampling method is motivated by another exact tri-
angle counting algorithm called edge iterator [6]. It is based on
the observation that T3 is also equal to 1

3

∑
e λ(e), where λ(e)

is the number of triangles that have e as an edge. Thus, if we
uniformly randomly sample an edge e and compute λ(e), then
m
3 λ(e) will be an unbiased estimator of T3.

It remains to describe how to sample an edge uniformly
from all edges of the graph. In the edge array, this can be done
by just randomly picking a location in the edge array. Note
that the edge array has size 2m and each edge appears exactly
twice in the array, so each edge is sampled with probability
1/m. However, this only gives us one endpoint of the edge
(see Figure 3). We could have required the edge array to store
both endpoints, but that doubles its size, losing the benefit of
compactness. The trick is to sample again. More precisely, we
first uniformly sample a location in the edge array, getting a
vertex u. Then we look up u in the vertex array, and uniformly
sample a neighbor of u at random, denoted as v. From the
vertex array, we can get the starting and the ending position
of u’s neighbor list in the edge array, so uniformly sampling
a neighbor of u is easy. Then we return e = (u, v) as the
sampled edge. It is easy to see that this process will sample

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2556663, IEEE
Transactions on Knowledge and Data Engineering

TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING 4

every e with probability 1/m: For any edge e = (u, v), the
probability that u is sampled in the first step is d(u)/2m, then
the probability that v is sampled in the second step is 1/d(u),
so u, v are sampled in this order with probability 1/2m. The
edge can also be obtained if v is sampled first and u second,
which also happens with probability 1/2m. Thus the overall
probability that e = (u, v) is sampled is 1/m, as desired.

To compute λ(e) = |N(v) ∩ N(v)|, we similarly as before
do either a hash join or a sort-merge join depending on the
sizes of N(v) and N(u). The detailed algorithm is given in
Algorithm 2.

Algorithm 2: Edge sampling (edge array model)

sample a vertex u uniformly from the edge array;
sample a vertex v uniformly from N(u);
λ(e)← |N(u) ∩N(v)|;
report λ(e) ·m/3;

4.3.1 Analysis

By the fact that
∑
e∈E λ(e) = 3T3, we can easily see that the

algorithm returns an unbiased estimator for T3. When e is
chosen uniformly at random, we have

Ee[λ(e)] =
∑
e∈E

λ(e)
1

m
=

3T3
m

Thus, λ(e) ·m/3 is an unbiased estimator of T3.
The variance of the estimator is m2/9k · Var[λ(e)], where

Vare[λ(e)] = Ee[λ(e)2]− Ee[λ(e)]2

=
∑
e

λ(e)2/m− (3T3/m)2.

So the variance of the estimator is m
9

∑
e∈E λ(e)2 − T 2

3 .
The running time of the algorithm is O(d(u) + d(v)), dom-

inated by computing |N(u) ∩N(v)|. Since the edge e = (u, v)
is randomly chosen from all edges, the expected running times
is

1

m

∑
e

d(u) + d(v) =
1

m

∑
v

d(v)2.

Proposition 2. The edge sampling algorithm in the edge array model
returns an unbiased estimator of T3 with variance m9

∑
e λ(e)2−T 2

3 .
Its running time per sampling step is O(1

m

∑
v d(v)2).

4.3.2 Adaptation to the adjacency list model

In the adjacency list model, we cannot sample an edge uni-
formly. But we can still apply the same idea of edge sampling,
except that we need to take the non-uniformity of sampling
into account to remove the bias. The modified algorithm is
shown in Algorithm 3.

Algorithm 3: Edge sampling (adjacency list model)

sample a vertex u uniformly from the vertex array;
sample a vertex v uniformly from N(u);
λ(e)← |N(u) ∩N(v)|;
report λ(e) · nd(u)d(v)

3(d(u)+d(v)) ;

4.3.3 Analysis

Let λ′(e) = λ(e)d(u)d(v)
d(u)+d(v) . Its expectation is

Ee[λ
′(e)] =

∑
e∗=(u,v)

λ(e)d(u)d(v)

d(u) + d(v)
Pr[e = e∗].

Given the sampling process in the algorithm, a particular edge
e∗ = (u, v) is sampled if u is sampled in the first step (which
happens with probability 1/n) and v is sampled in the second
step (which happens with probability 1/d(u), or the other
around. So the probability that e∗ is sampled is 1

n (1
d(u) + 1

d(v)).
Thus, the expectation is

E[λ′(e)] =
∑
e

λ(e)

n
=

3T3
n
.

So λ′(e) · n/3 is a unbiased estimator of T3.
The variance of λ′(e) is:

Var[λ′(e)] = E[λ′(e)2]− E[λ′(e)]2

=
∑
e

λ(e)2d(u)d(v)

n(d(u) + d(v))
− 9T 2

3

n2

Note that the first sampling step takes O(1) time, but the
second step for sampling v takes O(d(u)) time as we have to
traverse the neighbor list of u. But this is dominated by the time
to compute |N(u) ∩ N(v)|, which takes time O(d(u) + d(v)).
As edge e = (u, v) is sampled with probability 1

n (1
d(u) + 1

d(v)),
the expected running time of this algorithm is∑

e=(u,v)

(d(u) + d(v))
1

n

(
1

d(u)
+

1

d(v)

)

=
1

n

∑
e

(d(u) + d(v))2

d(u)d(v)

Proposition 3. The edge sampling algorithm in the adjacency
list model returns an unbiased estimator of T3 with variance
n
9

∑
e∈E

λ(e)2d(u)d(v)
d(u)+d(v) − T 2

3 . Its running time per sampling step

is O(1
n

∑
e

(d(u)+d(v))2

d(u)d(v)).

4.4 Triangle sampling

The triangle sampling method is based on a recent triangle
counting algorithm in the streaming model [28]. It can also
be considered as combining the MinHash [34] idea with edge
sampling: After sampling an edge e, instead of computing
|N(u) ∩ N(v)| exactly, we try to estimate it by randomly
sampling a vertex from N(u) and N(v) and checking if it is
inside N(u) ∩N(v).

We first sample an edge e = (u, v) uniformly as in the edge
sampling algorithm (edge array model). Then we uniformly
sample a vertex neighboring to either u or v and check whether
it is also a neighbor of the other. More precisely, we generate a
random number i from 1 to d(u)+d(v). If 1 ≤ i ≤ d(u), we pick
the i-th neighbor of u and check whether it is also a neighbor of
v; if i > d(u), we pick the (i−d(u))-th neighbor of v and check
whether it is also a neighbor of u. If the answer is yes, we have
found a triangle (hence the name triangle sampling). Finally,
proper scaling has to be done to turn this into an unbiased
estimator of T3. Please see the details in Algorithm 4.

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2556663, IEEE
Transactions on Knowledge and Data Engineering

TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING 5

Algorithm 4: Triangle sampling (edge array model)

sample a vertex u uniformly from the edge array;
sample a vertex v uniformly from N(u);
generate a random number i from 1 to d(u) + d(v);
t← 0;
if i ≤ d(u) then

w ← u’s i-th neighbor;
if w ∈ N(v) then t← 1;

else
w ← v’s (i− d(u))-th neighbor;
if w ∈ N(u) then t← 1;

report t · (d(u) + d(v))m/6;

4.4.1 Analysis

Conditioned upon e = (u, v) being sampled, t = 1 with
probability

2|N(u) ∩N(v)|
d(u) + d(v)

=
2λ(e)

d(u) + d(v)
,

and 0 otherwise.
Let X = t · (d(u) + d(v))/2. Since every edge e = (u, v) is

sampled with probability 1/m, we have

E[X] =
∑
e∈E

d(u) + d(v)

2

2λ(e)

m(d(u) + d(v))

=
∑
e∈E

λ(e)

m

=3T3/m.

Thus, X ·m/3 is an unbiased estimator of T3.
The variance of X is

Var[X] = E[X2]− E[X]2

=
∑
e

λ(e)(d(u) + d(v))

2m
− 9T 2

3

m2

The running time of the algorithm is dominated by check-
ing whether w is in N(u) or N(v), which takes time O(d(u))
or O(d(v)). We switch to the former case with probability
d(v)/(d(u)+d(v)), and the latter with probability d(u)/(d(u)+

d(v)), so the expected running time is O
(
d(u)d(v)
d(u)+d(v)

)
. Since

the edge is chosen uniformly at random, the overall expected
running time is O

(
1
m

∑
e
d(u)d(v)
d(u)+d(v)

)
.

Proposition 4. The triangle sampling algorithm in the edge ar-
ray model returns an unbiased estimator of T3 with variance
m
18

∑
e λ(e)(d(u) + d(v))−T 2

3 . Its running time per sampling step

is O
(

1
m

∑
e
d(u)d(v)
d(u)+d(v)

)
.

4.4.2 Adaptation to the adjacency list model

As with the edge sampling algorithm, we can similarly adapt
the triangle sampling algorithm to the adjacency list model.
Again we will not be able to sample an edge uniformly, but
still an unbiased estimator of T3 can be obtained if the sampling
probability is properly accounted for. The details are presented
in the Algorithm 5.

Algorithm 5: Triangle Sampling

sample a vertex u uniformly from the vertex array;
sample a vertex v uniformly from N(u);
generate a random number i from 1 to d(u) + d(v);
t← 0;
if i ≥ d(u) then

w ← u’s i-th neighbor;
if w ∈ N(v) then t← 1 ;

else
w ← v’s (i− d(u))-th neighbor;
if w ∈ N(u) then

t← 1

report t · d(u)d(v)n/6;

4.4.3 Analysis
Conditioned upon e = (u, v) being sampled, we still have t = 1
with probability 2λ(e)/(d(u) +d(v)). However, the probability
that e = (u, v) is no longer 1/m, but 1

n (1
d(u) + 1

d(v)) as we
derived previously.

Let X = t · d(u)d(v)/2. We have

E[X] =
∑
e

d(u)d(v)

2
· 1

n

(
1

d(u)
+

1

d(v)

)
· 2λ(e)

d(u) + d(v)

=
∑
e

λ(e)

n
=

3T3
n
.

Thus, X · n/3 is an unbiased estimator of T3.
The variance of X is

Var[X] = E[X2]− E[X]2

=
∑
e

d(u)d(v)λ(e)

2n
− 9T 2

3

n2
.

Since in the adjacency list model, we can only scan the
neighbor list of u to get its i-th neighbor in O(1) time, the
running time of the algorithm isO(d(u)+d(v)) for a given edge
e = (u, v). Thus, the expected running time of this algorithm is
the same as that of edge sampling in the adjacency list model.

Proposition 5. The triangle sampling algorithm returns an unbi-
ased estimator of T3 with variance n

18

∑
e λ(e)d(u)d(v) − T 2

3 . Its
running time per sampling step is O(1

n

∑
e

(d(u)+d(v))2

d(u)d(v)).

4.5 Wedge sampling

The technique of wedge sampling is a new approach to approxi-
mating the triangle count [22]. A wedge is any length-2 path (u-
v-w) in the graph. The observation is that if a wedge is closed,
i.e., there is also edge between u and w, then it corresponds
to a triangle. Thus, the number of triangles is proportional to
the fraction of closed wedges, which can be approximated by
random sampling.

However, to put this idea into practice, one needs to know
W , the total number of wedges, as well as a way to sample one
uniformly from all the W wedges. The two graph representa-
tions do not support such an operation, so an O(n)-time and
preprocessing step is needed. So strictly speaking, this is not a
sublinear-time algorithm. Furthermore, the preprocessing step

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2556663, IEEE
Transactions on Knowledge and Data Engineering

TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING 6

will result in an O(n)-size array that needs to be kept for the
sampling steps.

Note the number of wedges with v as the middle vertex
is
(
d(v)
2

)
, so W =

∑
v

(
d(v)
2

)
, which can be computed in

O(n) time. To support uniformly sampling a wedge, we build
another array A where A[v] =

∑v
u=1

(
d(u)
2

)
, i.e., A[v] stores

the total number of wedges with u as the middle vertex for all
u ≤ v. To sample a wedge, we generate a wedge index i from
1 to W , and then do a binary search in the array A to locate the
vertex v that should serve as the middle vertex of the wedge.
After v is decided, we randomly pick two of its neighbors to
form the wedge. Then we check if the wedge is closed or not,
and scale it up so that it becomes an unbiased estimator of T3.
The detailed algorithm is shown in Algorithm 6.

Algorithm 6: Wedge sampling

t← 0;
sample a wedge (u, v, w) uniformly as described;
if d(u) < d(w) then

if w ∈ N(u) then t← 1 ;
else

if u ∈ N(w) then t← 1 ;

report t ·W/3;

The algorithm works in both the edge array model and the
adjacency list model. The only difference is that in the edge
array model, after the middle vertex v has been decided, the
other two vertices can be chosen in O(1) time, whereas in the
adjacency list model, O(d(v)) time is needed.

4.5.1 Analysis
The probability that t = 1 is 3T3/W , since a triangle can be
found by closing one of 3 wedges, so t ·W/3 is an unbiased
estimator of T3.

The variance of the estimator t is

Var[t] = E[t2]− E[t]2

=
3T3
W
− 9T 2

3

W 2
.

The binary search takes O(log n) time. To test whether
there is an edge between u and w, we scan the neigh-
bor list of the vertex with a smaller degree to check for
the other vertex, so the running time is O(min(d(u), d(w)).
So, the expected running time of this algorithm is
O(log n+ 1

W

∑
(u,v),(v,w)∈E min(d(u), d(w))). In the adjacency

list model, it becomes O(log n + 1
W

∑
(u,v),(v,w)∈E d(v) +

min(d(u), d(w))).

Proposition 6. The wedge sampling algorithm returns an unbiased
estimator of T3 with variance WT3

3 − T3
2. Its running time is

O(log n + 1
W

∑
(u,v),(v,w)∈E min(d(u), d(w))) in the edge array

model, and O(log n+ 1
W

∑
(u,v),(v,w)∈E d(v) + min(d(u), d(w)))

in the adjacency list model. This algorithm needs an O(n)-time
preprocessing step and O(n) working space for the sampling.

One may wonder if the preprocessing and the additional
array A can be avoided, by using non-uniform sampling and
compensating the non-uniformity, as we did previously to
adapt edge sampling and triangle sampling to the adjacency
list model. However, an acute reader may quickly realize that
if we do so, wedge sampling will essentially become triangle
sampling.

TABLE 1
Summary of datasets. n: the number of vertices, m: the number of edges,

T3: the number of triangles.

Dataset n m T3

Amazon 3.34×105 9.26×105 6.67×105

Youtube 1.13×106 2.99×106 3.06×106

LiveJournal(LJ) 4.00 ×106 3.47×107 1.78×108

roadNet-CA 1.97×106 2.77×106 1.21×105

Skitter 1.70×106 1.11×107 2.88×107

USRD 2.39 ×107 2.89×107 4.39×105

Twitter 3.06×107 5.98×108 1.87×1010

WebUK 6.23×107 9.39×108 1.79×1011

5 EXPERIMENTS

We have implemented all algorithms discussed in Section 4, for
both the edge array model and the adjacency list model. This
section describes our experimental setup, methodology, and
the results. Analysis of the results will be provided in Section 6.

5.1 Setup

We have used a collection of real-world graphs, including
social networks, road networks, and autonomous systems
graphs, in our experimental study. A summary of these
datasets is given in Table 1. The first 5 datasets are obtained
from SNAP (http://snap.stanford.edu/). The dataset USRD
and WebUK are the same as in [12]. Twitter is obtained from
[35]. Amazon is crawled from Amazon, where nodes represent
products and edges indicate commonly co-purchased prod-
ucts. LiveJournal is obtained from a free online community
(www.livejournal.com), where vertices are members and an
edge represents the friendship between two members. USRD
is the road network of United States and roadNet-CA is a
network of California, where vertices represent intersections
and endpoints, and edges represent the roads connecting these
intersections or road endpoints. WebUK is a webspam dataset,
where vertices are pages and edges are hyperlinks between
pages. Twitter is an online microblog where vertices are users
and edges represents users are followed by others.

All the experiments were performed under CentOS 5.10 (64
bits) on a machine that was running an Intel E5450 3GHz CPU
(8 cores) with 16G main memory. All programs were compiled
with GNU g++ version 4.9.1 by using flag -O3.

We adopt the most standard implementation for the two
graph representations. For each graph, the vertex id’s are
from 1 to n, which are stored as 32-bit integers. For the
adjacency list model, the vertex array is implemented as a
vector using STL, where each entry stores a pointer to a
neighbor list. Each neighbor list is implemented as a list,
which is implemented as a doubly-linked list in STL. For the
edge array model, the edge array is a vector storing all the
neighbor lists in concatenation. The vertex array is a vector
where each entry stores the index of the first neighbor of the
corresponding vertex in the edge array. Note that no pointers
are needed in the edge array model. Since the vertex id’s are 32-
bit integers while pointers are 64-bit long, the size of the edge

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2556663, IEEE
Transactions on Knowledge and Data Engineering

TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING 7

array representation is roughly 1/5 of that of the adjacency list
representation for the same graph.

5.2 Methodology
Before running the algorithms, we pre-load the graph from
the data file to memory using one of the two representation
formats (i.e., loading time is not included in measuring the
running time of the algorithms). Note that some large graphs
used in our experiments do not fit in main memory; we simply
rely on the virtual memory system to handle this automatically.

Recall that all the algorithms run for multiple sampling
steps (except the subgraph sampling algorithm), with each step
returning an unbiased estimator of T3. We take the average
of these estimators, whose accuracy thus improves as more
steps are taken. More precisely, if the variance of the estimator
from one sampling step is σ2, the variance after k steps is
σ2/k. However, since different algorithms have different per-
step running time, it will not be a fair comparison to use the
same k for all algorithms; even for the same algorithm, the
per-step cost also varies from step to step (it is a random
variable). Thus, we adopt the following scheme in order to
have a fair comparison across different algorithms: Suppose
we run algorithm A on a particular graph, and let x̄(t) be
the running average of the sampling steps so far until time
t. We calculate the error x̄(t) − T3 at regular time intervals,
say t = 10ms, 20ms, Since one run of the algorithm may
have high fluctuation, we repeat the process multiple times,
and for each time stamp t, we report the root mean square
error (RMSE) of the algorithm across multiple runs, namely,

RMSE(t) =

√∑r
i=1(x̄i(t)− T3)2

r
,

where x̄i(t) is the running average at time t in the i-th run, and
there are a total of r runs. In our experiments, we used r = 100
runs to get stable results. Furthermore, we report the relative
RMSE as a percentage of T3, so that results across different data
sets can be compared.

The reader is reminded that the RMSE is used to evaluate
and compare these algorithms. In actual application, we cannot
compute RMSE as we do not know T3. However, since each
sampling step of the algorithm returns an unbiased estimator
T3, σ can be estimated as (from standard statistics theory)

σ̃ =

√√√√ 1

k − 1

k∑
j=1

(xj − x̄)2,

where xj is the estimate returned from the j-th sampling step,
and x̄ = 1

k

∑k
j=1 xj . When k is sufficiently large, σ̃/

√
k will be

a reasonable estimate of the RMSE.
In order to see the benefits of sublinear-time algorithms, we

have also run the exact counting algorithm for each graph. For
graphs that fit in memory, we implement the Compact Forward
algorithm [9]. For larger graphs, we used the external memory
algorithm and code from [7]. The running times of these exact
counting algorithms are given in Table 2.

5.3 Results
From the experiments, we first observed that the subgraph
sampling algorithm is much worse than the other algorithms,
to the point that their results cannot be plotted in the same
figure. Instead, we indicate the result of the subgraph sampling

TABLE 2
Running times of exact counting algorithms.

Dataset Time (s) Dataset Time (s)

Amazon 1.1 LiveJournal(LJ) 200

Youtube 42 USRD 37

roadNet-CA 5.5 Twitter 1,950

Skitter 441 WebUK 2,102

TABLE 3
Loading time of datasets

Dataset Edge array model (ms) Adjacency list model (ms)

Amazon 331 455

Youtube 505 1,079

LiveJournal(LJ) 3,528 10,764

roadNet-CA 593 1,778

Skitter 1,018 3,551

USRD 11,268 16,383

Twitter 49,173 571,059

WebUK 122,351 1,349,232

algorithm in a box in each figure as a (RMSE, running time)
pair. For subgraph sampling, we need to decide the sample size
k before running the algorithm. In our experiments, we tried
various k so that the its running time is on the same order as
other algorithms, and report that result for that particular value
of k. It turns out with this time constraint, the algorithm can
sample no more than 1% of the edges, which results in very
poor estimation quality. We note that in the original paper [21],
more than 10% of the edges had to be sampled in order to get
reasonable estimates, but that would make the algorithm run
much slower than the other algorithms. The intuitive reason is
that subgraph sampling is too general a technique. It can in fact
be used to approximately count the number of any subgraph
pattern, not just triangles. In doing so, the algorithm “blindly”
samples edges. On the other hand, the other algorithms are
tailored to finding triangles more intelligently, thus leading to
much better accuracy.

The detailed experimental results are plotted in Figure 4
and 5, which show how the RMSE reduces over time for all
algorithms on each of the datasets. For the same algorithm, we
plot the results under the two different graph representation
models in the same figure, so as to see the benefit of using the
more compact edge array model. The version for the adjacency
list model is shown in dashed lines, while the one for the
edge array model in solid lines. Note that the vertex sampling
algorithm is the same for both models, so there is only one line
for this algorithm1. Particularly, we present two more figures:
Figure 5(b) and 5(d) to show the details at twisted line part.

1. Strictly speaking, the implementation of the vertex sampling algo-
rithm is still slightly different in the two models, as one uses list while
the other uses vector to store the neighbor lists, and traversing a vector
is slightly faster than in a list. But the difference is very small, hence
neglected.

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2556663, IEEE
Transactions on Knowledge and Data Engineering

TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING 8

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

Time(ms)

R
M

S
E

/T
(%

)

Vertex Sampling

Edge Sampling

Edge Sampling(Adjcacency List)

Triangle Sampling

Triangle Sampling(Adjacency List)

Wedge Sampling

Wedge Sampling(Adjcacency List)

1868%,64ms

(a) Amazon

0 100 200 300 400 500 600
0

50

100

150

200

250

Time(ms)

R
M
S
E
/T
(%
)

107%,628ms

(b) Youtube

0 50 100 150 200 250 300
0

20

40

60

80

100

120

Time(ms)

R
M
S
E
/T
(%
)

2075%,369ms

(c) LiveJournal

0 20 40 60 80 100 120
0

5

10

15

20

25

30

35

Time(ms)

R
M
S
E
/T
(%
)

2582%,391ms

(d) roadNet-CA

0 100 200 300 400 500 600 700
0

50

100

150

Time(ms)

R
M
S
E
/T
(%
)

219%,704ms

(e) Skitter

0 100 200 300 400 500 600 700 800
0

5

10

15

20

25

30

35

Time(ms)

R
M
S
E
/T
(%
)

3900%,1847ms

(f) USRD

Fig. 4. Experimental Results (on data sets that fit in main memory)

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2556663, IEEE
Transactions on Knowledge and Data Engineering

TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING 9

0 50 100 150 200 250
0

50

100

150

200

250

300

350

400

450

500

550

Time(s)

R
M
S
E
/T
(%
)

81%,269s

(a) Twitter

0 50 100 150 200 250
0

2

4

6

8

10

12

14

16

18

20

Time(s)

R
M
S
E
/T
(%
)

(b) Twitter (only showing the competitive algorithms)

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

Time(s)

R
M
S
E
/T
(%
)

10%,246s

(c) WebUK

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

Time(s)

R
M
S
E
/T
(%
)

(d) WebUK (only showing the competitive algorithms)

Fig. 5. Experimental Results (on data sets that do not fit in main memory)

Note that since the wedge sampling algorithm needs an
O(n)-time preprocessing step, it has a “delayed start” com-
pared with other algorithms. Furthermore, it needs extra O(n)
working space to sample the wedges, while the other algo-
rithms only need space to hold the neighbor list of the sampled
vertex or edge.

5.4 Experimental observations

From our experimental results on a variety of graphs, we make
the following observations.

1) For the same algorithm, the edge array model al-
ways offers better performance than the adjacency list
model, and the difference can be large on some graphs.

2) Edge sampling and wedge sampling are generally
the two best-performing algorithms, with quite stable
performance across all data sets. Recall that, however,
wedge sampling has a delayed start and needs O(n)
working space.

3) Vertex sampling and triangle sampling perform rea-
sonably well on some graphs, but could be a lot worse
on other graphs.

6 ANALYSIS

In this section, we try to substantiate the experimental ob-
servations made above, through an analytical comparison of
these algorithms. The variances and running times of all the
algorithms are summarized in Table 4. We have omitted the
−T 2

3 term from all the variances, which is common to all
algorithms, and is insignificant compared with the leading
term. The expected running time per sampling step, strictly
speaking, should be in “big-Oh” notation. But since all the al-
gorithms perform almost the same type of operations (random
sampling followed by hash join between neighbor lists), the
hidden constants are very close. Thus we drop the big-Oh and
consider these as reasonably good approximations of actual
running times.

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2556663, IEEE
Transactions on Knowledge and Data Engineering

TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING 10

TABLE 4
Comparison of all algorithms. The −T 2

3 term is omitted from all the variances, which is common to all algorithms.

Model Method Variance Expected running time per sampling step

Both Vertex sampling n
9

∑
v
λ(v)2 1

n

∑
v
d(v)2

Edge array

Edge sampling m
9

∑
e
λ(e)2 1

m

∑
v
d(v)2

Triangle sampling m
18

∑
e
λ(e)(d(u) + d(v)) 1

m

∑
e

d(u)d(v)
d(u)+d(v)

Wedge sampling 1
3
WT3 logn+ 1

W

∑
(u,v),(v,w)∈E min(d(u), d(w))

Adjacency list

Edge sampling n
9

∑
e

λ(e)2d(u)d(v)
d(u)+d(v)

1
n

∑
e

(d(u)+d(v))2

d(u)d(v)

Triangle sampling n
18

∑
e
λ(e)d(u)d(v) 1

n

∑
e

(d(u)+d(v))2

d(u)d(v)

Wedge sampling 1
3
WT3 logn+ 1

W

∑
(u,v),(v,w)∈E d(v) + min(d(u), d(w))

6.1 Variance after a certain amount of time
Table 4 has listed, for each algorithm, the variance of expected
running time of a single sampling step. These, however, do not
yet tell us the actual performance of the algorithms. What if
an algorithm has a small variance per sampling step but each
sampling step takes more time? Ultimately, what we care is the
variance of the final estimator, which is the average of all the
sampling steps taken, after a certain amount of time, say t. If
each sampling step takes a fixed amount of time T , then we
know that there must be k = t/T sampling steps after time t,
and the final variance is simply the variance of one sampling
step divided by k. However, in our case T is a random variable,
which means that the number of sampling steps k is also a
random variable, and this introduces some complication.

Let Xi be the estimator yielded in the i-th sampling step.
The final estimator after time t is thus 1

k

∑k
i=1Xi. The follow-

ing lemma derives its variance.

Proposition 7. The variance of the estimator after time t is
Var

[
1
k

∑k
i=1Xi

]
= Var[X1]E[T]/t.

Proof. Note that this is a sum of a random number of random
variables, so we cannot directly break it up as in standard
variance analysis. We will have to do a conditioning on k, and
then use the law of total variance:

Var

[
1

k

k∑
i=1

Xi

]

=E

[
Var

[
1

k

k∑
i=1

Xi

∣∣∣∣∣ k
]]

+ Var

[
E

[
1

k

k∑
i=1

Xi

∣∣∣∣∣ k
]]

=E[Var[X1]/k] + Var[T3]

=Var[X1]E[T/t] + 0

=Var[X1]E[T]/t.

Proposition 7 has two implications. First, given the same
amount of time t, the performance of the algorithm is de-
termined by Var[X1]E[T]. So it is sufficient to use the term
Var[X1]E[T] for the comparison of different algorithms. Sec-
ond, it also gives us a condition of sublinearity. More precisely,
suppose we aim at a relative error of ε, i.e., Var[X1]E[T]/t =
(εT3)2, then this means that t = Var[X1]E[T]/(εT3)2. By plug-
ging in the Var[X1] and E[T] formulas of various algorithms
from Table 4, we can analyze their running times for achieving

an ε-approximation for certain classes of graphs. The algorithm
can be considered as taking sublinear time if t = o(n+m).

6.2 Sublinearity
Below, we give some examples on how to check the sublinear-
ity of various algorithms for certain classes of graphs.

To start with, consider a complete graph, which has m =
n2 edges and T3 = n3 triangles (we again omit the big-Oh
for notational simplicity). Then the edge sampling algorithm
(which is the algorithm we advocate the most) in the edge
array model has running time

Var[X1]E[T]

(εT3)2
=

∑
e λ(e)2

∑
v d(v)2

ε2n6
=
n2 · n2 · n · n2

ε2n6
=

n

ε2
,

which is o(m+ n) = o(n2). So it is a sublinear-time algorithm
as long as ε > n−1/2.

On the other, vertex sampling is not a sublinear-time algo-
rithm on a complete graph, since its running time is

Var[X1]E[T]

(εT3)2
=

∑
v λ(v)2

∑
v d(v)2

ε2n6
=
n · n4 · n · n2

ε2n6
=
n2

ε2
.

Next, consider a triangulation graph of constant degree,
which is a common type of sparse graphs with many triangles.
In a triangulation, we have m = n and T3 = n. For edge
sampling, we have

Var[X1]E[T]

(εT3)2
=

∑
e λ(e)2

∑
v d(v)2

ε2n2
=
n · 12 · n · 12

ε2n2
=

1

ε2
.

This is a very nice result as it indicates that its running time
is independent of the graph size, and is only determined by the
desired error level.

The vertex sampling on a planar triangulation graph can do
as well, since we similarly have

Var[X1]E[T]

(εT3)2
=

∑
v λ(v)2

∑
v d(v)2

ε2n2
=
n · 12 · n · 12

ε2n2
=

1

ε2
.

Actually, later we will prove a strong result that no matter
what the graph is, edge sampling will always do at least as
well as vertex sampling (c.f. Proposition 8).

In general, however, it is difficult to check sublinearity
for an arbitrary graph, and the analyses above rely on some
fairly strong properties of the class of graphs under inves-
tigation. On the other hand, we have computed the term
Var[X1]E[T]/(εT3)2 for the 8 real graphs used in our experi-
mental study (see Table 5) for the edge sampling algorithm,
which can serve as its empirical evidence of sublinearity for
typical real-world graphs.

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2556663, IEEE
Transactions on Knowledge and Data Engineering

TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING 11

TABLE 5
Comparison of Var[X1]E[T]/(εT3)2 (ε = 0.5)

Model Method Amazon Youtube LJ roadNet-CA Skitter USRD twitter WebUK

Both Vertex sampling 4.12×103 4.94×107 7.05×106 3.91×103 2.45×108 2.12×103 1.05×109 6.58×107

Edge array

Edge sampling 1.93×102 7.21×104 9.6×103 4.14×102 7.08×105 5.01×102 1.18×105 1.15×104

Triangle sampling 1.63×102 7.53×104 5.28×103 6.14×102 8.0×104 5.09×102 2.66×105 6.36×103

Wedge sampling 5.99×102 2.78×104 3.91×103 2.83×103 4.70×104 5.64×103 1.49×105 9.10×103

Adjacency list

Edge sampling 1.08×103 4.64×107 1.68×105 9.88×102 7.24×108 1.24×103 4.75×109 1.29×106

Triangle sampling 3.30×103 5.27×108 3.40×105 3.34×103 1.44×109 3.92×103 2.35×1010 1.50×106

Wedge sampling 1.49×103 7.55×106 5.07×104 3.39×103 1.35×107 6.13×103 2.86×105 1.40×104

6.3 Edge array vs. adjacency list
Our first experimental observation was that, for the same algo-
rithm, the edge array model always offers better performance
than the adjacency list model. Practically, this is because the
edge array model is more compact. It uses arrays to store the
neighbor lists, which allows more cache-efficient traversal of
neighbors. On the other hand, the adjacency list model uses
linked lists to store the neighbor lists, which is less cache-
efficient as it involves pointer-jumping during traversal.

Below we also provide theoretical justification on why the
edge array model is better. As argued above, we can compare
Var[X1]E[T] for the same algorithm under the two models. The
comparison for the wedge sampling algorithm is straightfor-
ward: Var[X1] is the same under the two models, while E[T] is
strictly larger in the adjacency list model.

The comparison for the edge sampling algorithm is more
subtle. In fact, there is no strict winner in all cases. Consider
the two extreme examples in Figure 6 and 7.

Fig. 6. A graph that consists of a complete graph Kn and n3 single edges.

Fig. 7. A graph that consists of a complete bipartite graph Kn,n and one
triangle.

From the analytical results in Table 4, we know that
Var[X1]E[T] =

∑
e λ(e)2

∑
v d(v)2 in the edge array model,

and Var[X1]E[T] =
∑
e
λ(e)2d(u)d(v)
d(u)+d(v)

∑
e

(d(u)+d(v))2

d(u)d(v) in the ad-
jacency list model (ignoring the common coefficient 1

9). For
the graph in Figure 6, Var[X1]E[T] = Θ(n7) in the edge array
model while it is Θ(n8) in the adjacency list mode. However,
for the graph in Figure 7, Var[X1]E[T] = Θ(n3) in the edge
array model while it is Θ(n2) in the adjacency list model.

The above two extreme examples imply that it is not
possible to prove that one model is always better than the
other. Our experimental results, on the other hand, seem to

have suggested that the edge array model is better than the
adjacency list model, meaning that real graphs are more similar
to Figure 6 than to Figure 7. Indeed, on the class of graphs
we have experimented with (social networks, relationship be-
tween products), vertices tend to form small tightly connected
clusters, while bipartite graphs are rare. This in turn means
that more triangles tend to occur around high-degree vertices
(bipartite graphs exactly lack this property). If we assume that
for each edge e = (u, v), λ(e) is proportional to d(u) and d(v),
then we can prove that the edge array model is indeed better.
Suppose d(u)/λ(e) ≈ d(v)/λ(e) ≈ c. Then for the edge array
model,

Var[X1]E[T] =
∑
e

λ(e)2
∑
e

(d(u) + d(v))

≈ c
∑
e

λ(e)2
∑
e

λ(e).

For the adjacency list model, we have

Var[X1]E[T] ≈
∑
e

cλ(e)3
∑
e

1 = cm
∑
e

λ(e)3.

By Chebyshev’s sum inequality, we have∑
e

λ(e)2
∑
e

λ(e) ≤ m
∑
e

λ(e)3,

so Var[X1]E[T] is always smaller in the edge array model.
The triangle sampling algorithm can be similarly analyzed.

Again, for the graph in Figure 6, the edge array model is better
than the adjacency list model by an order of Θ(n), but is worse
by an order of Θ(n) for the graph in Figure 7. Still, with the
assumption that λ(e) is proportional to d(u) and d(v), we can
show that the edge array model is better.

Therefore, we can conclude that for all the algorithms, the
edge array model offers better performance than the adjacency
list model, for most real-world graphs where more triangles
tend to occur around high-degree vertices. The edge array
model is also a more compact and more cache-efficient graph
representation. Thus, we focus on the edge array model for the
rest of the analysis.

6.4 Edge sampling

Our experimental results suggest that edge sampling is always
one of the best performing algorithms across all the data sets,
with no need for preprocessing and very little working space.
In this section, we will justify this claim analytically.

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2556663, IEEE
Transactions on Knowledge and Data Engineering

TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING 12

6.4.1 Comparison with vertex sampling
From Table 4, the comparison between edge sampling and ver-
tex sampling in terms of Var[X1]E[T] boils down to comparing∑
e λ(e)2 and

∑
v λ(v)2. We have the following fairly strong

result, which holds for all graphs.

Proposition 8. For any graph G,
∑
e λ(e)2 ≤∑v λ(v)2.

Proof. First, observe that λ(v) = 1
2

∑
u∈N(v) λ(u, v). So we

have

∑
v

λ(v)2 =
∑
v

1

2

∑
u∈N(v)

λ(u, v)

2

=
1

4

∑
v

(∑
u∈N(v)

λ(u, v)2

+
∑

u6=w∈N(v)

λ(u, v)λ(v, w)
)
.

Obviously,
∑
v∈V

∑
u∈N(v) λ(u, v)2 = 2

∑
e∈E λ(e)2. The sec-

ond term
∑
v

∑
u6=w∈N(v) λ(u, v)λ(v, w) can be rewritten as∑

e=(u,v)

λ(e)
(∑
p∈N(u)−{v}

λ(p, u) +
∑

q∈N(v)−{u}

λ(q, v)
)
.

Please see Figure 8. Any triangle counted in λ(e = (u, v))
is also counted in some λ(p, u) for some p ∈ N(u) − {v}, so∑
p∈N(u)−{v} λ(p, u) ≥ λ(e). Similarly,

∑
q∈N(v)−{u} λ(q, v) ≥

λ(e). Thus, the second term
∑
v

∑
u6=w∈N(v) λ(u, v)λ(v, w)} ≥

2
∑
e λ

2(e). The proof thus completes after combining the two
parts.

p

u v

q

Fig. 8. Vertex Sampling and Triangle Sampling

Therefore, we conclude that edge sampling is better than
vertex sampling on any graph.

6.4.2 Comparison with triangle sampling
Unfortunately, it is not possible to show that edge sampling is
always better than triangle sampling. In fact, on the extreme
example in Figure 9, Var[X1]E[T] = Θ(n4) for edge sampling
but Var[X1]E[T] = Θ(n3) for triangle sampling. This is actually
quite intuitive. This graph has one crucial edge that is shared
by all the triangles. Edge sampling has to sample that edge
in order to find any triangles, which happens with probability
Θ(1/n). On the other hand, the triangle sampling algorithm
can always find triangles no matter what vertex is sampled.

Fig. 9. A graph that consists of n triangles sharing a single edge.

However, if we assume that the degrees of neighboring
vertices do not differ too much (within a constant factor), we
can indeed show that edge sampling is always better. Under
this assumption, the E[T] part of both algorithms are roughly
the same, both being

∑
v d(v)2 =

∑
e d(u) + d(v). For the

Var[X1] part, compared with edge sampling, triangle sampling
replaces one λ(e) term with d(u) + d(v), which is always
greater than λ(e). This actually partially explains why triangle
sampling performs much worse on the road network graphs
(roadNet-CA, USRD), which have relatively few triangles, so
λ(e) is much smaller than d(u)+d(v). On the other hand, when
neighboring triangles have very different degrees, such as the
extreme example in Figure 9, triangle sampling can perform
better. The real graph Skitter also has similar properties, so
triangle sampling performs relatively better on it than on other
graphs.

6.5 Wedge sampling
The performance of wedge sampling is characterized by pa-
rameters different from those for other algorithms, and the
formulas for Var[X1] and E[T] are also quite different from
others. Making things even worse, as wedge sampling requires
an O(n)-time preprocessing step, the Var[X1]E[T] argument
used earlier cannot be applied anymore. Thus, unfortunately
we cannot have a good analytical comparison between this
algorithm and the others. Experimentally, its performance ap-
pears to be similar to that of edge sampling, albeit with a
delayed start due to the preprocessing. Furthermore, it requires
O(n) working space, while other algorithms require very small
working space.

6.6 A recent theoretical result
Very recently, Eden et al. [8] gave an algorithm for approxi-
mating the number of triangles in O(poly(ε−1 log n)(n/T

1/3
3 +

min{m,m3/2/T3})) time, which is sublinear when T3 �
√
m.

Theoretically speaking, this result is much more elegant as it
only depends on T3 (other than the input size), whereas the
bounds of our algorithms are a lot messier. Still, this result
does not subsume ours. For example, on triangulation graphs,
we showed previously that edge sampling has running time
O(1/ε2), while the Eden et al. bound isO(poly(ε−1 log n)n2/3).

We have also examined the practicality of the Eden
et al. algorithm. After carefully analyzing their algorithm,
we have derived the poly factor in the time complexity,
and the full running time is O(ε−4 log3 n log log n(n/T

1/3
3 +

min{m,m3/2/T3})). On a typical graph, e.g., the Twitter data
set, which has (roughly) n = 107,m = 109, T3 = 1010, with an
ε = 10% error, this running time is on the order of 1012, which
is actually much larger than the input size.

To check whether this large running time might have been
due to the slack in the analysis, we have also implemented
the algorithm (the “simpler” version as described in [36]).
Note that, besides listing all neighbors of a given vertex, this
algorithm also requires to check the existence of an edge (u, v)
for a given u and v, which is not supported directly by the
edge array or the edge list representation. So we built hash
tables on the neighbor list of every vertex (the time to build
the hash tables is not included in the reported times). This
roughly doubles the storage cost of the graph. We set ε = 10%
and ran the algorithm on the data sets, and the running times
are reported in Table 6. We see that it is even slower than the

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2556663, IEEE
Transactions on Knowledge and Data Engineering

TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING 13

exact counting algorithms, as reported in Table 2. Therefore,
we conclude that this algorithm is of theoretical interests only.

TABLE 6
Running times of the Eden et al. algorithm.

Dataset Time (s) Dataset Time (s)

Amazon 39 LiveJournal(LJ) 74

Youtube 140 USRD 3,448

roadNet-CA 183 Twitter 4,057

Skitter 55 WebUK >259,200

7 CONCLUSIONS

In this paper, we have provided a detailed experimental and
analytical comparison of different approaches to the approx-
imate triangle counting problem by random sampling. Our
results suggest that edge sampling is a good candidate for a
variety of graphs, with both experimental and analytical evi-
dence. Wedge sampling is also quite competitive, if a delayed
start is tolerable, although a good analytical understanding of
its performance remains elusive.

A very interesting problem to be further investigated is
to see if there are better techniques on sampling from disk-
resident graph data. In this paper we have simply relied on
the virtual memory system to handle graphs that do not fit
in memory. This essentially means that upon a page fault, the
algorithm will go to disk and fetch the page containing the
sampled vertex or edge, but will not utilize the rest of the
data on that page (unless some other data is luckily sampled
again). Ideally, sampling from disk-resident data should be
block-based. However, the problem is that data from the same
block may not be independent. In the worst case, if the data
within one block are highly correlated, then using all data from
the sampled block is the same as using just one record from
it. For a linear array, there has been work on how to better
exploit block-based sampling [37], [38]. However, as graph data
is much more complicated than a linear array, the problem
of block-based sampling on graphs is more challenging but
certainly very interesting.

ACKNOWLEDGMENTS

This work is supported by HKRGC under grants GRF-621413,
GRF-16211614, GRF-16200415, and by Huawei Research Fund.

REFERENCES

[1] D. J. Watts and S. H. Strogatz, “Collective dynamics of small-
worldnetworks,” nature, vol. 393, no. 6684, pp. 440–442, 1998.

[2] T. Opsahl and P. Panzarasa, “Clustering in weighted networks,” Social
networks, vol. 31, no. 2, pp. 155–163, 2009.

[3] J.-P. Eckmann and E. Moses, “Curvature of co-links uncovers hidden
thematic layers in the world wide web,” Proceedings of the national
academy of sciences, vol. 99, no. 9, pp. 5825–5829, 2002.

[4] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis, “Efficient semi-
streaming algorithms for local triangle counting in massive graphs,”
in SIGKDD, 2008, pp. 16–24.

[5] J. W. Berry, B. Hendrickson, R. A. LaViolette, and C. A. Phillips,
“Tolerating the community detection resolution limit with edge
weighting,” Physical Review E, vol. 83, no. 5, p. 056119, 2011.

[6] A. Itai and M. Rodeh, “Finding a minimum circuit in a graph,” in
STOC, 1977, pp. 1–10.

[7] X. Hu, Y. Tao, and C.-W. Chung, “Massive graph triangulation,” in
SIGMOD, 2013, pp. 325–336.

[8] T. Eden, A. Levi, D. Ron, and C. Seshadhri, “Approximately counting
triangles in sublinear time,” in FOCS, 2015.

[9] M. Latapy, “Main-memory triangle computations for very large
(sparse (power-law)) graphs,” Theor. Comput. Sci., vol. 407, no. 1-3,
pp. 458–473, 2008.

[10] T. Schank and D. Wagner, “Finding, counting and listing all triangles
in large graphs, an experimental study,” in Experimental and Efficient
Algorithms. Springer, 2005, pp. 606–609.

[11] X. Hu, M. Qiao, and Y. Tao, “Join dependency testing, loomis-whitney
join, and triangle enumeration,” in PODS, 2015.

[12] S. Chu and J. Cheng, “Triangle listing in massive networks,” ACM
Transactions on Knowledge Discovery from Data, vol. 6, no. 4, p. 17, 2012.

[13] R. Dementiev, “Algorithm engineering for large data sets hardware,
software, algorithms,” PhD thesis, Saarland University, 2006.

[14] B. Menegola, “An external memory algorithm for listing triangles,”
Technical report, Universidade Federal do Rio Grande do Sul, 2010.

[15] R. Pagh and F. Silvestri, “The input/output complexity of triangle
enumeration,” in PODS, 2014, pp. 224–233.

[16] R. Pagh and C. E. Tsourakakis, “Colorful triangle counting and a
mapreduce implementation,” Information Processing Letters, vol. 112,
no. 7, pp. 277–281, 2012.

[17] H.-M. Park, F. Silvestri, U. Kang, and R. Pagh, “Mapreduce triangle
enumeration with guarantees,” in CIKM, 2014, pp. 1739–1748.

[18] S. Suri and S. Vassilvitskii, “Counting triangles and the curse of the
last reducer,” in WWW, 2011, pp. 607–614.

[19] J.-H. Yoon and S.-R. Kim, “Improved sampling for triangle counting
with mapreduce,” in Convergence and Hybrid Information Technology,
ser. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2011, vol. 6935, pp. 685–689.

[20] A. D. Sarma, F. N. Afrati, S. Salihoglu, and J. D. Ullman, “Upper and
lower bounds on the cost of a map-reduce computation,” Proceedings
of the VLDB Endowment, vol. 6, no. 4, pp. 277–288, 2013.

[21] C. E. Tsourakakis, U. Kang, G. L. Miller, and C. Faloutsos, “Doulion:
counting triangles in massive graphs with a coin,” in SIGKDD, 2009,
pp. 837–846.

[22] C. Seshadhri, A. Pinar, and T. G. Kolda, “Triadic measures on graphs:
the power of wedge sampling,” in SDM, 2013.

[23] M. N. Kolountzakis, G. L. Miller, R. Peng, and C. E. Tsourakakis,
“Efficient triangle counting in large graphs via degree-based vertex
partitioning,” Internet Mathematics, vol. 8, no. 1-2, pp. 161–185, 2012.

[24] Z. Bar-Yossef, R. Kumar, and D. Sivakumar, “Reductions in streaming
algorithms, with an application to counting triangles in graphs,” in
SODA, 2002, pp. 623–632.

[25] H. Jowhari and M. Ghodsi, “New streaming algorithms for counting
triangles in graphs,” in Computing and Combinatorics. Springer, 2005,
pp. 710–716.

[26] L. S. Buriol, G. Frahling, S. Leonardi, A. Marchetti-Spaccamela, and
C. Sohler, “Counting triangles in data streams,” in PODS, 2006, pp.
253–262.

[27] D. M. Kane, K. Mehlhorn, T. Sauerwald, and H. Sun, “Counting
arbitrary subgraphs in data streams,” in Automata, Languages, and
Programming. Springer, 2012, pp. 598–609.

[28] A. Pavan, K. Tangwongsan, S. Tirthapura, and K.-L. Wu, “Counting
and sampling triangles from a graph stream,” Proceedings of the VLDB
Endowment, vol. 6, no. 14, pp. 1870–1881, 2013.

[29] M. Jha, C. Seshadhri, and A. Pinar, “A space efficient streaming algo-
rithm for triangle counting using the birthday paradox,” in SIGKDD,
2013, pp. 589–597.

[30] G. Cormode and H. Jowhari, “A second look at counting triangles in
graph streams,” Theoretical Computer Science, vol. 552, pp. 44–51, 2014.

[31] M. Gonen, D. Ron, and Y. Shavitt, “Counting stars and other small
subgraphs in sublinear-time,” SIAM Journal on Discrete Mathematics,
vol. 25, no. 3, pp. 1365–1411, 2011.

[32] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: a system for large-scale graph
processing,” in SIGMOD, 2010, pp. 135–146.

[33] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.
Hellerstein, “Graphlab: A new framework for parallel machine learn-
ing,” CoRR, vol. abs/1006.4990, 2010.

[34] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher, “Min-
wise independent permutations,” in STOC, 1998, pp. 327–336.

[35] H. Kwak, C. Lee, H. Park, and S. Moon, “What is Twitter, a social
network or a news media?” in WWW, 2010, pp. 591–600.

[36] C. Seshadhri, “A simpler sublinear algorithm for approximating the
triangle count,” in CoRR, 2015.

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2556663, IEEE
Transactions on Knowledge and Data Engineering

TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING 14

[37] S. Chaudhuri, G. Das, and U. Srivastava, “Effective use of block-level
sampling in statistics estimation,” in SIGMOD, 2004.

[38] A. Andoni, P. Indyk, K. Onak, and R. Rubinfeld, “External sampling,”
in ICALP, 2009, pp. 83–94.

Bin Wu is currently a PhD student in the Depart-
ment of Computer Science and Engineering, Hong
Kong University of Science and Technology. He ob-
tained his Bachelor’s degree from Fudan University
in 2012.

Ke Yi is now an Associate Professor in the Depart-
ment of Computer Science and Engineering, Hong
Kong University of Science and Technology. He ob-
tained his B.E. from Tsinghua University and Ph.D.
from Duke University, in 2001 and 2006 respectively,
both in computer science. Before joining HKUST,
he was a researcher in the database department at
AT&T Labs. His research focus is on big data algo-
rithms and their applications in database systems.

Zhenguo Li is currently a researcher in Huawei
Noahs Ark Lab at Hong Kong. He received the B.S.
and M.S. degrees from the Department of Math-
ematics at Peking University, in 2002 and 2005,
respectively, and the Ph.D. degree from the Depart-
ment of Information Engineering at the Chinese Uni-
versity of Hong Kong, in 2008. He was an associate
research scientist in the Department of Electrical
Engineering at Columbia University. His research
interests include machine learning and artificial in-
telligence.

