
1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2535209, IEEE
Transactions on Knowledge and Data Engineering

1

Automatic Clustering via Outward Statistical
Testing on Density Metrics

Guangtao Wang, Qinbao Song

Abstract—Clustering is one of the research hotspots in the field of data mining and has extensive applications in practice. Recently,
Rodriguez and Laio [1] published a clustering algorithm on Science that identifies the clustering centers in an intuitive way and clusters
objects efficiently and effectively. However, the algorithm is sensitive to a preassigned parameter and suffers from the identification of
the “ideal” number of clusters. To overcome these shortages, this paper proposes a new clustering algorithm that can detect the
clustering centers automatically via statistical testing. Specifically, the proposed algorithm first defines a new metric to measure the
density of an object that is more robust to the preassigned parameter, further generates a metric to evaluate the centrality of each
object. Afterwards, it identifies the objects with extremely large centrality metrics as the clustering centers via an outward statistical
testing method. Finally, it groups the remaining objects into clusters containing their nearest neighbors with higher density. Extensive
experiments are conducted over different kinds of clustering data sets to evaluate the performance of the proposed algorithm and
compare with the algorithm in Science. The results show the effectiveness and robustness of the proposed algorithm.

Index Terms—Clustering, Clustering Center Identification, Long-tailed Distribution, Outward Statistical Testing.
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1 INTRODUCTION

Clustering is an important technique of exploratory
data mining, which divides a set of objects (instances or
patterns) into several groups (also called clusters) in such
a way that objects in same group are more similar with
each other in some sense than with the objects in other
groups. It has been widely used in different disciplines and
applications, such as machine learning, pattern recognition
[2], data compression [3], image segmentation [4], [5], time
series analysis [6], [7], information retrieval [8], [9], spatial
data analysis [10], [11], [12] and biomedical research [13].
Moreover, as data’s variety and scale increase rapidly, and
the prior knowledge (e.g., category or class label) about the
data is usually limited, clustering has been a challenging
task.

In this context, a number of clustering algorithms have
been proposed based on different clustering mechanisms
[14], [15], [16], [17], [18], such as i) the connectivity based
clustering assumes that the objects close to each other are
more possible to be in the same cluster than the objects far
away from each other; this kind of clustering algorithms
usually organizes the objects as a hierarchical structure but
does not produce a unique partition, and still needs users
to preassign a distance threshold to generate appropriate
clusters. The representative algorithms include Single-Link
[19] and Complete-Link [20]. ii) The centroid based clus-
tering represents each cluster as a central vector (or named
clustering center), and the objects are assigned to the nearest
clustering center, the famous examples are k-Means and
its variants such as k-Medoids [21] and k-Means++ [22],
where k denotes the number of clusters preassigned by user.
The requirement of the parameter k specified in advance is
considered as one of the critical drawbacks of this kind of
algorithms. Meanwhile, it is usually not able to detect the
non-spherical clusters. iii) The distribution-based clustering
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assumes that the objects in a given cluster are most likely
to be derived from the same distribution. The most famous
example is EM (Expectation maximization) algorithm [23]
which employs a fixed number of Gaussian distributions
to approach the distribution of the objects. However, for
most real world data sets, the real distribution of the objects
is usually difficult to define in advance and cannot be
concisely defined as Gaussian distribution. Moreover, this
kind of clustering algorithms still needs to preassign the
number of clusters (or different distributions). iv) The den-
sity based clustering defines the clusters as areas with higher
density, and can detect the clusters in any arbitrary shape.
The most popular example of density-based clustering is
DBSCAN [24] in which only the objects whose density is
greater than the given thresholds are connected together to
form a cluster. However, the proper threshold setting varies
with different data sets, there is still no effective method
to preassign these thresholds. v) The spectral clustering
based algorithm does not make assumptions on the forms
of the clusters; it utilizes the spectrum (i.e., eigenvalues)
of the similarity matrix of the data to map the data into a
lower-dimensional space in which the objects can be easily
clustered by traditional clustering techniques [18], [25], [26].
Comparing to the traditional algorithms, such as k-Means
and single-linkage, this kind of clustering algorithm is use-
ful in non-convex boundaries and performs empirically very
well [27]. And the first few eigenvalues can be used to
determine the number of clusters and reduce the dimension
of data. Yet, it has stated in [28] these first eigenvectors
cannot successfully cluster objects that contain structures
with different sizes and densities.

Recently, Rodriguez and Laio [1] proposed a novel
Clustering algorithm (denoted as RLClu for convenience in
this paper) that integrates the merits of the above mentioned
algorithms. First, similar to the connectivity and centroid
based clustering, RLClu is only based on the distance (or
similarity) between objects. Secondly, as the density based
clustering, it defines the clustering centers as the objects
with maximum local density, and can detect the non-
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spherical clusters. Moreover, in contrast with the other well-
known clustering algorithms (e.g., k-means, EM) where an
objective function needs to be optimized iteratively, RLClu
assigns the clustering label for each object in a single step.

The algorithm RLClu first defines two metrics (local den-
sity and minimum density-based distance) for each object
based on the distances among objects. Then, it constructs a
two-dimensional plot (named as decision graph in RLClu)
with these two metrics, and identifies the objects with both
greater local density and minimum density-based distance
as clustering centers via the decision graph. Finally, each of
the remaining objects is assigned into the cluster including
its nearest neighbor with a higher local density. However,
there is still room for improving RLClu. Firstly, the local
density plays a critical role in RLClu but is sensitive to
a preassigned parameter, cutoff distance, when the data
set is small. Secondly, for clustering center identification,
it still needs users to preassign two minimum thresholds
of the local density and the minimum density-based dis-
tance. Different threshold settings would result in different
clustering results. The proper setting of these thresholds will
vary with different clustering data sets. Consequently, as the
other existing representative clustering algorithms (e.g., k-
means, EM and DBSCAN), RLClu is also sensitive to some
preassigned parameters and suffers from the parameter
setting problem.

In order to address the shortages in RLClu, we propose
a new clustering algorithm STClu (Statistical Test based
Clustering) 1 in this paper. At first, we define a new
metric to evaluate the local density of each object, which
shows better performance in distinguishing different objects
than the metric used in RLClu and is not so sensitive to
the preassigned parameter. Then, we employ an outward
statistical test method to identify the clustering centers
automatically on a centrality metric constructed based on
the new local density and new minimum density-based
distance. The experimental results on the synthetic and
real world data sets show the proposed algorithm is more
effective and robust than RLClu. In a nutshell, the proposed
algorithm STClu obtains the object representation in a low-
dimensional (specifically two dimensional) space in which
the objects can be easily clustered. This idea is quite similar
with that of spectral clustering in which the spectrum of the
similarity matrix of the data is used for dimension reduction
and the reduced space is not necessarily two-dimensional.

The rest of this paper is organized as follows. Section 2
reviews the related work of clustering. Section 3 presents the
details of our clustering algorithm STClu. Section 4 gives the
experimental results comparing our clustering algorithm to
RLClu. Section 5 concludes our work.

2 RELATED WORK

Traditionally, many researchers have proposed a number of
clustering algorithms to divide objects into different cate-
gories on the basis of their similarity. Yet, there is still no
unified definition of a cluster [1] since that we could get
different clusters with different clustering mechanisms. For
centroid based clustering (such as k-Means), the objects are
always grouped into the nearest clustering center. So this

1. The corresponding software can be obtained via
https://cn.mathworks.com/matlabcentral/fileexchange/
54893-automatic-clustering-via-statistical-testing.

kind of algorithm works well on the data set with spherical
clusters but is not able to detect the non-spherical clusters.
The spectral clustering based algorithms first make use the
spectrum of the similarity matrix to reduce the dimension
of data, then perform clustering on the reduced data by
traditional clustering algorithms (e.g., k-Means). The dis-
tribution based clustering algorithm aims at reproducing
the data with a set of predefined probability distribution
functions; its performance depends on the number of dis-
tribution functions and the quality of these functions to
approximate the implied distributions. The density based
clustering algorithm usually can be used to identify the
clusters in arbitrary shape. It defines clusters as connected
dense regions in the data space. The well-known density
based clustering algorithm is DBSCAN [24] which can not
only detect non-spherical clusters but also discard the noise
in the data set.

Although the above algorithms can be used to explore
the structures implied in a given data set, one challenge for
these algorithms is that they need some proper parameter
settings in advance. Otherwise, they might fail to find the
true structures. Such as, the number of clusters and the
initial clustering centers for k-Means, the number of clus-
ters for EM [23] and spectral clustering [18], the radius of
epsilon-range-queries and the minimum number of objects
required in an epsilon-range-query for DBSCAN [24], etc.
That is, the performance of these clustering algorithms
depends on the parameter settings. Nevertheless, the proper
settings will vary with the clustering data sets. In order to
overcome the parameter setting problem, researchers have
attempted to resort to some automatic (or parameter-free)
clustering algorithms. These algorithms can automatically
search for the proper parameters in a specific way or do
not require users to specify the parameters in advance. Such
as, for the problem of determining the “ideal” number of
clusters which has been discussed for a while [29], [30] and
is attracting ever growing interest recently [31], [32], [33], the
researchers put forward different kinds methods including
information-theoretic based [34], structure complexity based
[32] and recently quantization error based [33], the eigengap
heuristic based for determining the number of clusters for
spectral clustering [18], [35]. Meanwhile, some of these auto-
matic clustering algorithms view the process of clustering as
an optimization problem, and utilize different optimization
strategies to search the optimal (or sub-optimal) partitions.
In practice, the commonly-used optimization strategy is
stochastic search, such as evolutionary algorithms (EA) [36],
[37] and Simulated Annealing (SA) Algorithm [38] or their
improvements [39], [40]. However, the performance of these
search methods is related to choice of the fitness or energy
function and proper parameter setting for optimization. For
instance, the probabilities of crossover and mutation, the
size of population for Generic Algorithm (GA), and the state
space, the candidate generator procedure, the acceptance
probability function, and the annealing schedule tempera-
ture, and initial temperature for Simulated Annealing (SA).
Therefore, these algorithms are hypocritical parameter-free
and still suffer from the parameter setting problem.

The clustering algorithm proposed by Rodriguez and
Laio [1] gives an alternative approach which can detect the
clustering centers from irregular shapes of clusters in an
intuitive way. They construct a two-dimensional decision
graph with two metrics (i.e., local density and minimum
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density-based distance), and the points located in the top
right corner of this graph are more possible to be the clus-
tering centers (See details in Section 3.1). Once the clustering
centers have been found, each one of the rest objects is
grouped into the same cluster as its nearest neighbor with a
higher density. This is completed in a single step and quite
effective compared with other clustering algorithms (e.g.,
k-Means and EM) where an objective function needs to be
optimized iteratively [23], [41].

However, for different data sets, the decision graphs are
different as well. The local density used for decision graph
construction is sensitive to a preassigned parameter (named
cutoff distance) especially for small data sets. Moreover,
although the algorithm can map the clustering centers into
the top right corner of the decision graph, it still needs
users to pick up proper number of objects from the decision
graph artificially or set proper thresholds to determine the
exact number of clustering centers in advance. There is no
any straightforward method to handle the threshold setting
problem (either for local density or the decision graph).
Consequently, RLClu also suffers from the problem of how
to determine the “ideal” number of clusters.

In this paper, we propose a novel clustering algorithm in
which we first redefine the metrics of local density and min-
imum density-based distance with good robustness; then,
instead of identifying the clustering centers by observing the
decision graph artificially in RLClu, we detect the clustering
centers by an outward statistical test method automatically
on the basis of the redefined metrics. Extensive experiments
demonstrate the effectiveness of the proposed algorithm.

3 OUTWARD STATISTICAL TESTING BASED CLUS-
TERING ALGORITHM

In this section, we first review the original clustering algo-
rithm RLClu proposed in [1], and then discuss the shortages
in RLClu yet to be resolved. Furthermore, we propose an
outward statistical testing based clustering algorithm to
relieve these shortages.

3.1 Review of the Clustering Algorithm RLClu
The clustering algorithm RLClu is proposed based on the
assumption of “Cluster centers usually have a higher local
density and a relative larger distance from objects with
higher local densities” [1]. It consists of three steps: metric
extraction, clustering center identification, and object clus-
tering.
1) Metric extraction: For each of the n objects {O1, O2, · · · ,
On} being clustered, RLClu defines two metrics ρ and δ
to evaluate the local density of the given object and the
minimum density-based distance between the given object
and the other objects.
2) Clustering center identification: RLClu constructs a two-
dimensional point (ρi, δi) for each object and maps all
these objects into a two-dimensional space, where the two-
dimensional plot is referred to as a decision graph. In the
decision graph, only points which are far away from both of
the ρ-axis and δ-axis are identified as the clustering centers,
i.e., the objects with both high ρi and δi. RLClu defines
two minimum thresholds of ρmin and δmin to identify the
clustering centers.
3) Object clustering: This part is straightforward once the
clustering centers are picked up. That is, for all the objects

except for the clustering centers, each one is assigned to a
cluster which contains its nearest neighbor with higher local
density ρ.

According to the brief introduction of RLClu, we can get
that the metrics ρ and δ play important roles in RLClu. In or-
der to further understand RLClu and analyze its drawbacks,
we briefly introduce the metrics ρ and δ in advance.

In RLClu, the local density of a given object Oi is defined
by Definition 1.
Definition 1. Local density ρ.

ρi =
n∑
j=1

∆(di,j − dc). (1)

Where di,j denotes the distance between objects Oi and
Oj . The distance can be Euclidean distance or any measure
which can evaluate the difference between two objects, dc
is the cutoff distance preassigned by users. And ∆(x) = 1
if x < 0 and ∆(x) = 0 otherwise. From Definition 1, we
can get that the local density of object Oi is the number of
objects appearing in the hypersphere whose center isOi and
radius is dc, i.e., the number of neighbors with distance to
Oi being smaller than the cutoff distance dc.

Based on the local density ρ, the minimum density-based
distance δi of Oi to any other object with higher density is
defined as follows.
Definition 2. Minimum density-based distance δ.

δi = min
j 6=i∧ρi<ρj

(di,j) (2)

According to Definition 2, for a given object Oi, we can
get a distance δi which is the minimum distance between
Oi and any other object with higher local density. It is noted
that, for the object Oi with the highest local density ρi, its
δi is defined as

n
max
j=1

(di,j). Definition 2 tells us that for the

objects with local or global maximum density, their δi is
much larger than their typical nearest neighbor distance.
Moreover, the clustering centers usually have local or global
maximum density. Thus, the cluster centers can be recog-
nized as the objects with anomalously large δi.

However, in the case of a data set contains outliers, it
is not enough to detect the clustering centers only with δi.
This is because the outliers are usually far from other objects,
and have large δi as well. Fortunately, considering that the
outliers usually have quite small local density ρi, so we can
detect the outliers on the basis of both ρ and δ. This is the
reason why RLClu constructs a two-dimensional decision
graph for clustering center detection.

3.2 Shortages of The RLClu Algorithm
1) RLClu is sensitive to the parameter cutoff distance dc.

Definition 1 shows that the values of the local density
ρ are all natural numbers, i.e., ρi ∈ N . This means for
the n objects in a given data set D, the density ρi of each
object Oi is one of the elements in {1, 2, · · · , n}. The value
of ρi depends on the cutoff distance dc. A smaller dc usually
results in a smaller ρi. For a given cutoff distance dc, only a
part of these n integer values will be the density ρi (e.g., see
the distribution of ρ in Fig. 2). According to the pigeonhole
principle [42] that if x items are put into y containers, with
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Fig. 1. A synthetic data set in two dimensions with two clusters

x > y, then at least one container must contain more than
one item, there would be multiple objects with the same ρi
in this case. So it will be difficult to distinguish different
objects by ρi.

Furthermore, according to Definition 2, the minimum
density-based distance δi of an object is evaluated based
on ρi. When there are multiple objects whose ρi is identical
and local maximum, δ might be unstable and misleads the
construction of decision graph. This would result in that
the algorithm RLClu fails to detect the correct clustering
centers. Fig. 2 shows an example of RLClu in detecting the
clustering centers on the synthetic data set in Fig. 1 with
two clustering centers. From Fig. 2, we know that RLClu is
quite sensitive to the cutoff distance dc since that it detects
different clustering centers under different dc, and even gets
wrong clustering centers for some dc.

2) The decision graph is not sufficient to identify the clustering
centers and there still needs to predetermine the number of
clusters.

According to Definitions 1 and 2, the clustering centers
will be of both larger density ρ and minimum density-based
distance δ. In the decision graph drawn with ρ and δ, it is
usually confusing to compare two points where one with
greater ρ and smaller δ and the other with smaller ρ but
greater δ. In order to overcome this problem, RLClu intro-
duces a two minimum thresholds of local density ρmin and
minimum density-based distance δmin to detect the cluster-
ing centers. The object Oi satisfying both ρi > ρmin and
δi > δmin is identified as the clustering center. However,
for different data sets, these two thresholds ρmin and δmin
will be different. RLClu still does not give any quantitative
method to answer how to pick up these two thresholds. That
is, there is still no effective method to predetermine how
many objects should be chosen as the clustering centers.
This is also one of the challenging works in other clustering
algorithms, such as k-means and EM.

3.3 The Proposed Clustering Algorithm
In this section, we propose a novel clustering algorithm
aiming at overcoming the shortages of RLClu in Section
3.2. In the proposed algorithm, we first put forward a new
metric ρ̂ to measure the density of an object, which shows
better performance in terms of the ability to distinguish
different objects and is more robust to the preassigned
parameter than the local density ρ in RLClu. Meanwhile,

on the basis of this new density metric, we redefine the
minimum density-based distance of an object as a new
version δ̂. With these two new metrics ˆrho and δ̂, we
weigh the possibility of an object being a clustering center
by a new centrality metric γ̂ which is the product of ρ̂
and δ̂ due to the fact that the clustering centers usually
have both of higher density (measured by ρ̂) and larger
distance from each other (measured by δ̂). The objects with
extremely large ˆgamma are recognized as the clustering
centers. With this in mind, afterwards, by analyzing the
distribution of this product metric γ̂, we transform the
problem of clustering center identification into a problem of
extreme-value detection from a long-tailed distribution, and
employ an outward statistical testing method to identify the
clustering centers automatically. Finally, we accomplish the
clustering process by assigning proper clustering labels to
the remaining objects based on these identified clustering
centers.

3.3.1 Improved Metrics to Evaluate the Centrality of Ob-
jects
In this section, we first define a new metric to evaluate the
local density of an object which is named K-density ρ̂ (See
Definition 3), and further demonstrate the new metric is
more robust in clustering center detection than ρ in RLClu.
Definition 3. K-density ρ̂.

ρ̂i =
K

K∑
j=1

di,j

. (3)

Where {di,j |1 ≤ j ≤ K} denotes the set of distances
between object Oi and its K nearest neighbors.

As we know, clustering centers usually lie in the center
of a dense region. This means that, the sum of the distances
between a clustering center and its K nearest neighbors is
usually smaller than the sum of the distances between other
non-clustering centers and their K-neighbors. According
to Definition 3, clustering centers usually have higher ρ̂i.
So it is reasonable to employ the metric K-density ρ̂ to
evaluate the density of a given object. Meanwhile, Definition
3 implies that the value of ρ̂ ∈ < will be a non-negative
continuous value rather than an integer value of ρ. The non-
negative continuous values are more conductive to catch up
the density differences of different objects than the integer
values. So it is easier for K-density metric ρ̂ to distinguish
different objects than the local density ρ in RLClu.

Fig. 3 shows the distribution of ρ̂ and clustering centers
identified with ρ̂ on the simple synthetic data set in Fig.
1. From this figure, we know that i) the distribution of
ρ̂ corresponds to a wider range than ρ and is easier to
distinguish different objects; ii) for different number of
nearest neighbors used in K-density, the clustering centers
identified by ρ̂ are steady. This indicates that the new
density metric ρ̂ is more robust to the parameter K (i.e.,
number of nearest neighbors) and shows better performance
in clustering center detection.

Similar to the minimum density-based distance in Defi-
nition 2 of RLClu, based on K-density ρ̂, we can get a new
minimum density-based distance δ̂ of an object as follow.
Definition 4. New minimum density-based distance δ̂.

δ̂i = min
j 6=i∧ρ̂i<ρ̂j

(di,j) (4)
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Fig. 2. Clustering center identification using RLClu with ρ on the synthetic data set in Fig. 1. Where for each sub-figure of the distribution of ρ, the
horizontal axis shows the value of ρ, and the vertical axis shows the count of the corresponding ρ.

Definition 4 tells us that only for the objects with local
or global maximum K-density, their δ̂i is much larger than
their nearest neighbor distances. Meanwhile, the clustering
centers usually have local or global maximum density, and
further can be recognized as the objects with anomalously
large δ̂i.

According to the definition of δ̂ and property of the
underlying structure of the clusters, it is rational to infer
that the new minimum density-based distance δ̂ follows a
long-tailed distribution (or heavy-tailed distribution). This
is due to the fact that i) δ̂ is non-negative, and ii) δ̂ of the
clustering center is usually relatively large and the number
of clustering centers is usually relatively smaller than the
number of other objects. i.e., for a given set of objects being
clustered, the corresponding values of δ̂ of most objects
are usually small and only a few are quite large. So it is
intuitional that the distribution of δ̂ will be long-tailed. In
contrast, the minimum density-based distance δ in RLClu
would not necessarily follow the long-tailed distribution
because of that it is also sensitive to the parameter cutoff
distance dc. According to Definition 2 of δ, δi of an object
Oi is the minimum distance between Oi and any other
object with higher local density. As mentioned in Section
3.2, the local density ρ (See Definition 1) will not distinguish
different objects under an improper setting of dc; that is,
there exist multiple objects with the same local density. It
is more possible for quite a few objects with higher local

density are used for calculation of δ, see Fig. 2 (j-1) with
dc = 1.3 for an example. Therefore, the distribution of δ
will be same of the distribution of distances between most
objects and these quite a few objects. In this case, for the
spherical clusters, distribution of δ (i.e., the distribution of
the distances in each clusters) is more likely be symmetrical
instead of heavy-tailed.

However, it is noted that only having the new minimum
density-based distance δ̂ is still insufficient to identify the
clustering centers since the outliers also have larger ρ̂ ac-
cording to Definition 4. Fortunately, the clustering centers
usually have both large ρ̂ and δ̂. Therefore, a new metric
γ̂ which is the product of K-density ρ̂ and new minimum
density-based distance δ̂ is introduced. And the objects with
extreme maximum γ̂ are identified as the clustering centers.
Different from the clustering algorithm RLClu which needs
the preassigned thresholds to identify the proper number
of clusters, by analyzing the distribution of γ̂, we propose
an outward statistical testing method to identify the clus-
tering centers automatically. The details of clustering center
identification are introduced in Section 3.3.2.

3.3.2 Clustering Center Identification
In this section, we first demonstrate that γ̂ follows the long-
tailed distribution. Afterward, we translate the clustering
center identification problem into an extreme maximum
value detection problem from a long-tailed distribution, and
present a statistical test technique based clustering center
identification method over long-tailed distributions.
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Fig. 3. Clustering center identification with ρ̂ on the synthetic data set in Fig. 1. Where for each sub-figure of the distribution of K-density, the
horizontal axis shows the value of K-density, and the vertical axis shows the count of the corresponding K-density.

Since the long-tailed distribution will play an important
role in identifying clustering centers, we first give the for-
mal definition of long-tailed family of distributions L and
further a theorem about L.

Definition 5. Long-tailed family of distributions (L). Let X
be a random variable following a given non-negative
distribution F and x be an observation of X , F is a long-
tailed distribution (i.e., F ∈ L) if and only if

lim
x→+∞

F (x− l)
F (x)

= 1,∀(l > 0). (5)

Suppose random variable X is the new minimum
density-based distance δ̂ of a set of objects, i.e., x = δ̂,
according to Definition 4 of δ̂, only clustering centers (or
outliers) have greater δ̂ and just a few objects could be clus-
tering centers (or outliers), so both of F (x) and F (x− l) will
approach 1 when x becomes +∞, further F (x − l) ≤ F (x)
always is true. According to the squeeze theorem [43], Eq. 5
will hold. That is, the new minimum density-based distance
δ̂ follows the long-tailed distribution in Definition 5.

Meanwhile, since only a few objects can be clustering
centers, for most other objects, the greater ρ̂ does not mean
either greater or smaller δ̂, so there is usually no significant
interaction between ρ̂ and δ̂. Therefore, it is reasonable to
assume that δ̂ and ρ̂ are independent with each other in
some way. Keeping this in mind, considering the following
theorem of the long-tailed family of distributions L [44],

[45], it is reasonable to say that γ̂ = ρ̂ × δ̂ will also follow
the long-tailed distribution.
Theorem 1. Suppose that there are two random variables

X and Y being independent with each other, F and G
denote the distributions of X and Y , respectively, and
H denotes the distribution of the product of X and Y , if
(F ∈ Lc) ∧ (P (Y > 0) > 0), then H ∈ L.

Where Lc is defined as {F : F ∈ L ∧ F is continuous}.
In this paper, the metric γ̂ = ρ̂×δ̂ is proposed to weigh the

possibility of an object being a clustering center. From the
above analyses of ρ̂ and δ̂, we know : i) δ̂ follows the long-
tailed distribution and is also a continuous distribution, and
ii) all the values of ρ̂ are positive (i.e., P (ρ̂ > 0) is natural
positive but the metric ρ in RLClu might be zero), thus, γ̂
follows the long-tailed distribution.

The ρ̂ and δ̂ of clustering centers usually are large, so
their γ̂ is also big. Enlightened by the idea of decision graph
in RLClu, if we represent the ρ̂ and δ̂ of each object in a
two dimensional plot, clustering centers are usually quite
far away from other objects, and these clustering centers
can be viewed as the outliers in the-two dimensional plot.
Therefore, in this paper, we define the clustering centers as
the objects corresponding to the outliers of γ̂ in a long-tailed
distribution, and further handle the problem of clustering
center identification via detecting multiple outliers in the
long-tailed distribution. Next, we give the formal definition
of clustering centers.

Suppose that there are n objects being clustered, {γ̂i, 1 ≤
i ≤ n} records the metrics to evaluate the centrality of each
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object, the identification of clustering centers is to determine
whether the top m (m ≤ n−1) metrics have been generated
by a long-tailed distribution F associated with γ̂. If the m
extreme order statistics have not been generated by F , we
refer them as “outliers”, and the corresponding objects are
identified as the clustering centers. This paper employs a
statistical test procedure to identify the outliers in a long-
tailed distribution.

For this purpose, borrowing the idea in [46], we first
construct a set of ordered statistics X1,n ≥ X2,n ≥ · · · ≥
Xn,n, where X1,n is the 1st maximum value in {γ̂i, 1 ≤ i ≤
n}, X2,n is the 2nd maximum, and so on. Then, we explore
the sequence of null hypotheses {H0,k , 1 ≤ k ≤ m}, where
the null hypothesis H0,k assumes that the kth statistic Xk,n

belongs to the long-tailed distribution F , it is not an outlier
and the corresponding object is not a clustering center which
is defined as follows.
Definition 6. Clustering center. A given object is a clustering

center if and only if the null hypothesis with respect to
its γ̂ is rejected, i.e., the corresponding metric γ̂ is an
outlier in a long-tailed distribution.

In order to identify the outliers, we need to find an
effective statistic to test the sequence of hypotheses {H0,k,
1 ≤ k ≤ m}. Considering that i) the power function can
be used to describe the distribution of the product of local
density ρ and the minimum density-based distance δ under
a proper setting of cutoff distance dc [1], and ii) Rodriguez
and Laio also stated that in the region with both large ρ and
δ, the distribution will be strikingly different from the power
law, and the high values of the product would be more
likely to be outliers [1]. Meanwhile, comparing to ρ and δ,
the new metrics ρ̂ and δ̂ proposed in this paper enhanced
them in robustness while still follows the idea in [1] that
the objects with both of larger ρ and δ are more possible to
be the clustering centers. So, it is rational to assume that
the tails of the long-tailed distribution (e.g., γ̂ = ρ̂ × δ̂)
which decay as power functions. Specifically, the cumulative
density function of F can be defined as follows, for some
λ > 0 and sufficiently large x,

F (x) = 1− L0(x) · x−λ, (6)

where L0 is a slowly varying function and for sufficiently
large x, L0 behaves almost like a constant, and the parame-
ter λ denotes the tail index.

According to the idea of detecting outlier in a long-
distribution described by a power function [46], the ratios
Rt = Xt,n/Xt+1,n (1 ≤ t ≤ n − 1) are constructed as the
statistic to explore the null hypotheses. If the hypothesis
H0,k is rejected by Rk, all the objects corresponding to hy-
pothesesH0,1, H0,2, · · · , H0,k are identified as the clustering
centers. Once achieving the statistics Rt, the most important
step of the statistical test is to find the proper critical value
to judge whether Rt is statistically significant to reject the
null hypothesis. Based on the outward testing for multiple
outlier identification in [46] which defines the critical value
for Rt, we can give the following proposition for clustering
center identification.
Proposition 1. (Outward testing for clustering center

identification) For a given set of null hypotheses
H0,1, H0,2, · · · , H0,m and the corresponding statistics
R1, R2, · · · , Rm, initially testing H0,m using Rm, if H0,m

is not rejected, then test the null hypothesis H0,m−1

using Rm−1. Continue this outward testing until a null
hypothesis is rejected or all the m hypotheses are pro-
cessed. If H0,k is the first hypothesis being rejected, the
objects with respect to the statistics R1, R2, · · · , Rk are
identified as the clustering centers. For a given level of
significance α (5%), the individual critical value for kth
(1 ≤ k ≤ m) hypothesis can be set to

rk = [1− (1− α)1/m]−1/(λ·k) (7)

The proof of the critical value of Eq. 7 can be found in
[46]. With Proposition 1, it is easy to compare the statistic
Rk with rk to identify the clustering centers. If Rk > rk,
we can reject the null hypothesis H0,k and get the clustering
centers.

In Eq. 7, the tail index λ needed to be estimated with the
following modified Hill-type estimator suggested in [46].

λ̂(κ) = [
m

κ−m+ 1
lnXm+1,n −

κ

κ−m+ 1
lnXκ+1,n+

1

κ−m+ 1

κ∑
i=m+1

lnXi,n]−1,

(8)

where n is the number of objects being clustered and κ
is the largest index of element in X used to estimate λ
(m < κ < n). That is, the elements indexed between m
and κ in X are used to estimate λ. In order to ensure the
statistical significance of the estimated λ, the value of κ−m
should be large enough. Meanwhile, in order to guarantee
that the m statistics contain the clustering centers, the value
of m should be greater than the ideal number of clustering
centers which is unknown in advance but is usually quite
small compared with n. For these reasons, and in order to
identify the clustering centers automatically, m = d0.1ne
and κ = d0.95ne generally to make the number of objects
used for statistical test is large enough.

3.3.3 Statistical Test based Clustering Algorithm
In this section, we present the proposed algorithm STClu
(Statistical Test based Clustering), which is implemented
on the basis of the metrics defined in Section 3.3.1 and the
clustering center identification method introduced in Sec-
tion 3.3.2. Algorithm 1 shows the pseudo-code description
of STClu.

The pseudo-code consists of three parts: i) metric ex-
traction; ii) clustering center identification; and iii) object
clustering. In the first part (lines 1-5), by calculating the K-
density ρ̂i and new minimum distance δ̂i for each object
Oi, STClu gets a set of metrics GamaSet = {γ̂1, γ̂2, · · · , γ̂n}
to evaluate the centrality of each object. The second part
(lines 6-17) employs the outward statistical testing method
presented in Proposition 1 to identify k clustering centers.
First, by sorting the metrics of GamaSet in descending order,
STClu generates a set of ordered statistics X and further
constructs a set of statistics R for statistical testing. Then,
starting at the mth hypothesis H0,m, STClu identifies the
first hypothesis H0,k rejected by comparing the statistic Ri
with the estimated critical value ri. Finally, the number of
clustering centers is set as k and the objects corresponding to
the first k hypotheses {H0,1, H0,2, · · · , H0,k} are detected as
the clustering centers {c1, c2, · · · , ck}. In the third part (lines
18-24), for each object being not the clustering centers, STClu
clusters it into the group containing its nearest neighbor
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with higher K-density. After that, CLU = {Clui, 1 ≤ i ≤
k} records the k clusters found by STClu, where each cluster
Clui (1 ≤ i ≤ k) is non-empty and contains at least one
object (e.g., clustering center ci) and each object belongs to
exactly one cluster. Therefore, the proposed algorithm STClu
is a kind of partitional clustering.

In algorithm STClu, the number of nearest neighbors K
is associated with the calculation of K-density, it is set to be
a default value d

√
ne which is usually adequate in most of

the situations according to the sensitivity analysis of K on
the performance of STClu in Section 4.3.

Inputs : O ← {O1, O2, · · · , On}: A set of n objects
K: the number of nearest neighbors in K-density ρ̂;

Output: CLU ;//A set of clusters
1 RhoSet← φ, DeltaSet← φ, NNSet← φ, GamaSet← φ;
//Part 1: Metric extraction

2 distanceMatrix← DistanceFunction(O);//Calculate distance
3 RhoSet← Fρ̂(distanceMatrix, k);//Calculate ρ̂

4 [DeltaSet, NNSet]← Fδ̂(distanceMatrix, RhoSet);//Calculate δ̂ and
identify the nearest neighbor for each object

5 GamaSet← RhoSet · DeltaSet;//γ̂ = ρ̂ · δ̂
//Part 2: Clustering center identification

6 X ← sort(GamaSet, “descend”);//Sort GamaSet in descending
order to get a set of ordered statistics X

7 R← {Ri ← Xi,n/Xi+1,n} (1 ≤ i ≤ n− 1);
8 m← d0.1ne, k ← 0;//Start at the mth hypothesis
//Identify the number of clusters k by Outward
statistical testing

9 while m > 2 do
10 Calculate the critical value rm according to Eq. 7;
11 if Rm > rm then
12 k ← m;
13 break;
14 end
15 m← m− 1;
16 end
17 Identify the objects corresponding to {R1, R2, · · · , Rk} as the clustering

centers {c1, c2, · · · , ck}, and label ci as i;
//Part 3: Object clustering

18 for i← 1 to n do
19 if Oi is unlabeled then
20 Mark Oi the label of its nearest neighbor with higher ρ̂

according to NNSet;
21 end
22 end
23 CLU ← {Clui, 1 ≤ i ≤ k}, where Clui denotes the set of objects with

label i;
24 return;

Algorithm 1: Outward statistical testing based cluster-
ing algorithm STClu

Time complexity analysis: In the first part, the distances
among n objects should be computed in advance. Let
dist() be the function to compute the distance between
two objects, and O(dist()) be the time complexity of this
function2, the time complexity of the distance collection
will be O(n2 · O(dist())). This time consumption can not
be ignored by any clustering algorithm. After the distance
collection, the time complexity is O(n · K) for K-density
ρ̂ calculation (note that K is smaller than n), O(n · log(n))
for δ̂ calculation and the nearest neighbor identification of
each object, and O(n) for GamaSet collection. Therefore, for
the first part, the time complexity is O(n2 · O(dist())) +
O(n · K) + O(n · log(n)) + O(n) = O(n2 · O(dist())). In
the second part of clustering center identification, the time
complexity of the order statistic X calculation depends on
sorting the GamaSet and is O(n · log(n)). And the time
complexity is O(n) for the statistic R calculation and O(m)
(note that m is the number of hypotheses being tested) for
outward statistical testing. Thus, the time complexity of the

2. For different distance functions, their time complexities are usually
different as well.

second part is O(n · log(n)) + O(n) + O(m) = O(n · log(n)).
The third part is straightforward, that is, by scanning the
unlabeled objects once, we can get the clustering results,
and time complexity is O(n). This step is very effective and
quite different with some well-known algorithms (such as k-
means and EM) which need multiple iterations to optimize
the given object function and get the final clustering results.

In summary, the time complexity of the proposed algo-
rithm STClu is O(n2 · O(dist)) + O(n · log(n)) + O(n) =
O(n2 · O(dist())). That is, the efficiency of the proposed
algorithm depends on that of the distance calculation. Since
the distance calculation is an inevitable step for all clustering
algorithms, if we ignore the part of distance calculation, the
time complexity of the first part will be O(n ·K). Compared
to the algorithm RLClu proposed in [1], the differences
between STClu and RLClu focus on i) the calculation of
local density and ii) the clustering center identification. The
computation of these two parts does not play a critical role
in STClu. Therefore, the time complexity of STClu is as same
as that of RLClu which is quite effective. But STClu can
detect the clustering centers in a more effective way than
RLClu.

4 EXPERIMENTAL STUDY

In this section, we experimentally evaluate the performance
of the proposed clustering algorithm with representative
clustering data. At first, we introduce the benchmark clus-
tering data sets in Section 4.1, and then present the ex-
perimental results and analyses in Section 4.2. Finally, we
conduct the sensitive analysis of STClu in Section 4.3.

(a) S-sets

(b) A-sets

(c) Shape sets

Fig. 4. Benchmark Data Sets

4.1 Benchmark Data Sets
Five groups of representative clustering data sets (e.g, in-
cluding low and high dimensional data sets, synthetic and
real world data sets) are employed as the benchmark to as-
sess the performance of the proposed algorithm. These data
sets are available on http://cs.joensuu.fi/sipu/datasets/
and http://people.sissa.it/∼laio/Research/Res clustering.
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php. The correct clustering centers of the data sets are
known in advance. The details of these data sets are intro-
duced as follows.
1) S-sets: two-dimensional data sets with 5000 objects and
15 Gaussian clusters with four different degree of clustering
overlapping [47]. See Fig. 4(a) for details. This kind of
data can be used to evaluate the robustness of the pro-
posed algorithm. The degree of the clustering overlapping
increases from data set S1 to S4. The greater the degree
of overlapping, the more difficult to distinguish different
clusters.
2) A-sets: two-dimensional data sets with varying number
of clusters (20, 35 and 50 for A1, A2 and A3), and there
are 150 objects per cluster [48]. See Fig. 4(b) for details.
This kind of data can be used to evaluate the scalability
of the proposed algorithm in detecting different numbers of
clusters.
3) Shape sets: two-dimensional data sets (named Aggre-
gations, D31, flame and Spiral) represent some difficult
clustering objects because they contain clusters of arbitrary
shape, proximity, orientation and varying densities [49],
[50], [51], [52]. The number of objects in these four data sets
is 788 for Aggregations, 3100 for D31, 240 for flame and 312
for Spiral, respectively. See Fig. 4(c) for details. This kind
of data can be used to evaluate the proposed algorithm in
detecting the clustering centers in complex clustering data
sets. Meanwhile, the four data sets in Fig. 4(c) have also been
used to assess the algorithm RLClu.
4) High-dimensional data sets: six high-dimensional data
sets with 1000 objects and 16 Gaussian clusters in different
dimensions [53]. The dimension of these six data sets is 32,
64, 128, 256, 512 and 1024, respectively. Each data set with
dimension x is named “Dimx”. This kind of data can be
used to assess the performance of the clustering algorithms
when the dimension of the data increases.
5) Real world data sets: the Face detection database in-
cluding 400 figures with 40 people. This data set proposes
a serious challenge to the algorithm RLClu since the real
number of clusters is comparable with the number of objects
in each cluster (10 different pictures for each people).

In order to evaluate whether the new metrics and clus-
tering center identification method in STClu work well
in improving the performance of clustering, we com-
pared STClu with the clustering algorithm RLClu on
these data sets. The program of RLClu can be found
on http://www.sciencemag.org/content/suppl/2014/06/
25/344.6191.1492.DC1.html. It is noted that, in order to
demonstrate the effectiveness of the proposed algorithm
comparing to RLClu in terms of clustering center identifica-
tion, we also draw the decision graph of each data set in our
experiments. However, limited to the length of the paper,
we represent the decision graphs in the Supplementary
materials.

4.2 Experimental Results And Analysis
In this section, we give the experimental results of the pro-
posed algorithm STClu on the four different kinds of cluster-
ing data sets. For the first three groups of two-dimensional
clustering data sets, we show the clustering results in a two-
dimensional plot to evaluate the clustering performance
intuitively. The distance among different objects of these
data sets is evaluated by Euclidean distance. For the face
detection data set, the distance among different pictures is

(a) STClu (b) RLClu

Fig. 5. Clustering results on data set S1

(a) STClu (b) RLClu

Fig. 6. Clustering results on data set S2

(a) STClu (b) RLClu

Fig. 7. Clustering results on data set S3

(a) STClu (b) RLClu

Fig. 8. Clustering results on data set S4

computed with the method introduced in [1]. It is noted that,
RLClu needs users to find out the clustering centers with the
help of the decision graph. To make a fair comparison, the
number of clustering centers used in RLClu is set to the
same as that identified by the STClu. And the parameter
cutoff distance dc used in RLClu is set to the default value
suggested in [1].

4.2.1 Results on S-sets
Figs. 5, 6, 7, 8 present the clustering results of algorithms
STClu and RLClu. For each figure, the black circles demon-
strate the clustering centers identified by the corresponding
algorithms; and the points drawn in different colors corre-
spond to different clusters. The same representation holds
in the clustering results over A-sets and Shape Sets.

From these four figures, we can observe that, for data
sets S1 and S2 (See Figs. 5 and 6) where the degree of the



1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2535209, IEEE
Transactions on Knowledge and Data Engineering

10

(a) STClu (b) RLClu

Fig. 9. Clustering results on data set A1

(a) STClu (b) RLClu

Fig. 10. Clustering results on data set A2

(a) STClu (b) RLClu

Fig. 11. Clustering results on data set A3

clustering overlapping is quite small, both of STClu and
RLClu can effectively identify the correct clustering centers
and achieve a good clustering results.

For data sets S3 and S4 (See Figs. 7 and 8), as the degree
of clustering overlapping increases, it will be more difficult
to distinguish different clusters. In this case, both of STClu
and RLClu can still get the correct clusters. RLClu detects
the clustering centers via observing the decision graphs
of data sets S3 and S4 (See Fig.1 in the Supplementary
materials). From their decision graphs, we can observe
that the first 15 objects with greater ρ × δ are far away
other objects for all the four data sets. So these objects are
identified as clustering centers by RLClu. However, with
the degree of the clustering overlapping increases, some
of these clustering centers get closer to other objects. This
makes it difficult for RLClu to identify the clustering centers
by observing the decision graph. However, STClu identifies
the correct number of clustering centers via statistical test
automatically, and shows advantage compared to RLClu
that detects the clustering centers by observing the decision
graph manually.

4.2.2 Results on A-sets

Figs. 9, 10 and 11 show the clustering results on data sets
A-sets. From these figures, we can observe that:
1) For data set A1 with 20 clusters, both STClu and RLClu
algorithms can detect the correct clustering centers. From
the decision graph of A1 (See Fig.2(a) in the Supplementary

materials), we can observe that the first 20 objects with
greater ρ× δ are relatively away from other objects. So these
objects are identified as the clustering centers by RLClu.
However, STClu detects the correct 20 clustering centers
automatically by the statistical test technique.
2) For data set A2 with 35 clusters, STClu algorithm can
detect all the correct clustering centers automatically via
statistical test. But for clustering algorithm RLClu, there
are still a small fraction of clustering centers identified
incorrectly (such as the area marked by red circle in Fig.
10(b)). This can be demonstrated by the decision graph of
A2 (See Fig.2(b) in the Supplementary materials). From the
decision graph of A2, we can observe that some of the first
35 objects with greater ρ × δ are quite close to the other
objects. In this case, it is difficult to identify the correct
clustering centers from the objects being close with each
other only via the decision graph.
3) With the increase of the number of clusters, for data
set A3 with 50 clusters, STClu still can correctly identify
the clustering centers automatically. But the 50 clustering
centers identified by RLClu are not all correct (such as the
area marked by red circles in Fig. 11(b)). The reason can be
demonstrated as follows: with the number of clusters in-
creases, there are significant overlaps among some clusters.
This kind of overlap increases the difficulty to distinguish
different clusters. The local density ρ and the minimum
density-based distance δ used in RLClu fail to distinguish
the clustering centers from the other objects. This can also
be observed by the decision graph of A3 (See Fig.2 (c) in the
Supplementary materials). According to the decision graph
of A3, almost half of the first 50 objects with greater ρ × δ
are difficult to distinguish from the other objects. This leads
to that RLClu can not identify all correct clustering centers.
However, STClu employs K-density ρ̂ which shows better
performance in distinguishing different objects than ρ used
in RLClu, and further detects the clustering centers via the
statistical test automatically instead of the decision graph.
This is the advantage of STClu especially when it is difficult
to distinguish different objects based on the decision graph.

4.2.3 Results on Shape Sets
Figs. 12, 13, 14 and 15 show the clustering results of the two
clustering algorithms on the Shape sets. From these figures,
we can observe that for all these data sets, i) the clustering
centers identified by STClu and RLClu are different (see the
black circles in these figures) since that the metrics used to
measure the local density of each object are different in these
two algorithms; ii) both STClu and RLClu can get the correct
clusters.

Yet, for algorithm STClu, the number of clusters are
identified automatically by the statistical test in Proposition
1. For algorithm RLClu, we set the number of clusters to
a specific value in advance manually (i.e., 6 for flame, 31
for D31, 2 for flame and 2 for Spiral). In fact, RLClu detects
the clustering centers based on the decision graph with the
guideline to select the objects being far away from other
objects. According to these decision graphs (See Fig.3 in
the Supplementary materials), except for data set Spiral, the
number of clustering centers are easily detected as 3. For
the other three data sets, i) according to the decision graph
of data set Aggregation, the number of clustering centers
could be also one of {7, 8, 9} except for 6; ii) according to
the decision graph of data set D31, the number of clustering
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(a) STClu (b) RLClu

Fig. 12. Clustering results on data set Aggregation

(a) STClu (b) RLClu

Fig. 13. Clustering results on data set D31

(a) STClu (b) RLClu

Fig. 14. Clustering results on data set flame

(a) STClu (b) RLClu

Fig. 15. Clustering results on data set Spiral

centers would be smaller than 31; iii) according to the
decision graph of data set flame, except for the first two
objects (overlap with each other), the number of clustering
centers could be either 3 or 4. All the other numbers will
result in RLClu getting inappropriate clustering results on
these data sets.

4.2.4 Results on High-dimensional Data Sets
Different from the two-dimensional data sets, for high-
dimensional data sets, it is impossible to give a graphical
representation of the clustering results of the algorithms
on them. It is noted that the ground truth partitions of
these high-dimensional data sets are known in advance, and
these information can be used as the baseline to evaluate
the performance of the clustering algorithms. So in our
experiments, we employ the well-known metric, Normalized
Mutual Information (NMI) [54] to evaluate the performance

TABLE 1
NMI of STClu and RLClu on high-dimensional data sets

Algorithm Dim32 Dim64 Dim128 Dim256 Dim512 Dim1024
STClu 1.0 1.0 1.0 1.0 1.0 1.0
RLClu 1.0 1.0 1.0 1.0 1.0 1.0

of the clustering algorithm on high-dimensional data sets.
Table 1 shows the NMI of STClu and RLClu algorithms
on the six high-dimensional data sets. From this table, we
can observe that the NMI value reaches the highest value
1.0 for each algorithm on all the six data sets. This means
that both of STClu and RLClu can perfectly find the correct
cluster structures for all data sets. Yet, for the clustering
algorithm STClu proposed in this paper, the number of
clusters and the clustering centers for each data set are
identified automatically by the statistical test in Proposition
1; while RLClu detects the clustering centers by manually
observing the decision graph of each data set (See Fig.4 in
the Supplementary materials) with the guideline to select
the objects far away from others as the clustering centers.
According to these decision graphs (See Fig.4 in the Supple-
mentary materials), it is easy to detect the objects falling in
the right up corner as the clustering centers by RLClu since
they are far away from other objects. This is due to the fact
that different clusters are well separated with each other and
the clustering structures implied in these high-dimensional
data sets are relatively obvious.

4.2.5 Results on Real World Data Sets
For clustering the pictures in Olivetti Face Database by
RLClu, i) Rodriguez and Laio [1] have stated that, unlike
the other clustering examples above, the exact number of
clusters is not clear according to the decision graph; ii)
they also claimed that the density estimator is unavoidably
affected by large statistical error since there are only 10
pictures for each people. In this case, the parameter K used
to calculate K-density is set to 3 instead of the default
value. Meanwhile, in order to get more accurate clustering
results, after clustering center identification, they employed
a more restrictive criterion to assign a picture into a cluster
which considers not only the local density but also the cutoff
distance dc. Specifically, a picture is grouped into the same
cluster of its nearest picture with higher local density and
the distance between them is smaller than dc. With the
constrain of dc, the pictures further than dc from any other
picture of higher density are not assigned into any cluster
[1].

In the proposed algorithm STClu, we first employ the
Outward statistical method to detect the number of clusters
automatically. Afterwards, in order to make a fair compar-
ison, similar to RLClu, we follow the clustering process
which performs on the K-density and the cutoff distance
dc is set to 0.07 as suggested in [1]. STClu algorithm iden-
tifies 46 clusters automatically with the outward statistical
test method in Proposition 1. Moreover, we also give the
decision graph of Olivetti Face Database and mark out the
first 46 objects with the largest ρ × δ (See Fig. 5 in the
Supplementary materials).

For algorithm RLClu, we set the number of clustering
centers as 46 identified by STClu manually in advance.
In fact, if we identify the clustering centers based on the
decision graph of these pictures, it is difficult to get that
46 is a proper number of clusters (See the Fig.5 in the
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(a) STClu

(b) RLClu

Fig. 16. Clustering results on the first 100 Olivetti Face Data

Supplementary materials). However, if we only focus on
the first 100 pictures for clustering, the nine pictures with
greater ρ and δ in these 100 pictures (also of course in the
46 pictures marked in the decision graph) are easily picked
up as the clustering centers according to the decision graph.
Therefore, Rodriguez and Laio [1] gave the performance of
their algorithm by using these nine clustering centers.

Figs. 16(a) and 16(b) show the clustering results of the
first 100 pictures for the algorithms STClu and RLClu, re-
spectively. In these figures, the clustering centers are labeled
with white circles; the pictures with the same color belong
to the same cluster, whereas other pictures are not assigned
to any cluster.

From these two figures, we can observe that, i) both of
the algorithms STClu and RLClu identify the same nine
clusters, and the pictures of each cluster are derived from the
identical people; ii) the clustering centers for some clusters
identified by STClu are different from those identified by
RLClu due to the fact that the metrics used to evaluate
the local density of each picture in these two algorithms
are different. For clustering algorithm RLClu, there is not
any effective quantization method to answer why the nine
clusters are proper on the decision graph in [1]. In contrast,
for STClu proposed in this paper, the nine clustering centers
among the first 100 pictures are detected by the statistical
testing method automatically.

When we make the analysis on all 400 pictures, the
decision graph used in RLClu still does not allow identi-
fying clearly the number of clusters (See the Fig.5 in the
Supplementary materials). As already mentioned, we pick
up the 46 pictures with the largest ρ × δ as the clustering
centers for RLClu to make a fair comparison with STClu.
The figures in Fig.6 of Supplementary materials show the
clustering results of all the 400 pictures for the algorithms
STClu and RLClu. From these figures, we can get that, i)
due to the fact that the number of clusters identified by
STClu (also set by RLClu) is greater than the real number
of clusters 40, some pictures originally belonging to the
same cluster are divided into multiple some smaller clusters.
However, these small clusters remain pure, that is, each
cluster only includes pictures of the same people; ii) similar
to the results on the first 100 pictures, the clustering centers
of some clusters identified by STClu are again different from
those identified by RLClu. The reason for these differences
is that the metric to evaluate the local density of each picture
in STClu is different from that in RLClu.

Moreover, it is noted that the cutoff distance dc is em-
ployed in the process of assigning a picture into a cluster.
This is different from standard clustering process of both
STClu and RLClu which only consider the local density.
If one does not apply dc to the process of clustering in
STClu and RLClu, there would not exist any picture being
unassigned. And some pictures of different people might
be clustered into the same cluster. In this case, following
the evaluation metrics rtrue and rfalse used in [1], [55] to
evaluate the performance of different clustering algorithms.
Where rtrue is the ratio of pairs of pictures of the same peo-
ple correctly associated with the same cluster and rfalse is
the ratio of pairs of pictures of different people erroneously
grouped to the same cluster. The rtrue is 64.50% for STClu
and 65.89% for RLClu, and the rfalse is 1.48% for STClu
and 1.10% for RLClu. It seems that RLClu is slightly better
than STClu. However, for clustering algorithm RLClu, the
number of the clusters is set manually, and it is difficult
to set this number by only observing the decision graph.
This will be the biggest barrier to apply RLClu algorithm
in practice. In contrast, STClu algorithm can identify the
number of clustering automatically, and its performance is
still comparable to the state-of-art image clustering method
in [55]. That is, the algorithm STClu proposed in this paper
shows better usability in practice.

4.3 Sensitivity Analysis of Number of Nearest Neigh-
bors K on STClu

As we know, the K-density ρ̂ plays a fundamental role in
the proposed algorithm STClu since that both of the new
minimum density-based distance δ̂ and the centrality metric
γ̂ are defined based on ρ̂. There is a parameter, the number
of the nearest neighbors K, affecting the calculation of ρ̂. So
in this section, we will analyze the impact of the parameter
K on the performance of STClu.

For a given data set with n objects, the possible value
of the number of K can vary from 1 to n − 1. It is difficult
and impractical to represent the clustering results by two-
dimensional plots with respect to all the possible K on the
data sets in Section 4.1. It is noted that all these data sets
are known the ground truth partition in advance except for
A-set. The ground truth partition is baseline to evaluate the
performance of the clustering algorithm. Therefore, in this
section, we employ a well-known metric, Normalized Mutual
Information [54], which has been widely used to evaluate
the performance of the clustering algorithm for sensitive
analysis. We implement the proposed clustering algorithm
STClu on the data sets in S-set, Shape-set, high-dimensional
data set and the Olivetti Face Database under all the pos-
sible settings of K, and calculate the Normalized Mutual
Information with respect to STClu under each possible K.

The impact of the number of nearest neighbors K on
the performance of STClu in terms of NMI (Normalized
Mutual Information) is shown in Fig. 7 in the Supplemen-
tary materials due to the length of the paper. From the
figure of the sensitive analysis of K, it is observed that
some of these figures do not list all possible numbers of the
nearest neighbors. The reason is that when the number of
the nearest neighbors K is large enough, with the increase
of K, the performance of STClu either becomes stable or
decreases. From these figures (Fig. 7 in the Supplementary
materials), we can observe that:
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1) For all the four data sets S1, S2, S3 and S4 in S-set, with
the increase of K, NMI of STClu first gets the maximum
value rapidly and holds this maximum value for dozens of
K, and then drops down quickly and keeps steady. Holding
the maximum value on a set of continuous K means that
the algorithm is not so sensitive to K. And the default value
of K = d

√
ne falls into the range of K where the NMI gets

maximum value. Meanwhile, it is noted that the maximum
value of NMI approaches 1 for S1 and deceases from S1
to S4. This is due to the fact that the clusters in S1 are
well separated, but for the other three data sets, there exists
overlapping among different clusters and the overlapping
ratio increases from S2 to S4. It is difficult to distinguish the
objects lying on the overlapping region, and this reduces the
NMI. However, STClu can still detect the correct clustering
centers automatically.

2) For data set D31 with clusters in spherical shape
in Shape-set, the variation of NMI with respect to K is
similar to the data set in S-set. For data set Aggregation with
complex clusters in different shapes, with the increasing of
K, NMI of STClu first shows fluctuation when K < 50
but the NMI keeps relatively stable and gets relatively large
value for a set of continuousK; then, after a small reduction,
it becomes stable at a relative large value. The default value
of K = d

√
ne still falls in the region where NMI is large. It

is noted that the NMI corresponding to the default K does
not reach the best value 1. This is due to the fact that there
exists a “bridge” among different clusters and the objects
on the “bridge” are incorrectly clustered. For data set flame,
with the increase of K, NMI of STClu first shakes sharply,
then holds the maximum value 1 for a while and finally
drops down to a quite small value. For data set Spiral,
NMI can also be up to the theoretical maximum value 1
with respect to a set of continuous K. All these results
show that the proper settings of K for STClu are a set of
consecutive integers. This means that there will be multiple
candidates K instead of some special points to explore the
true structure of a clustering data.

3) For the six high-dimensional data sets, NMI of STClu
first reaches the maximum value rapidly and keeps this
maximum value when K > 5 for each data set. And
the default value of K = d

√
ne still falls in the region

where NMI gets the maximum value. This means that the
performance of proposed algorithm STClu is not sensitive
to the parameter K, and the default setting of K is rational
for these high-dimensional data sets.

4) For the Olivertti Face Database, the variation of NMI
is quite special and different from the above ones. That is,
NMI of STClu gets relatively large value when the number
of nearest neighbors K is small (i.e., K ≤ 4). When K > 4,
with the increasing of K, NMI drops rapidly and becomes
quite small. This is due to the fact that the ground truth
partition constitutes 40 clusters and only 10 pictures in each
cluster. The statistical error of the estimated density on such
a small set of pictures will be large [1]. Therefore, for the
clusters consisting of only a small set of objects, the setting of
K should be carefully designed in our experiment, a small
K will be better.

In summary, the performance of the proposed algorithm
STClu is related to the number of the nearest neighbors
K. For most data sets, the default setting of K = d

√
ne

usually falls into a set of consecutive integral values of K
resulting in a better clustering performance. That is, the

clustering results are stable when K varies around d
√
ne.

This indicates that STClu is not so sensitive to the parameter
K. The metric K-density used in STClu is robust in density
evaluation.

5 CONCLUSION

In this paper, we have proposed a statistical test based
clustering algorithm (STClu) that can automatically identify
the clustering centers and further cluster the objects in an
effective way. We first defined a new metric, K-density
ρ̂, to measure the local density of each object. Based on
K-density, we established a new metric δ̂ to evaluate the
distance of an object to its neighbors with higher density.
Then, a product of these two metrics γ̂ = ρ̂ × δ̂ was used
to evaluate the centrality of each object. Afterwards, by
analyzing the distribution of these metrics, we found that
γ̂ could be represented by a long-tailed distribution, and
further transformed the clustering center identification into
a problem of extreme-value detection from a long-tailed
distribution. Finally, we employed an outward statistical
testing method to detect the clustering centers with γ̂ au-
tomatically and then completed the clustering process by
assigning each of the rest objects to the cluster that contains
its nearest neighbor with higher K-density. Extensive ex-
periments have been conducted on both synthetic and real
world data sets; the experimental results show the effective-
ness and robustness of the proposed algorithm STClu.
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