
1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2016.2580139, IEEE Transactions on Knowledge and Data Engineering 1

Secure Data Deduplication with Dynamic
Ownership Management in

Cloud Storage
Junbeom Hur, Dongyoung Koo, Youngjoo Shin, and Kyungtae Kang

Abstract—In cloud storage services, deduplication technology is commonly used to reduce the space and bandwidth
requirements of services by eliminating redundant data and storing only a single copy of them. Deduplication is most effective
when multiple users outsource the same data to the cloud storage, but it raises issues relating to security and ownership. Proof-
of-ownership schemes allow any owner of the same data to prove to the cloud storage server that he owns the data in a robust
way. However, many users are likely to encrypt their data before outsourcing them to the cloud storage to preserve privacy, but
this hampers deduplication because of the randomization property of encryption. Recently, several deduplication schemes have
been proposed to solve this problem by allowing each owner to share the same encryption key for the same data. However, most
of the schemes suffer from security flaws, since they do not consider the dynamic changes in the ownership of outsourced data
that occur frequently in a practical cloud storage service. In this paper, we propose a novel server-side deduplication scheme for
encrypted data. It allows the cloud server to control access to outsourced data even when the ownership changes dynamically
by exploiting randomized convergent encryption and secure ownership group key distribution. This prevents data leakage not
only to revoked users even though they previously owned that data, but also to an honest-but-curious cloud storage server. In
addition, the proposed scheme guarantees data integrity against any tag inconsistency attack. Thus, security is enhanced in the
proposed scheme. The efficiency analysis results demonstrate that the proposed scheme is almost as efficient as the previous
schemes, while the additional computational overhead is negligible.

Index Terms—Deduplication, cloud storage, encryption, proof-of-ownership, revocation.

F

1 INTRODUCTION

C LOUD computing provides scalable, low-cost,
and location-independent online services ranging

from simple backup services to cloud storage infras-
tructures. The fast growth of data volumes stored in
the cloud storage has led to an increased demand
for techniques for saving disk space and network
bandwidth. To reduce resource consumption, many
cloud storage services, such as Dropbox [1], Wuala
[2], Mozy [3], and Google Drive [4], employ a dedupli-
cation technique, where the cloud server stores only
a single copy of redundant data and provides links
to the copy instead of storing other actual copies
of that data, regardless of how many clients ask to
store the data. The savings are significant [5], and
reportedly, business applications can achieve disk and

• J. Hur is with the Department of Computer Science and Engineering,
Korea University, Seoul, 136-701, Republic of Korea.
E-mail: jbhur@korea.ac.kr

• D. Koo is with the Department of Computer Science and Engineering,
Korea University, Seoul, 136-701, Republic of Korea.
E-mail: dykoo@nslab.kaist.ac.kr

• Y.Shin is with the Department of Convergence Security, Kyonggi
University, Suwon, 16227, Republic of Korea.
E-mail: s.youngjoo@gmail.com

• K. Kang is with the Department of Computer Science and Engineering,
Hanyang University, Ansan, 426-791, Republic of Korea.
E-mail: ktkang@hanyang.ac.kr

bandwidth savings of more than 90% [6]. However,
from a security perspective, the shared usage of users’
data raises a new challenge.

As customers are concerned about their private
data, they may encrypt their data before outsourcing
in order to protect data privacy from unauthorized
outside adversaries, as well as from the cloud service
provider [7],[8],[9]. This is justified by current security
trends and numerous industry regulations such as PCI
DSS [10]. However, conventional encryption makes
deduplication impossible for the following reason.
Deduplication techniques take advantage of data sim-
ilarity to identify the same data and reduce the storage
space. In contrast, encryption algorithms randomize
the encrypted files in order to make ciphertext indis-
tinguishable from theoretically random data. Encryp-
tions of the same data by different users with different
encryption keys results in different ciphertexts, which
makes it difficult for the cloud server to determine
whether the plain data are the same and deduplicate
them. Say a user Alice encrypts a file M under her
secret key skA and stores its corresponding ciphertext
CA. Bob would store CB , which is the encryption
of M under his secret key skB . Then, two issues
arise: (1) how can the cloud server detect that the
underlying file M is the same, and (2) even if it can
detect this, how can it allow both parties to recover
the stored data, based on their separate secret keys?

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2016.2580139, IEEE Transactions on Knowledge and Data Engineering 2

Straightforward client side encryption that is secure
against a chosen-plaintext attack with randomly cho-
sen encryption keys prevents deduplication [11],[12].
One naive solution is to allow each client to encrypt
the data with the public key of the cloud storage
server. Then, the server is able to deduplicate the
identified data by decrypting it with its private key
pair. However, this solution allows the cloud storage
server to obtain the outsourced plain data, which may
violate the privacy of the data if the cloud server
cannot be fully trusted [13],[14].

Convergent encryption [15] resolves this problem
effectively. A convergent encryption algorithm en-
crypts an input file with the hash value of the input
file as an encryption key. The ciphertext is given to the
server and the user retains the encryption key. Since
convergent encryption is deterministic1, identical files
are always encrypted into identical ciphertext, regard-
less of who encrypts them. Thus, the cloud storage
server can perform deduplication over the ciphertext,
and all owners of the file can download the ciphertext
(after the proof-of-ownership (PoW) process option-
ally) and decrypt it later since they have the same
encryption key for the file. Convergent encryption
has long been studied in commercial systems and has
different encryption variants for secure deduplication
[8],[16],[17],[18], which was formalized as message-
locked encryption later in [20]. However, convergent
encryption suffers from security flaws with regard to
tag consistency and ownership revocation.

As an example of the tag consistency attack issue,
suppose Alice and Bob have the same data M , and
Alice generates ciphertext CA from M , and then ma-
liciously generates another ciphertext C ′

A from M ′(̸=
M). Next, she uploads C ′

A with an honestly generated
tag T (CA) = H(M) for a cryptographic hash function
H , which plays the role of data index. When Bob
generates ciphertext CB from M and tries to upload
CB , the cloud server checks T (CA) = T (CB). Then, it
deletes CB and keeps only C ′

A. Afterwards, when Bob
downloads and decrypts it, the data would be M ′, not
M , which means the integrity of his data has been
compromised. Recently, message-locked encryption
(MLE) [20] and leakage-resilient deduplication [19]
schemes have been proposed to solve this problem
by introducing additional integrity check phase for
decrypted data.

In the case of ownership revocation, suppose mul-
tiple users have ownership of a ciphertext outsourced
in cloud storage. As time elapses, some of these users
may request the cloud server to delete or modify
their data, and then, the server deletes the owner-
ship information of the users from the ownership
list for the corresponding data. Then, the revoked
users should be prevented from accessing the data

1. Convergent encryption exploits a block cipher as an encryption
primitive.

stored in the cloud storage after the deletion or
modification request (forward secrecy). On the other
hand, when a user uploads data that already exist in
the cloud storage, the user should be deterred from
accessing the data that were stored before he obtained
the ownership by uploading it (backward secrecy)2.
These dynamic ownership changes may occur very
frequently in a practical cloud system, and thus, it
should be properly managed in order to avoid the
security degradation of the cloud service. However,
the previous deduplication schemes could not achieve
secure access control under a dynamic ownership
changing environment, in spite of its importance to
secure deduplication, because the encryption key is
derived deterministically and rarely updated after
the initial key derivation. Therefore, for as long as
revoked users keep the encryption key, they can access
the corresponding data in the cloud storage at any
time, regardless of the validity of their ownership.
This is the problem we attempt to solve in this study.

1.1 Contribution
We propose a deduplication scheme over encrypted
data. The proposed scheme ensures that only autho-
rized access to the shared data is possible, which is
considered to be the most important challenge for
efficient and secure cloud storage services [22] in the
environment where ownership changes dynamically.
It is achieved by exploiting a group key management
mechanism in each ownership group. As compared
to the previous deduplication schemes over encrypted
data, the proposed scheme has the following advan-
tages in terms of security and efficiency.

First, dynamic ownership management guarantees
the backward and forward secrecy of deduplicated
data upon any ownership change. As opposed to the
previous schemes, the data encryption key is updated
and selectively distributed to valid owners upon any
ownership change of the data through a stateless
group key distribution mechanism using a binary tree.
The ownership and key management for each user
can be conducted by the semi-trusted cloud server
deployed in the system. Thus, the proposed scheme
delegates the most laborious tasks of ownership man-
agement to the cloud server without leaking any
confidential information to it, rather than to the users.
Second, the proposed scheme ensures security in the
setting of PoW by introducing a re-encryption mech-
anism that uses an additional group key for dynamic
ownership group. Thus, although the encryption key
(that is the hash value of the file) is revealed in the
setting of PoW, the privacy of the outsourced data
is still preserved against outside adversaries, while
deduplication over encrypted data is still enabled and
data integrity against poison attacks is guaranteed.

2. A multimedia streaming service based on a pay-as-you-go
policy in the cloud is a good example of services that have these
backward and forward security requirements.

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2016.2580139, IEEE Transactions on Knowledge and Data Engineering 3

1.2 Organization

The rest of the paper is organized as follows. In
Section 3, the system architecture and security require-
ments are described. In Section 4, the cryptographic
background is provided and the general framework
of deduplication over encrypted data is defined. In
Section 5, we propose our scheme’s construction. We
analyze the efficiency and security of the proposed
scheme in Section 6 and 7, respectively. In Section 8,
we conclude the paper.

2 RELATED WORK

Deduplication techniques can be categorized into two
different approaches: deduplication over unencrypted
data and deduplication over encrypted data. In the
former approach, most of the existing schemes have
been proposed in order to perform a PoW process in
an efficient and robust manner, since the hash of the
file, which is treated as a “proof” for the entire file,
is vulnerable to being leaked to outside adversaries
because of its relatively small size. Whereas, in the
latter approach, data privacy is the primary security
requirement to protect against not only outside ad-
versaries but also inside the cloud server. Thus, most
of the schemes have been proposed to provide data
encryption, while still benefiting from a deduplica-
tion technique, by enabling data owners to share the
encryption keys in the presence of the inside and
outside adversaries. Since encrypted data are given
to a user, data access control can be additionally
implemented by selective key distribution after the
PoW process. However, not much work has yet been
done to address dynamic ownership management and
its related security problem.

2.1 Deduplication over Unencrypted Data

Harnick et al. [11] demonstrated how data dedupli-
cation technique can be used as a side channel that
reveals information to malicious users about the con-
tents of files of other users. On the basis of Harnick et
al.’s study, Halevi et al. [21] also introduced a similar
attack scenario on cloud storage that uses deduplica-
tion across multiple users. Specifically, when an at-
tacker temporarily compromises a server and obtains
the hash values for data in the cloud storage, he is
able to download all these data. This is because only
a small piece of information about the data, namely, its
hash value, serves as not only an index of the data to
locate information of the data among a huge number
of files, but also a “proof” that anyone who knows the
hash value owns the corresponding data. Therefore,
any users who can obtain the short hash value for
specific data are able to access all the data stored in
the cloud storage.

Harnik et al. [11] proposed a randomized threshold
to avoid an attack on cloud storage services that

use server-side data deduplication by stopping data
deduplication. However, their method did not employ
client-side data possession proofs to prevent hash
manipulation attacks. Mulazzani et al. [22] demon-
strated the hash manipulation attack and conducted a
practical evaluation of such an attack in Dropbox [1],
which is one of the biggest cloud storage providers.
Specifically, the authors showed that spoofing the
hash value of a file chunk added to the local Dropbox
folder allows a malicious user to access files of other
Dropbox users, given that the SHA-256 hash values
of the file’s chunks are known to the attacker.

To overcome these attacks, Halevi et al. [21] in-
troduced and formalized the notion of proof-of-
ownership (PoW), where a user proves to a server
that he holds a file using Merkle trees, rather than
only a short hash value for it. Specifically, Halevi et
al.’s scheme encodes a file using an erasure code that
is resilient to the erasure of up to α faction of the
bits, and then, builds a Merkle tree over the encoded
file. Then, a challenge-response protocol between the
server and the client verifies the ownership. PoW is
closely related to proof of retrievability [23] and proof
of data possession [24]. However, proof of retrievabil-
ity and data possession often use a pre-processing
step that cannot be used in the data deduplication
procedure.

Despite their significant benefits in terms of saving
resources, these deduplication schemes may cause an-
other security vulnerability and reveal users’ private
data, in particular, when partial information of users’
data has already been leaked. Additionally, all of the
above deduplication schemes allow the cloud server
to store the data in plaintext form and send plain
data to users on receipt of request messages after
the PoW procedure. Thus, the cloud server should be
fully trusted by all the users in the systems, which
constitutes a the significant security threat in the prag-
matic cloud storage services where the cloud server
may learn every customer’s private information and
maliciously exploit it.

2.2 Deduplication over Encrypted Data

In order to preserve data privacy against inside cloud
server as well as outside adversaries, users may
want their data encrypted. However, conventional
encryption under different users’ keys makes cross-
user deduplication impossible, since the cloud server
would always see different ciphertexts, even if the
data are the same, regardless of whether the encryp-
tion algorithm is deterministic.

Convergent encryption, introduced by Douceur et
al. [15], is a promising solution to this problem. In
convergent encryption, a data owner derives an en-
cryption key K ← H(M), where M is data or a file to
be encrypted and H is a cryptographic hash function.
Then, he computes the ciphertext C ← E(K,M) via a

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2016.2580139, IEEE Transactions on Knowledge and Data Engineering 4

block cipher E, deletes M , and keeps only K after
uploading C to the cloud storage. If another user
encrypts the same message, the same ciphertext C is
produced since encryption is deterministic. Thus, on
receipt of C from other users after the initial upload,
the server does not store the file but instead updates
meta-data to indicate it has an additional owner. If
any legitimate owners request and download C later,
they can decrypt it with K.

However, convergent encryption suffers from the
following security flaw. Suppose a user ua has data
Ma and a user ub has other data Mb ̸= Ma.
ua uploads maliciously-generated ciphertext Ca ←
E(H(Mb),Ma), and its tag (or, index) T (Ca) ←
H(E(H(Mb),Mb)). Then, when ub tries to upload
Cb ← E(H(Mb),Mb) and its tag, the server sees a
tag match T (Ca) = T (Cb). Thus, the server deletes
Cb and keeps only Ca. Later, when ub downloads it,
the decryption constitutes Ma, not Mb, meaning the
integrity of the data has been compromised. This is
referred to as the tag consistency problem [20]. Xu et
al. [19] also introduced a similar data integrity attack
in the cloud storage service, called a poison attack.

In order to solve this problem, Bellare et al. [20]
introduced a message-locked encryption (MLE) con-
cept and its security notion, and proposed random-
ized convergent encryption as one implementation
of MLE. In randomized convergent encryption, an
initial uploader encrypts a message and generates
C1 ← E(L,M), where L is a randomly chosen key,
and then encrypts the message encryption key L and
generate C2 ← L⊕K, where K is a key-encrypting key
(KEK) that is derived from the message (K ← H(M)).
Then, the message tag T is generated from the KEK,
not from the ciphertext (T ← H(P,K), where P is a
set of public parameters). When any legitimate owner
receives C1, C2, T from the server later, he computes
L← C2⊕K, decrypts C1 with L, and obtains M . Then,
he generates a tag T ′ ← H(P,H(P,M)) and checks
whether T ′ = T . If T ′ = T , he accepts it; else, rejects
it, since the data is compromised. In the scheme, C2 is
used to distribute the message encryption key, where
K is used as a group KEK shared among owners of
the same data. Since a tag is generated from the KEK,
not from the ciphertext, even different ciphertexts
encrypted under the different keys of each owner
can be deduplicated provided that the plaintext is the
same. Xu et al. [19] also proposed a leakage-resilient
deduplication scheme to resolve the data integrity
problem. This scheme also enables the data owner
to encrypt data with a randomly selected key. Then,
the data encryption key is encrypted under a KEK
derived from the data and distributed to the other
data owners after the PoW process. If a legitimate
owner receives a ciphertext, he can check the integrity
of the data by decrypting the data encryption key with
the same KEK.

Convergent encryption is insecure in the setting

of PoW, where the hash value of the file (that is, a
deterministic encryption key) may be leaked [19],[21].
Unfortunately, this is also the case in MLE [20] and
Xu et al.’s schemes [19]. Since the hash value of
the file is used as the KEK in both schemes, if the
KEK is revealed, adversaries who obtain it are able
to decrypt the key encryption message and obtain
the encryption key, even if the encryption key is not
deterministic. Another drawback in both schemes is
the lack of dynamic ownership management among
the data owners. For example, suppose a group of
users share data in the cloud storage. Some users may
request data deletion or modification in the storage.
Then, they should be prevented from accessing the
original data after this time instance (forward secrecy).
Likewise, when a user subsequently uploads the data,
access right to the previous data should not be given
to him before that time instance (backward secrecy).
However, in both schemes, this unauthorized data
access cannot be controlled, since the data encryption
key cannot be updated at all after its initial selection
and distribution by an initial uploader.

Recently, Li et al. [25] proposed a convergent key
management scheme in which users distribute the
convergent key shares across multiple servers by ex-
ploiting the Ramp secret sharing scheme [26]. Li et
al. [27] also proposed an authorized deduplication
scheme in which differential privileges of users, as
well as the data, are considered in the deduplica-
tion procedure in a hybrid cloud environment. Jin
et al. [31] proposed an anonymous deduplication
scheme over encrypted data that exploits a proxy re-
encryption algorithm. Bellare et al. [28] proposed a
server-aided MLE which is secure against brute-force
attack, which was recently extended to interactive
MLE [29] to provide privacy for messages that are
both correlated and dependent on the public system
parameters. However, these schemes do not handle
the dynamic ownership management issues involved
in secure deduplication for shared outsourced data.

Shin et al. [30] proposed a deduplication scheme
over encrypted data that uses predicate encryption.
This approach allows deduplication only of files that
belong to the same user, which severely reduces the
effect of deduplication. Thus, in this paper, we fo-
cus on deduplication across different users such that
identical files from different users are detected and
deduplicated safely to provide more storage savings.

3 DATA DEDUPLICATION ARCHITECTURE

In this section, we describe the data deduplication
architecture and define the security model. Accord-
ing to the granularity of deduplication, deduplica-
tion schemes are categorized into (coarse-grained)
file-level or (fine-grained) block-level schemes. Since
block-level deduplication can easily be deduced from
file-level deduplication, we consider only file-level

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2016.2580139, IEEE Transactions on Knowledge and Data Engineering 5

Fig. 1. Architecture of a data deduplication system

deduplication for simplicity’s sake. Thus, a data copy
refers to a whole file in this paper.

3.1 System Description and Assumptions
Fig. 1 shows the architecture of the data deduplication
system, which consists of the following entities.

1) Data owner: This is a client who owns data,
and wishes to upload it into the cloud storage
to save costs. A data owner encrypts the data
and outsources it to the cloud storage with its
index information, that is, a tag. If a data owner
uploads data that do not already exist in the
cloud storage, he is called an initial uploader;
if the data already exist, called a subsequent
uploader since this implies that other owners
may have uploaded the same data previously,
he is called a subsequent uploader. Hereafter, we
refer to a set of data owners who share the same
data in the cloud storage as an ownership group.

2) Cloud service provider: This is an entity that
provides cloud storage services. It consists of
a cloud server and cloud storage. The cloud
server deduplicates the outsourced data from
users if necessary and stores the deduplicated
data in the cloud storage. The cloud server
maintains ownership lists for stored data, which
are composed of a tag for the stored data and
the identities of its owners. The cloud server
controls access to the stored data based on the
ownership lists and manages (e.g., issues, re-
vokes, and updates) group keys for each owner-
ship group as a group key authority. The cloud
server is assumed to be honest-but-curious. That
is, it will honestly execute the assigned tasks in
the system; however, it would like to learn as
much information about the encrypted contents
as possible. Thus, it should be deterred from
accessing the plaintext of the encrypted data
even if it is honest.

3.2 Threat Model and Security Requirements
1) Data privacy: Unauthorized users who cannot

prove ownerships should not be able to decrypt
the ciphertext stored in the cloud storage. Ad-
ditionally, the cloud server is no longer fully
trusted in the system. Thus, unauthorized access
from the cloud server to the plaintext of the

encrypted data in the cloud storage should be
prevented.

2) Data integrity: The deduplication algorithm
should guarantee tag consistency against any
poison attacks. That is, the deduplication algo-
rithm should allow the valid owners to verify
that the data downloaded from the cloud storage
have not been altered.

3) Backward and forward secrecy3: In the context
of deduplication, backward secrecy means that
any user should be prevented from accessing the
plaintext of the outsourced data before upload-
ing the data. Conversely, forward secrecy means
that any user who deletes or modifies the data
in the cloud storage should be prevented from
accessing the outsourced data after its deletion
or modification.

4) Collusion resistance: Unauthorized users who
do not have valid ownerships of data in the
cloud storage should not be able to decrypt them
even if they collude.

4 PRELIMINARIES AND DEFINITION

4.1 Notations
In this paper, x $← S denotes the operation of selecting
an element x at random and uniformly from a finite
set S and assigning it to x. For an algorithm A,
y ← A(x1, . . .) denotes running A on inputs x1, . . .
and assigning the output to the variable y. 1λ denotes
a string of λ ones, if λ ∈ N, which is the security
parameter4. For two bit-strings a and b, we denote by
a||b their concatenation.

Let U = {u1, · · · , un} be the universe of users. Let
IDt be the identity of a user ut. Let Gi ⊂ U be a
set of users that owns the data Mi, which is referred
to as an ownership group. Let Li = ⟨Ti, Gi⟩ be an
ownership list for Mi, maintained by the cloud server,
which consists of a tag Ti and Gi for Mi. Let KGi be
the ownership group key that is shared among the
valid owners in Gi.

4.2 Definitions
In this section, we define a secure deduplication
framework for encrypted data with ownership man-
agement capability. The scheme consists of the follow-
ing algorithms:

1) KEK
$← KEKGen(U): The KEK generation algo-

rithm takes a set of users U as input, and outputs

3. In secure group communication, backward secrecy implies
that when a member newly joins a multicast group, he should be
prevented from learning group communications exchanged before
he joins the group. Forward secrecy implies when a member leaves
a multicast group, he should be prevented from learning group
communications exchanged after he leaves the group [35].

4. To be consistent with the standard convention in algorithms,
where the running time of an algorithm is measured as a function
of the length of its input, we will provide the adversary and the
honest parties with the security parameter in unary as 1λ.

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2016.2580139, IEEE Transactions on Knowledge and Data Engineering 6

Randomized

convergent encryption

Re-encryption under

ownership group key

Data privacy

Data integrityData

Backward/forward secrecy

Collusion resistance

Fig. 2. Scheme overview and corresponding security

KEKs for each user in U for secure ownership
group key distribution.

2) C
$← Encrypt(M, 1λ): The encryption algorithm

is a randomized algorithm that takes as input
data M and a security parameter λ, and outputs
a ciphertext C of the data. C consists of the
encrypted message and its tag information for
indexing.

3) C ′ $← ReEncrypt(C,G): The re-encryption algo-
rithm is a randomized algorithm that takes a
ciphertext C and an ownership group G, and
outputs a re-encrypted ciphertext C ′. Specifi-
cally, it outputs a re-encrypted ciphertext such
that only valid owners in G can decrypt the
message.

4) M ← Decrypt(C ′,K, PK): The decryption algo-
rithm is a deterministic algorithm that takes as
input C ′, message encryption key K, and a set
of KEKs PK for encrypting an ownership group
key GK, and outputs a message M , iff K is
derived from M and GK is not revoked for the
ownership group G (that is, the decryptor is in
G) for M .

5 PROPOSED DEDUPLICATION SCHEME

In this section, we propose a secure deduplication
scheme for encrypted data that has dynamic owner-
ship management capability. The proposed scheme is
constructed based partially on a randomized conver-
gent encryption scheme [20] in order to randomize the
encrypted data, which renders the proposed scheme
secure against the chosen-plaintext attack while still
allowing deduplication over the data. The proposed
scheme is further integrated into the re-encryption
protocol for owner revocation. The owner revocation
is executed by re-encrypting the outsourced ciphertext
and selectively distributing the re-encryption key to
valid (that is, not revoked) owners by the cloud server.
Fig. 2 shows the overview of the proposed scheme
and its corresponding security goals.

To handle dynamic ownership management, the
cloud server must obtain the ownership list for each
data, since otherwise revocation cannot take effect.
This setting where the cloud server knows the own-
ership list does not violate the security requirements,
because it is allowed only to re-encrypt the ciphertexts
and can by no means obtain any information about
the data encryption key of users.

v
1

v
2 v

3

v
4

v
5

v
6 v

7

v
8

v
9

v
10

v
11

v
12

v
13

v
14

v
15

u
1

u
2

u
3

u
4

u
5

u
6

u
7 u

8

Fig. 3. KEK tree for ownership group key distribution

5.1 Scheme Construction

Let EK(M) be a symmetric encryption of a message
M under a key K. The simplest implementation is to
make EK : {0, 1}k → {0, 1}k a block cipher, where k
is the length of the key K. We additionally employ a
cryptographic hash function H : {0, 1}∗ → {0, 1}∗ to
generate an encryption key and a tag from a message.

5.1.1 Key Generation
The cloud server runs KEKGen(U) and generates
KEKs for users in U . First, the cloud server sets a
binary KEK tree for the universe of users U , as in
Fig. 3, which will be used to distribute the ownership
group keys to users in U ⊆ U . In the tree, each
node vj holds a KEK, denoted by KEKj . A user is
represented by a leaf, and each user maintains the
KEKs on the path nodes from its leaf to the root.
These are called path keys. For instance, in Fig. 3, u2

stores KEK9,KEK4,KEK2, and KEK1 as its path
keys PK2. For ut ∈ U , PKt denotes a set of the path
keys of ut. The KEK tree is constructed by the cloud
server as follows:

1) Every member in U is assigned to a leaf node
of the tree. Random keys are generated and
assigned to each leaf node and internal node.

2) Each member ut ∈ U receives securely the path
keys PKt from its leaf node to the root node of
the tree.

Then, the path keys are used as KEKs to encrypt
the ownership group keys by the cloud server in the
data re-encryption phase. The key assignments in this
method are conducted randomly and independently
of each other.

5.1.2 Data Encryption
Without loss of generality, we suppose a data owner
ut wants to upload his data Mi to the cloud storage.
ut encrypts the data by running the Encrypt(Mi, 1λ)
algorithm.

The algorithm chooses a random data encryption
key L

$← {0, 1}k(λ), where k(λ) is an algorithm that
determines the size of the encryption key under the

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2016.2580139, IEEE Transactions on Knowledge and Data Engineering 7

security parameter. It also computes a key Ki ←
H(Mi) from Mi, which will be used as a KEK for
encrypting a message encryption key L, and a tag
Ti ← H(Ki), which is an index information for the
data. Then, the algorithm encrypts the data and the
encryption key as C1

i ← EL(Mi) and C2
i ← L ⊕ Ki,

and constructs the ciphertext Ci = C1
i ||C2

i .
After the construction of Ci, the data owner ut

sends upload||Ti||Ci||IDt to the cloud storage5. Then,
the owner deletes Mi and retains only Ki for storage
saving. On its receipt, the cloud server inserts IDt into
Gi, creates Li = ⟨Ti, Gi⟩, and stores Ci in the cloud
storage, if ut is the first uploader for Mi. If Li already
exists (which means ut is a subsequent uploader), then
it inserts only IDt into Gi without storing Ci.

5.1.3 Data Re-encryption
Before distributing the ciphertext Ci, the cloud server
re-encrypts it by running ReEncrypt(Ci, Gi) using
the ownership group information for the ciphertext.
The re-encryption algorithm enforces access control of
dynamically changing owners to the outsourced data.

The algorithm progresses as follows:
1) For Gi, choose a random ownership group key

GKi. Then, re-encrypt C1
i and generate C1

i
′
=

EGKi(C
1
i).

2) Select root nodes of the minimum cover sets
in the KEK tree that can cover all of the leaf
nodes associated with users in Gi. We denote
by KEK(Gi) a set of KEKs that such root
nodes of subtrees for Gi hold. For example,
if Gi = {u1, u2, u3, u4, u7, u8} in Fig. 3, then
KEK(Gi) = {KEK2,KEK7}, because v2 and
v7 are the root nodes of the minimum cover
sets that can cover all of the members in Gi. It
follows that this collection covers all users in Gi

and only them, and any user u /∈ Gi can by no
means know any KEK in KEK(Gi).

3) Generates

C3
i = {EK(GKi)}K∈KEK(Gi).

This encryption is employed as the method for
delivering the ownership group keys to valid
owners.

On receiving any data request query Ti||IDj from
a user uj , the cloud server looks up Li and responds
with Ti||C ′

i to the user, where C ′
i = C1

i
′||C2

i ||C3
i if

IDj ∈ Gi; otherwise, it does nothing. The former in-
dicates the case where the user has uploaded the data
and has not been revoked, while the latter indicates

5. In server-side deduplication approaches, the data owner may
send only Ti, and the cloud server requests the owner to upload
the encrypted data only when there are no data indexed by Ti.
This approach can save the network bandwidth; however, it can be
used as a side channel that reveals information about the contents
of files of other users. This may violate the privacy of other users
[11]. Thus, in the proposed scheme, we assume that the data owner
sends Ci as well as Ti in order to preserve privacy.

the case where the user has not uploaded the data or
has been revoked at this moment.

It is important to note that the ownership group
key distribution protocol through C3

i is a stateless
approach. Thus, even if users cannot update their key
states constantly (e.g., in case of offline), they are able
to decrypt the group key from it at any time they
receive it when they become online, provided that
they are not revoked from the ownership groups.

5.1.4 Data Decryption
When a user ut receives a ciphertext C ′

i from the
cloud server, he can decrypt the message by running
Decrypt(C ′

i, Ki, PKt), if ut ∈ Gi. The data decryption
phase consists of ownership group key decryption
followed by the message decryption.

Ownership Group Key Decrypt. When a user
sends a data request query and receives Ti||C ′

i from
the cloud server, he first parses it as Ti, C1

i
′, C2

i , C3
i ,

and obtains the ownership group key from C3
i . If the

user ut has valid ownership (that is, ut ∈ Gi at this
time instance), he can decrypt the ownership group
key GKi using a KEK ∈ KEK(Gi) ∩ PKt as

GKi = DKEK∈(KEK(Gi)∩PKt)(C
3
i).

The user ut may belong to at most one subset rooted
by only one such KEK in KEK(Gi). Thus, there can
be only one such KEK.

The key-indistinguishability property follows from
the fact that no u /∈ Gi is contained in any of the
subsets the root node of which is holding any KEK
in KEK(Gi). This means that, for every KEK in
KEK(Gi), the KEK is indistinguishable from a
random key, given all the information of all users not
in Gi [32]. Thus, any user u /∈ Gi can by no means
decrypt GKi, even if he colludes with other users
u′ /∈ Gi, which makes the proposed scheme secure
against such a collusion attack as we will analyze it
in Section 7.4.

Message Decrypt. After that, the user ut decrypts
the ciphertext and obtains the message as follows.

C1
i ← DGKi(C

1
i
′
), L← C2

i ⊕Ki,

Mi ← DL(C
1
i), T ′

i ← H(Mi).

If T ′
i ̸= Ti, which represents tag inconsistency, the

user drops the message, since it may be modified
under a poison attack; else, the user accepts Mi as
the original data he outsourced. For example, if a
malicious user uploads a false message M ′ with a tag
H(M) where M ′ ̸= M , a subsequent user who owns
M could detect the pollution of original data M by
decrypting the ciphertext, obtaining M ′, and checking
H(M ′) ̸= H(M). Then, the subsequent user would
report the data inconsistency to the cloud server,
which may help the cloud server to find and revoke

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2016.2580139, IEEE Transactions on Knowledge and Data Engineering 8

the malicious user, and delete the polluted data from
the cloud storage6.

5.2 Key Update
When subsequent users upload data which is the
same as the previously uploaded by the initial
uploader, the corresponding ciphertext should be
re-encrypted to prevent subsequent users from
accessing the previous encrypted data in order to
provide backward secrecy. In contrast, when users
who have valid ownerships request the cloud server
to delete or modify the data in the cloud storage,
they should be revoked from the ownership list and
deterred from accessing the data after data deletion
or modification in order to provide forward secrecy.

Subsequent Upload. We suppose a user us wants
to upload data Mi to the cloud storage, and its cor-
responding ownership list Li = ⟨Ti, Gi⟩ and cipher-
text Ci = C1

i
′||C2

i already exist in the cloud storage
(Ci might be encrypted and uploaded by the initial
uploader, and re-encrypted by the cloud server such
that C1

i
′
= EGKi(C

1
i)). Then, the user us encrypts

the data by running the Encrypt(Mi, 1λ) algorithm
and generates ciphertext, say C ′′

i . With overwhelming
probability, it holds that C ′′

i ̸= Ci since the encryption
key L is randomly selected from {0, 1}k(λ) by different
users. After the construction of C ′′

i , the data owner us

sends upload||T ′
i ||C ′′

i ||IDs to the cloud storage7. Then,
the key update and re-encryption processes progress
as

1) If T ′
i = Ti, the cloud server puts IDs into Gi.

2) The cloud server decrypts the ciphertext com-
ponent C1

i
′
= EGKi(C

1
i) in Ci with the current

ownership group key GKi. Then it selects a
random ownership group key GK ′

i(̸= GKi) and
runs the ReEncrypt(Ci, Gi) algorithm described
in Section 5.1.3 with the updated ownership
group information Gi and GK ′

i to guarantee
backward secrecy, which updates the ciphertext
component as C1

i
′
: EGKi(C

1
i)→ EGK′

i
(C1

i).
If there is no Ti in the cloud storage such that

T ′
i = Ti, since this implies the first upload, the cloud

server creates a new ownership list for the data,
inserts IDs into the newly generated ownership
group, and stores the uploaded data in the cloud

6. Even if the proposed scheme can detect any data modification
or loss by a malicious user or CSP, it cannot recover the original
data under the data loss attack (e.g., by malicious CSP or Byzantine
failure) because all of the redundant data would be deduplicated.
One of the approaches for deduplicated data recovery is to adopt
information dispersal techniques [36],[37],[38] that transform data
into multiple shares with some redundancy and disperse the shares
across multiple CSPs, which is out of scope in this paper.

7. The subsequent uploader sends C′′
i to prevent the side-channel

attack [11] as in the initial upload; however, if communication
channel is secure in the presence of eavesdroppers, C′′

i does not
need to be uploaded, which will reduce the communication cost as
in the client-side deduplication.

storage following the same procedures described in
Section 5.1.2.

Data Deletion. When a user us wants to delete
data Mi from the cloud storage, the user sends the
data deletion request messages with delete||Ti||IDs to
the cloud server. Then, the cloud server performs the
following procedures.

1) If IDs ∈ Gi, it deletes IDs from Gi. Then, it
selects a random ownership group key and runs
the ReEncrypt(Ci, Gi) algorithm described in
Section 5.1.3 with the updated ownership group
information Gi to guarantee forward secrecy.

2) Else, it does nothing.

Data Modification. When a user us wants to modify
the data Mi to Mj , the user encrypts the data and con-
structs the ciphertext Cj and its corresponding tag Tj

by running the Encrypt(Mj , 1λ) algorithm described in
Section 5.1.2. Then, the user sends a data modification
request message with modify||Ti||Tj ||Cj ||IDs to the
cloud server. Then, the cloud server performs the
data deletion procedure, followed by data upload
procedure, as follows.

- Data Deletion(1–2):
1) If IDs ∈ Gi, it deletes IDs from Gi. Then,

it selects a random ownership group key and
runs the ReEncrypt(Ci, Gi) algorithm described
in Section 5.1.3 with the updated ownership
group information Gi for guaranteeing forward
secrecy.

2) Else, it does nothing and stops running the
algorithm.

- Data Upload(3–4):
3) If there exists Lj = ⟨Tj , Gj⟩ for the tag Tj in

the cloud storage, it performs the subsequent
upload procedures described above.

4) Else, if there does not exist Lj in the
cloud storage, it performs the initial upload
procedures described in Section 5.1.2.

When multiple users upload or delete the same file
at the same time, they are handled in a batch way.
Specifically, the ownership list for the file is updated
based on the ownership changes, and the correspond-
ing ownership group key and ciphertext are updated
once. Then, they are securely delivered following the
proposed algorithms. We note that this can be handled
straightforwardly without any security degradation.

5.3 Comparison

Table 1 shows the comparison results of the se-
cure data deduplication schemes, that is convergent
encryption (CE) [15], leakage-resilient (LR) dedupli-
cation [19], and randomized convergent encryption
(RCE) [20] in terms of the data deduplication over

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2016.2580139, IEEE Transactions on Knowledge and Data Engineering 9

TABLE 1
Comparison of secure deduplication schemes

Scheme Encrypted Tag Ownership
deduplication consistency management

CE [15] yes no no
LR [19] yes yes no
RCE [20] yes yes no
Proposed yes yes yes

encrypted data, tag consistency, and dynamic owner-
ship management.

Since all the schemes allow data owners to en-
crypt their data and enable deduplication over them,
they can guarantee the data confidentiality or privacy
against the cloud server and unauthorized outside
adversaries. With regard to data integrity, convergent
encryption cannot guarantee the integrity of dedupli-
cated data in the face of a poison attack, whereas the
other schemes preserve it by adopting an additional
mechanism that enables data owners to check the tag
consistency of the received data.

In the proposed scheme, upon every membership
change in the ownership list (e.g., subsequently up-
loading the same data, or modifying/deleting the
existing data), access to the corresponding data is per-
mitted to owners only for the time windows during
which the owners maintain valid ownership of the
data by re-encrypting it using an updated ownership
group key and selectively distributing it. This re-
solves the dynamic ownership management problem
as opposed to the other schemes. The rekeying in
the proposed scheme can be done immediately upon
any ownership change. This enhances the security of
the outsourced data in terms of backward/forward
secrecy by reducing the windows of vulnerability. A
more rigorous security analysis is given in Section 7.

6 SCHEME ANALYSIS

In this section, we analyze the efficiency of the pro-
posed scheme and compare it with the previous dedu-
plication schemes over encrypted data in terms of
both the theoretical and practical aspects. The effi-
ciency of the proposed scheme is demonstrated in
the network simulation in terms of communication
cost. We also discuss its computation cost when im-
plemented with specific parameters.

6.1 Efficiency

The comparative results for the theoretical efficiency
of the schemes are summarized in Table 2. In Table
2, the analysis results of each scheme in terms of
the communication and storage overhead are shown.
For communication overhead, “upload message size”
represents the communication cost required for the
data outsourcing process; “download message size”

represents the communication cost required for ci-
phertext downloading and tag checking processes,
and “rekeying message size” represents the communi-
cation cost required for rekeying the data encryption
key. For storage overhead, “key size” and “tag size”
represent the size of the keys and tag information that
each owner needs to store, respectively.

The notations used in the table are as follows.

CM Size of a data or file
CC Size of an encrypted data

(= output length of E(·))
CK Size of a key

(= output length of k(λ) on input 1λ)
CT Size of a tag

CID Size of an identity of a user (≥ logn)
Cr Size of a node value in Merkle hash tree

CPoW Size of exchanged messages for PoW
on inputs the file size and 1λ (= ulogCM ,
where u is the smallest integer such that
(1− α)u < ε for some constant fraction
α > 0) [21]

n Number of users in the system
m Number of owners in an ownership list

for a file

For the upload and download message sizes, the
proposed scheme is the same as the basic RCE [20]
scheme. In LR [19], the communication overhead for
verifying PoW is additionally included in the down-
load message. In the scheme, the PoW verification and
tag checking processes are done during the data up-
load phase by subsequent owners. However, they can
be executed during the data download phase without
loss of functionality and efficiency. Thus, we suppose
they are executed during the download phase as in
RCE [20] and the proposed scheme for the sake of
fair comparison.

With regard to the rekeying message size, only
the proposed scheme supports key updates upon
ownership changes for data. In the proposed scheme,
the rekeying message size (i.e., size of C3

i) would
be (n −m)log n

n−mCk. This additional message plays
an important role in enhancing the backward and
forward secrecy, and enforces fine-grained user access
control to the outsourced data in contrast to the other
schemes. Whereas, in CE [15], the encryption key is
determined by the message itself; in LR [19] and RCE
[20], it is selected by the initial uploader and never
updated during the lifetime of the data in the system.
Thus, even if the other schemes do not need the addi-
tional rekeying messages, they cannot guarantee the
data privacy during the windows of vulnerability in
the practical cloud environment where the ownership
changes dynamically as time elapses.

With regard to storage overhead, in the LR scheme,
each owner stores the leaf node values of the Merkle
tree for PoW in addition to the data encryption key
and KEK, the size of which increases in proportion
to the data size. In the proposed scheme, each data

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2016.2580139, IEEE Transactions on Knowledge and Data Engineering 10

TABLE 2
Efficiency comparison

Scheme Communication overhead Storage overhead
Upload message size Download message size Rekeying message size Key size Tag size

CE [15] CC + CT + CID CC CK CT

LR [19] CC + 3CK + CT + Cr + CID CC(+CPoW + CK + CT)† 2CK + CM · Cr CT

RCE [20] CC + CK + CT + CID CC + CK + CT CK CT

Proposed CC + CK + CT + CID CC + CK + CT (n−m)log n
n−m

Ck (logn+ 1)CK CT

†: communication overhead to check tag consistency

owner stores logn additional KEKs as compared to
the original RCE scheme. These KEKs allow the secure
and selective distribution of the dynamically updated
data encryption key, which supports fine-grained ac-
cess control on the basis of the valid ownership of
each user with a little storage overhead.

6.2 Simulation

In this simulation, we measure the communication
cost of the deduplication schemes. We consider the on-
line cloud storage systems connected to the Internet.
Almeroth et al. [33] demonstrated the group behavior
in the Internet’s multicast backbone network (MBone).
They showed that the number of users joining a
multicast group follows a Poisson distribution with
rate λ, and the membership duration time follows
an exponential distribution with a mean duration
1/µ. Since each owner group of data or files can
be seen as an independent network group, where
the owners in the group share common outsourced
data, we show the simulation results following this
probabilistic behavior distribution [33].

We suppose that user join and leave events are
independently and identically distributed in each
ownership group following Poisson distribution. The
ownership duration time for outsourced data (that is,
from data upload time to deletion time) is assumed to
follow an exponential distribution. We set the inter-
upload time between users as 12 hours (λ = 2)
and the average ownership duration time as 10 days
(1/µ = 10).

6.3 Implementation

Figs. 4 and 5 show the total communication costs
that the cloud server incurs to send on data requests
from owners in the secure deduplication schemes
that support tag consistency (that is, LR [19], RCE
[20], and the proposed scheme) in a single ownership
group during 100 days. In this simulation, we suppose
the owners send data request messages immediately
after ownership changes in the ownership group to
measure the communication cost incurred by dynamic
ownership changes for a fair comparison with regard
to the security perspective. The communication cost,
which is measured in bytes, includes those of the

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8
x 10

8

Time (in days)

C
o

m
m

u
n
ic

at
io

n
 c

o
st

 (
in

 b
y
te

s)

RCE

LR

Proposed

Fig. 4. Communication cost in LR, RCE, and the
proposed scheme

0 10 20 30 40 50 60 70 80 90 100
1.0486

1.0486

1.0486

1.0486

1.0487

1.0487

1.0487

1.0487

1.0487
x 10

7

Time (in days)

C
o

m
m

u
n

ic
at

io
n

 c
o

st
 (

in
 b

y
te

s)

RCE

Proposed

Fig. 5. Communication cost in RCE and the proposed
scheme

ciphertext and of rekeying messages for non-revoked
owners.

In this simulation, we set CM = CC = 10MB for a
typical multimedia data (e.g., music file), which is one
of the most commonly used types of data in the cloud.
To achieve a 128-bit security level, we set CK = 128
bits, CT = 128 bits. Fig. 4 shows the communication
costs in LR, RCE, and the proposed scheme. In the
LR scheme, each owner performs a PoW process on
every data request procedure and receives an updated
encryption key and ciphertext by unicast. This incurs
much more communication overhead than the other
schemes. Thus, RCE and the proposed scheme have

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2016.2580139, IEEE Transactions on Knowledge and Data Engineering 11

TABLE 3
Comparison of computation cost

Operation Time CE [15] LR [19] RCE [20] Proposed scheme
(ms) upload download upload download upload download upload download

Hash 0.025 2 5 1 2 2 2 2
Data encrypt Enc 1 2 1 1
Data decrypt Dec 1 1 1 1
Key decrypt 0.129 1

Computation (ms) Enc + 0.050 Dec 2Enc + 0.125 Dec + 0.025 Enc + 0.050 Dec + 0.050 Enc + 0.050 Dec + 0.179

almost the same and relatively negligible communi-
cation overhead, as shown in Fig. 4. To provide a
detailed comparison of the two schemes, Fig. 5 shows
the communication costs of RCE and the proposed
scheme. In RCE, we assume that only the rekeying
component C2 = L ⊕ K is selectively distributed to
valid owners securely by unicast in order to realize a
dynamic ownership management similar to that of the
proposed scheme, which is the most efficient rekeying
scenario in RCE. In this scenario, the communication
overhead of the proposed scheme is less than that
of RCE by about 300-byte with the same level of
ownership management capability8.

Next, we analyze and measure the computation cost
incurred when a data owner encrypts and decrypts
data during upload and download phases, respec-
tively. The computation cost is shown in Table 3 in
terms of the computation of a cryptographic hash
function for key generation, tag generation (the hash
function is also used for key encryption/decryption
in LR [19]), data encryption/decryption, and key
decryption. The comparatively negligible bitwise
exclusive-or operations are ignored in the computa-
tion analysis results.

For each operation, we include a benchmark timing.
Each cryptographic operation was implemented using
the Crypto++ library ver. 5.6.2 [34] on a 3.4 GHZ pro-
cessor PC. The key parameters were selected to pro-
vide a 128-bit security level. The implementation uses
an MD5 as a cryptographic hash function to generate
a 128-bit key and tag, and an AES with Electronic
Code Book (ECB) mode as an encryption/decryption
function. Data encryption and decryption time, de-
noted by Enc and Dec, respectively, in Table 3, are
measured for different data sizes as shown in Fig. 6,
which increase in proportion to the size of data.

On the basis of the encryption and decryption
time, we measured the total computation cost for
the upload and download of each scheme, as shown
in Fig. 7 and Fig. 8, respectively. For the upload
procedure, the proposed scheme requires the same
computations as the CE and RCE schemes. For the
download procedure, the proposed scheme needs one
more key decryption operation than does the basic

8. Each detailed communication cost can be found in the supple-
mentary file for this paper.

0

5

10

15

20

25

30

35

40

1MB 2MB 4MB 6MB 8MB 10MB

T
im

e
(m

s)

Size of Data

Enc time (ms) Dec time (ms)

Fig. 6. Encryption and decryption time

0

10

20

30

40

50

60

70

80

1MB 2MB 4MB 6MB 8MB 10MB

T
im

e
(m

s)

Size of data

CE LR RCE Proposed

Fig. 7. Computation time for upload

RCE scheme. However, since the symmetric key size
is much smaller than the typical data size in the cloud
(e.g., document file, or multimedia data), the addi-
tional 128-bit key decryption time (i.e., 0.129 ms) in
the proposed scheme would be relatively negligible as
compared to the data decryption time in a pragmatic
cloud computing system as depicted in Fig. 8.

The measured computation time for upload and
download is described in Table 4. More experimental
results with diverse file size (100KB ∼ 1000MB) can
be found in the supplementary file for this paper.

7 SECURITY

In this section, we prove the security of the pro-
posed scheme in terms of the security requirements
discussed in Section 3.2, that is data privacy, data in-
tegrity, backward and forward secrecy, and collusion
resistance.

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2016.2580139, IEEE Transactions on Knowledge and Data Engineering 12

TABLE 4
Upload and down load time (ms)

Data CE [15] LR [19] RCE [20] Proposed scheme
size upload download upload download upload download upload download
1MB 3.095 3.045 6.215 3.07 3.095 3.095 3.095 3.224
2MB 6.103 6.053 12.231 6.078 6.103 6.103 6.103 6.232
4MB 11.972 11.922 23.969 11.947 11.972 11.972 11.972 12.101
6MB 19.853 19.803 39.731 19.828 19.853 19.853 19.853 19.982
8MB 23.691 23.641 47.407 23.666 23.691 23.691 23.691 23.82
10MB 34.425 34.375 68.875 34.4 34.425 34.425 34.425 34.554

0

5

10

15

20

25

30

35

40

1MB 2MB 4MB 6MB 8MB 10MB

T
im

e
(m

s)

Size of Data

CE LR RCE Proposed

Fig. 8. Computation time for download

7.1 Data Privacy

In our trust model, the cloud server is no longer fully
trusted even if honest. Therefore, plain data should
be kept secret from the cloud server as well as from
unauthorized users who cannot prove ownership.

Data privacy for the outsourced data against unau-
thorized users who have never owned the data can
be trivially guaranteed. Without loss of generality, we
suppose an unauthorized user requests data for Mi

with a tag Ti and one of the other valid users’ identity
IDt ∈ Gi (if IDt /∈ Gi, the cloud server would simply
reject the request), and receives the corresponding
ciphertext Ti||C1

i
′||C2

i ||C3
i where C1

i
′
= EGKi(EL(Mi))

and C2
i = L ⊕ Ki. If the user has never owned the

data Mi, it is computationally infeasible to guess Ki

and obtain the data encryption key L because of the
cryptographic hash function. On the other hand, if
the user has once owned the data but does not have
valid ownership at the request time instance, he may
have knowledge of Ki but can by no means obtain
the corresponding GKi from C3

i , since it is encrypted
using KEKs that the user cannot know. Thus, the
unauthorized user cannot obtain Mi from C1

i
′ without

GKi, even if he may be able to obtain L using Ki.
Another attack scenario can be launched by the

cloud server. In the cloud server’s point of view, the
information it can learn is the set of ciphertext Ci =
C1

i ||C2
i with the corresponding Li. Although the cloud

server determines the ownership group key GKi, it
is computationally infeasible for the cloud server to
guess Ki, since it does not have knowledge of Mi, like

the previous unauthorized attacker who has never
owned the data. Without Ki, it cannot decrypt C1

i
′ and

obtain Mi. Therefore, data privacy against the honest-
but-curious cloud server and unauthorized users is
guaranteed.

7.2 Data Integrity
In the deduplication scheme, data integrity may be
threatened by a poison attack on tag consistency.
Without loss of generality, we suppose an attacker and
another user u have the same data M . The attacker
maliciously generates ciphertext C ′ from M ′(̸= M),
and uploads it with a tag T generated from M ini-
tially.

In the proposed scheme, the poison attack on
tag consistency is easily detected, as in the basic
RCE scheme. When the user u subsequently requests
the data and receives the corresponding ciphertext
C1||C2||C3 with T , he can obtain the ownership group
key GK and data encryption key L from C3 and
C2, respectively if the user has valid ownership of
the data. Then, the user decrypts C1 and obtains the
data M ′ using the two encryption keys GK and L,
generates the tag T ′ from M ′, and checks whether
T ′ = T . If these tags are not consistent, the user drops
the message, since it implies the data may have been
modified during the previous outsourcing procedure.
Therefore, the proposed scheme guarantees data in-
tegrity against a poison attack on tag consistency.

7.3 Backward and Forward Secrecy
When a user holds data that has been already up-
loaded previously at some time instance and tries to
upload them into the cloud storage, the correspond-
ing ownership group key is updated independently
and randomly, say from GK to GK ′, and delivered
securely to the valid owners of the data (including
the user) immediately. In addition, the ciphertext
component C1′ = EGK(C1), which was encrypted
with GK, is re-encrypted by the cloud server with
the updated ownership group key GK ′ at the same
time as C1′′ = EGK′(C1). Even if the user has stored
the previous ciphertext before he holds the data,
he cannot decrypt the previous ciphertext. This is
because, even if he is able to obtain encryption keys

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2016.2580139, IEEE Transactions on Knowledge and Data Engineering 13

L and GK ′ from the current ciphertext, they are of
no use for recovering the desired component C1 for
the previous ciphertext, since it is re-encrypted with
a previous GK. Therefore, the backward secrecy of
the outsourced data is guaranteed in the proposed
scheme.

On the other hand, when a user deletes or modifies
the data at some time instance, the corresponding
ownership group key is also updated independently
and randomly, say from GK to GK ′, and delivered
securely to the valid ownership group members (ex-
cluding the user) immediately. Then, the ciphertext
component C1′ = EGK(C1) that was encrypted with
GK is re-encrypted by the cloud server with a new
ownership group key GK ′ at the same time as C1′′ =
EGK′(C1). Then, the user cannot decrypt the current
ciphertext after his revocation, since he can by no
means obtain GK ′. Even if the user has recovered
the data encryption key L before he was revoked
from the ownership group and stored it, it would
be of no use for obtaining the desired data from C1

in the subsequent ciphertext, since it is re-encrypted
with a new random GK ′. Therefore, the forward
secrecy of the outsourced data is also guaranteed in
the proposed scheme.

7.4 Collusion Resistance
To provide collusion resistance, unauthorized users
who have not valid ownerships of cloud data should
not be able to decrypt them even if they collude.
In the proposed scheme, in order to decrypt the ci-
phertext and obtain the plain data, users should have
knowledge of both the data encryption key L and the
ownership group key GK. Even if some unauthorized
users may be able to obtain the data encryption
key9, it is impossible to have the ownership group
key GK. This is because the KEK assignment for
ownership group key distribution in the binary KEK
tree is information theoretic, that is KEKs are assigned
randomly and independently of each other. Whenever
any ownership change occurs in an ownership group,
the ownership group key is rekeyed immediately and
the data are re-encrypted using the updated group
key. Even if the unauthorized users collude with each
other, they cannot obtain the current ownership group
key, since none of the KEKs in their path keys in
the KEK tree is used to encrypt and distribute the
ownership group key. Therefore, the proposed scheme
is secure against a collusion attack of the unauthorized
users.

8 CONCLUSION
Dynamic ownership management is an important
and challenging issue in secure deduplication over

9. This may happen when the unauthorized users have possessed
the data at some time instance and stored the derived key encryp-
tion key K until the moment of request; or, they could receive it
from the other colluders.

encrypted data in cloud storage. In this study, we
proposed a novel secure data deduplication scheme
to enhance a fine-grained ownership management by
exploiting the characteristic of the cloud data man-
agement system. The proposed scheme features a re-
encryption technique that enables dynamic updates
upon any ownership changes in the cloud storage.
Whenever an ownership change occurs in the own-
ership group of outsourced data, the data are re-
encrypted with an immediately updated ownership
group key, which is securely delivered only to the
valid owners. Thus, the proposed scheme enhances
data privacy and confidentiality in cloud storage
against any users who do not have valid ownership
of the data, as well as against an honest-but-curious
cloud server. Tag consistency is also guaranteed, while
the scheme allows full advantage to be taken of effi-
cient data deduplication over encrypted data. In terms
of the communication cost, the proposed scheme
is more efficient than the previous schemes, while
in terms of the computation cost, taking additional
0.1 − 0.2 ms compared to the RCE scheme, which is
negligible in practice. Therefore, the proposed scheme
achieves more secure and fine-grained ownership
management in cloud storage for secure and efficient
data deduplication.

ACKNOWLEDGMENTS

This work was supported by the National Research
Foundation of Korea(NRF) grant funded by the Korea
government(MSIP) (No. 2016R1A2A2A05005402). D.
Koo and K. Kang are the corresponding authors of
this paper.

REFERENCES

[1] Dropbox, http://www.dropbox.com/.
[2] Wuala, http://www.wuala.com/.
[3] Mozy, http://www.mozy.com/.
[4] Google Drive, http://drive.google.com.
[5] D. T. Meyer, and W. J. Bolosky, “A study of practical deduplica-

tion,” Proc. USENIX Conference on File and Storage Technolo-
gies 2011, 2011.

[6] M. Dutch, “Understanding data deduplication ratios,” SNIA
Data Management Forum, 2008.

[7] W. K. Ng, W. Wen, and H. Zhu, “Private data deduplication
protocols in cloud storage,” Proc. ACM SAC’12, 2012.

[8] M. W. Storer, K. Greenan, D. D. E. Long, and E. L. Miller,
“Secure data deduplication,” Proc. StorageSS’08, 2008.

[9] N. Baracaldo, E. Androulaki, J. Glider, A. Sorniotti, “Reconciling
end-to-end confidentiality and data reduction in cloud storage,”
Proc. ACM Workshop on Cloud Computing Security, pp. 21–32,
2014.

[10] P. S. S. Council, “PCI SSC data security standards overview,”
2013.

[11] D. Harnik, B. Pinkas, and A. Shulman-Peleg, “Side channels
in cloud services, the case of deduplication in cloud storage,”
IEEE Security & Privacy, vol. 8, no. 6, pp. 40–47, 2010.

[12] C. Wang, Z. Qin, J. Peng, and J. Wang, “A novel encryption
scheme for data deduplication system,” Proc. International
Conference on Communications, Circuits and Ssytems (ICC-
CAS), pp. 265–269, 2010.

[13] Malicious insider attacks to rise,
http://news.bbc.co.uk/2/hi/7875904.stm

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2016.2580139, IEEE Transactions on Knowledge and Data Engineering 14

[14] Data theft linked to ex-employees,
http://www.theaustralian.com.au/australian-it/data-
theftlinked-to-ex-employees/story-e6frgakx-1226572351953

[15] J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and M.
Theimer, “Reclaiming space from duplicate files in a server-
less distributed file system,” Proc. International Conference on
Distributed Computing Systems (ICDCS), pp. 617–624, 2002.

[16] P. Anderson, L. Zhang, “Fast and secure laptop backups with
encrypted de-duplication,” Proc. USENIX LISA, 2010.

[17] Z. Wilcox-O’Hearn, B. Warner, “Tahoe: the least-authority
filesystem,” Proc. ACM StorageSS, 2008.

[18] A. Rahumed, H. C. H. Chen, Y. Tang, P. P. C. Lee, J. C. S.
Lui, “A secure cloud backup system with assured deletion and
version control,” Proc. International Workshop on Security in
Cloud Computing, 2011.

[19] J. Xu, E. Chang, and J. Zhou, “Leakage-resilient client-side
deduplication of encrypted data in cloud storage,” ePrint,
IACR, http://eprint.iacr.org/2011/538.

[20] M. Bellare, S. Keelveedhi, and T. Ristenpart, “Message-locked
encryption and secure deduplication,” Proc. Eurocrypt 2013,
LNCS 7881, pp. 296–312, 2013. Cryptology ePrint Archive,
Report 2012/631, 2012.

[21] S. Halevi, D, Harnik, B. Pinkas, and A. Shulman-Peleg, “Proofs
of ownership in remote storage systems,” Proc. ACM Confer-
ence on Computer and Communications Security, pp. 491–500,
2011.

[22] M. Mulazzani, S. Schrittwieser, M. Leithner, and M. Huber,
“Dark clouds on the horizon: using cloud storage as attack
vector and online slack space,” Proc. USENIX Conference on
Security, 2011.

[23] A. Juels, and B. S. Kaliski, “PORs: Proofs of retrievability for
large files,” Proc. ACM Conference on Computer and Commu-
nications Security, pp. 584–597, 2007.

[24] G. Ateniese, R. C. Burns, R. Curtmola, J. Herring, L. Kissner, Z.
Peterson, and D. Song, “Provable data possession at untrusted
stores,” Proc. ACM Conference on Computer and Communica-
tions Security, pp. 598–609, 2007.

[25] J. Li, X. Chen, M. Li, J. Li, P. Lee, and W. Lou, “Secure dedupli-
cation with efficient and reliable convergent key management,”
IEEE Transactions on Parallel and Distributed Sytems, Vol. 25,
No. 6, 2014.

[26] G.R. Blakley, and C. Meadows, “Security of Ramp schemes,”
Proc. CRYPTO 1985, pp. 242–268, 1985.

[27] J. Li, Y. K. Li, X. Chen, P. Lee, and W. Lou, “A hybrid
cloud approach for secure authorized deduplication,” IEEE
Transactions on Parallel and Distributed Systems, Vol. 26, No.
5, pp. 1206–1216, 2015.

[28] M. Bellare, S. Keelveedhi, T. Ristenpart, “DupLESS: Server-
aided encryption for deduplicated storage,” Proc. USENIX
Security Symposium, 2013.

[29] M. Bellare, S. Keelveedhi, “Interactive message-locked encryp-
tion and secure deduplication,” Proc. PKC 2015, pp. 516–538,
2015.

[30] Y. Shin and K. Kim, “Equality predicate encryption for secure
data deduplication,” Proc. Conference on Information Security
and Cryptology (CISC-W), pp. 64–70, 2012.

[31] X. Jin, L. Wei, M. Yu, N. Yu and J. Sun, “Anonymous dedu-
plication of encrypted data with proof of ownership in cloud
storage,” Proc. IEEE Conf. Communications in China (ICCC),
pp.224-229, 2013.

[32] D. Naor, M. Naor, and J. Lotspiech, ”Revocation and tracing
schemes for stateless receivers,” Proc. CRYPTO 2001, Lecture
Notes in Computer Science, vol. 2139, pp. 41–62, 2001.

[33] K. C. Almeroth, and M. H. Ammar, “Multicast group behavior
in the Internet’s multicast backbone (MBone),” IEEE Commu-
nication Magazine, vol. 35, pp. 124–129, 1997.

[34] Crypto++ Library 5.6.2, http://www.cryptopp.com/.
[35] S. Rafaeli, D. Hutchison, “A Survey of Key Management for

Secure Group Communication,” ACM Computing Surveys, Vol.
35, No. 3, pp. 309-329, 2003.

[36] L. Mingqiang, C. Qin, P.P.C. Lee, and J. Li, “Convergent
Dispersal: Toward Storage-Efficient Security in a Cloud-of-
Clouds,” Proc. USENIX Conference on Hot Topics in Storage
and File Systems, 2014.

[37] L. Mingqiang, C. Qin, P.P.C. Lee, “CDStore: Toward Reliable,
Secure, and Cost-Efficient Cloud Storage via Convergent Dis-

persal,” Proc. USENIX Annual Technical Conference, pp. 120,
2015.

[38] J. Li, X. Chen, X. Huang, S. Tang, Y. Xiang, M. Hassan, and
A. Alelaiwi, “Secure Distributed Deduplication Systems with
Improved Reliability,” IEEE Transactions on Computer, Vol. 64,
No. 2, pp. 3569–3579, 2015.

Junbeom Hur received the B.S. degree
from Korea University, Seoul, South Korea,
in 2001, and the M.S. and Ph.D. degrees
from KAIST in 2005 and 2009, respectively,
all in Computer Science. He was with the
University of Illinois at Urbana-Champaign
as a postdoctoral researcher from 2009 to
2011. He was with the School of Computer
Science and Engineering at the Chung-Ang
University, South Korea as an Assistant Pro-
fessor from 2011 to 2015. He is currently an

Assistant Professor with the Department of Computer Science and
Engineering at the Korea University, South Korea. His research in-
terests include information security, cloud computing security, mobile
security, and applied cryptography.

Dongyoung Koo received the B.S. degree
from Yonsei University, Seoul, South Korea,
in 2009, and the M.S. and Ph.D. degrees
from KAIST in 2012 and 2016, respectively,
all in Computer Science. He is currently an
Research Professor with the Department of
Computer Science and Engineering at the
Korea University, South Korea. His research
interests include information security, secure
cloud computing, and cryptography.

Youngjoo Shin received the B.S. degree
in Computer Science and Engineering from
Korea University, Seoul, Korea in 2006 and
the M.S. and Ph.D. degrees in Computer
Science from KAIST, Daejeon, Korea in 2008
and 2014, respectively. He is currently a
senior member of engineering staff at the
Attached Institute of ETRI, Daejeon, Korea.
His research interests include cryptography,
network security and cloud computing secu-
rity.

Kyungtae Kang received the BS degree
in computer science and engineering and
the MS and PhD degrees in electrical engi-
neering and computer science, from Seoul
National University, Korea, in 1999, 2001,
and 2007, respectively. From 2008 to 2010,
he was a postdoctoral research associate
with the University of Illinois at Urbana-
Champaign. In 2011, he joined the Depart-
ment of Computer Science and Engineering,
Hanyang University, Korea, where he is cur-

rently an assistant professor. His research interests include primarily
in systems, such as operating systems, wireless systems, distributed
systems, real-time embedded systems, and interdisciplinary area of
cyber-physical systems. He is a member of the ACM.

