
1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2016.2531684, IEEE Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

A Scalable Data Chunk Similarity based
Compression Approach for Efficient Big

Sensing Data Processing on Cloud

Chi Yang and Jinjun Chen

Abstract—Big sensing data is prevalent in both industry and scientific research applications where the data is generated with

high volume and velocity. Cloud computing provides a promising platform for big sensing data processing and storage as it

provides a flexible stack of massive computing, storage, and software services in a scalable manner. Current big sensing data

processing on Cloud have adopted some data compression techniques. However, due to the high volume and velocity of big

sensing data, traditional data compression techniques lack sufficient efficiency and scalability for data processing. Based on

specific on-Cloud data compression requirements, we propose a novel scalable data compression approach based on

calculating similarity among the partitioned data chunks. Instead of compressing basic data units, the compression will be

conducted over partitioned data chunks. To restore original data sets, some restoration functions and predictions will be

designed. MapReduce is used for algorithm implementation to achieve extra scalability on Cloud. With real world meteorological

big sensing data experiments on U-Cloud platform, we demonstrate that the proposed scalable compression approach based

on data chunk similarity can significantly improve data compression efficiency with affordable data accuracy loss.

Index Terms—Big Sensing Data; Cloud Computing; data chunk; data compression; similarity model; scalability; MapReduce;

————————————————————

1 INTRODUCTION

t is becoming a practical requirement that we need to

process big data from multiple sensing systems. That is,

we enter into the time of data explosion which brings
about new scientific challenges for big sensing data pro-
cessing. In general, big data [1-2, 37-38] is a collection of
data sets so large and complex that it becomes extremely
difficult to process with on-hand database management
systems or traditional data processing tools. It represents
the progress of the human cognitive processes, usually
includes data sets with sizes beyond the ability of current
technology, method and theory to capture, manage and
process the data within a tolerable elapsed time [1-2, 31,
34]. According to literature [1-2], since 1980s, generated
data doubles its size in every 40 months all over the
world. In the year of 2012, there were 2.5 quintillion
(2.5×1018) bytes of data being generated every day.
Hence, how to process big data has become a fundamen-
tal and critical challenge for modern society.

A very important source of big data is sensing systems,
including camera, video, satellite, meteorology, connec-
tomics, earthquake monitoring, traffic monitoring, com-
plex physics simulations, genomics, biological study,

medical research, gene analysis and environmental re-
search [1-2, 16-20, 43-46] etc. The big sensing data from
different kinds of sensing systems is high heterogeneous,
and it has typical characteristics of common real world
big data. They are five ‘V’s, Volume, Variety, Velocity,
Veracity and Veracity.

To overcome the processing difficulties caused by five

‘V’s, of big sensing data, the trend to deploy big data pro-
cessing on Cloud is getting popular day by day. Cloud
computing provides a promising platform for big data
processing with its powerful computation capability,
storage, scalability, resource reuse and low cost, and has
attracted significant attention in alignment with big data.
In Amazon’s recent real world big data processing on
Cloud projects [41-42], most of big data sets come from
sensing systems. However, to process big sensing data
can still be costly in terms of space and time even on
Cloud platform. To reduce the overall time and space cost
for big data, especially big sensing data processing on
Cloud, different techniques have been proposed and de-
veloped [37-39]. But due to the size and speed of big sens-
ing data in real world, the current data compression and
reduction techniques still need to be improved. It has
been well recognized that big sensing data or big data sets
from mesh networks such as sensor systems and social
networks can take the form of big graph data. To process
those big graph data, current techniques normally intro-
duce complex and multiple iterations. Iterations and re-

xxxx-xxxx/0x/$xx.00 © 201x IEEE

I

————————————————

 Chi Yang and Jinjun Chen are with the Faculty of Eng. and IT, Uni. of
Tech., Sydney, Australia, NSW2007. E-mail: {chiyangit,
jinjun.chen}@gmail.com.

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2016.2531684, IEEE Transactions on Knowledge and Data Engineering

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

cursive algorithms may cause computation problems
such as parallel memory bottlenecks, deadlocks on data
accessing, algorithm inefficiency [30]. In other words, un-
der some circumstances, even with Cloud platform, the
task of big data processing may introduce unacceptable
time cost, or even lead to processing failures.

To further improve the data size reduction, reduce the
processing time cost and release the iterations in pro-
cessing big sensing data, in this paper, we propose a nov-
el technique based on data chunk partitioning for effec-
tively processing big data, especially streaming big sens-
ing data on Cloud. With this novel technique, big sensing
data stream will be filtered to form standard data chunks
at first based on our predefined similarity model. Then,
the coming sensing data stream will be compressed ac-
cording to the generated standard data chunks. With the
above data compression, we aim to improve the data
compression efficiency by avoiding traditional compres-
sion based on each data unit, which is space and time
costly due to low level data traverse and manipulation. At
the same time, because the compression happens at a
higher data chunk level, it reduces the chance for intro-
ducing too much usage of iteration and recursion which
prove to be main trouble in processing big graph data.

The contents of this paper are organized as follows. In
Section 2, we review related work and conduct problem
analysis. In Section 3, a data similarity model will be de-
fined and introduced. With that similarity model, the
formation process of standard data chunks will be offered
by training initial data stream. Then, we will introduce
our streaming sensing data compression according to the
standard data chunks. In Section 4, all the related scalable
algorithms are offered, including scalability with Mapre-
duce, standard data chunk generation algorithm and
scalable compression algorithm. In Section 5, the experi-
mental results will be analyzed to show significant data
compression performance gains. In addition, the accuracy
loss will also be discussed in relation to compression ef-
fectiveness. In Section 6, we will conclude the paper with
a brief outlook of future work.

2 RELATED WORK AND PROBLEM ANALYSIS

Some techniques have been proposed to process big
data with traditional data processing tools such as data-
base, traditional compression, machine learning, or paral-
lel and distributed system [1-2,]. In the following Section
2.1, those current popular techniques for big data pro-
cessing on Cloud will be introduced and analyzed.

2.1 Related Work: Big Data Processing on Cloud

Nowadays, lots of big data sets or streams come from
sensing systems which are widely deployed in almost
every corner of our real world to assist our everyday life
[42-44]. In order to cope with that huge volume big sens-
ing data, different techniques can have been developed
[42], on-line or off-line, centralized or distributed. Natu-
rally, the computational power of Cloud comes into the
sight of scientist for big sensing data processing [23-26].

Cloud computing provides comprehensive computing

and storage resources enabling a pay-as-you-go business
model by offering IT resources as services [5-10]. As a
result, Cloud provides a promising scalable platform for
big data storage, dissemination and interpreting [3-4]. At
present, some research has been done about how to pro-
cess big data with Cloud. For example, Amazon EC2 in-
frastructure as a service is a typical Cloud based distrib-
uted system for big data processing. Amazon S3 supports
distributed data storage. MapReduce [8-15, 40] is adopted
as a programming model for big data processing with
Cloud. MapReduce [27-28] has been widely revised from
a batch processing framework into a more incremental
one for analyzing huge-volume of incremental data on
cloud. It can sort petabytes of big data in only a few hours.
The parallelism also provides some possibility of recover-
ing from partial failure of servers or storage during the
operation. In our work, MapReduce also acts as a base for
parallel processing on Cloud.

 A significant amount of research has been done on
the processing of incremental data on cloud. Kienzler et
al. [8] developed a “stream-as-you-go” approach for ac-
cessing and processing incremental big sensing data on
cloud via a stream-based data management architecture.
The extension of traditional Hadoop framework [11] was
made to develop a novel framework named Incoop by
incorporating several techniques like task partition and
memorization-aware schedule. Olston et al. [9] present a
continuous workflow system called Nova on top of
Pig/Hadoop through incremental data processing.

Sensor-Cloud [21-22, 41] is a unique sensing data stor-
age, visualization and remote management platform that
leverages powerful cloud computing technologies to pro-
vide excellent data scalability, fast visualization, and user
programmable analysis. Sensor-Cloud platform [28, 38-39]
has been developed including its definition, architecture,
and applications. However, the Sensor-Cloud has less
consideration for the big data in complex network topol-
ogy. Due to the features of high variety, volume, and ve-
locity, big data is difficult to process using on-hand data-
base management tools or traditional Sensor-Cloud plat-
form. The typical examples of big sensing data of complex
networks are social network and large scale sensor net-
works. Under the theme of those complex network sys-
tems, it may be difficult to develop time-efficient detect-
ing or trouble-shooting methods for big data processing
in complex network systems in real time [21-23, 27]. Cur-
rent typical techniques such as MapReduce may intro-
duce high computation cost [29-32, 34] when encounter-
ing big graph sensing data. More work is still expected to
improve the effectiveness and efficiency in terms of big
graph data processing on Cloud. Therefore, we aim to
offer an optimal solution for real-time streaming big
graph data compression for applications on Cloud.

Specifically, to reduce the volume of big data sets, dif-
ferent data reduction methods have been proposed re-
cently. For example, in paper [29], the work considers
compressed sensing for sparse and low-rank tensors.
Low-rank tensors were synthesized as sums of outer
products of sparse loading vectors, and a special class of
linear dimensionality-reducing transformations that re-

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2016.2531684, IEEE Transactions on Knowledge and Data Engineering

YANG ET AL.: A SCALABLE DATA CHUNCK SIMILARITY BASED COMPRESSION APPROACH FOR EFFICIENT BIG SENSING DATA PROCESSING ON

CLOUD 3

duce each mode individually. It was proved that interest-
ing “oracle” properties exist. The proofs naturally suggest
a two-step approach for processing big sensing data on
Cloud. However, the extension and improvement are
required to face new issues of big data and Cloud.

In paper [31], a data quality (DQ)-centric big data in-
frastructure for federated sensor service clouds was pro-
posed. The paper explores the advantages and limitations
of current big data technologies in building various com-
ponents of the platform. In paper [32], the work is focused
on state-of-the-art analysis and open research issues in
the context of Cloud-enabled largescale sensor networks,
which naturally complement the emerging big sensing
data paradigm. It focuses in particular on the issue of rep-
resenting and managing Big Data, with emphasis on ana-
lytics over Big Data, as well as processes and architectures
working with such data, with emphasis on Wireless Sen-
sor Networks (WSNs), and draws future directions in this
field. In paper [33], Recovery algorithms are developed in
compressive sampling (CS). Specifically, to speed up the
least-squares module, the matrix-inverse-update algo-
rithm is adopted. That developed algorithm has the po-
tential to be used for compressing big sensing data on
Cloud. But can not be used directly due to the new re-
quirement such as extreme high data speed, distributed
environment and scalability.

In paper [34], an anomaly detection technique was
used for through-wall human detection to demonstrate
the big sensing data processing effectiveness. This tech-
nique is totally based on compressive sensing. The results
showed that the proposed anomaly detection algorithm
could effectively detect the existence of a human being
through compressed signals and uncompressed data. In
paper [35], an adaptive data gathering scheme by com-
pressive sensing for wireless sensor networks was devel-
oped. By introducing autoregressive (AR) model into the
reconstruction of the sensed data, the local correlation in
sensed data is exploited and thus local adaptive sparsity
is achieved. Up to about 8dB SNR gain can be achieved
over conventional CS based method. There is also tech-
nique focusing on parallel data storing over large-scale
distributed storage stock of Cloud platform. The stored
big graph data or stream data sets will be queried and
evaluated as the model of distributed data-base in Cloud,
such as “Hydoop” [40] and its related “Hive”, “HBase”,
“Zookeeper”, and so on.

In paper [30, 36], a spatial and temporal compression
model is designed for compressing big sensing data with
significant performance gains. The approach in [30] con-
sists of two main technique parts. The first one focuses on
reducing the data size over Cloud platform with spatio-
temporal compression. A clustering algorithm is devel-
oped based on spatial similarity between multiple time
series or streams of data. It compares data streams ac-
cording to the topology of streaming data graph. Howev-
er, that techniques work at the level temporal or spatial
data correlation which could be further improved if other
data correlation or relationship can be exploited.

Based on the above literature, current big sensing data
processing or compression algorithms work at sampling

or data unit navigation level. However, due to the huge
volume of the big sensing data, the only data size reduc-
tion at that level is not enough. Novel data compression
techniques should be developed to dramatically reduce
the stored data size and time cost for data manipulation.
Instead of compressing data unit one by one at sampling
stage and traditional compression techniques which
compare data units at a low level, some compression
based on huge data blocks in big sensing data should be
developed. At the same time, the computation power and
the scalability feature of Cloud computing should be fur-
ther exploited within the framework of MapReduce.

2.2 Problem Analysis

As offered in Section 2.1, big sensing data normally
streams in with high speed in real time. It may take the
form of graph data sometimes [27, 30]. Traditional data
compression and current popular data compression tech-
niques work at low basic data unit levels show their
weakness and inefficiency when encountering big sensing
data sets in the following aspects. (1) Most of traditional
data compression techniques require whole data set navi-
gation which costs huge amount of space and time during
the compression and decompression [30]. Normally,
compression algorithms work at a level which counts
each basic data unit for their relationship. (2) Traditional
data compression algorithm can not make full use of
scalability of Cloud. The centralized compression and
decompression algorithms should be organized on the
scalable platform such as Cloud in a more efficient way.

Fig. 1. Influence of Two Types of Geometry Similarities

To compare different strategies for data compression,
the example in Fig. 1 is used. As shown in Fig. 1. (a), a
sensing system is deployed for collecting data from 12
different data sources. All the collected sensing data will
be transmitted back to node 0. With a traditional data
storage strategy, the data collected from sensing node 1 to
sensing node 12 will be stored one by one with a certain
predefined order. Under this storage theme, the tradi-
tional compression happens at each sensing node level.
For instance, the data collected in node 1 will be analyzed
and used for possibly compressing the data from node 3.
However, the above compression approach working at
sensing node level can be inefficient especially when the
data volume and velocity is high. If more attention is paid
to the topology of the sensing system in Fig. 1. (a), it can
be found that the there are two similar sub-clusters under
sensing node 0 as shown in Fig. 1. (b). If the data from
node1 to node 6 and node 7 to node 12 has certain correla-

(b) (c)

1

2
3

4
5

6

0

7
8

9 10
11

12

(a)

1

2
3

0

4 5

6 0

7

8
9 10

11

12

Chunk_1

Chunk_2

Distance(Chunk_1, Chunk_2)<T

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2016.2531684, IEEE Transactions on Knowledge and Data Engineering

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

tions, the two data structures in Fig. 1. (b) can be used to
calculate each other, we can use a similarity model to de-
scribe this relationship between two sub-structures. As
shown in Fig. 1. (c), because the two data chunks Chunk_1
and Chunk_2 have a certain similarity which is described
with Distance(Chunk_1, Chunk_2)<T. In other words, if the
compression model based on data chunks can be adopted
as shown in Fig. 1. (c), the efficiency of big sensing data
compression can be dramatically increased due to data
manipulation based on large data blocks and clusters.

With the above analysis, if the compression can be
conducted at the level of data blocks or sensing clusters, it
will greatly reduce the size of sensing data storage. At the
same time, because lots of sensing clusters and large data
blocks can be recovered by decompression process, huge
amount of time for data searching can be saved. Motivat-
ed by those space and time saving, this paper has the fol-
lowing contributions. (1) Our main algorithm is used to
process big sensing data. So, some features of big sensing
data will be studied and analyzed. (2) To carry out com-
pression, the similarity between two different data
chunks should be defined. So, how to define and model
the similarity between data chunks is a primary require-
ment for data compression. (3) After the definition for the
above similarity model for data chunks, how to generate
those standard data chunks for future data compression is
also a critical technique which we designed. (4) A novel
compression algorithm is developed and designed based
on our similarity model and standard data chunk genera-
tion. (5) Real meteorological big data from sensing sys-
tems will be used to test the different aspects of our pro-
posed big sensing data compression algorithm.

3 DATA CHUNK SIMILARITY AND COMPRESSION

Firstly, the similarity models for our compression and
clustering will be developed. The similarity model is criti-
cal and fundamental for deploying the data chunk based
data compression because the similarity model is used for
generating the standard data chunks.

3.1 Similarity Model

Currently, there are five types of models are commonly
used including common element approach, template

models, geometric models, feature models and Geon the-
ory. However, the following proposed models are related
to geometric model and common element approach in

terms of numerical data and text data respectively. Our
similarity models work on two types of data sets, multi-
dimensional numerical data and text data.

3.1.1 Similarity Model for Numerical Data

Suppose there are two numerical data vectors �⃗=(x1, x2,

x3, …, xn) and ��⃗ =(y1, y2, y3, …, yn). We can calculate that

the matrix norm ��⃗� and ���⃗ � with formula (1) and (2).

��⃗�=���
� + ��

� + ��
� + ⋯ + ��

� + ⋯ + ��
��
 (1)

���⃗ �=���
� + ��

� + ��
� + ⋯ + ��

� + ⋯ + ��
��
 (2)

The geometric approach is the representation of simi-
larity relationships among the members of a set of ob-

jects. Geometric similarity is given by distance between
objects in this geometric space; the closer together two
objects are, the more similar they are. Normally, the simi-

larity is described with a cos � between two vectors and

fraction between two matrix norms ��⃗� and ���⃗ �. Based

on the above analysis, we offer two similarity definitions

as follows. From formula (3) to (5), the numerical data

similarity of � is defined and denoted as Simn1(�⃗, ��⃗) .

Simn1(�⃗, ��⃗) = cos � (3)

cos � =
�1�1 + �2�2 + ⋯ + ����

��⃗� × ���⃗ �
 (4)

cos � =
�1�1 + �2�2 + ⋯ + ����

���
� + ��

� + ⋯ + ��
��

 × ���
� + ��

� + ⋯ + ��
��

 (5)

From formula (6) to (7), the numerical data similarity of

matrix norms is defined and denoted as Simn2(�⃗, ��⃗).

Sim����⃗, ��⃗ � =
��⃗�

���⃗ �
 (6)

 Sim����⃗, ��⃗ � =
���

����
��⋯���

��

���
����

��⋯���
��

 (7)

Considering that in most of real world applications, the

preferences of applications are different. So, different
weight should be assigned to different attribute for calcu-
lating the Similarities as following (8) and (9).

Sim����⃗, ��⃗ � =
��

��1�1 + ��
��2�2 + ⋯ + ��

�����

���
���

� + ⋯ + ��
���

��
× ���

���
� + ⋯ + ��

���
��

(8)

Sim����⃗, ��⃗ � =
��1

2��
� + �2

2��
� + ⋯ + ��

2��
��

��1
2��

� + �2
2��

� + ⋯ + ��
2��

��
 (9)

Based on the above definition and analysis, now we

explain the influence of the above two similarities for
compression.

For calculating Simn1(�⃗, ��⃗) of θ, it is critical to measure

the similarity between two vectors, when Simn1(�⃗, ��⃗)→1,
the two vectors are more similar to each other. However,

when Simn2(�⃗, ��⃗)→1, it can not be concluded that �⃗, ��⃗ are

similar because the two vector can be totally different.

Fig. 2. Influence of Two Types of Geometry Similarities

As shown in Fig. 2 (a), for Similarity Simn1(�⃗, ��⃗) of θ, if

the Simn1(�⃗, ��⃗))→1, it means the θ → 0. In other words,
the two vectors can be inferred with each other because





Simn1

Simn2

(a) (b)

(c) (d)

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2016.2531684, IEEE Transactions on Knowledge and Data Engineering

YANG ET AL.: A SCALABLE DATA CHUNCK SIMILARITY BASED COMPRESSION APPROACH FOR EFFICIENT BIG SENSING DATA PROCESSING ON

CLOUD 5

their each attribute is similar. If the θ is bigger, it means
the two vectors are more different as shown in Fig. 2 (b).

However, when it comes to Simn2(�⃗, ��⃗) of the matrix

norms �⃗, ��⃗ , even the norms of two vectors are quite simi-
lar to each other, their attributes could be totally different

as shown in Fig. 2 (d). Whereas, even Simn2(�⃗, ��⃗) are quite
different or smaller than 1, if the θ → 0 can be calculated,
the two vectors can be inferred to each other as shown in

Fig. 2 (c).
The above similarity computation can be categorized as

a typical geometry data similarity finding process. It is

designed from the common cosine similarity model. The
cosine similarity between two vectors (or two documents

on the Vector Space) is a measure that calculates the co-
sine of the angle � between them. To measure similarity
between two vectors x and y, a popular similarity func-

tion is the inner product including the cosine similarity,
Pearson correlations, and OLS coefficients. The inner
product is unbounded. One way to make it bounded be-

tween -1 and 1 is to divide by the vectors’ norms. It is
called the cosine similarity. In this paper, we choose the

cosine similarity model because it can measure the big
data chunk similarity more accurately under our big sens-
ing data feature assumption. Compare to other similarity

checking model, such as similarity based on pure Euclid-
ean distance, the cosine similarity not only measures the
length distance but also the angle distance between two

vectors. This checking is more objective and brings more
accuracy guarantee for describing the similarity according

to our data assumption.

3.1.2 Similarity Model for Text Data

For string type and text type similarity, a dual variable
length hidden Markov model is used and updated in our

work for calculating similarity between text data.
Suppose there are a string pair p(str1, str2), and a time

stamp series t= t1, t2, …, tn. We can define the joint proba-
bility PR of each pair by the state time stamp series with
formula (10). In (10), pi stands for the paper of text string

with the similar time series stamp ti where i is the state.

��(p, t|�) = ��� � τ������
� �����

 (10)

�

���

���

���

� ≡ (�, {τs}�, {{Os}�}) (11)
Formula (11) is the parameters consisting of states of

the initial, transition, and output probabilities.
����∈�(�) ��(p, t|�) (12)

Generally there are multiple state transitions that pro-

duce a given pair of strings. If the set of state sequences
that produces a pair p is denoted as τ (p). Then the string
similarity of the pair p is defined as the maximum align-

ment probability (12). With the transitions and states cal-
culated with (10) to (12), the model can describe the string

similarity. This compression technique can be considered
as a type of common element similarity computation
techniques.

3.1.3 Similarity of Topology

In our data chunk based compression, data sets should

be compression block by block. For big graph data and
lots of network data, the topology and structure infor-
mation has big influence for data processing and it should

not be ignored. Because we assume the data has a topolo-
gy of leaf nodes and cluster head, the similarity has fol-

lowing features.
For two tree topology based graphs, T1<V1,E1> and

T2<V2,E2>, their topology similarity is basically deter-

mined by the number of the leaf nodes. Based on the clus-
ter head topology, the T<V, E> has n v and n-1 e.

If T1<V1, E1> has m v and m-1 e, and T2<V2,E2> has n v

and n-1 e, the comparison value of similarity is calculated
with following formula (13) and (14).

 Sim����
���⃗ , ��

���⃗ � =
|���|

���(�,�)
 (13)

Sim����
���⃗ , ��

���⃗ � =
|���|

���(���,���)
 (14)

In formula (13) and (14), |m-n| calculates the different
of v between two trees. On the contrary, Max selects the

bigger number between (m, n) and (m-1, n-1). When

comparing the two vectors Simn1(�⃗, ��⃗), the calculated

Sim����
���⃗ , ��

���⃗ � and Sim����
���⃗ , ��

���⃗ � will be added into as new

attributes with a weight offered by application require-

ment or users to calculate overall similarities.

3.2 Data Chunk Generation and Formation

With the above definition of similarity model, we will
give the techniques for data chunk generation. In the

problem analysis, we have introduced the basic idea of
data chunk based compression. Under that theme, the

data will not be compressed by encoding or data predic-
tion one by one. It is similar to high frequent element
compression. The difference is that the frequent element

compression recognizes only simple data units; whereas
our data chunk based compression recognizes complex
data partitions and patterns during the compression pro-

cess. Similar to chess games, variations and patterns are
well studied and predefined, and most of operations will

happen at variation level.
Suppose that a data unit in a big data set S is denoted

as Xi, and the first data unit should be denoted as X1. In

other words, S is a stream data series, denoted as S={X1,
X2, …, Xm}, where m is the number of data units stream-

ing in. If the following data unit vectors X2 and X1, can be

used to calculated Simn1(��
����⃗ , ��

����⃗) and Simn2(��
����⃗ , ��

����⃗). At the
same time, if it is text type data, the dual variable length

hidden Markov model will be used to calculate similarity.

Then, the topology similarities, Sim����
���⃗ , ��

���⃗ � and

Sim����
���⃗ , ��

���⃗ � will be calculated and added into original

vectors as new attributes. With the big data set preprocess,

we aim to generate a standard initial set S’ which is used
in the following compression process. According to our
predefined similarity model, we need to generate the first

initial standard data chunk set S’ for the big data set S.
We denote each time slot for calculating a new standard

data chunk as t, and t∈ (1, +∞). The selection process of S’
forms a selection path.

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2016.2531684, IEEE Transactions on Knowledge and Data Engineering

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

Fig. 3. The Initial Formation Path for a Standard Data Chunk Set S’

As shown in Fig. 3, at t=1, X1 is selected and set as the
first standard data chunk and added into S’. Following

that, at t=2, X2 will be compared to X1 based on their simi-
larity and the application specified threshold T. Here, we

use a distance function Dis(��
����⃗ , ��

����⃗) is used to describe the
difference between any two vectors. If the result of

Dis(��
����⃗ , ��

����⃗)>T can be calculated, it means that the two
chunks, X1 and X2 are quite different two each other. Then

a newly generated data chunk X1+X2 should be added to
S’ as the second standard data chunk. The above ‘+’ oper-

ator between X1 and X2 means an adding operation be-
tween two vectors. At the time stamp, S’ has two ele-
ments, denoted as S’={X1, X1+X2}. On the contrary, at t=2,

if Dis(��
����⃗ , ��

����⃗)≤T can be got, it means X1 and X2 are close
enough and can be used to infer each other. Then, X2 will
be discarded and all the X2 will be inferred from X1 dur-

ing the big data set processing. So, at the end of t=2, there
are two possible states for S’ including {X1} and {X1,

X1+X2}. In other words, there two paths connecting the
possible states at t=1 to states at t=2. At t=3, there are sev-
en possible states and related paths evolved from the

states at t=2. To find a similarity data chunk, we always
use the largest data chunk for comparison at first. For
example, in Fig. 3, at t=3, at data block X3+X4 is selected

first to be compared with block X1+X2. If Dis(��
����⃗ + ��

����⃗ ,

��
����⃗ + ��

����⃗)<T can be calculated, the data block of X3 and X4
will be compressed and represented by X1 and X2. If

Dis(��
����⃗ + ��

����⃗ , ��
����⃗ + ��

����⃗)>T is calculated, the sub-components
of data block X3 and X4 will be calculated to be compared
with the standard data chunks already generated at t=2.

Suppose that the length of a coming data block is denoted
as L. The length of the data block of X3 to X4 L3-4=2. There

are ��
�=2 sub-blocks X3 and X4. The sub-blocks X3 and X4

will be compared to X1. With this data sub-block compari-
son, at following t>3, the data decomposing and sub-

block will be conducted recursively for calculating any
standard data chunk at t=i as shown in Fig. 4.

Specifically in Fig. 4, there are a series of possible

standard chunks at t=i. The original length of coming da-
ta is L=i. In the similarity comparing process, If any

“Dis()>T” is calculated, there are totally ��
� + ��

� +
��

�+…+��
���+��

�=2�-1 sub-blocks which probably should
be compared to the standard data chunks generated at

t=i-1 in a recursive style.
The last problem is the termination of the above stand-

ard data chunk generation process. With the processing of
in-coming data, suppose that the original selected data

length from L at time t=i. If after r rounds, when it comes
to t=i+r, there is no new change added to the S’, the S’ is
used as the final standard data chunks set for data com-

pression in future. The time round ‘r’ is set or offered by
outside application requirement. The size of the standard
data chunk is controlled by selecting the parameter ‘r’

which determines when to terminate the recursive pro-
cess of generating new data chunks. As a matter of fact,

the generated standard data chunks after initial selection
have different size to each other. In this data chunk gen-
eration, the recursive process will increase the size of se-

lected standard data chunks step by step. If the terminat-
ing condition is not reached, the algorithm will continu-
ously find new standard chunks with bigger size com-

pared to any standard chunk which has already been se-
lected. When the terminating condition is reached accord-

ing to the given ‘r’, the final selected standard data chunk
is always the largest one in terms of size.

Fig. 4. The Possible Data Chunk States at t=i

3.3 Data Chunk based Big Data Compression

With the generated standard data chunks, we develop

a new data compression technique which recursively
compresses in-coming data from big data set S according
to generated S’. Suppose that the ith vector in S is denoted

as ui and the jth vector in S’ is denoted as vj.
As shown in Fig.5, to compress the big data set S from

vector uj, there is no need for the compression algorithm

to navigate uj one by one. Whereas, the standard chunks
stored in S’ will be used to compress the in-coming vec-

tors series uj chunks by chunks. For example, with the

{X1}

t=1

{X1, X1+X2}

t=2

{X1}

incremental formation path of a standard data chunk set S' from t=1 to t=3

Distance(X1, X2)<T

Distance(X1, X2)>T

t=3

Distance(X1, X3)<T

Distance(X1, X3)>T

Distance(X1+ X2, X3+ X4)>T

Distance(X1+ X2, X3+ X4)<T

{X1}

{X1, X1+X3}

Distance(X1, X3)<T

Distance(X1, X3)>T

{X1, X1+X2}

Distance(X1, X4)<T

Distance(X1, X4)>T

Distance(X1, X4)<T

Distance(X1, X4)>T
{X1, X1+X2, X1X2 X3X4}

{X1, X1+X2, X1X2 X3}

{X1, X1+X2, X1X2 X4}

{X1, X1+X2}

......

{X1}

t=i

{X1, X1+X2}

{X1, X1+Xi}

..
.

{X1, X1+X2, X1X2 X3}

..
.

{X1, X1+X2, X1X2 Xi}

..
..
..
..

{X1, X1+X2, X1X2 X3, + ... + X1X2 X3+... +Xi-1}

{X1, X1+X2, X1X2 X3, + ... + X1X2 X3+... +Xi-1, + X1X2 X3+... +Xi-1+Xi}

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2016.2531684, IEEE Transactions on Knowledge and Data Engineering

YANG ET AL.: A SCALABLE DATA CHUNCK SIMILARITY BASED COMPRESSION APPROACH FOR EFFICIENT BIG SENSING DATA PROCESSING ON

CLOUD 7

generated standard chunks set S’, a whole block of data uj

to uj+r will be compared to vr in S’ firstly. If the distance

between vr and uj+r, Dis(vr , {uj,…, uj+r})>T can be calculat-
ed, the uj+r will be recursively decomposed with the se-
quence of subsets from {uj, uj+1, uj+2, …, uj+r}. Totally, there

are ��
� , ��

� , ��
� ,…, ��

��� ,��
� different subsets based on the

vector set {uj, uj+1, uj+2, …, uj+r}. These subsets will have

opportunity to be compared with vr-1 to v1 repectively to
detect some similar data chunks in the data block {uj, …,
uj+r}. This recursive processing for computing Dis(vk ,

{uj,…, uj+k}) will only happening under the following con-
ditions.

Fig. 5. The Possible Data Chunk States at t=i

(1) Dis(vr , {uj,…, uj+r})<T: It means that vr and {uj,…, uj+r}
are similar to each other and vr can be used to compress
the data block {uj,…, uj+r}.

(2) Dis(v1 , {u1})<T, Dis(vk , {uk,…, uj+l})<T, …, Dis(vp,
{up,…, uj+p})<T; {v1∪…∪vk∪…∪vp}=S’ & {u1}∪…∪{uk,…,

uj+l}∪…∪{up,…, uj+p}=S: It means that all the subsets in
{uj,…, uj+r} can be compressed by vectors in S’.

(3) Dis(v1 , {u1})>T, Dis(vk , {uk,…, uj+l})>T, …, Dis(vp,

{up,…, uj+p})>T, Dis(v1 , uj+1)>T, Dis(v2 , uj+2)>T, …, Dis(vk ,
u j+k)>T, … Dis(vr , uj+r)>T: It means that in the set and

subsets of data block {uj,…, uj+r} there is no similarity data
chunk which can be found in S’. In other words, no com-
pression happens here and data block should be stored.

(4) Dis(v1 , {u1})>T, Dis(vk , {uk,…, uj+l})>T, …, Dis(vp,
{up,…, uj+p})>T, Dis(v1 , uj+1)>T, Dis(v2 , uj+2)>T, …, Dis(vk ,
u j+k)>T, … Dis(vr , uj+r)>T; Dis(v2 , {u2})<T, Dis(vk+1 ,

{uk+1,…, uj+l})<T, …, Dis(vp+1, {up+1,…, uj+p+1})<T, Dis(v2 ,
uj+2)<T, Dis(v2 , uj+2)<T, …, Dis(vk+1 , u j+k+1)<T, … Dis(vr-1 ,

uj+r-1)<T: It means that some vector subsets of data block
{uj,…, uj+r} can be compressed with the elements vi from S’;
and others should be stored because there is no similar vi

being matched in S’.
With the formed S’ and a recursive process, the big sens-
ing data stream will be compressed for both space and

time efficiency.

4 SCALABLE ALGORITHMS FOR DATA CHUNK

SIMILARITY BASED COMPRESSION ON CLOUD

To deploy our proposed big sensing data compression
on Cloud, two important stages, standard chunk genera-
tion and chunk based compression are essential. So the

algorithms are developed respectively to conduct the re-
lated data processing for the above two stages.

At the first stage, the standard data chunks are gener-

ated. The algorithm for selecting those chunks can be per-

formed before the real data compression by centralized
computer systems. So, a centralized algorithm is offered

for describing the whole process of standard data chunk
generation. At the second stage of big data compression,
the storage and time saving is mainly achieved by chunk

based compression and scalability of Cloud. The chunk
based compression is introduced by the algorithm itself,

and the scalability is introduced by designing the com-
pression algorithm with MapReduce. In other words, the
compression algorithms conclude two parts, “Mapper”

side algorithm and “Reducer” side algorithm. In follow-
ing content of this Section 4, all the above algorithms will
be offered and analysed.

4.1 MapReduce and Compression Algorithm

To guarantee the scalability of the proposed data com-
pression algorithm based on data chunks, MapReduce

programming model and Hadoop platform are adopted
for implementation.

4.1.1 MapReduce

MapReduce is a framework for processing paralleliza-

ble and scalable problems across huge datasets using a
large number of computers (nodes), collectively referred
to as a cluster (if all nodes are on the same local network

and use similar hardware) or a grid (if the nodes are
shared across geographically and administratively dis-

tributed systems, and use more heterogenous hardware).
Computational processing can occur on data stored either
in a filesystem (unstructured) or in a database (struc-

tured). MapReduce can take advantage of locality of data,
processing data on or near the storage assets to reduce

data transmission. "Map" function: The master node takes
the input, divides it into smaller sub-problems, and dis-
tributes them to worker nodes. A worker node may do

this again in turn, leading to a multi-level tree structure.
The worker node processes the smaller problem, and
passes the answer back to its master node. "Reduce" func-

tion: The master node then collects the answers to all the
sub-problems and combines them in some way to form

the output – the answer to the problem it was originally
trying to solve. MapReduce allows for distributed pro-
cessing of the map and reduction operations.

4.2.1 Principle for Designing MapReduce Algorithm

However, traditional MapReduce is very strict, which
limits its application in complex systems, such as meteor-
ology sensing systems. Sometimes, it is hard to directly

use one MapReduce to solve a data processing issue per-
fectly. In other words we have to revise the MapReduce

or use its functionalitis alternatively.
Based on our knowledge for MapReduce and its wide

applications, three technical changes are commonly

adopted to transform the targeting problem for applying
MapReduce on our proposed data chunk compression
algorithms. With those transformation techniques, a data

processing issue can be changed or partially changed into
several scalable or centralized parts. The MapReduce

programming model will be applied on those scalable

{v1, v2, v3, ..., vi, ..., vr}S'

S { ..., uj, uj+1, u2, u3, ..., uj+r, ..., uk, uk+1, ...}

C
r

rC
r

r

1C
i

rC r

3

C r

2

C r

1

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2016.2531684, IEEE Transactions on Knowledge and Data Engineering

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

parts.
(1) Original algorithm −> (embedded in)

Map()/Reduce().
(2) Partition the task flow of algorithm −> Identify

which part of the task flow to generate a MapReduce job
−> MapReduce generated result returns back to the task
flow.

(3) Complete MapReduce design −> control flow paral-
lelization/ data parallelization/ flow scalability/ data
scalability.

Based on the analysis of the above three strategies and
the complicated flow of our data chunk compression al-

gorithms, in our implementation, we adopt different
MapReduce strategies in terms of different control flow,
data navigation, data comparison for data compression

and storage process.

Fig. 6. Programming model of MapReduce

In our work, the compression algorithm is embedded
into the Mapper and Reducer, and to check the soundness
of the semantics of the newly generated scalable data

chunk compression algorithm with MapReduce. Specifi-
cally, the flow of our compression MapReduce program-

ming model can be described with KV pairs as shown in
Fig. 6. The output of Mapper goes through shuffle and
sort; then it becomes the input of the Reducer. So, the

compression algorithms should be embedded in both
Mapper and Reducer stages. In addition, the shuffule and
sort should be further reformed to fit the data chunk par-

titioning and compression algorithms. With the above
analysis, we offer the following detailed algorithms for

data chunks generation and data compression.

4.2 Standard Data Chunks Generation Algorithm

Before the start of data compression, a standard data
chunks set will be generated based on our defined simi-

larity model. This process is a preprocessing before the
compression which normally does not require huge com-
putation resource. So, a centralized algorithm is offered

firstly. After this centralized algorithm, the scalable com-
pression algorithm based on MapReduce will be offered.

In the standard data chunks generation algorithm,
there are two important inputs big sensing data set S and
the maximum limitation ‘r’ for data generation control.

The output of this algorithm is a data chunk set S’ which
is a subset of S containing all the generated standard data

chunks for future data compression.
From line (1) to line (4), the initialization process is con-
ducted including S’ and its first element v1, a combined

data type X which is used for temporal storing vector
data elements from S. From line (5) to line (9), the similar-
ity mode is calculated and selected according to applica-

tion requirement. Specifically, the algorithm from line (5)
to line (6) is used for choosing the processing model of

numerical data type vectors. The algorithm between from
(7) to line (8) is used for choosing the processing model of
text data type vectors. In line (9), the topology infor-

mation of a selected data vector is calculated and attached
into the data vector as numerical attributes with the trans-

formation computation parameter offered in Section 3.1.3.
In line (10), the first element, x1 in big data set S is selected
as the first element in the standard data chunks set S’. At

the same time, the length of the S’ (number of elements in
S’) l is set as 1 in line (11). From line (12) to line (28), the
algorithm is designed for recursively calculating standard

data chunks.

Specifically, line (12) is the maximum rounds limitation
which controls the ending condition for generating new
standard data chunks recursively. In line (13), the tem-

poral variable X is set at the first time. In line (14), the
similarity model is first calculated to compare the similar-
ity between X and vi. If the two vectors, X and vi are simi-

lar enough, X will be replace with vi; whereas if the dis-
tance between X and vi are larger an offered threshold, X

will be decomposed recursively to compare with other
elements in standard data chunks set S’. From line (18) to
line (23), the recursive similarity comparison function C(vi,

X) is called. The details of C(vi, X) starts in line (29) as fol-
lows. In line 30, the termination condition of a for() loop
is offered. This loop will terminate only when there is no

similar vi in S’ can be found, or X is decomposed by simi-
lar chunks in S’. Between line (32) and line (35), the recur-

(K1, V1)

 Mapper

list(K2, V2)
sort

(K2, list(V2))

 Reducer

list(K3,V3)

Algorithm: Standard Data Chunks Generation
input: a streaming big sensing data set S={x1, x2, ..., xn};

maximum time threshold for chunk evolvement: r
Output: Standard data chunk set S' whick is a subset of S; S'={v1, v2, ..., vk}

(1) public void main(S={x1, x2, ..., xn}, int r) throws IOException {

(2) initialize S'=;
(3) initialize(v1, x1) //v1= x1 is used for initializing v1;

(4) initialize X; // a temporary variable for storing recursively selection from {xi,...,xj};

(5) if(mode.equal(numerical_data))
(6) {Distance()}={Simn1(,), Simn2(,)};

(7) if(mode.equal(text_data))
(8) {Distance()}={Simn1(,), Simn2(,),};

(9) Attach(Distance(), SimV(,),, SimE(,));

(10) S'=x1S'; // x1 is the first elemet in S' ;

(11) initialize l=1; // the maximum elemet length in S' is l;
(12) for (int round=1; round<=r; round ++) {
(13) X=select (xi, l);

(14) if (Distance(vi, X)<Threshold)

(15) i=i+l;
(16) else{
(17) i--;
(18) for(;i!=0&&Distance(vi, X)>Threshold){

(19) Distance(,)=C(vi, X);

(20) if (Distance(,)<Threshold)
(21) break;
(22) extract(X', X);
(23) }
(24) vi+1=vi+X';

(25) S'= vi+1S';

(26) }
(27) }
(28) }

Recursive Similarity Comparison Function:
(29) C(vi, X){

(30) for(int i=1;(Distance(vi, X)<=Threshold)&&length(X)>1;){

(31) i--;
(32) for(int j=1;j>1;j--){
(33) X= ;
(34) C(vj, X);

(35) }
(36) }
(37) }

C
jX

X



1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2016.2531684, IEEE Transactions on Knowledge and Data Engineering

YANG ET AL.: A SCALABLE DATA CHUNCK SIMILARITY BASED COMPRESSION APPROACH FOR EFFICIENT BIG SENSING DATA PROCESSING ON

CLOUD 9

sive function C(vi, X) is called to find any data subset
within X which could be similar to any vi in S’. After the

recursive function call of C(vi, X), the algorithm return to
line (24) and line (25) which generate a new standard data
chunk vi and add it into the standard data chunks set S’.

Suppose that L is the size of the formed standard data

chunk S’. The worst case complexity of the algorithm Ο(�3)
can be calculated due to recursive decomposition and

similarity checking in several rounds. However, L is a
very small and ignorable value compared to the size of
incoming big sensing data set and it will not change in the

following compression process. So, in the following com-
pression algorithm, it can be viewed as a constant when

analyzing the algorithm complexity.

4.3.1 Compression Algorithm: “Map()” Side

With the generated standard data chunks set S’ in the
above section 4.2, the scalable compression algorithm

based on MapReduce programming model is offered as
follows. The algorithm is divided into two components
including Mapper side compression algorithm and Re-

ducer side compression algorithm. Firstly, we introduce
our Mapper side algorithm.

The Mapper side algorithm takes the S and S’ as its input.
The output of Mapper side algorithm is a data set S which
its data element tagged. All the tagged elements are able

to be compressed and decompressed based on S’. Specifi-
cally, the Mapper function is the extension of Table-
Mapper as shown in line (1) and line (2). In line (4), the

map() function is initialized and defined. It has S and S’ as
its inputs. Line (5) is the IO exception processing. In line

(6) and line (7), some variables are initialized. From line (8)
to line (12), the compression data model is selected and
configured. The algorithm from line (8) to line (9) is used

for choosing the processing model of numerical data type
vectors. The algorithm between from (10) to line (11) is
used for choosing the processing model of text data type

vectors. In line (12), the topology information of a selected
data vector is calculated and attached into the data vector

as numerical attributes with the parameter introduced in
Section 3.1.3. In line (13), the total number of elements in

the standard data chunks set, S’ is calculated and stored
in L. Because during the compression process, the data
vectors from S is selected chunk by chunk with the length

L, the algorithm needs to record the starting point of the
data element, denoted as start=0 in line (13). From line (14)

to line (20), the recursive similarity comparison function
is called again to tag any data element in S to find any
xi∈S which could be compressed. After line (20), the data

elements which could be compressed are tagged in map()
function. In line (21), the tagged big data set S is returned
and separated within map() function for distribution.

From line (22) to line (28), the IO exceptions and errors
are processed and captured for debugging. The worst

case complexity of the algorithm is Ο(n× ��), L≪n where n
is the size of the big data set, L is a small number for the
size of the standard data chunk set. As introduced in Sec-

tion 4.2, after the formation of standard data chunk set, ��
can be treated as a constant during the compression pro-
cess. The worst case algorithm complexity is Ο(n).

4.3.2 Compression Algorithm: “Reduce()” Side

After the processing of map() function of our proposed
algorithm, the tagged big data set S should be com-

pressed and calculated for final data compression result.

Our “Reduce()” side scalable compression algorithm ex-

tends the TableRedcuer<> of MapReduce programming
model as shown in the algorithm line (1) to line (3). In the
algorithmic line (4), the reduce() function is initialized

and defined. The redcue() function takes tagged big data
set, S as its input as shown in line (4). Line (5) is the IO

exception and error processing. In line (6) and line (7),
variable initialization and compression model selection
are conducted. From line (8) to line (10), any tagged data

element in S is compressed by the compress() function of
any element in S. After each function call of compress(),
the storage should be updated by a function of update()

and the compression path should be indexed for future
decompression by a function of index() as show in line

(11). In line (14), the combine() function is called for cen-

"Map()" Side Algorithm: Scalable Compression with Data Chunk Similarity

(1) public static class Mapper extends TableMapper <......,......> {
(2) public Mapper() {}
(3) @Override
(4) public Datatype map(Datatype S={x1, x2, ..., xn}, Datatype S'={v1, v2, ..., vk})

(5) throws IOException {
(6) ImmutableBytesWritable value = null;
(7) initialize X; // a temporary variable for storing recursively selection from {xi,...,xj};

(8) if(mode.equal(mumerical_data))
(9) Compression.set(Simn1(,), Simn2(,));

(10) if(mode.equal(text_data))
(11) Compression.set(Simn1(,), Simn2(,),);

(12) Compression.set(Simn1(,), Simn2(,),, SimE(,), SimV(,));

(13) L=MaxElementSizeof(S'); int start=0;

(14) for(; S!=; start=start+L){
(15) X=S.getlement(start, L);
(16) for(int j=L; j>0; j--){
(17) C(vj, X);

(18) tag(X.Distance<Threshold);
(19) }
(20) }
(21) return S; // a tagged data set S for final compression;
(22) for (int i = 0; i < S'.length; i++) {
(23) try {
(24) context.write(compressionID,value);
(25) } catch (InterruptedException e) {
(26) throw new IOException(e);
(27) }
(28) }
(29) }

"Reduce()" Side Algorithm: Scalable Compression with Data Chunk Similarity

(1) public static class Mapper extends TableReducer <......,......> {
(2) public Reducer(){}
(3) @Override
(4) public void reduce(Datatype S)
(5) throws IOException {
(6) ImmutableBytesWritable value = null;

(7) Compression.set(Simn1(,), Simn2(,), , SimE(,), SimV(,));

(8) for(int i=0 ; S.getelement.tag()!=; i++){

(9) if(S.getlement(i).tag()!=){
(10) S.getlement(i).compress();
(11) S.update(storage); S.index(decompression path);
(12) }
(13) }
(14) S.combine(); S.consistencycheck();
(15) return S;
(16) for (int i = 0; i < S.length; i++) {
(17) try {
(18) context.write(elementID,value);
(19) } catch (InterruptedException e) {
(20) throw new IOException(e);
(21) }
(22) }
(23) }

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2016.2531684, IEEE Transactions on Knowledge and Data Engineering

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

tralization. Furthermore, the consistency of the com-
pressed data is also checked. Finally, the compressed data

set S is returned by the algorithm in line (15). Form line
(16) to line (22), the IO errors and exceptions are detected
and captured.

With the above three algorithms, we implement a big
sensing data compression system based on calculating

similarity between data chunks. With that system, we can
process real big sensing data sets to test the effectiveness
and efficiency of the above algorithms.

5 EXPERIMENTS

To verify the time efficiency and the effectiveness of
our approach for compressing big sensing data on Cloud,
experiments are conducted on U-Could (Cloud compu-
ting environment at the University of Technology Sydney)
[11-14, 30]. There are three purposes for this experiment. 1)
Demonstrate that the significant storage saving is
achieved due to compressed data blocks. 2) Demonstrate
that the significant time saving is achieved because lots of
real big data blocks can be inferred instead of real search
and navigation. 3) Compared to significant time and
space performance gains, only tiny data loss is introduced
in terms of accuracy.

5.1 Experiment Environment and Process

Fig. 7. U-Cloud System Overview
The U-Cloud system is set up as shown in Fig. 7. On

top of hardware and Linux operating system, KVM virtu-
alization software is installed for the virtualization of in-
frastructure and providing unified computing and stor-
age resources. To create virtualized data centres, we in-
stall OpenStack Cloud environment which is responsible
for virtual machine management, resource scheduling,
task distribution and user interaction. Furthermore, Ha-
doop [40] is installed to facilitate MapReduce computing
paradigm and big data processing.

5.1.1 Meteorology Big Data Set

In our experiment, the world meteorology big sensing
data sets are used. In the civil network meteorology data
set, there are four types of commonly used data formats,
including GRIB, BURF, HDF and NetCDF as shown in
Table. 1. Due to the different data formats, before con-
ducting our experiment, a series of parsers are imple-
mented to preprocess meteorological big sensing data sets
from the following civil open data source. After our pre-
processing, all the meteorology data sets with different

data formats are transformed into our uniform data for-
mat for further data compression. Specifically, 4 kinds of
meteorology data sets are accessed in open civil meteor-
ology sources in different data format as follows.
(1) Sea Surface Temperature Data Sources (SST):

ftp://polar.ncep.noaa.gov/pub/cdas/eng.YYYYMMDD;

ftp://polar.ncep.noaa.gov/pub/sst/rtg_sst_grb_0.5.YYYYMMDD;

(2) Satellite Coverage Rate Data Sources:

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.YYYYMM

DD/gdas1.t06z.1bmhs.tm00.bufr_d;

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.YYYYMM

DD/gdas1.t12z.1bamua.tm00.bufr_d;

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.YYYYMM

DD/gdas1.t12z.1bhrs3.tm00.bufr_d;

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.YYYYMM

DD/gdas1.t12z.1bhrs4.tm00.bufr_d;

(3) Wireless Electrical Mask Satellite Observatory Data Sources:

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.YYYYMM

DD/gdas1.t00z.gpsro.tm00.bufr_d;

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.YYYYMM

DD/gdas1.t06z.gpsro.tm00.bufr_d;

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.YYYYMM

DD/gdas1.t12z.gpsro.tm00.bufr_d;

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.YYYYMM

DD/gdas1.t18z.gpsro.tm00.bufr_d;

(4) Satellite Wind Observatory Data Sources:

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.YYYYMM

DD/gdas1.t00z.satwnd.tm00.bufr_d.unblok

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.YYYYMM

DD/gdas1.t06z.satwnd.tm00.bufr_d.unblok

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/gdas.YYYYMM

DD/gdas1.t12z.satwnd.tm00.bufr_d.unblok

Format

versions coding type feature

GRIB multiple binary self described,

compressed

BURF 1 binary self described

HDF multiple multi-objects scientific data,

independent

NetCDF 1 multi-attributes

variables

6 data types,

data files

Table. 1. Meteorology Data Formats

More specifically, from the open big meteorology sens-
ing data sources, the big meteorology data set collected
around East Longitude 151°12’31’’ and South Latitude
33°52’06’’ is used. The coverage radius is around 50 km.
The time for data sets stamps is traced back to last 20
years. Totally, around 10 terabytes of meteorology sens-
ing data were gathered and downloaded for testing our
data chunks similarity based compression algorithms.

Whatever the data format is, with our data parsers and
their offered normalization, four types of data attributes
in the above data sets are extracted and organized again
into a universal data format including temperature, at-
mosphere pressure, humidity and wind speed. Specifical-
ly, the numerical temperature is measured with Celsius
degree. The atmosphere pressure is measured with kPa.
The humidity is measured by relative humidity to calcu-
late a percentage value in ‘%’. The wind speed is meas-

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2016.2531684, IEEE Transactions on Knowledge and Data Engineering

YANG ET AL.: A SCALABLE DATA CHUNCK SIMILARITY BASED COMPRESSION APPROACH FOR EFFICIENT BIG SENSING DATA PROCESSING ON

CLOUD 11

ured by two parameters. One is the m/s, the other is an-
gle for wind direction. Each meteorological sensing data
set has the approximate size of 2.5 terabytes respectively.

5.1.2 General Comparison and Analysis

Firstly, according to the above experimental data anal-
ysis, on average, each type of meteorological data has the
size of around 2.5 terabytes. So, after processed by our
compression algorithm, different compression ratios will
be shown in terms of different meteorological data sets.
By analyzing and concluding the data features of those
data sets, we aim to show the advantages and disad-
vantages of our proposed data chunk compression algo-
rithm. In addition to the compression ratio brought in
each data type, the overall compression effectiveness over
the whole data set (10 terabytes) will also be analyzed to
demonstrate the performance gains of our data chunks
similarity based data compression.

Secondly, under the theme of big data storage on
Cloud platform, to reduce the data size also means the
time saving for navigating and decompressing those data
units. Instead, fast computation can be used for data res-
toration can complex data manipulation such as distrib-
uted join and block data operation. Through the experi-
ment, we also want to demonstrate that the time and
space saving can dramatically contribute to big sensing
data processing performance on Cloud.

Thirdly, even the main designing target of our com-
pression algorithm based on data chunks similarity is to
reduce the data size and volume, we also consider the
data quality and fidelity loss after deploying our pro-
posed compression and decompression. Because the
compression is based on a certain data similarity model, it
is unavoidable to bring errors and approximation to orig-
inal data sets. However, those approximation and errors
should be kept within an acceptable range in terms of
most application requirement.

5.2 Space and Time Saving from Compression

The main development purpose of our compression
algorithm based on data chunks similarity is to reduce the
volume of data, hence to save data storage and related
data operation time cost on Cloud. As shown in Fig. 8,
four data types are used for testing our compression algo-
rithm. Specifically, in Fig. 8 (1a), the limitation rounds R
for generating standard data chunks set is offered as 50.
With the time flow from 0 to 24 hours, the compressed
temperature data size increase from 0 terabyte to around
1.2 terabytes. However, when R increases to 100 rounds,
the compression ratio of the temperature data experiment
reaches to around 1.7 terabytes after 24 hours processing
as shown in Fig. 8 (1b). It means that with the increase of
R, more standard data chunks are generated, higher op-
portunity exists to compress more data blocks in the test-
ing big temperature data set.

In Fig. 8 (2a), the limitation rounds R for generating
standard data chunks set is offered as 50. With the time
flow from 0 to 24 hours, the compressed pressure data
size increase from 0 terabyte to around 1.6 terabytes.
However, when R increases to 100 rounds, the compres-

sion ratio of the pressure data experiment reaches to
around 2.0 terabytes after 24 hours processing as shown
in Fig. 8 (2b). It means that with the increase of R, more
standard data chunks are generated, higher opportunity
exists to compress more data blocks in the testing big at-
mosphere pressure data set.

In Fig. 8 (3a), the limitation rounds R for generating
standard data chunks set is offered as 50. With the time
flow from 0 to 24 hours, the compressed relative humidi-
ty data size increase from 0 terabyte to around 0.6 tera-
bytes. However, when R increases to 100 rounds, the
compression ratio of the humidity data experiment reach-
es to around 1.1 terabytes after 24 hours processing as
shown in Fig. 8 (3b). It means that with the increase of R,
more standard data chunks are generated, higher oppor-
tunity exists to compress more data blocks in the testing
big humidity data set. In Fig. 8 (4a), the limitation rounds
R for generating standard data chunks set is offered as 50.
With the time flow from 0 to 24 hours, the compressed
wind speed data size increase from 0 terabyte to around
1.0 terabytes. With the time flow from 0 to 24 hours, the
compressed wind speed data size increase from 0 terabyte
to around 1.0 terabytes. However, when R increases to
100 rounds, the compression ratio of the wind speed data
experiment reaches to around 1.3 terabytes after 24 hours
processing as shown in Fig. 8 (4b). It means that with the
increase of R, more standard data chunks are generated,
higher opportunity exists to compress more data blocks in
the testing big wind speed data set. Based on the above
experiment result comparison, it can be got that with the
increase of R, the compression ratio increases under all
data experiments whatever data type is. It should be no-
ticed that when applying our compression algorithm,
more effectiveness or larger compression ratio can be
achieved in processing the temperature and pressure
data sets compared to the humidity and wind speed
data sets. The reason is that the temperature and pressure
data set have relatively predictable data trends in their
time series; whereas the humidity and wind speed data
sets have more unpredictable changes in their time series.
R is also has great impact on the data inference for data
decompression. In principle, a much larger value is set for
R, more standard data chunks will be selected. Hence,
more data will be compressed. At the same time, during
the process of decompression.

In terms of time saving, it can be inferred indirectly
from the compression experiment according the results
with the increase of R from 50 to 100 rounds limitation in
Fig. 8. Specifically, after setting a data compression size
target, we compare the time cost for suppressing that data
size when using different data processing strategies. Un-
der our proposed compression, more time can be saved
when successfully compressing the same amount of me-
teorological sensing data including temperature, pressure,
humidity and wind speed data as shown in Fig. 8. In oth-
er words, the compression and big data processing time
cost can be dramatically reduced. With the result analysis
of Fig. 8, it can be concluded that significant performance
gains are achieved in terms of space and time cost saving.

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2016.2531684, IEEE Transactions on Knowledge and Data Engineering

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

Fig. 8. Data size compressed within 24 hours test

In Fig. 9, the overall compression effectiveness of our
proposed data compression is demonstrated. The X axis
stands for the incoming big sensing data size for testing.
The Y axis stands for the compression achieved by de-
ploying our compression algorithm. There are two im-
portant testing findings should be indicated. (1) With the
increase of R from 10 to 90 rounds, the compression ratio
increases whatever the testing data size is from 1 tera-
bytes to 10 terabytes. In other words, the larger R brings
more compression ratio and performance gains to our
compression algorithm. (2) It can be noticed that with the
increase of testing data size, the compression ratio de-
creases whatever the value of R is. This result indicates
that with more data gathered for testing, more heteroge-
neous data blocks could be found in meteorological big
sensing data set. In other words, more new data blocks
which are not compressible with the standard data
chunks set could be detected.

Fig. 9. Compression ratio for different ‘r’

5.3 Data Accuracy Analysis

In this section, we present data accuracy analysis. First-

ly the accuracy definition is briefly described according to
the work [30] based on measuring the similarity between
two vectors, one from real big data graph G and the other

from G’ filtered data as the service provided by Cloud.
There are two vectors at a certain time stamps. To de-

scribe the similarity between two nodes, correlation coef-
ficient model is used as shown in [30]. Suppose X from G

and Y from G’ are two vectors. With Correlation Coeffi-
cient method, we can calculate the similarity between

them by formula (15).

 sim(X, Y) = r(X, Y) =
���(�,�)

����(�,�)∙���(�,�)
 (15)

From (15) we can find that this similarity resembles to
the “cos” similarity computation. sim(X,Y) has a data

range [-1, 1]. The calculation of “cov(vector1, vector2)” is
as following formula (16) to (18).

 cov(X, Y) =
�

���
∑ (X� − X�)(Y� − Y�)�

��� (16)

 cov(X, X) =
�

���
∑ (X� − X�)��

��� (17)

 cov(Y, Y) =
�

���
∑ (X� − X�)(Y� − Y�)�

��� (18)

So, the similarity between two vectors can be calculated
with following formula (19).

 sim(X, Y) =
∑ (�����)(�����)�

���

�∑ (�����)�(�����)��
���

 (19)

As we only need to correlate accuracy and similarity,

only [0, 1] data range is selected. The original data range
[-1, 1] can be normalized to [0, 1] for representing the ac-
curacy from 0% to 100%. As shown in formula (20),

sim(X,Y)’ is calculated instead of formula (19). sim(X,Y)’∈
[0, 1].

 sim(X, Y)′ =
∑ (�����)(�����)�

���

�∑ (�����)�(�����)��
���

 (20)

Hence the accuracy for an edge in G at a time stamp t
can be assessed with formula (21).

 sim(X, Y)′ =
∑ (�����)(�����)�

���

�∑ (�����)�(�����)��
���

 (21)

 Accuracy = sim(X, Y)′ × 100% (22)

 Accuracy =
∑ (�����)(�����)�

���

�∑ (�����)�(�����)��
���

 (23)

The final accuracy for “Accuracy” between two points
within a cluster can be assessed by formula (22). In our
example, T=24 hours is used. The formula (22) and (23)

0

500000

1000000

1500000

2000000

2500000

temperature

24 hours big sensing data processing

R=50

0

500000

1000000

1500000

2000000

2500000

pressure (Atm)(1a) (2a)

0

500000

1000000

1500000

2000000

2500000

humidity (3a)R=50 R=50

0

500000

1000000

1500000

2000000

2500000

wind speed

compressed data size (MB) compressed data size (MB) compressed data size (MB) compressed data size (MB)

R=50(4a)

0

500000

1000000

1500000

2000000

2500000

temperature R=100

0

500000

1000000

1500000

2000000

2500000

pressure (Atm)(1b) (2b)

0

500000

1000000

1500000

2000000

2500000

humidity (3b)R=100 R=100

0

500000

1000000

1500000

2000000

2500000

wind speed

compressed data size (MB) compressed data size (MB) compressed data size (MB) compressed data size (MB)

R=100(4b)

24 hours big sensing data processing 24 hours big sensing data processing 24 hours big sensing data processing

24 hours big sensing data processing 24 hours big sensing data processing 24 hours big sensing data processing 24 hours big sensing data processing

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

R=10 R=30 R=50 R=70 R=90

Compression Ratio

Total Sensing Data Size: terabyte

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2016.2531684, IEEE Transactions on Knowledge and Data Engineering

YANG ET AL.: A SCALABLE DATA CHUNCK SIMILARITY BASED COMPRESSION APPROACH FOR EFFICIENT BIG SENSING DATA PROCESSING ON

CLOUD 13

can be further transformed and calculated with formula
(24).

Accuracy = ∑ �
�∑ (�������)(�������)�

��� �

�∑ (�������)�(�������)��
���

��
��� T� × 100% (24)

Suppose that in graph data set G(V, E), there are total S

edges (with cluster-head structure, edge explosion is
avoided) and each edge is indexec with s from [1, S]. We
can calculate the Average Accuracy of the Cloud comput-

ed Data set ‘G’ against the original ‘G’. This Average Ac-
curacy is used in formula (25) to demonstrate our exper-

iment results in Fig. 10.
 Average_Accuracy=∑ (Accuracy)�

�
��� (25)

With the definition of above data accuracy, the data ac-
curacy test is designed and conducted. The testing results

are demonstrated in Fig. 10. Specifically, we use as the
parameter R from 10 to 100 rounds for conducting accu-
racy test. As shown in Fig. 10, with the increase of com-

pression ratio from 0% to 80%, the data accuracy decreas-
es dramatically. However, it can be found in Fig. 10 that
higher the R is, better the data accuracy can be achieved.

The reason is that a larger R means more standard data
chunks, hence a more refined similarity comparison to

guarantee better data accuracy.
At the same time, with the increase of the standard

chunks generation limitation round R, whatever the com-
pression is, better data accuracy can be achieved. One
important point should be mentioned. The experimental
results in Fig. 10 show that for achieving 30% compres-
sion ratio, we can choose different combination of R and
accuracy to realize this goal. In general, if we can set R>70
rounds and keep a compression ratio around 30%, the
algorithm will always guarantee the data accuracy larger
than 95% which will comes to the requirement of lots of
real world applications. In other words, our compression
algorithm can guarantee the acceptable data accuracy
when make significant performance gains in data com-
pression.

Fig. 10. Relationship between Compression Ratio and Accuracy

6 CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a novel scalable data com-
pression based on similarity calculation among the parti-
tioned data chunks with Cloud computing. A similarity

model was developed to generate the standard data

chunks for compressing big data sets. Instead of compres-
sion over basic data units, the compression was conduct-

ed over partitioned data chunks. The MapReduce pro-
gramming model was adopted for the algorithms imple-
mentation to achieve some extra scalability on Cloud.

With the real meteorological big sensing data experiments
on our U-Cloud platform, it was demonstrated that our

proposed scalable compression based on data chunk simi-
larity significantly improved data compression perfor-
mance gains with affordable data accuracy loss. The sig-

nificant compression ratio brought dramatic space and
time cost savings.

With the popularity of Spark and its specialty in pro-
cessing streaming big data set, in future we will explore
the way to implement our compression algorithm based
on data chunks similarity with Spark for better data pro-
cessing achievements.

ACKNOWLEDGEMENT

This paper is partially supported by Australian Re-
search Council Linkage Project ARC LP140100816.

REFERENCES

[1] S. Tsuchiya, Y. Sakamoto, Y. Tsuchimoto and V. Lee, “Big Data
Processing in Cloud Environments,” FUJITSU Science and
Technology Journal, 48(2): 159-168, 2012.

[2] “Big data: science in the petabyte era: Community cleverness
Required” Nature 455 (7209): 1, 2008.

[3] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A.
Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica and M.
Zaharia, “A view of cloud computing,” Communications of the
ACM 53(4): 50-58, 2010.

[4] R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg and I. Brandic,
“Cloud computing and emerging it platforms: Vision, hype,
and reality for delivering computing as the 5th utility,” Future
Generation Computer Systems 25(6): 599-616, 2009.

[5] L. Wang, J. Zhan, W. Shi and Y. Liang, “In cloud, can scientific
communities benefit from the economies of scale?” IEEE
Transactions on Parallel and Distributed Systems 23(2): 296-303,
2012.

[6] S. Sakr, A. Liu, D. Batista, and M. Alomari, “A survey of large
scale data management approaches in cloud environments,”
Communications Surveys & Tutorials, IEEE, 13(3): 311–336, 2011.

[7] B. Li, E. Mazur, Y. Diao, A. McGregor and P. Shenoy, “A
platform for scalable one-pass analytics using mapreduce,” in:
Proceedings of the ACM SIGMOD International Conference on
Management of Data (SIGMOD'11), 2011, pp. 985-996.

[8] R. Kienzler, R. Bruggmann, A. Ranganathan and N. Tatbul,
“Stream as you go: The case for incremental data access and
processing in the cloud,” IEEE ICDE International Workshop on
Data Management in the Cloud (DMC'12), 2012.

[9] C. Olston, G. Chiou, L. Chitnis, F. Liu, Y. Han, M. Larsson, A.
Neumann, V.B.N. Rao, V. Sankarasubramanian, S. Seth, C. Tian,
T. ZiCornell and X. Wang, “Nova: Continuous pig/hadoop
workflows,” Proceedings of the ACM SIGMOD International
Conference on Management of Data (SIGMOD'11), pp. 1081-1090,
2011.

[10] K.H. Lee, Y.J. Lee, H. Choi, Y.D. Chung and B. Moon, “Parallel
data processing with mapreduce: A survey,” ACM SIGMOD
Record 40(4): 11-20, 2012.

[11] X. Zhang, C. Liu, S. Nepal and J. Chen, “An Efficient Quasi-
identifier Index based Approach for Privacy Preservation over
Incremental Data Sets on Cloud,” Journal of Computer and System
Sciences (JCSS), 79(5): 542-555, 2013.

[12] X. Zhang, C. Liu, S. Nepal, S. Pandey and J. Chen, “A Privacy
Leakage Upper-bound Constraint based Approach for Cost-

0%

20%

40%

60%

80%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

r=100 r=90 r=80 r=70 r=60

r=50 r=40 r=30 r=9 r=10

Accuracy

Compression Ration based on Similarity Threshold: t

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2016.2531684, IEEE Transactions on Knowledge and Data Engineering

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

effective Privacy Preserving of Intermediate Datasets in Cloud,”
IEEE Transactions on Parallel and Distributed Systems, 24(6): 1192-
1202, 2013.

[13] X. Zhang, T. Yang, C. Liu and J. Chen, “A Scalable Two-Phase
Top-Down Specialization Approach for Data Anonymization
using Systems, in MapReduce on Cloud,” IEEE Transactions on
Parallel and Distributed, 25(2): 363-373, 2014.

[14] W. Dou, X. Zhang, J. Liu and J. Chen, HireSome-II: Towards
Privacy-Aware Cross-Cloud Service Composition for Big Data
Applications, IEEE Transactions on Parallel and Distributed
Systems, 26(2): 455-466, 2015.

[15] J. Conhen, “Graph Twiddling in a MapReduce World,” IEEE
Computing in Science & Engineering. 11(4): 29-41, 2009.

[16] K. Shim, “MapReduce Algorithms for Big Data Analysis,” Proc.
of the VLDB Endowment. 5(12): 2016-2017, 2012.

[17] N. Laptev, K. Zeng and C. Zaniolo, “Very fast estimation for
result and accuracy of big data analytics: The EARL system,”
Proceedings of the 29th IEEE International Conference on Data
Engineering (ICDE), pp. 1296-1299, 2013.

[18] X. L. Dong and D. Srivastava, “Big data integration,”
Proceedings of the 29th IEEE International Conference on Data
Engineering (ICDE), pp. 1245-1248, 2013.

[19] T. Condie, P. Mineiro, N. Polyzotis and M. Weimer, “Machine
learning on Big Data,” Proceedings of the 29th IEEE International
Conference on Data Engineering (ICDE), pp. 1242-1244, 2013.

[20] A. Aboulnaga and S. Babu, “Workload management for Big
Data analytics,” Proceedings of the 29th IEEE International
Conference on Data Engineering (ICDE), pp. 1249, 2013.

[21] M. Yuriyama and T. Kushida, “Sensor Cloud Infrastructure,”
Proceedings of the 13th International Conference on Netowrk-Based
Information Systems (NBiS), pp.1-8, 2010.

[22] A. Alamri, W. S. Ansari, M. M. Hassan, M. S. Hossain, A.
Alelaiwi, and M. A. Hossain, “A Survey on Sensor-Cloud:
Architecture, Applications, and Approaches,” International
Journal of Distributed Sensor Networks, vol(2013): 1-18, 2013.

[23] C. Ji, Y. Li, W. Qiu, U. Awada and K. Li, “Big Data Processing in
Cloud Environemtns,” 2012 International Symposium on Pervasive
Systems, Algorithms and Networks, 2012, pp. 17-23.

[24] L. Wang, G. Von Laszewski, A. Younge, X. He, M. Kunze, J.
Tao, C. Fu, “Cloud computing: A perspective study,” New
Generation Computing 28(2): 137-146, 2010.

[25] X. Yang, L. Wang, G. Laszewski, “Recent research advances in
e-science,” Cluster Computing 12(4): 353-356, 2009.

[26] S. Sakr, A. Liu, D. Batista, and M. Alomari, “A survey of large
scale data management approaches in cloud environments,”
IEEE Communications Surveys & Tutorials, 13(3): 311–336, 2011.

[27] S. Lattanzi, B. Moseley, S. Suri and S. Vassilvitskii, “Filtering: A
Method for Solving Graph Problems in MapReduce,” In Proc.
23th ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA’11), San Jose, California, USA., 2011.

[28] K. Shim, “MapReduce Algorithms for Big Data Analysis,” In
Proc. of the VLDB Endowment, 5(12): 2016-2017, 2012.

[29] N. Sidiropoulos and A. Kyrillidis, “Multi-Way Compressed
Sensing for Sparse Low-Rank Tenors,”IEEE Signal Processing
Letters 19(11): 757-760, 2012.

[30] C. Yang, X. Zhang, C. Liu, J. Pei, K. Ramamohanarao and J.
Chen, “A Spatiotemporal Compression based Approach for
Efficient Big Data Processing on Cloud,” Journal of Computer and
System Sciences (JCSS). vol. 80: 1563-1583, 2014.

[31] L. Ramaswamy, V. Lawson and S. V. Gogineni, “Towards A
Quality-Centric Big Data Architecture for Federated Sensor
Services,” IEEE International Congress on Big Data, pp. 86-93,
2013.

[32] A. Cuzzocrea, G. Fortino and O. Rana, “Managing Data and
Processes in Cloud-Enabled Large-Scale Sensor Networks:
State-Of-The-Art and Future Research Directions,” Proceedings
of the 13th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, pp. 583-588, 2013.

[33] Y. Fang, L. Chen, J. Wu and B. Huang, “GPU Implementation of
Orthogonal Matching Pursuit for Compressive Sensing,”
Proceeding of the 17th IEEE International Conference on Parallel and

Distributed Systems (ICPADS’11), IEEE Computer Society, pp.
1044-1047, Washington, DC, USA, 2011.

[34] W. Wang, D. Lu, X. Zhou, B. Zhang and J. Wu, “Statistical
Wavelet-based Anomaly Detection in Big Data with
Compressive Sensing,” EURASIP Journal on Wireless
Communication and Networking, 2013.

[35] J. Wang, S. Tang, B. Yin and X. Li, “Data Gathering in Wireless
Sensor Networks Through Intelligent Compressive Sensing,”
Proceedings IEEE INFOCOM, pp. 603–611, March, 2012.

[36] S. H. YOON and C. Shahabi, “An Experimental Study of the
Effectiveness of Clustered Aggregation (CAG) Leveraging
Spatial and Temporal Correlations in Wireless Sensor
Networks,” ACM Transactions on Sensor Networks, vol(N): 1-36.

[37] R. Qiu and M. Wicks, “Cognitive Networked Sensing and Big
Data,” ISBN 978-1-4614-4544—9, DOI 10.1007/978-1-4614-4544-9

[38] Real Time Big Data Processing with GridGain.
http://www.gridgain.com/sitemap/, accessed on November 20,
2015.

[39] Managing and Mining Billion-Node Garphs.
http://kdd2012.sigkdd.org/sites/images/summerschool/Haixun-
Wang.pdf, accessed on November 20, 2015.

[40] Hadoop, http://hadoop.apache.org, accessed on November 20,
2015.

[41] “Sensor Cloud,” http://www.sensorcloud.com/, accessed on
November 20, 2015.

[42] “Big Data and Cloud Solutions in Amazon,”
http://aws.amazon.com/big-data/, accessed on November 20,
2015.

[43] Big Data Beyond MapReduce: Google's Big Data Papers,
http://architects.dzone.com/articles/big-data-beyond-
mapreduce, accessed on November 20, 2015.

[44] “NASA NEX,” http://aws.amazon.com/nasa/nex/, accessed on
November 20, 2015.

[45] “Smart City with Internet of Things (Sensor Networks) and Big
Data,”
http://www.academia.edu/5276488/Smart_City_with_Internet_
of_Things_Sensor_networks_and_Big_Data, accessed on
November 20, 2015.

[46] “Balancing Opportunity and Risk in Big Data, A Survey of
Enterprise Priorities and Strategies for Harnessing Big Data,”
http://www.citia.co.uk/content/files/50_135-263.pdf, accessed
on November 20, 2015.

Chi Yang received his BS degree from Shandong University At Wei-

hai, China. He received his MS (by re-
search) in computer science from Swin-
burne University of Technology, Mel-
bourne, Australia, in 2007. Currently, Chi
Yang is a full-time PhD student at the Uni-
versity of Technology, Sydney, Australia.
His major research interests include dis-
tributed computing, XML data stream, sci-
entific workflow, Distributed System, Green

Computing, Big Data Processing and Could Computing.

Jinjun Chen is an Associate Professor from Faculty of Engineering
and IT, University of Technology Sydney,
Australia. He holds a PhD in IT from Swin-
burne, a master degree in engineering and
a bachelor degree in applied mathematics
from Xidian University, China. His research
interests include Big Data, Data Science,
Data Intensive Systems, Cloud, Workflow
Management. He has published more than
130 papers in high quality journals and

conferences, including IEEE TPDS, IEEE TC, IEEE TSE, IEEE
TSC, IEEE TCC, and ACM TOSEM, ACM TAAS, and ICSE. He
received IEEE Computer Society Outstanding Leadership
Awards (2008-2009, 2010-2011), Vice Chancellor Research
Award, and many other awards.

