
1

Service Operator-aware Trust Scheme for Resource
Matchmaking across Multiple Clouds

Xiaoyong Li, Huadong Ma, Feng Zhou and Xiaolin Gui

Abstract—This paper proposes a service operator-aware trust scheme (SOTS) for resource matchmaking across multiple clouds. Through
analyzing the built-in relationship between the users, the broker, and the service resources, this paper proposes a middleware framework of trust
management that can effectively reduce user burden and improve system dependability. Based on multi-dimensional resource service operators,
we model the problem of trust evaluation as a process of multi-attribute decision-making, and develop an adaptive trust evaluation approach based
on information entropy theory. This adaptive approach can overcome the limitations of traditional trust schemes, whereby the trusted operators
are weighted manually or subjectively. As a result, using SOTS, the broker can efficiently and accurately prepare the most trusted resources in
advance, and thus provide more dependable resources to users. Our experiments yield interesting and meaningful observations that can facilitate
the effective utilization of SOTS in a large-scale multi-cloud environment.

Index Terms—Cloud broker, multi-cloud environment, service operator, trust scheme, resource matchmaking

F

1 INTRODUCTION

R EGARDLESS of the past, present or future, a crucial
component of cloud computing is trust, and the problem

of a trustworthy cloud service is of paramount concern for
enterprises and users [1]. Users are willing to send their most
sensitive data to cloud service centers, which is based on
the trust relationship established between users and service
providers. A lack of trust between cloud users and providers
will seriously hinder the universal acceptance of clouds as
outsourced computing services [2].

1.1 Motivation
Although several scholars have been attracted by the trust
question of cloud service, and many studies have been
carried out [2], [3], [4], [5], a universal and expanded trust
scheme designed specifically for a multi-cloud computing
environment is still lacking, and previous studies have some
key limitations:

(1) Few studies have focused on a trust-aware brokering
framework for multi-cloud environments. Cloud brokers can
pro?vide intermediation and aggregation capabilities to en-
able providers to deploy their virtual infrastructures across
multiple clouds [8]. The future of cloud computing will be
permeated with the emergence of cloud brokers acting as in-
termediaries between cloud providers and users to negotiate
and allocate resources among multiple data centers. Based on
an integrated comparison, a number of innovative platforms
have been developed for cloud brokers, such as RESERVOIR
[9], PCMONS [8], RightScale [10], and SpotCloud [11] (for
more information on these brokers, see Appendix A of the
supplementary material). However, most of these platforms
do not provide trust management capabilities for making

• X. Li, H. Ma and F. Zhou are with Beijing Key Laboratory of Intelligent
Telecommunications Software and Multimedia, Beijing University of Posts and
Telecommunications, Beijing 100876, P. R. China, E-mail: lxyxjtu@163.com,
mhd@bupt.edu.cn, zfeng@bupt.edu.cn;

• X. Gui is with Department of Computer Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, P. R. China, E-mail: xlgui@mail.xjtu.edu.cn.

trust decisions, such as selecting an optimal cloud resource
to deploy a service, or optimally distributing the different
components of a service among different clouds. Therefore,
to increase the adoption of cloud services, a cloud broker
should establish and provide trust management capacity to
alleviate the worries of their users.

(2) Few studies have focused on an expanded trust model based
on dynamic service factors of a cloud resource. From a user’s per-
spective, trust is a comprehensive index for service guarantee
and there are several trust factors in a system, i.e., security,
availability, and reliability [4], [5], [12]. As observed in [12],
trust is beyond security, and an expanded trust model should
incorporate security, reliability, and availability factors (and
other factors if possible) into a trust vector. This data can be
imported from existing models to form a comprehensive trust
model. This highlights the fact that the level of trust in service
resources should be objectively evaluated by dynamic service
operators. However, in [12], Lance et al. did not cover trust
in detail, omitting numerous key issues of trust management
and computing.

To the best of our knowledge, most current studies either
ignore service-related operators in trust evaluation or use
a unilateral context to model the trust relationship. For
example, in [2], they only considered the security of services,
without other trust factors. In [3], the authors only considered
service operators of reliability. In [5], the authors completely
ignored dynamic operators of services. A major limitation of
current studies is that their schemes may lead to inaccurate
trust evaluation outcomes [21].

(3) Some schemes lack adaptability with a trust fusion calculation
based on multi-dimensional service operators. Avoiding the effect
of individual favoritism on weight allocation, and confirming
the weight allocation of multi-operators adaptively are very
important in trust fusion calculation [7], [21]. In reality, some
previous schemes are based on expert opinion to weight
trust factors; however, this approach lacks adaptability and
may lead to inaccurate results in trust evaluation [21]. In a
recent work [3], the trustworthiness of a cloud resource is
defined as Gi = wRcRci + wRuRui + wTTi + wSSi, where Gi

is the trustworthiness of a resource i; Rci, Rui, Ti, and Si are

IEEE Transactions on Parallel and Distributed Systems Volume: 26 Year: 2015

2

four reliability operators of a resource; and wRc, wRu, wT ,
and wS are the weights for these operators. Although the
model in [3] is a multi-operator-based evaluation scheme,
it uses a manual approach to assign values to wRc, wRu,
wT , and wS (e.g., in [3], they were all set to 0.25). Thus,
this scheme lacks the adaptability to weight these reliability-
related service operators.

1.2 Our Contributions
Inspired by the idea of an expanded trust evaluation ap-
proach in [12], in service operator-aware trust scheme (SOTS),
we define trust as a quantified belief by a cloud broker with
respect to the security, availability, and reliability of a resource
within several specified time windows. This definition belongs
to an approach based on Trusted Third Party (TTP) [6]. The
broker acts as the TTP, which is composed of many registered
resources. The key innovations of SOTS go beyond those of
existing schemes in terms of the following aspects:

1) A systematic trust management scheme for multi-cloud en-
vironments, based on multi-dimensional resource service op-
erators. SOTS evaluates the trust of a cloud resource in
contrast to traditional trust schemes that always focus
on unilateral trust factors of service resources. It incor-
porates multiple factors into a trust vector to form an
expanded trust scheme to evaluate a resource. This trust
scheme is more consistent with the essential attributes
of a trust relationship, thus, it is more in line with the
expectations of cloud users.

2) An adaptive fused computing approach for dynamic service
operators, based on information entropy theory [23]. SOTS
models the problem of trust evaluation as a process of
multi-attribute decision-making, and then develops an
adaptive trust evaluation approach. This adaptive fused
computing approach can overcome the limitations of
traditional trust schemes, in which the trusted attributes
are weighted manually or subjectively.

3) A first service, last audit (FSLA) mechanism to overcome
the trust initialization problem of newly registered resources.
When a resource initially registers for business, no user
has interacted with it, and consequently, information on
past service operators is non-existent. In SOTS, we in-
troduce a penalty factor-based FSLA mechanism, which
can effectively remedy this problem of newly registered
resources.

These designs and other specific features (e.g., a statistics-
based measuring approach for multi-dimensional trust oper-
ators and a time series-based global trust predicting method)
collectively make SOTS an accurate and efficient solution that
can be used in multi-cloud environments.

The rest of this paper is organized as follows: Section
2 gives an overview of related work. The cloud brokering
architecture is described in Section 3. Section 4 outlines the
details of trust evaluation for across-cloud resources. Section
5 gives some key implementing technologies. The experi-
mental results are presented in Section 6. Finally, Section 7
summarizes this work and suggests some future directions.

2 RELATED WORK

Khan et al. reviewed trust in the cloud system from the user’s
perspective [1]. They analyzed issues of trust from a cloud

users expectations, with respect to their data in terms of
security and privacy. So far, many innovative trust schemes
for cloud computing have been proposed by researchers, and
three main classes can be identified as follows:
Reputations-based schemes. Hwang et al. suggested using
a trust-overlay network over multiple data centers to im-
plement a reputation system for establishing trust between
providers and data owners [2]. Data coloring and software
watermarking techniques protect shared data objects as well
as massively distributed software modules. However, the
authors only focused on reputation-based trust issues; they
did not mention the trust problem at server level.
Self-assessment schemes. Kim et al. presented a trust evalu-
ation model to allocate cloud resources based on providers’
self-assessment [3]. Their trust model collects and analyzes
reliability based on the historical server information in a
cloud data center. Although the model in [3] is a multiple-
attribute scheme, the authors completely ignored the real-
time situation in trust relationships, which may lead to an
in?complete trust decision-making outcome.

In [19], Li et al. presented a trusted data acquisition mech-
anism for scheduling cloud resources and satisfying various
user requests. Using their trust mechanism, cloud providers
can efficiently utilize their resources, as well as provide
highly trustworthy resources and services to users. However,
due to a lack of transparency, these self-assessment schemes
[3], [19] do not completely eliminate users’ trust concerns.
TTP-based schemes. Habib et al. proposed a multi-attribute
trust system for a cloud marketplace [5]. This system provides
means for identifying cloud providers in terms of different
attributes (e.g., security, performance, compliance) that are
assessed by multiple sources of trust information. However,
measuring these trust attributes without giving details. Al-
though there are some similar works available in literatures,
e.g., [4], [19], which discussed the multiple-attribute issues of
trust, little detail has been provided.

3 TRUST-AWARE BROKERING ARCHITECTURE

3.1 Definitions, Conceptual Model and Assumptions
Referring to the description methods on “trust” in [12], [18],
[22] (for related work in trust management, see Appendix B
of the supplementary material), we first give the related
definitions of “trust” that are used in SOTS.
Definition 1. Trust of a Resource. Trust is a quantified belief
(or a measured value) in the competence of a resource to complete
a task, based on its historical service operators.
Definition 2. TTP-based Trust Relationship. A user will
trust a service resource if the matchmaker (broker) states that the
resource’s operators will match the user’s request.
Definition 3. Trust Evaluation Factors. The trustworthiness of
a resource is evaluated by the broker according to multiple service
operators with respect to the security, availability, and reliability of
this resource within several specified time windows.

According to Definitions 1 and 2, SOTS belongs to the TTP-
based approach [6], with the broker acting as the TTP. Accord-
ing to Definition 3, SOTS is also an expanded trust evaluation
approach [12], beyond traditional trust schemes that always
focus on one-sided trust factors of service resources. The
expanded trust model incorporates security, reliability, and
availability factors into a trust vector. Thus, the new trust

IEEE Transactions on Parallel and Distributed Systems Volume: 26 Year: 2015

3

scheme will contain data that can be imported from existing
models (that is, security, reliability, availability) to form a
comprehensive trust model for a multiple cloud environment.

Figure 1 shows the conceptual model of the trust-aware
resource matchmaking approach. According to Definition 2,
our trust scheme depends on the cloud broker, who acts as
the TTP for users. The broker can evaluate each resource
performance during particular time windows, thereby config-
uring services dynamically and distributing tasks efficiently.
Whenever a new resource wants to offer its services, it must
join the service network. On the client side, a user looking for
a service must send a query, together with his policies, to the
trusted broker. According to the trust evaluation results, the
broker will select a suitable resource by applying a matching
algorithm. Whenever a service resource matches, the cloud
broker will distribute the user’s task to the resource through
its manager.

Cloud Manager

Cloud Resource

Cloud Manager

Cloud Resource User

request

and

policy

Results

User

Register

Matchmaking

Register

MatchmakingBroker

Service

Provide

Fig. 1. Conceptual model

The underlying assumption of this TTP-based approach is
that users must trust the third-party broker they decide to
consult. In actual cases, these brokering systems are often
managed by larger ISPs with good reputation, so the services
from these ISPs should have a higher dependability. We
assume that all resources have unique identities, such as the
IP address, and that each cloud manager (site) can register its
resources through these unique identities. This paper mainly
focuses on the trust management system of server sides; thus,
we also assume that each cloud site has a security mechanism
to resist attacks from malicious users.

3.2 Trust-aware Brokering System Architecture
Figure 2 shows a schematic of our architecture. Conceptually,
the proposed middleware architecture consists of a number
of core modules, including the trusted resource matchmaking
and distributing module, the adaptive trust evaluation mod-
ule, the agent-based service operator acquisition module, and
the resource management module, among others.

Cloud Users

Resource Matchmaking

and Distributing

Resource Register

User Requests and Policy

Adaptive Trust evaluation

SLA Manager

Trusted Resource pool

Agent Publish and Service

Operator Acquisition

Multi-Cloud Providers

Evidence Base

Cloud Manager

Cloud Resources

Cloud Manager

Cloud Resources

…

Fig. 2. A trust broker for multi-cloud environments

Adaptive trust evaluation module. This module is the core of
the trust-aware cloud computing system, and is the major

focus of this paper. Using this module, the broker can dy-
namically sort high-performance resources by analyzing the
historic resource information in terms of providing highly
trusted resources.

Trusted resource matchmaking and distributing module. In
general, each cloud manager registers its service resources
through the cloud broker. The service user negotiates with the
service broker on the Service-Level Agreement (SLA) details
[25]; they eventually prepare an SLA contract. According to
this contract, the broker selects, and then presents highly
trusted resources to users from the trusted resource pool.

Agent publish and service operator acquisition module. This
module is used to monitor the usage of allocated resources in
order to guarantee the SLA with the user. In interaction, the
module monitors the resource operators and is responsible
for getting run-time service operators. Another task of the
module is to publish automatically the monitoring agents in
a remote site when a computing task is assigned to the site.

Resource register module. It manages and indexes all the re-
sources available from multiple cloud providers, and obtains
information from each particular cloud resource, acting as
pricing interface for users, and updating the database when
new information is available.

3.3 Statistics-based Service Operator Measurement
When matchmaking a resource for users, the cloud broker
must first consider whether the resource has the required
capabilities (for example, CPU frequency, memory size, and
hard disk capacity), and second, whether it is likely to
complete the task successfully [19]. The first of these con-
siderations can be evaluated by the resource’s availability,
which can determine whether a resource has the required
capability or not. The second consideration mainly focuses
on the reliability and security of the resource, which can
be evaluated by the resource’s service operators. Reliability
refers to the probability of service for a given duration, and
we use six operators to reflect this factor. The most basic
needs of security pertain to the absence of unauthorized
access to a system. We use the security levels of a service site
to evaluate security [4]. The trust attributes based on dynamic
service operators are summarized in Figure 3.

Reflecting the

availability of

service resources.

Reflecting the

reliability of

service resources.

Reflecting the

security of

resources.

R
eflectin

g
 th
e tru

st o
f clo

u
d
 reso

u
rce

I10: authentication type (direct evidence)

I11: authorization type (direct evidence)

I12: self security competence (direct evidence)

I4: average network bandwidth (indirect evidence)

I5: average CPU utilization rate (indirect evidence)

I6: average memory utilization rate (indirect evidence)

I7: average hard disk utilization rate (indirect evidence)

I8: average response time (indirect evidence)

I9: average task success ratio (indirect evidence)

I1: CPU frequency (direct evidence)

I2: memory size (direct evidence)

I3: hard disk capacity (direct evidence)

Fig. 3. Real-time and dynamic service operators

Availability measurement based on the hardware capacity
of a resource. Depending on the acquisition methods, these
trust factors can be divided into two types: direct operators
and indirect operators. Direct operators can be obtained
by some specially designed software (such as agents). An
indirect operator can be obtained by simple calculation or
statistics. I1 to I3 are direct operators; and these reflect the
hardware capacity of a resource and can be obtained based

IEEE Transactions on Parallel and Distributed Systems Volume: 26 Year: 2015

4

on the running profile of a machine. An example of these
operators on hardware capacity is listed in Table 1.

TABLE 1
Example of the hardware capacity.

Resource CPU frequency Memory size Hard disk capacity
N1 1.90 GHz 2.0 GB 160 GB
N2 2.40 GHz 4.0 GB 80 GB

Security measurement based on the security levels of a
resource. In Fig. 3, I10, I11 and I12 reflect the security capacity
of a resource. The authentication type of a cloud resource is
verified based on the authentication mechanism. The autho-
rization type is verified based on the type of authorization
mechanism. The self-security competence is verified by the
security protection mechanism. For example, from a technical
point of view, Kerberos-based authentication should have a
better security level than simple password authentication,
and role-based authorization should have a higher security
level than simple password authorization.

To evaluate the degree of trust in a cloud resource, we
should define its security levels in a quantifiable way (or by
a calculable value). Referring to [4], the values for I10, I11,
and I12 could be defined as positive integers 1, 2, or 3 (Table
2), reflecting elementary, intermediate, and advanced security
levels, respectively. It is emphasized that instead of the above
positive integers 1, 2, or 3, we can use any other number that
has the property of reflecting a relative quality relationship
among security levels. Our choice of the above settings is
there for ease of understanding and calculation.

TABLE 2
Security level evaluation.

Security types Security Mechanism Value Levels
Simple password 1 Elementary

Authentication X.509 2 Intermediate
type Kerberos 3 Advanced

Simple password 1 Elementary
Authorization Identity-based authorization 2 Intermediate
type Role-based authorization 3 Advanced

Malware protection 1 Elementary
Self-security Firewall protection 2 Intermediate
competence Intrusion Detection System 3 Advanced

Reliability measurement based on a given time window. I4
to I9 are six indirect operators, which are the key indicators
of reliability. The values of I4 to I9 are based on the statistical
results within a given time window ∆t. For example, for a
resource performing g computing tasks within time window
∆t, then

I4(∆t) =
g∑

i=1

B(i)

/
g , I5(∆t) =

g∑
i=1

C(i)

/
g ,

I6(∆t) =
g∑

i=1

M(i)

/
g , I7(∆t) =

g∑
i=1

H(i)

/
g ,

I8(∆t) =
g∑

i=1

R(i)

/
g .

(1)

where B(i) is the i-th measured value of the network band-
width, C(i) is the i-th measured value of the CPU utilization
rate, M(i) is the i-th measured value of the memory utiliza-
tion rate, H(i) is the i-th measured value of the hard disk

utilization rate, and R(i) is the i-th measured value of the
response time. The operator I9 is defined as:

I9(∆t) = S(∆t)/(S(∆t) + U(∆t)) (2)

where S(∆t) is the number of successful interactions, and
U(∆t) is the number of unsuccessful interactions. In Eq.
(2), we can adopt the traditional running result reporting
mechanism (such as that used in [7]) to count S(∆t) and
U(∆t), in which the task running result will be reported
by the running site when it stops the task running (either
finished or failed). However, this result reporting mechanism
based on running sites will bring the problem of sites’ fraud
reports. To overcome this problem, in this paper, we add
users’ feedback information into the traditional mechanism,
and four cases are taken into account:

• if the reports from both the site and the user are positive,
the task is considered successful;

• if both the site and the user do not respond, the task will
be considered a failure;

• if the feedback from the user is negative, the task will
be processed as a failure;

• if the report from the site is positive and the user does
not respond, the task is considered successful.

4 ADAPTIVE AND EFFICIENT TRUST EVALUATION

4.1 Evaluation Matrix Normalization
In the process of trust evaluation, the operator set should be
normalized to eliminate deviations in the results caused by
each operator item’s difference in the value domain.
Definition 4. At the j-th time-stamp window ∆tj , n cloud
resources are assumed to require evaluation. Thus, n refers to the
total group of measurement samples {x1,x2, · · · ,xz, · · · ,xn}. For
n resources, we can obtain a characteristic matrix:

X(∆tj) =

x1

x2

...
xn

 =

x11 x12 · · · x1m

x21 x22 · · · x2m

. . .
xn1 xn2 · · · xnm

 . (3)

where 1 ≤ z ≤ n. xz = xz1, xz2, · · · , xzm.
Any row operator xzk ∈ Ik can be normalized into [0.01,

0.99] according to two cases. One case is that xzk is a positive
increasing value, i.e., a large value of xzk is what we expect;
this value covers CPU frequency, memory size, hard disk
capacity, the average network bandwidth, and so on. In this
case, the normalization equation is defined as follows:

rzk = 0.01 +
(xzk −min(xzk))(0.99− 0.01)

max(xzk)−min(xzk)
. (4)

where max(xzk) and min(xzk) are the maximum and mini-
mum values of row operator xtk, respectively.

The other case is that xzk is a positive decreasing value, i.e.,
a small value of ztk is what we expect; this value only covers
the average response time. In this case, the normalization
equation is defined as

rzk = 0.01 +
(max(xzk)− xzk)(0.99− 0.01)

max(xzk)−min(xzk)
. (5)

where max(xzk) and min(xzk) are the maximum and mini-
mum values of row operator xzk, respectively.

IEEE Transactions on Parallel and Distributed Systems Volume: 26 Year: 2015

5

Using Eqs. (4) and (5), each trust operator is expressed
within [0.01, 0.99] and increased in a positive direction by
the above-mentioned conversion. Here, the larger operator
value is better. By normalizing the trust operator, we obtain
a new matrix R(∆tj) = (rz)n×1 = (rzk)n×m, and we call R
an evaluation matrix:

R(∆tj) =

r1
r2
...
rn

 =

r11 r12 · · · r1m
r21 r22 · · · r2m

. . .
rn1 rn2 · · · rnm

 . (6)

4.2 Real-trust Trust Degree (RTD)
In the proposed scheme, RTD is used to evaluate recent
cloud resource service operators, and RTD is evaluated by
knowledge of a resource’s quality of service. Hence, RTD is
a time window-based trusted indicator for service operators,
and it should be more sensitive to new operators. RTD is
generated in the time window when an interaction takes
place between a user and a resource.
Definition 5. Let Ω = {N1, N2, · · · , Nn} denote n registered
resources in the broker; let TNz (∆tj) denote the RTD of resource Nz

within the j-th time window ∆tj . We define TNz (∆tj) as follows:

TNz (∆tj) = rz × {ϖ1, ϖ2, · · · , ϖk, · · ·ϖm}. (7)

where rz ∈ R(z ∈ [1, n]), W = {ϖ1, ϖ2, · · · , ϖk, · · ·ϖm},
ϖk ∈ [0, 1], and

∑m
k=1 ϖk = 1. The normalized operator

vector rz = (rz1, rz2, · · · , rzk, · · · , rzm), rzk is computed
according to Eqs. (4) and (5). rz is a sample of RTD evaluation,
and it is an m-dimensional vector. ϖk is the weight assigned
to the normalized operator rzk.

Then, the key task is to compute W in Eq. (7). Obviously,
the computing task for W is a problem of multi-attribute
decision-making. As analyzed in Section 1, in previous s-
tudies, subjective methods were used to assign weights to
these operators. This approach may lead to misinformation
and could preclude an accurate evaluation of trustworthiness
[21]. Thus, avoiding the effect of individual favoritism on the
weight allocation of trust attributes is a key task. In this paper,
we develop an adaptive trust evaluation model based on
information entropy [23], which can overcome the shortage
in traditional trust models, wherein the trusted attributes are
weighted manually or subjectively. This innovative approach
will be introduced in the following subsection.

4.3 Entropy-based and Adaptive Weight Calculation
Large-scale cloud computing environments have thousands
of registered resources and tens of thousands of user requests
per second, so a quick response (or effectiveness) to a user’s
request is a basic requirement. The information entropy ap-
proach is not only an adaptive data fusion tool, but also has
a low time and space overhead in dealing with large-scale
data [23], which is why we select information entropy theory
as the data fusion tool for this study.

Definition 6. The information entropy of a discrete random
variable X with possible values e1, e2, · · · en is H(X) = E(S(X)).
E is the expected value function, and S(X) is the information
content or self-information of X . S(X) = logb(1/p(xt)), hence
S(X) is a random variable. If p(et) denotes the probability mass

function of X , then information entropy can explicitly be written
as

H(X) = K

n∑
z=1

p(ez)S(et) = −K

n∑
z=1

p(ez) logb p(ez), (8)

where K is a constant, and b is the base of the logarithm
used. Common values of b can be 2, e, or 10. According to
Eq. (8), we can give the information entropy expression of
the trust decision factors, based on their self-information.

Definition 7. Let the attribute set I = {I1, I2, · · · , Ik, · · · , Im} =
{r1k, r2k, · · · , rzk, · · · , rnk}. Each Ik denotes the row operators of
attribute k, where k = {1, 2, · · · ,m}. Then, the entropy value for
attribute Ik is defined as

H(Ik) = −K
n∑

t=1

p(rzk) ln p(rzk), (9)

where K is a constant, and K = 1/ lnm. The value of p(rzk)
denotes the probability mass function of each row operator
rzk (the computing approach of rzk is shown in Eqs. (3) −
(6). According to the computing approach of rzk in Eqs. (4)
and (5), a bigger value of rzk is always better. In line with
Definition 5, this larger value indicates that the resource’s
service operator is more trustworthy; hence, rzk exhibits the
trusted probability of the trust attribute Ik at a time window
∆tj . Based on this understanding of rzk, and considering
the entropy function of a trust attribute as a function of the
probability, we define p(rzk) as the following function:

p(rzk) = rzk

/
n∑

z=1

rzk . (10)

After we obtain all values of H(Ik), k = {1, 2, · · · ,m} by
Eq. (9), each value in {ϖ1, ϖ2, · · · , ϖk, · · ·ϖm} (Eq. (7)) can
be computed, according to the following expression:

ϖk = γk

/
m∑

k=1

γk , (11)

where γk is the entropy weight of the trust attribute Ik:

γk = [1−H(Ik)]/[m−H(Ik)]. (12)

According to Eq. (12), ϖk ∈ [0, 1], and
∑m

k=1 ϖk = 1.
When the entropy value H(Ik) is close to 1, the tiny dis-
tinction between these entropy values will probably induce a
multiplied change of entropy weights γk. For three entropy
values, (H(1),H(2), H(3)) = (0.999, 0.998, 0.997), using Eqs.
(11) and (12), the entropy weight vector is (0.1667, 0.3333,
0.5000), which is clearly unreasonable. According to the
entropy principle, if the entropy difference is tiny between
the different attributes, then these entropy values provide
the same amount of useful information. In other words, the
corresponding entropy weights should show little difference.
Based on this, Eq. (12) is re-defined as follows:

γk = [
m∑
i=1

H(Ii)+1−2H(Ik)]/
m∑
j=1

(
m∑
i=1

H(Ii)+1−2H(Ij)) (13)

Theorem 1. According to Eq.(13), if the entropy difference is tiny
between the different attributes, then the corresponding entropy
weights should show little difference.

IEEE Transactions on Parallel and Distributed Systems Volume: 26 Year: 2015

6

Proof: Suppose that there exists a list of HIk , (k =
1, 2, · · · ,m). Due to HIk ∈ [0, 1], we can get:

m∑
j=1

(
m∑
i=1

H(Ii) + 1− 2H(Ij)) >>
m∑
i=1

H(Ii) + 1− 2H(Ik)

According to Eq.(13), a larger HIk will get a small value for
γk, which indicates that a large entropy corresponds to a
small weight. Supposing there are two entropy values HIu

and HIv , we can get:

γu
γv

=

m∑
i=1

H(Ii) + 1− 2H(Iu)

m∑
i=1

H(Ii) + 1− 2H(Iv)

where u, v ∈ (1, 2, · · · ,m) and u ̸= v. Supposing that HIu −
HIv = ε(ε is a tiny value), then:

γu
γv

= 1− 2ε
m∑
i=1

H(Ii) + 1− 2H(Iv)

because ε is a tiny value, and
m∑
i=1

H(Ii) + 1 − 2H(Iv) > 1,

we can get 2ε/
m∑
i=1

H(Ii) + 1 − 2H(Iv) is also a tiny value.

That is to say, γu

γv
→ 1, which means that if the entropy

difference between the different attributes is tiny, then the
corresponding entropy weights should show little difference.
�

As an example, for the same set of entropy val-
ues, (H(1),H(2), H(3)) = (0.999, 0.998, 0.997), using im-
proved function Eq. (13), the entropy weight vector is
(0.3333,0.3333,0.3334). These results are more in line with the
actual situation.

4.4 Global Trust Degree (GTD)
In previous v time windows (∆t1,∆t2, · · · ,∆tn),
using Eq. (7), we can get a time series D =
{TNi(∆t1), TNi(∆t2), · · · , TNi(∆tn)}. GTD can be calculated
by the following formula:

DNi(∆tn) = D ×AT =
n∑

j=1

(TNi(∆tj)× a(∆tj)), (14)

where A = {a(∆t1), a(∆t2), · · · , a(∆tj), · · · , a(∆tn)}, and∑n
j=1 a(∆tj) = 1. a(∆tj) ∈ [0, 1] is the weights as-

signed to each RTD TNi(∆tj). According to human so-
cial behavior habits, older knowledge has less impact,
whereas new knowledge makes more contribution to trust
decision-making [21]. Thus, we can define the A =
{a(∆t1), a(∆t2), · · · , a(∆tj), · · · , a(∆tn)} as a time-based at-
tenuation function:

a(∆tj) = [1− (1− λ)j]

/
n∑

j=1

[1− (1− λ)j] , (15)

where λ ∈ [0, 1] is an adjustable positive constant in the
system, and can be tuned accordingly. According to [20],
trust should meet a fundamental property: the time-based
attenuation. In this study, the computing expression for GTD
should reflect this fundamental property.

Theorem 2. In {a(∆t1), a(∆t2), · · · , a(∆tj), · · · , a(∆tn)}, sup-
pose there are two time-stamps ∆tj and ∆tk. If (j < k), we
can get a(∆tj) < a(∆tk), which means that Eq. (14) meets the
time-based attenuation property.

Proof: We need to prove that when (j < k),
(a(∆tj)/a(∆tk)) < 1. According to Eq. (15), we can get:

a(∆tj)

a(∆tk)
=

[1− (1− λ)j]

/
n∑

j=1

[1− (1− λ)j]

[1− (1− λ)k]

/
n∑

k=1

[1− (1− λ)k]

=
[1− (1− λ)j]
n∑

j=1

[1− (1− λ)j]
·

n∑
k=1

[1− (1− λ)k]

[1− (1− λ)k]

because
n∑

j=1

[1− (1− λ)j] =
n∑

k=1

[1− (1− λ)k], thus we can get:

a(∆tj)

a(∆tk)
=

1− (1− λ)j

1− (1− λ)k

because λ ∈ [0, 1] and j < k, we can get:

(1− λ)k < (1− λ)j ⇒ 1− (1− λ)j < 1− (1− λ)k

⇒ a(∆tj) < a(∆tk)

so this condition proves Theorem 2. �
For a quantitative example for values of a(∆tj) with dif-

ferent λ, see Appendix C of the supplementary material.
Theorem 3. Using the proposed trust evaluation scheme, the total
time complexity is not more than O(g) +O(mn) +O(n2).

Proof: In the period of statistics-based service operator
measurement (from Eq. (1) to Eq. (2)), the time complexity
is g. In the period of evaluation matrix normalization (from
Eq. (3) to Eq. (6)), the time complexity is O(mn). In the
period of RTD computing (Eq. (7)), the time complexity is
O(m). In the period of adaptive weight calculation for RTD
(from Eq. (8) to Eq. (13)), the time complexity is O(n2).
In the period of GTD computing (Eq. (14) and Eq. (15)),
the time complexity is O(n). Thus, the time complexity is
O(g)+O(mn)+O(m)+O(n2)+O(n)=O(g)+O(mn)+O(n2).
This expression proves Theorem 3. �

Theorem 3 shows that the time complexity of the proposed
trust evaluation scheme is far superior to some existing
schemes, such as the fuzzy-based trust models (FTM) in [24]),
whose the time complexity is O(n3log2n).

5 IMPLEMENTATION TECHNOLOGIES

5.1 Overall Implementation Algorithm
We use an example to illustrate the overall algorithm for
GTD calculation. Suppose that six cloud resources need to
be evaluated by the broker. In a given time window (∆tj),
the broker obtains a characteristic matrix X(∆tj) (an example
of the matrix X(∆tj) for the six resources can be found in
Appendix D of the supplementary material). Then, the trust
calculation steps are listed as follows:

Step 1: according to Eqs. (4) and (5), we can get an
evaluation R(∆tj) (see Appendix D).

Step 2: according to Eqs. (8) to (13), the weight vec-
tors {ϖ1, ϖ2, · · · , ϖ12}={0.0879, 0.0403, 0.0894, 0.0742, 0.1102,
0.0586, 0.0818, 0.0748, 0.0924, 0.1092, 0.0720, 0.1092}.

IEEE Transactions on Parallel and Distributed Systems Volume: 26 Year: 2015

7

Step 3: using Eq. (7), we can get the RTDs for the
six resources, TN1(∆tj) = 0.5332, TN2(∆tj) = 0.4194,
TN3(∆tj) = 0.4177, TN4(∆tj) = 0.3653, TN5(∆tj) = 0.3575,
and TN6(∆tj) = 0.7107.

Step 4: to reflect the dynamics of RTD within multiple time
windows, we need to compute GTD for the alternative re-
sources. Suppose that there are four evaluation values for re-
source Nz , i.e., TNz (∆t1) = 0.9, TNz (∆t2) = 0.85, TNz (∆t3) =
0.78, TNz

(∆t4) = 0.78. If set λ = 0.9, then according to Eq.
(14), DNi(∆t4) = 0.8080.

For the GTD-based resource matchmaking algorithm, see
Appendix E of the supplementary material.

5.2 Trust Initialization for Newly Registered Resources
When a resource initially registers for business, no user has
interacted with it, and consequently, information on past
service operators is non-existent. In this situation, the GTD
for this new resource can not be evaluated by the proposed
trust scheme.

In this work, we use the FSLA mechanism to remedy this
limitation of the proposed scheme. The main idea is that the
broker first evaluates the newly registered resource, based on
its registered information. The FSLA mechanism will give the
resource a chance to obtain users’ computing tasks. In the
interactions between the user and the resource, the broker
will monitor its service operators, then calculate its GTD ,
according to the proposed trust scheme. If the commitment
QoS is lower than the actual GTD that is computed by
the broker, the broker will take a strict punitive step. The
proposed FSLA mechanism is defined as follows:

DNz = ρD′
Nz

, if DNz −D′
Nz

< ε, (16)

where DNz is the actual GTD of a resource Nz , and D′
Nz

is
the estimated GTD, according to Nz’s registered information.
ρ ∈ [0, 1) is the penalty factor, and ε ∈ [0, 1) is the degree of
tolerance set by the user. To reflect the strict punishment for
deceptive service behavior, we suggest that ρ and ε should
be given smaller values, such as ρ ≤ 0.5 and ε ≤ 0.1. This
rule can ensure that the newly joined resources will provide
better services, according to their commitments.

5.3 Service Operator Acquirement and Implementation
The main concern of agent-based operator acquirement in-
volves deploying and managing the large collection of agents
that are widely distributed. Moreover, another concern is in
collecting and managing the monitoring data generated in a
fast, dynamic, and on-demand manner. We use a collection
of software agents to monitor critical resources in a multi-
cloud system, and then yield time-stamped monitoring data
that can be used to evaluate the RTD of a cloud resource.

Based on previous novel results [13], [14], [15], in this study,
we use Java language to implement a resource monitoring
system based on a Eucalyptus Platform [16]. An implemen-
tation framework of this monitoring system is shown in
Figure 4. In this monitoring system, we adopt an active agent-
binding mechanism [17]. When a cloud provider registers
its virtual machines (VM) with the broker, each registered
resource is commanded to download a monitoring agent
(MA) and bind this MA with its IP. If a computing task is
distributed to this resource, the MA will be activated and

MA

VMi

MA

VMj

MA

VMk

MA

VMm

MA

VMn

Physical Machines

……

Eucalyptus Platform

Cloud 2

Eucalyptus Platform

Cloud 1

Eucalyptus Platform

Cloud n

Service Data Collection

Computing Agents (CAs)
Evidence Base

Agent Publish

Cloud Resource Connection and Adaptation (CRCA)

Adaptive Trust

Evaluation

Physical Machines

Fig. 4. An implementation framework for service operator
acquisition based on Eucalyptus.

then begin its monitoring task. For acquirement of these
trusted operators, two types of software agents need to be
deployed: (1) MAs that run on the cloud resources, and
are responsible for collecting the direct service operators of
resources, such as CPU type and frequency, memory size,
hard disk capacity, and others. (2) Computing agents (CAs)
that run on the broker and are responsible for counting
the indirect service operators, which need simple calculation
and statistics, such as average response time, and average
task success ratio. Using this monitoring system with the
adaptive trust evaluation module, the broker can gather VMs’
operators and evaluate the GTD of each VM, and then match
user tasks on specific node controllers.

For performance analysis of the Eucalyptus-based platfor-
m, see Appendix F of the supplementary material.

6 EVALUATION AND COMPARISON

In this section, we first describe how to set up the experi-
mental methodology in a real cloud environment, including
how to deploy SOTS on the Eucalyptus-based environment
and how to set the experiment configurations. Then, the
experimental results are described.

6.1 Experimental Methodology

To evaluate the trust scheme based on technologies intro-
duced in Sections 3 and 5, we set up a multiple cloud
environment that is composed of three clusters (Fig. 5). Each
cluster is managed by a cloud manager (3.2 GHz CPU, 4 GB
memory, and 1 TB hard disk) running Ubuntu Linux 10.04
(kernel 2.6.35-24) and Eucalyptus version 1.6.1. In each cluster
(cloud), the operating system running in the virtual machines
is a customized Scientific Computing as a Service (SCaaS)
[26]. Each cloud under test is fully based on the Eucalyptus
framework and the KVM hypervisor [16].

Cloud Broker(TTP) Cloud Manager Cloud

Resources

Cloud 1

Cloud 2Cloud 3

Cloud Manager Cloud Manager

Cloud

Resources

Cloud

Resources

Fig. 5. Multiple cloud experimental environment.

IEEE Transactions on Parallel and Distributed Systems Volume: 26 Year: 2015

8

In Fig. 5, machines in each cluster act as VM providers, in
which an agent-based service operator acquisition module is
deployed. A separate machine acts as the trust manage?ment
server (cloud broker) where the core functional modules
of the broker are deployed, including a trusted resource
matchmaking and distributing module, an adaptive trust
evaluation module, and a resource management module. We
have designed several performance mechanisms for a com-
prehensive trust evaluation scheme. Due to the restrictions of
paper length, we mainly evaluate the performance of SOTS
based on the following two aspects:

• Accuracy is used to check whether the proposed scheme
and its related algorithms can accurately and consistently
provide trust calculation;

• Efficiency is used to evaluate the overhead and the
average job failure rate (AJFR) of the proposed scheme;

User request. In the experimental environment, there are
nearly 100 VMs in the resource pool of the cloud broker
system (we deployed more than 30 VMs in each cluster).
According to Algorithm 1 in Appendix E, our resource
matchmaking approach should be “trust with cost.” The
user’s request contains the job descriptions; namely, Job ID,
minimum GTD required, and cost limits. Considering the job
requirements, a resource is selected from a resource pool that
has more than the minimum GTD given by the user.

TABLE 3
Classification threshold for VMs in the experiments

Types of VMs CPU(G) ART(sec) ATSR(%) AET AOT SEC
H 3.0 2 90-100 3 3 3
N 2.4 5 80-89 2 2 2
L 1.7 10 60-79 1 1 1
M 1.0 15 0-59 0 0 0

Types of VMs. To reduce complexity, in the initial stage of
the experimental environment, we mainly observe the results
according to the following 6 key operators: CPU frequency
(CPU), average response time (ART), average task success
rate (ATSR), authentication type (AET), authorization type
(AOT), and self-security competence (SEC). Types of VMs in
the resource pool and the classification threshold are listed
in Table 3, including high trusted node (H), normal trusted
node (N), low trusted node (L) and malicious node (M).

6.2 Accuracy Evaluation
Some service operators are more sensitive to users require-
ments, including average response time, average task success
rate and resource security levels. Relative to a given user-
sensitive trust operator, an accuracy trust scheme should
be robust enough to detect operators with a smaller value.
Hence, we observe the detecting capacity of the proposed
scheme for low-value operators.

Using 10 time windows (each ∆t=600 sec), we gather 1500
training samples from three clusters. For purposes of com-
parison, we also implement two other typical trust evaluation
schemes: the weighted average trust model (WATM) [3] and
the multi-dimensional trust model (MDTM) [21]. WATM is
similar to Kim’s model [3], and uses an average approach
to assign weights to trust attributes: G(Nz) = (

∑m
k=1 rzk)/m,

where G(Nz) is the RTD of resource Nz , rzk is the normalized

value of the k-th operator at time window ∆t, and m is the
total number of trust operators. Obviously, the WATM is a
subjective measurement approach; it assigns equal weights
to each trust operator.

In MDTM, the weights for these trust operators are as-
signed by a weighted moving average and ordered weight-
ed averaging (WMA-OWA) combination algorithm [21]:
F(Nz) = {w1, w2, · · · , wm}◦{xz1, xz2, · · · , xzm}, where F(Nz)
is the RTD of resource Nz , operator ◦ is the WMA-OWA
compose operator, xzk(k ∈ [1,m]) is the normalized value of
the kth operator, and {wk, k ∈ [1,m]} is the weight vector for
these trust operators. In MDTM, the vector {wk} is computed
by the WMA-OWA combination operator.

If a resource has a low-value user-sensitive trust oper-
ator (such as less than 0.5 for average task success rate),
this resource should not be selected as a service provider.
Within n evaluated samples {rzk}, z ∈ [1, n], k ∈ [1,m], let
rzk =

∑n
1 rzk/n. If DNz

> 0.5 and rzk > rzk, this resource is
a hit resource. The number of hit resources can be used to
reflect the accuracy of a trust scheme.

ATSR AET AOT SEC
0

20

40

60

80

100

the type of trust operators

th
e
n
u
m
b
er
 o
f
h
it
 r
es
o
u
rc
es

SOTS MDTM WATM

ARTCPU

Fig. 6. Number of hit VMs falling into the top 25% values of
the six trust operators.

0

20

40

60

80

100

the type of trust operators

SOTS MDTM WATM

ART ATSR AET AOT SEC

th
e

n
u
m

b
er

 o
f

h
it

 r
es

o
u
rc

es

CPU

Fig. 7. Number of hit VMs fallen into the bottom 25% values
of the six trust operators.

In Figure 6, the SOTS is shown to have the most number
of hit VMs in six cases, and WATM is shown to have the
least. MDTM has a similar number of hit resources with
our scheme. Moreover, the number of hit VMs of WATM is
only one third of that of our scheme and of MDTM, which
indicates that adaptive weighting approaches (SOTS and
MDTM) are far superior to the subjective weighting approach
(WATM). Further observing the results under an opposite
situation, the number of hit VMs fallen into the bottom 25%
values of the six trust operators and the comparison results

IEEE Transactions on Parallel and Distributed Systems Volume: 26 Year: 2015

9

are shown in Figure 7. The number of hit VMs of WATM
is shown to be much higher than that of our scheme and
of MDTM, which implies that the subjective approach makes
more misjudgments in trusted resource selection. This finding
further verifies that the proposed trust scheme is dependable
in resource matchmaking.

300 600 900 1200 1500
150

200

250

300

350

400

450

500

550

600

650

The numbers of inputting training samples

F
u
si
o
n
 C
o
m
p
u
ti
n
g
 T
im
e
(m
s)

SOTS Original Data

SOTS Fitting Curves

MDTM Original Data

MDTM Fitting Curves

WATM Original Data

WATM Fitting Curves

Fig. 8. FCT in cases of different number of training samples

However, from Figures 6 and 7, MDTM is shown to have
similar results to our scheme. Hence, we use Figure 8 to
explain the reason that we adopt the information entropy
theory as the chosen fusion tool for trust operators instead of
oth?er tools, such as the WMA-OWA combination algorithm.
Large-scale cloud computing environments have thousands
of registered resources, thereby requiring a quick response
to a user’s requests. We use fusion computing time (FCT)
to evaluate this indicator. The computing process is carried
out by a computer with 3.2 GHz CPU, 4 GB of memory. In
Figure 8, the FCT of WATM is between 150 to 210 ms with
different numbers of training samples, which demonstrates
that WATM has the fastest computing speed among the three
models. However, the changing trend of MDTM is the largest
among the three models. In comparing these results in Figure
8, our scheme is shown to need less FCT than that of MDTM.
Hence, compared with MDTM, SOTS has a better quick-
response capability. By comprehensive analysis of the results
in Figures 6, 7, and 8, SOTS has both accuracy and rapidity,
compared with the other two schemes.

6.3 Efficiency Evaluation
According to the VM types listed in Table 3, we set up two
typical resource scenarios: S1 and S2, which are described in
Table 4. S1 considers the community to be a trusted resource
scenario with 90% trusted VMs. S2 considers the community
to be a malicious resource scenario with 20% malicious nodes
and 20% low trusted VMs.

TABLE 4
Two types of network environment

Scenarios H N L M
S1 80% 10% 3% 2%
S2 50% 10% 20% 20%

Based on AJFR, we evaluate the efficiency of SOTS with
respect to the resource matchmaking problem. In these ex-
periments, once the job is recorded as a failure, it is re-

submitted until all the jobs are successfully executed. The
AJFR is defined as follows [19]:

AJFR = [(δd + βr)× 100%]/(δtotal + βr), (17)

where δd is the number of delayed jobs, and δtotal is the total
number of submitted jobs. βr is the number of resubmitted
jobs. A good resource matchmaking mechanism should have
a smaller value of AJFR.

We adopt three resource matchmaking mechanisms in
this group of experiments: (1) strict cost-based matchmak-
ing mechanism (SCSM), (2) random matchmaking mecha-
nism (RSM) and (3) trust-based matchmaking mechanism
(includ?ing our scheme, WATM, and MDTM). RSM is the
simplest, and is used to choose a resource randomly from
the idle resource pool when a user’s request is detected.
SCSM is a greedy method; it only considers user cost (UC),
with?out considering resource trust. The trust-based match-
making mechanism sorts high-performance resources by ana-
lyzing the VM history for providing highly trusted resources
dynamically when user requests arise.

100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

the number of users' job

A
JF
R
 (
%
)

RSM

SCSM

SOTS

WATM

MDTM

Fig. 9. Experimental results under condition S1.

Figure 9 shows the AJFR as computed by the five schemes
under a high percentage of trusted VMs. The total percentage
of high trusted VMs is 80%; the total percentage of normal
trusted VMs is 10%; the total percentage of malicious VMs
and low trusted VMs is 5%. This resource scenario considers
the cloud computing environment to be a relatively good
community with few malicious resources. Figure 9 further
shows the growth in the number of users’ jobs for SCSM
and RSM, with average values of AJFRs of 23.6% and 34.2%,
respectively. However, the three trust-based matchmaking
schemes, namely, SOTS, FTM and WATM, have relatively
stable performance, with average AJFRs from 4.2% to 9.7%,
which reflects that the three schemes are robust when facing
few malicious resources. Thus, from a practical point of view,
these three schemes can all meet the demand.

Figure 10 shows the experimental results as computed by
the five mechanisms under a high percentage of malicious
VMs and low trusted VMs. The percentage of high trusted
VMs is only 50%; the percentage of normal trusted VMs is
10%; the total percentage of malicious VMs and low trusted
VMs is 40%. This resource scenario considers the multi-cloud
computing environment to be a bad community, in which
the percentage of malicious resources and low trusted VMs
reaches nearly half of the total resource. When the percent-
age of low trusted resource increases from 5% to 20%, the

IEEE Transactions on Parallel and Distributed Systems Volume: 26 Year: 2015

10

AJFR obtained by SCSM shows notable dynamic fluctuation
around 60%. For RSM, its AJFR quickly increases from 20.9%
to 70.5%. For WATM, its average value of AJFR is 32.9%,
which reflects a significant decline in the performance of
this resource matchmaking scheme. However, the other two
trust-based matchmaking schemes, SOTS and MDTM, have
relatively stable performance with average AJFRs from 9.8%
to 18.9%, which demonstrates that these two schemes can also
be robust when facing a large number of malicious resources.
However, compared with MDTM, the trust scheme proposed
here shows better choices under experimental condition S2.

100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

the number of users' job

A
JF
R
 (
%
)

RSM

SCSM

SOTS

WATM

MDTM

Fig. 10. Experimental results under the condition S2.

7 CONCLUSION AND FUTURE WORK

In this work, we propose SOTS for trustworthy resource
matchmaking across multiple clouds. We have shown that
SOTS yields very good results in many typical cases.
How?ever, there are still some open issues we can apply
to the current scheme. First, we are interested in combining
our trust scheme with reputation management to address
concerns in users’ feedback. A universal measurement and
quantitative method to assess the security levels of a resource
is another interesting direction. Evaluation of the proposed
scheme in a larger-scale multiple cloud environment is also
an important task to be addressed in future research.

ACKNOWLEDGMENTS

The authors would like to appreciate the associate editors and
the anonymous reviewers for their insightful suggestions to
improve the quality of this paper. This work is supported
by the National Nature Science Foundation of China (No.
61370069, No. 61320106006), Beijing Natural Science Founda-
tion (No. 4111002), Fok Ying Tung Education Foundation (No.
132032) and Program for New Century Excellent Talents in
University (No. NCET-12-0794).

REFERENCES

[1] K. M. Khan, Q. Malluhi, “Establishing Trust in Cloud Comput-
ing”, IEEE IT Professional, vol. 12, no. 5, 2010, pp. 20-27.

[2] K. Hwang, D. Li, “Trusted Cloud Computing with Secure
Resources and Data Coloring”, IEEE Internet Computing, vol.
14, no. 5, 2010, pp. 14-22.

[3] H. Kim, H. Lee, W. Kim, Y. Kim, “A Trust Evaluation Model for
QoS Guarantee in Cloud Systems”, International Journal of Grid
and Distributed Computing, vol.3, no.1, pp. 1-10, 2010.

[4] P. D. Manuel, S. Thamarai Selvi, M. I. A. E. Barr, “Trust
management system for grid and cloud resources”, Proc. of
the First International Conference on Advanced Computing (ICAC
2009), 2009, 13-15 Dec, pp. 176-181.

[5] S. M. Habib, S. Ries, and M. Muhlhauser, “Towards a Trust
Management System for Cloud Computing”, Proc. of IEEE
TrustCom-11/IEEE ICESS-11/FCST-11, pp. 933-939, 2011.

[6] N. Dragoni, “A Survey on Trust-Based Web Service Provision
Approaches”, Proc. of the 2010 Third International Conference
on Dependability, pp. 83-99, 2010.

[7] Z. Liang and W. Shi, “A reputation-driven scheduler for au-
tonomic and sustainable resource sharing in Grid computing”
Journal of Parallel and Distributed Computing, vol. 70, no. 2,
pp.111-125, 2010.

[8] S. A. de Chaves, R. B. Uriarte, C. B. Westphall, “Toward an Ar-
chitecture for Monitoring Private Clouds”, IEEE Communications
Magazine, vol. 49, no. 2, pp. 130-137, 2011.

[9] S. Clayman, A. Galis, C. Chapman, et al., “Monitoring Service
Clouds in the Future Internet”. Future Internet Assembly, pp.
115-126, 2010.

[10] RightScale, http://www.rightscale.com/.
[11] SpotCloud, http://www.spotcloud.com/.
[12] L.J. Hoffman, K. Lawson-Jenkins, and J. Blum, “Trust beyond

Security: An Expanded Trust Model”, Communications of the
ACM, vol. 49, no. 7, pp. 95-101, 2006.

[13] K. R. Jackson, K. Muriki, L. Ramakrishnan, et al., “Performance
and cost analysis of the Supernova factory on the Amazon AWS
cloud”. Scientific Programming, vol. 19, no. 2-3, pp. 107-119, 2011.

[14] D. Ghoshal, R. S. Canon, and L. Ramakrishnan. “I/O perfor-
mance of virtualized cloud environments”. Proc. of the second
international workshop on Data intensive computing in the
clouds. pp.71-80, 2011.

[15] J. Shafer. “I/O virtualization bottlenecks in cloud computing
today”. Proc. of the 2nd conference on I/O virtualization, pp.
1-7, 2010.

[16] R. Wolski, C. Grzegorczyk, G. Obertelli, et al., “The Eucalyptus
Open-Source Cloud-Computing System ”, Proc. of the 9th
IEEE/ACM International Symposium on Cluster Computing
and the Grid, pp. 124-131, 2009.

[17] I. Legrand, R. Voicu, C. Cirstoiu, C. Grigoras, L. Betev, A.
Costan, “Monitoring and control of large systems with Mon-
ALISA”. Commun. ACM vol. 52, no. 9, pp. 49-55, 2009.

[18] F. Azzedin and A. Ridha. “Feedback Behavior and Its Role in
Trust Assessment for Peer-to-Peer Systems”. Telecommunication
Systems, vol. 44, no. 3-4, pp. 253-266, 2010.

[19] X. Li, Y. Yang. “Trusted Data Acquisition Mechanism for Cloud
Resource Scheduling Based on Distributed Agents”. China Com-
munications, vol.8, no. 6, pp,108-116, 2011.

[20] X. Li, F. Zhou, X. Yang, “Scalable Feedback Aggregating (SFA)
Overlay for Large-Scale P2P Trust Management”. IEEE Trans-
actions on Parallel and Distributed Systems, vol. 23, no. 10, pp.
1944-1957, 2012.

[21] X. Li, F. Zhou, X. Yang, “A Multi-Dimensional Trust Evaluating
Model for Large-scale P2P Computing”, Journal of Parallel and
Distributed Computing, vol.71, no.6, pp.837-847, 2011.

[22] X. Li, F. Zhou, J. Du, “LDTS: A Lightweight and Dependable
Trust System for Clustered Wireless Sensor Networks”, IEEE
Transactions on Information Forensics and Security, vol.8, no.6 pp.
924-935, 2013.

[23] H. Zhou, G. Zhang, G. Wang, “Multi-objective decision making
approach based on entropy weights for reservoir flood control
operation”, Journal of Hydraulic Engineering, Vol. 38, no. 1, pp.
100-106, 2007.

[24] S. Stefan, S. Robert, “Fuzzy trust evaluation and credibility
development in multi-agent systems”, Applied Soft Computing,
vol. 41, no. 7, pp. 492-505, 2007.

[25] M. Alhamad, T. Dillon, E. Chang. “Conceptual SLA Framework
for Cloud Computing”, Proc. 4th IEEE International Conference
on Digital Ecosystems and Technologies, pp.606-610, 2010.

[26] P. Saripalli, C. Oldenburg, B. Walters, et al., “Implementation
and Usability Evaluation of a Cloud Platform for Scientific
Computing as a Service (SCaaS)”, Proc. of the 4th IEEE Int.
Conf. on Utility and Cloud Computing, pp. 345-354, 2011.

IEEE Transactions on Parallel and Distributed Systems Volume: 26 Year: 2015

