
This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETC.2016.2520883, IEEE
Transactions on Emerging Topics in Computing

ACCEPTED BY IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 1

Non-intrusive Anomaly Detection with Streaming
Performance Metrics and Logs for DevOps in

Public Clouds: A Case Study in AWS
Daniel Sun, Min Fu, Liming Zhu, Guoqiang Li and Qinghua Lu Member, IEEE

Abstract—Public clouds are a style of computing platforms where scalable and elastic IT-enabled capabilities are provided as a service
to external customers using Internet technologies. Using public cloud services can reduce costs and increase choices of technologies,
but it also implies limited system information for users. Thus, anomaly detection at user end has to be non-intrusive and hence difficult,
particularly during DevOps operations because the impacts from both anomalies and these operations are often indistinguishable
and hence it is hard to detect the anomalies. In this paper, our work is specific to a successful public cloud, Amazon Web Service
(AWS), and a representative DevOps operation, rolling upgrade, on which we report our anomaly detection that can effectively detect
anomalies. Our anomaly detection requires only metrics data and logs supplied by most public clouds officially. We use Support Vector
Machine (SVM) to train multiple classifiers from monitored data for different system environments, on which the log information can
indicate the best suitable classifier. Moreover, our detection aims at finding anomalies over every time interval, called window, such that
the features include not only some indicative performance metrics but also the entropy and the moving average of metrics data in each
window. Our experimental evaluation systematically demonstrates the effectiveness of our approach.

Index Terms—Public clouds, Non-intrusive anomaly detection, Performance metrics, Logs, Machine Learning.

F

1 INTRODUCTION

ANOMALY detection refers to the problem of finding
patterns in data that do not conform to expected

behaviour [1], and has been an indispensable element
of large-scale software systems [2]. In clouds, anomalies
can be caused by operation errors [3], hardware/soft-
ware failures [4], resource over-/under-provisioning [5],
[6] and so on. Given the ever-increasing scale coupled
with the increasing complexity of software, applications,
and workload patterns, anomaly detection must operate
automatically at runtime, and especially requires no in-
trusive modification to system monitoring and sampling
in public clouds like Amazon EC2 [7].

Cloud computing has been broadly adopted for data
analytics for public service [8]–[10]. In a public cloud, de-
velopers and system administrators can collect and track
metrics by using cloud facilities like Amazon Cloud-
Watch [7], which provides monitoring for AWS cloud
resources and applications, and sampling customer-
defined metrics. Although it is possible to gain insight
for the smoothness and performance of applications,
it is hard to automatically detect anomalies with only
the CloudWatch data in complex system environments,
because of the limitation of CloudWatch as analysed
and shown in the following. Moreover, since users can-
not arbitrarily access the system information in public

Daniel Sun, Min Fu, and Liming Zhu are National ICT Australia, and School
of Computer Science and Engineering, University of New South Wales, Aus-
tralia, e-mail: first name.lastname@nicta.com.au. Guoqiang Li is with School
of Software, Shanghai Jiao Tong University, P.R.C., e-mail: li.g@sjtu.edu.cn.
Qinghua Lu is with College of Computer and Communication Engineering,
University of Petroleum, Qingdao, P.R.C., e-mail: dr.qinghua.lu@gmail.com.

clouds, the anomaly detection at user end has to be non-
intrusive.

DevOps is a cross-disciplinary community of practice
dedicated to the study of building, evolving and op-
erating rapidly-changing resilient systems at scale [11],
[12]. In DevOps, continuous delivery/deployment is an
important technique to maintain high availability and
operability, but non-intrusive anomaly detection is chal-
lenged by continuous delivery/deployment. For exam-
ple, this kind of automated DevOps tasks will trigger
various sporadic operations (e.g. upgrade, reconfigura-
tion, redeployment or backups) that will impact the exe-
cution of a running application. In addition, continuous
deployment practices make such sporadic operations
much more frequent.

In this paper, for tenants and DevOps practitioners in
public clouds, we propose an anomaly detection, which
is designed for public cloud users to deal with the case
that the impacts from DevOps operations and anomalies
on the metrics are same or similar. To be more specific,
we report our anomaly detection on a successful public
cloud, Amazon Web Service (AWS), and a representative
DevOps operation, rolling upgrade. In this context, some
implementations of rolling upgrade, e.g. Asgard [13],
upgrade software installed in VM instances by simply
killing instances in an old version and restarting those
in a new version. While, the changes of performance
metrics due to rolling upgrade are almost same or similar
to the changes caused by instance-level anomalies.

Our detection collects the log information of running
operations and applications, and then uses the infor-
mation to indicate the run-time system environments

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETC.2016.2520883, IEEE
Transactions on Emerging Topics in Computing

ACCEPTED BY IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 2

for choosing a statistical model, which has been trained
beforehand. We analyse the metrics and their monitor
data provided by CloudWatch and then choose Support
Vector Machine (SVM) to train the models under differ-
ent system environments. At runtime, newly sampled
metric data are fed to a classifier that has been indicated
by the log information. The experimental results show
that even if the log information can help choose the
correct classifier, the false positive rate is too high be-
cause of the limitation of monitor data. For this sake, we
further improve the anomaly detection by introducing
moving windows. Moreover, in order to tackle the most
difficult case: An operation impacts on the system in the
exactly same way as anomalies, we introduce moving
average over the windows and the entropies of metrics
as additional features to SVM. The advantage of our
technique is that we only require the data and logs
provided officially by cloud facilities to detect underly-
ing anomalies effectively. Our contributions are listed as
follows.

1 We train multiple classifiers by using SVM for var-
ious system and software environments that are
indicated by the log information of operations and
applications.

2 During detection, the logs retrieved at runtime are
used to select the exact classifier and the metrics
data are streamed into a classifier for anomaly de-
tection.

3 After an analysis on the data provided by Cloud-
Watch, we adopt moving window, and moving av-
erage and entropy features for both training and
detection.

The experimental results show that our non-intrusive
anomaly detection can effectively detect anomalies. The
accuracy, the precision, and the recall can reach up
to more than 90%. The false positive rate can be as
low as 10%. These results for non-intrusive detection
have been much better than threshold-based alarming,
which does not work at all during DevOps operations.
To the best of our knowledge, this is the first work
addressing the non-intrusive anomaly detection during
DevOps operations. Note that, our detection aims at the
anomalies that impact on performance metrics, e.g. a
lost or stacked instance that impacts on CPU utilisation,
other than those anomalies that can be easily detected
by other methods. In this paper, we only detect whether
or not there are any anomalies, but we do not provide
the diagnosis for identifying what anomaly has been
detected.

The rest of this paper is structured as follows. In
Section 2, we review related work. In Section 3, we
introduce the monitored metrics, the logs, and a spo-
radic operation, rolling upgrade including its step-wise
information. Then a basic approach of learning and
streaming is shown in Section 4. In Section 5 we make
a significant improvement after a brief analysis on the
metrics. In Section 6, we present our experiments and

the results. Section 7 concludes this paper and justifies
our contributions.

2 RELATED WORK
Threshold-based methods are pervasively adopted in
industrial products [7], [14]–[18]. They firstly set up
upper/lower bounds for each metric. Those threshold
values come from performance constraints or predic-
tions. Whenever any of the metric observation violates
a threshold limit, an alarm of anomaly is triggered.
Although thresholds can be set dynamically, threshold-
based approaches may generate too many false positives
or negatives in dynamic and complicated cloud environ-
ments, especially during DevOps operations.

Anomaly detection using cloud metrics has been
shown in [2], [19]–[22], in which with statistical tech-
niques performance models are built for abnormal be-
haviour and flag deviations as anomalies. Correlation-
based methods have been proposed to capture perfor-
mance invariants, but they are expensive to learn, and re-
quire large training data, especially for non-linear corre-
lations. It has been shown that an ensemble of models to
address variations needs to change with time in software
or hardware updates [2]. In [22] an application change
is identified by using two different models for a given
time period and this method leads to higher accuracy.
For sporadic operations, simple statistical metrics are
not sufficient to characterise and distinguish the data
generated by operations, especially when the impact of
operations is very similar to the impact of failures. In
this paper, we retrieve log information of operations
and applications, and then use the information to help
detection.

Anomaly detection has been recognised as a typical
machine learning classification problem. Several exist-
ing machine learning methods, such as artificial neural
network, decision tree, and SVM, have been employed
to solve the classification problem [23]. For the case of
online detection, streaming-based anomaly detection is
often adopted. The monitored data streams are analysed
through the techniques of time series analysis and ma-
chine learning [24]–[26]. However, this class of methods
require that the streaming data must be accurate in real-
time, and this is not realistic in public clouds. In this
paper, we learn and predict from the streaming data
by using moving average and entropy over a buffer of
streaming data to detect anomalies within a time period.

Many stream processing frameworks focus on deal-
ing with data sources continuously producing data.
For example, Spark [27] has a good streaming support
integrated, which supports the building of real time
predictive analytics services. Spark Streaming [28] is an
extension to the Spark core, which provides fast and scal-
able streaming data processing, where it integrates batch
processing in streaming processing. Apache Storm [29] is
another distributed computing framework for real time
data processing. For large-scale systems and applica-
tions, especially the case that machine learning models

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETC.2016.2520883, IEEE
Transactions on Emerging Topics in Computing

ACCEPTED BY IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 3

need to be trained online, these streaming processing
systems are applicable.

3 BACKGROUND

3.1 Data sources

We do not optimistically assume that runtime data can
be arbitrarily accessible in public clouds. In practice, two
sources of data are usually provided and available in
most production systems: monitored metrics and logs.

3.1.1 Monitored Metrics

Performance metrics are sampled to be time series data,
which are numeric values or character strings indicating
system performance and states. In AWS, CloudWatch1

provides 54 metrics in more than 40 types, including
simple statistics of each metric, such as average, min-
imal, maximum, and sum. The data are sampled and
provided in JSON file, which is accessible via an API.

The sampled data are not real-time information and
typically aggregated per-minute from individual virtual
machine instances. There could be a significant time
delay between an occurrence of anomalies and an ap-
pearance of abnormal value. Moreover, abnormal values
could last for a period of time even after the underlying
anomalies have been recovered.

3.1.2 Logs

The sources of logs include applications, web servers,
database systems and operating systems. DevOps oper-
ations themselves also produce logs. The application and
operation information can be retrieved automatically
from the log lines by distributed log processors deployed
in VM instances in clouds. Some information can be
obtained instantly such as start time and end time of
an application or an operation, while some information
has to be retrieved through log analysis and mining.

3.2 DevOps Operations and Monitoring

DevOps operations such as upgrade, redeployment,
snapshotting and on-demand scaling are often sporadic:
Some are triggered by ad hoc bug fixing and feature
delivery, while others are triggered by periodic main-
tenance activities. It has been shown that even periodic
maintenance activities may not be synchronised and pre-
dictable [30]. Some operations have significant impacts
on metrics. For example, during upgrading an individual
instance may join and leave, or be rebooted so as to
cause metrics value exceptions, which could be mis-
interpreted as alarms if the detection is simply based
on some thresholds. In the mean time, true anomalies
during the operations may be hard to detect.

1. Here, CloudWatch refers to its latest version and functions until
December 2014.

3.3 Rolling Upgrade
Rolling upgrade is a representative DevOps operation,
which is critical for continuous software delivery and
high frequency release [12]. An application is usually
deployed in a cloud onto a collection of virtual machine
instances. In a typical rolling upgrade process [31]–
[34], a small number of instances are upgraded from
an old version to a new one at a time. This process
is repeated in a wave rolling until all instances are in
the new version. In clouds, the upgrade can be done
by simply replacing old virtual machine instances with
newly provisioned instances. The advantage of rolling
upgrade is that availability does not degrade too much,
since there are only a small number of instances out
of service. The time of replacing a single instance in
AWS is usually in the order of minutes. For hundreds
of instances, a rolling upgrade will take hours or longer.

Rolling upgrade has been widely used for upgrading
distributed software, but there are many different imple-
mentations in different systems. In this paper, we refer to
the Asgard, which is Netflix’s customised management
console on top of the AWS infrastructure. Fig. 1 shows
a rolling upgrade procedure of Asgard [35]. During
a rolling upgrade, anomaly detection is challenging.
First, a number of instances are being taken out of
service (often through killing them simply) legitimately
causing naive threshold-based alarm systems to raise
false alarms. Second, a true fault of an instance during
this period exhibits similar behaviour and has similar
impacts as killing an instance. Finally, other simultane-
ous applications and varying workload may confound
any detection mechanisms. For a specific system that
provides stable services, the patterns of workload, and
DevOps operations are usually countable. This gives us
an opportunity to detect anomalies more effectively than
traditional methods, since we can always acquire system
status from logs.

3.4 Process and Step-wise Information from Logs
The process information refers to the process id, instance
id, start and end times of operations and applications,
and their characteristics. Inside a process, there is some
information in finer grain, but the information is not
explicit in logs. Our previous work [35] automatically
mined the procedure/step-wise information from the
logs produced by rolling upgrade. The steps are depen-
dant and sequential such that they can be organised
into a model, named process model. Along with the
process model, a set of regular expressions are asso-
ciated with each of the steps, which can be used by
the corresponding log processor to match the log lines
and extract the process context information from the log
lines at runtime. Thus, we can know the exact start and
end times, and progression of an operation. For other
operations and applications, we can also extract at least
the start and end times from log lines. For example, we
can know if a rolling upgrade is running or not and at

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETC.2016.2520883, IEEE
Transactions on Emerging Topics in Computing

ACCEPTED BY IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 4

Start rolling upgrade task

Update launch
configuration

Sort instances

Status info

Rolling upgrade task
completed

Remove and deregister
old instance from ELB

New instance ready and
registered with ELB

Terminate old instance

Wait for ASG to start new
instance

1

2

3

4

5

6

7

8

9

Fig. 1: Procedure of rolling upgrade by Asgard.

which step the process is. When the process is between
Step 5 and Step 8 in Fig. 1, the metrics will be impacted
by rolling upgrade. When a log line indicating Step 9
appears, we can know that there will be no more impact
from rolling upgrade. Similarly, we can also know which
applications are running at the same time.

4 BASIC LEARNING AND STREAMING

4.1 Features

As we have known in Section 3.1.1, there could be 54
features from CloudWatch metrics in 40 types. However,
not all of them are useful, since some metrics are not
relevant to instances and cannot be impacted by anoma-
lies. We are only interested in group-level (ASG in our
scenarios) metrics and instance-level metrics, because
these metrics can be impacted by anomalies. The metrics
of CPU and network are always available in most public
clouds and sensitive to anomalies. Hence, CPUUtilisa-
tion, NetworkIn, and NetworkOut are all adopted as
features. Each of them has its maximum value, minimum
value, and average value per minute. Thus, there are
9 features. We also examined other metrics that are
valued in real numbers, but their weights in the model
trained by SVM are very small and hence we only chose
the 9 features. We also took into account two types of

0 3 0 6 0 9 0 1 2 0 1 5 0
2 0
4 0
6 0
8 0

1 0 0
0

3 8 0 0

7 6 0 0

1 1 4 0 0

0

1 3 0 0 0

2 6 0 0 0

3 9 0 0 0

 D1

S a m p l e s

C P U U t i l i s a t i o n A v e r a g e

N e t w o r k I n A v e r a g e

N e t w o r k O u t A v e r a g e

0 3 0 6 0 9 0 1 2 0 1 5 00
2 0
4 0
6 0
8 0

1 0 00
2 0
4 0
6 0
8 0

1 0 00
2 0
4 0
6 0
8 0

1 0 0

S a m p l e s

Fig. 2: Examples of metrics data. The top figure shows
only three different metrics for a mix of rolling upgrade,
background applications, and anomalies. The bottom
one shows the different CPU utilisations for only back-
ground applications, only rolling upgrade, and idle sys-
tem. A number i along X-axis indicates the ith sample.
Y-axis is the value of a metric. For CPUUtilisation, it is
CPU usage and for Network it is the number of bytes.

background applications: CPU-intensive and Network-
intensive applications. Some examples are shown in
Fig. 2. The triangles represent the anomalies. Since the
top three figures share the same horizontal axis and the
anomalies are among the samples, the triangles are only
shown once along the horizontal axis. As we can see it is

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETC.2016.2520883, IEEE
Transactions on Emerging Topics in Computing

ACCEPTED BY IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 5

hard to find a pattern that characterises anomalies in the
metrics. The bottom three figures show different system
environments, only rolling upgrade, heavy application
workload, and light application workload. For the metric
of CPUUtilisation, we can clearly see the difference in the
magnitude under different system environments. This
phenomenon testifies that using the information from
the logs can simply distinguish the metrics data from
different environments.

We also plot the three exemplar metrics into a scatter
matrix in Fig. 3. It is easy to observe that there is
no obvious correlation except between NetworkIn and
NetworkOut. When anomalies appear, only a very small
number of requests will be lost and this can result
in NetworkIn being greater than NetworkOut slightly.
After the other healthy instances start to receive requests,
the data of two metrics will be fully linearly related
again. Moreover, the aggregated values almost make this
change invisible. Since the change of the correlation is
very small, it is impossible to utilise this phenomenon
to detect anomalies. Although we cannot show all the
plots due to space limit, one can easily conclude that
the aggregated metrics do not have pair-wise correlation
of metrics in different types. As a result, the correlation
among the metrics in the same type is not helpful,
while the metrics in different types do not have obvious
correlation. This implies that simple statistical detection
based on correlations cannot work well.

CPUUtilisation NetworkIn NetworkOut

CP
UU

tili
sa
tio
n

Ne
tw
or
kI
n

Ne
tw
or
kO

ut

Fig. 3: A scatter matrix.

Note that, there is a metric named GroupInServiceIn-
stances, which indicates the number of physically healthy
instances in ASG. It is indeed a useful indicator for
the anomalies that cause detectable unhealthy instances,
although this metric is not real-time either. But for soft-
ware and service anomalies, this metric is misleading,
since the anomalies only disable software and service
but the instances are still healthy. Thus, the anomalies are
not detectable to EC2 health checker. Hence, we cannot
use this metric as a feature because it may cause many

unnecessary false negatives.

4.2 Algorithm and Training
Since there is no obvious pair-wise correlation between
different types of metrics, and the correlation between
the metrics in the same types is not helpful for detection,
we initially have to consider all the features of metrics,
although we finally lock on 9 original features. Thus all
the features form a high-dimensional feature space, for
which Support Vector Machine (SVM) has been known
as a well suitable machine learning algorithm. There are
several existing tools that can be employed for training,
but we only use LibSVM toolbox in Matlab in this paper.

Fig. 2 has shown that different software and system
environments generate different signals of metrics. It
is possible to use the information from logs as new
features, but most of the information is binary which
indicates whether or not an operation or application
is running, and the binary information is rigid and
may cause significant overfitting. Hence, we use the
binary log information as the indicators, each of which
corresponds to a specific classifier that has been trained
from SVM. Hence, we need to collect the monitor data
from separated scenarios to train different classifiers. At
runtime, by monitoring the log lines we can select a
classifier. For the purpose of clearly presenting our idea,
the implementation in this paper covers 4 cases, clear
background (idle system), only background applications,
only rolling upgrade, and a mixture of applications and
rolling upgrade, all of which suffer from the anomalies,
i.e., injected faults.

4.3 Data Streaming and Detection
As we have introduced in Section 3.1.1, the sampled
data can be fetched through AWS API. There are some
software tools that support data streaming and queue-
ing, and can be deployed as a streaming data service
as summarised in Section 2. In this paper, we built our
own data streaming service by simply calling the API.
After an instance of data is fed to a selected classifier,
the output of this classifier tells if there is any anomaly
in the current system. The selection is determined by
the system state that is indicated by log lines, and this
implies that the log information should be retrieved and
synchronised with the monitored metrics data. We also
implemented distributed log processors for that purpose.
The implementation of detection is shown in Fig. 4.

We will see in Section 6 that the prediction on each
instance of data is too poor to be useful in practice.
Our experiments on AWS testifies that simply using the
monitored metrics data sampled by CloudWatch to train
SVM models and detect anomalies does not work so
well, even if the log information is supplied.

5 IMPROVEMENT

Because detecting anomalies on data points cannot
achieve satisfying detection results, we must improve

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETC.2016.2520883, IEEE
Transactions on Emerging Topics in Computing

ACCEPTED BY IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 6

Cloud Resources Cloudwatch

Operation Log
Operation LogOperation and
Application Log

Data retrival
classifier

classifier

classifier

classifier

[{"Label":"CPUUtilization","Datapoints
":[{"timestamp":"December 18, 2014
15:38:06 PM","sampleCount":
30.0,"average":
56.098000000000006,"sum":
1682.9400000000003,"minimum":
52.46,"maximum":
61.02,"unit":"Percent"},
{"timestamp":"December 18, 2014
15:38:06 PM","sampleCount":

[2014-12-18 15:37:31,369]
[Task:Pushing ami-ad059597 into
group hadoopcluster--firstASG for
app hadoopcluster]
com.netflix.asgard.Task
2014-12-18_15:37:31 135: {Ticket:
null} {User: null} {Client: localhost
0:0:0:0:0:0:0:1%0} {Region: ap-
southeast-2} [Pushing ami-ad059597
into group hadoopcluster--firstASG
for app

Log processor

Stream
ing D

ata

Fig. 4: Implementation of data streaming and detection.

the above technique. In this section, we first analyse
why detecting on data points is not acceptable and then
we introduce our improvement, in which we train the
classifiers and detect anomalies on a predefined time
interval, which is called window. Thus, the data fed to the
classifiers are sampled by CloudWatch every w minutes
and w is the size of window. In this paper, we only
adopt fixed windows rather than dynamic batch mode
processing of streaming data e.g. in [36].

5.1 Information from The Metrics
As we have introduced about CloudWatch sampling and
data aggregation in Section 3.1.1, it is not realistic to de-
tect anomalies in real-time and inherently on data points,
because we cannot arbitrarily monitor a system and
access infrastructure data. AWS has been a successful
public cloud platform, and hence CloudWatch represents
the current technology of infrastructure data service in
public clouds. That is, user-accessible monitored metrics
data and logs are hardly applicable by simply hiring
machine learning for anomaly detection in DevOps.

Although real-time anomaly detection has become
intractable, we can provide an efficient detection over a
longer window size. On the longer scale of time, we can
have sufficient information for anomaly detection. For
example, there will be 5 data instances for each feature
if we set the window size to be 5. It is always true that
more information results in better understanding of a
system. If CloudWatch could provide aggregated mon-
itored data within seconds, we could detect anomalies
exactly every minute.

In the following, we look into the implication of statis-
tics and information theory for the adoption of moving
average and entropy as new features.

5.2 Moving Average
In statistics, there are many ways to obtain data charac-
teristics from the data within a window. With respect to
the implementation of our data streaming and learning,
we choose simple moving average (SMA), which is the
unweighted mean of the w numbers in a window. Let dt
be the number at the tth minute and then dt+w−1 is the
number at the (t + w − 1)th minute from CloudWatch.
Consequently SMA is exactly

SMA =

∑w−1
i=0 dt+i

w
. (1)

SMA captures the average change of data in different
windows, but it looses the information of peaks and
valleys in the original signal. Fortunately, CloudWatch
has the maximum, the minimum, and the average of
original signal separately. Thus, we compute SMA for
each metric, and then we use all SMAs as the features
in additional to the original monitored data.

5.3 Entropy
Only moving average is not sufficient to reflect the
impacts of anomalies. The metrics can be impacted
by underlying infrastructure, running virtual machines,
applications, operations, and anomalies. The value of a
metric is usually random. Each metric can be treated as

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETC.2016.2520883, IEEE
Transactions on Emerging Topics in Computing

ACCEPTED BY IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 7

a random variable. As shown in the following, when
anomalies impact on the same system, the randomness
of a metric should be likely higher than before anomalies
happen, provided that anomalies are independent of the
other factors impacting the metrics.

In information theory, Shannon’s Entropy [37] is a
widely used measurement that captures the degree of
dispersal or concentration of random variable distribu-
tions [26], [38]. For a discrete2 random variable X with
possible values x1, x2..., xn, its entropy is:

H(X) = −
n∑

i=1

P (xi) logP (xi), (2)

where P (xi) is the probability mass function of outcome
xi. logP (xi) is called surprisal or self-information of xi. In
the following, we analyse why and how entropy can be
a good feature.

Sampling a metric is equal to taking a value of corre-
sponding random variable. For the metrics of CPU utili-
sation and network, even there is no running application
and operation, the values of the metrics are not always
zero and show a certain randomness, because at least the
virtual machines need to maintain running status and
EC2 heath checker monitors them every a time period.
The values of the metrics are all aggregated data, to
which each instance independently contribute. Generally
speaking, in many cases we can treat the impact of an
anomaly on a metric as an independent random variable.
In the following, we assume this independency, and then
discuss and justify the assumption.

In the literature, there has been rich theory for us to
explore if entropy can be a feature in our detection. Let
XM denote the random variable that represents a metric,
and let Xa be the impact from an anomaly onto XM . If
XM and Xa are independent, when the anomaly is im-
pacting the metric, the metric value should be XM +Xa.
Note that, the impact is always positive, because when
an anomaly takes an instance out of the service the
other instances have to process more workload and
thus the metrics like CPUUtilisation, NetworkIn and
NetworkOut on instances must be increased. Then, we
are interested in the difference between H(XM+Xa) and
H(XM).

Theorem 1 When XM and Xa are independent, we always
have H(XM +Xa) ≥ H(XM).

Proof This can be proved from the property of Entropy
of a sum [37]: Let X and Y be independent random
variables. Let Z = X + Y . H(Z) ≥ max{H(X), H(Y)}.
Then it is obvious to conclude it.

Entropy of a sum is an elementary property of entropy and
an exercise in [37]. The proof of this property has many
versions in the literature such that we omit the proof in
this paper. From the theorem, we can easily conclude the
following corollary.

2. because the metrics are sampled always in discrete time.

Corollary 2 New anomalies will likely increase the entropy
of metric value; If recoveries can dismiss completely the impact
of anomalies on the metric, the entropy will likely be decreased,
only if all of them are independent of other factors that impact
the metric too, and the other factors are stable.

Proof XM represents the random value of a metric,
which is a synthesis of many factors. Let Xa denote a
random impact of an anomaly on the metric value. In
terms of Theorem 1, for a new anomaly, the entropy
of XM + Xa will remain the same or be increased.
When this anomaly is recovered, as recoveries eliminate
the impacts of anomalies on the metrics, the random
value of the metric is still XM . Thus, the entropy of the
metric may decrease or keep in the same. Note that the
independence is needed to guarantee Theorem 1 such
that it is also necessary here. Theorem 1 also implies
that XM should not be changed, i.e. the other factors
are stable in a probabilistic sense.

Only if anomalies are independent and can be fully
recovered as requested by Corollary 2, the entropy of the
metric should show certain monotonicity. As we know
that XM is the synthesis of many factors, let XB be the
metric value without anomalies, then XM = XB +Xa1+
Xa2 + · · · . The above theorem and corollary are true,
only if XB is fixed. XB represents the random impact
of workload, applications, and the background except
anomalies. When the software and system environment
changes, the above reasoning will not be true any longer.
Fortunately, we have the log information that switches
the classifiers to different environments. Only if the
switch works well, are Theorem 1 and Corollary 2 true
for each classifier in the corresponding environment.
Besides the relation, Theorem 3 implies that the entropy
cannot always increase and must be bounded in terms
of the number of possible metric values. This theorem
can help us compute the approximation of entropy in
the following.

Theorem 3 (Theorem 2.6.4 [37]) Let X be a random vari-
able and |X | be the number of elements in the range of X .
H(X) ≤ log |X |.

From the above theoretical analysis, we know that
more anomalies will increase entropy such that the en-
tropy of a metric is a useful feature for SVM to measure
if anomalies have impacted the randomness of a metric.
However, it is too optimistic to assume that we can know
the probabilities required in (2). Because we only have
the monitored metrics data, in this paper we choose the
approximation of entropy.

For each metric, we can know the maximum value
Vmax and the minimum value Vmin. From Vmin to Vmax,
we partition the real line into a number of segments
and the number should be as big as possible in terms
of Theorem 3. In practice, we set the number just bigger
than the window size, because there are at most w values
in a window. The total number of the segments is S and
a segment is si. For each si, the minimum of metric value

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETC.2016.2520883, IEEE
Transactions on Emerging Topics in Computing

ACCEPTED BY IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 8

is vimin and the maximum is vimax. Given w metric value
in a window, we count on the occurrence of si, that is,
for a metric value vi, if vimin ≤ vi ≤ vimax, si appears
once. Let ni be the frequency count of si, then we can
calculate the entropy of discrete random variable s in a
window as follows:

H(s) = −
S∑

i=1

ni

w
log

ni

w
, (3)

The entropy calculated from the frequency count is used
as a feature for SVM. Eq. 3 is a kind of histogram esti-
mator, which is biased [37]. There are other useful prob-
ability density function (pdf) estimation methods. For
example, Gaussian mixture modelling (GMM), where
the expectation maximisation (EM) algorithm is used to
find a maximum-likelihood estimate that approximate
the data pdf. In this paper, we will not go so far, since
this paper focuses on the methodology that we propose
for anomaly detection.

To sum up, we use the entropies of metrics defined
and calculated above as additional features for training
and detection. Thus, the total number of features includ-
ing the features of moving average and entropy becomes
27. Note that, the change of entropy implies the change
of randomness due to anomalies rather than the magni-
tude. An example of SMA and entropy features for the
metric CPUUtilisation is shown in Fig. 5. We also make
some scatter plots, from which we can see the correlation
between different features including the entropies in
Fig. 6, and it is visible that the correlation between the
features is stronger than in Fig. 3. For example, in Fig. 3
the correlation between CPUUtilisation and NetworkIn
is much weaker than that between CPUUtilisation and
the entropy of NetworkIn (H of NetIn) in Fig. 6.

3 0 6 0 9 0 1 2 0 1 5 00
1
2
3
4

2 0
4 0
6 0
8 0

1 0 0

S a m p l e s

E n t r o p y o f C P U U t i l i s a t i o n

S M A o f C P U U t i l i s a t i o n

Fig. 5: New features.

5.4 Discussion
In this paper, as shown above, we have made some
assumptions. In this section, we discuss and justify the

H of Utilisation

Ut
ilis

at
io

n
Ne

tIn

H of NetIn Utilisation

H
of

 N
et

In
H

of
 N

et
O

ut

Fig. 6: Scattered Data of features. H refers to entropy,
NetIn is NetworkIn, and CPUUtilisation is shorted as
just Utilisation.

assumptions.
We have assumed that all the instances are providing

a service independently. There are many systems and
applications in this kind, e.g. a server farm for web ser-
vices. Thus, anomalies impact the instance level metrics
and the aggregated metrics independently. Our method
does not suit the case that the instances are not indepen-
dent. For example, there exists a critical instance. When
this critical instance fails, the whole system will stop.
Then, some metrics such as CPUUtilisation, NetworkIn
and NetworkOut will simultaneously decrease to their
minimum. For this case, the symptom of anomalies is so
obvious that it does not need an effort of detection.

We also have assumed that a recovery can completely
remove the impact of an anomaly on a metric. From our
analysis, only in this case will anomalies increase metric
entropy such that entropy can be used as a feature. For
independent instances, this assumption is fair in clouds
because to recover an anomaly it is only necessary to
replace the instance where the anomaly is.

The system design as shown in Fig. 4 requires that the
system statuses can be classified and indicated by logs.
We assume that the number of system statuses is not too
big to train the classifiers. This assumption is realistic for
most web applications deployed in public clouds.

6 EMPIRICAL STUDIES

In order to evaluate our proposed anomaly detection, a
series of experiments have been performed in AWS. In
this section, we report the experimental results in terms
of the accuracy, the precision and recall.

6.1 Experiment Deployment and Setting
A content management system is deployed to an ASG
(Auto Scaling Group) containing 8 identical EC2 in-
stances3 that can be upgraded in a rolling upgrade

3. In order to run our experiments on a real public cloud, the
experiments need financial support and hence the number of instances
cannot be very big, since we need to run the long term experiments
for data collection in different cases.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETC.2016.2520883, IEEE
Transactions on Emerging Topics in Computing

ACCEPTED BY IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 9

fashion. We used Siege, an http load testing and bench-
marking utility, to generate user requests as a back-
ground workload for our experiments. We performed
rolling upgrade with Asgard on the EC2 instances
through heavily-baked upgrading approach, which uses
pre-baked images to replace existing VM instances. To
simulate a complex ecosystem, we ran another two
background applications, a CPU-intensive application
(compressing data) and a Network-intensive (receiving
and responding data requests) application. Both of them
also produce logs. A fault injection program is running
on the side to inject EC2 instance faults that can halt
instances. An anomaly in AWS (micro/small instances,
heavily-baked images, and using EC2 health checker)
can last even more than 10 minutes. Hence, we create
the anomalies with an interval of 15 minutes, that is, we
do not allow too many overlaps among anomalies, since
more overlapped anomalies are easier to detect.

A particular system and application context may have
a bias to some factors, for example the number and the
frequency of anomalies, the overlap among background
applications and operations, and the types of anomalies
and so on. In order to cover most possible cases, the
setting of our experiments tries to mimic possible system
environments and provides different number of fault
injections.

We intertwine the two applications and rolling up-
grade operation in different overlaps. Instance faults
are injected randomly. The granularity, G, of the rolling
upgrade is the number of instances that can be upgraded
together. We set the granularity to be 1 or 2. Eventually,
we have many groups of experiments, each of which
lasts around 2000 minutes. A half group of data are
for training the classifiers, and the other half is for
verifying the detection. Note that the experiment setting
twists rolling upgrade, applications, and fault injections
to be more complicated than most cases in reality. If
we can achieve satisfactory results on this, we can deal
with most real cases easily. Once again, our detection
is designed to deal with the same or similar impacts
of DevOps operations and anomalies on the metrics.
We calculated the accuracy, the precision and the recall
from the experimental results, and compared different
experiment settings. P is the number of all positives and
N is the number of all negatives. TP is the number of
true positives, TN is the number of true negatives, FP
is the number of false positives, and FN is the number
of false negatives. As formally defined in the literature,

Accuracy =
TP + TN

P +N
, (4)

Precision =
TP

TP + FP
, (5)

and
Recall =

TP

TP + FN
. (6)

Note that false positive rate is just 1− Precision.

1 3 5 7 9
0

2 0
4 0
6 0
8 0

1 0 0

%

w

 A c c u r a c y
 P r e c i s i o n
 R e c a l l

Fig. 7: Idle system.

1 3 5 7 9
0

2 0
4 0
6 0
8 0

1 0 0

%

w

 A c c u r a c y
 P r e c i s i o n
 R e c a l l

Fig. 8: Only rolling upgrade
(G = 1).

1 3 5 7 9
0

2 0
4 0
6 0
8 0

1 0 0

%

w

 A c c u r a c y
 P r e c i s i o n
 R e c a l l

Fig. 9: Only applications.

1 3 5 7 9
0

2 0
4 0
6 0
8 0

1 0 0

%

w

 A c c u r a c y
 P r e c i s i o n
 R e c a l l

Fig. 10: Applications and
rolling upgrade (G = 2).

6.2 Experiment Results

In all the experiments, w = 1 is the basic detection
without SMA and entropy features in Section 4. For
w greater than 1, the detection uses SMA and entropy
features. When w > 1, the training and the detection
are for the windows. Thus we need to label windows
during training process. For example, when an anomaly
happens in the time t = 2, for w = 3 the windows [0, 2],
[1, 3], and [2, 4] are all labeled to be with anomalies.

As we can observe, the precision and the recall at
w = 1 are very low, while the accuracy at w = 1 is
high. Because we only injected an anomaly every 15
minutes and hence P/N is small (CloudWatch samples
the metrics every minute), a high accuracy implies that
lots of true negatives are predicted. Then we can know
that few true positives can be detected. As we have
analysed above, it is not realistic to detect anomalies
on 1 minute scale in this paper. The results at w = 3
are not good either, because the window size is short
and there is no sufficient information for the detection
even if we have adopted SMA and entropy features.
The situation becomes much better when the window
size becomes greater than 5. In nearly all figures, the
accuracy keeps deceasing. We use the following example
to explain this phenomenon: Let 0 represent the normal
and 1 the abnormal. Given a series of streaming events
marked by 1 or 0, e.g. 00100100, without using window
(actually w = 1), if we loose all “1”s, the accuracy is 75%,
and with w = 3 the streaming becomes 111111, if we also
loose two “1”s, the accuracy is 66.67%, and while the
precision and recall are dramatically increased. Under
such a condition, only if we loose the first ‘1”, we miss
a real anomaly, and if we loose the others, we can still
correctly predict anomalies during the time periods.

Fig. 7-10 are the results from completely separated

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETC.2016.2520883, IEEE
Transactions on Emerging Topics in Computing

ACCEPTED BY IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 10

1 3 5 7 9
0

2 0
4 0
6 0
8 0

1 0 0
%

w

 A c c u r a c y
 P r e c i s i o n
 R e c a l l

Fig. 11: Mix of all with log
information (G = 2).

1 3 5 7 9
0

2 0
4 0
6 0
8 0

1 0 0

%

w

 A c c u r a c y
 P r e c i s i o n
 R e c a l l

Fig. 12: Mix of all without log
information (G = 2).

1 3 5 7 9
0

2 0
4 0
6 0
8 0

1 0 0

%

w

 A c c u r a c y
 P r e c i s i o n
 R e c a l l

Fig. 13: Only applications.

1 3 5 7 9
0

2 0
4 0
6 0
8 0

1 0 0
%

w

 A c c u r a c y
 P r e c i s i o n
 R e c a l l

Fig. 14: Applications and
rolling upgrade (G = 1).

1 3 5 7 9
0

2 0
4 0
6 0
8 0

1 0 0

%

w

 A c c u r a c y
 P r e c i s i o n
 R e c a l l

Fig. 15: Mix of all without log
information (G = 1).

1 3 5 7 9
0

2 0
4 0
6 0
8 0

1 0 0

%

w

 A c c u r a c y
 P r e c i s i o n
 R e c a l l

Fig. 16: Mix of all without log
information (G = 1).

scenarios, where the system is idle, runs only rolling
upgrade, runs only applications, or runs applications
and rolling upgrade. We test our anomaly detection in
each scenario and thus there is no need to switch the
classifiers. In Fig. 7 and Fig. 8, the detection is not satisfy-
ing because when there is no workload, the performance
metrics can be impacted by anomalies slightly.4 A rolling
upgrade with the granularity of 1 impacts the system
as the anomalies, which do not appear too frequently
as mentioned above. Because the impact of loosing VM
instances is hardly observed if there is no workload,
we can see that rolling upgrade leads to more false
negatives, i.e. low recall, for the detection recognises the
impacts from anomalies as those from rolling upgrade.

In Fig. 9 and Fig. 10 the detection can achieve mean-
ingful precision and recall after w = 5, because when
there is workload, an anomaly impacts the metrics heav-
ily. Upgrading one instance at a time is almost the same
as an anomaly disabling an instance, while upgrading
more will make the detection harder since we statistically

4. Load-balancer can move workload from problematic VMs to
healthy ones, and then the metrics such as CPUUtilisation can be
increased due to anomalies. If there is no workload, the impact on
those metrics is hardly observed.

1 3 5 7 9 1 1 1 3 1 5 1 7 1 9 2 1
0

2 0
4 0
6 0
8 0

1 0 0

%

w

 A c c u r a c y
 P r e c i s i o n
 R e c a l l

Fig. 17: Longer window sizes (G = 2).

allow only one anomaly. This can be observed by com-
paring Fig. 10 to Fig. 14, smaller granularity resulting
in better detection. For the normal scenario, a mix of
the different cases above, the log can indicate the cases
and then the best classifier can be selected. With the log
indicated switch, the best accuracy, the precision, and
the recall reach more than 90% for the granularity of 1 as
shown in Fig.??, and for granularity of 2, they are around
80% as shown in Fig.11. The false positive rate can be
reduced to 10% in the best case. Generally speaking, the
results depend on how the system, the rolling upgrade,
and the application are running. In most cases similar to
our settings, i.e. a system with active applications, rolling
upgrade, and little idle time, our detection is effective
usually.

We also test the detection without the log indicator.
The results are in Fig. 12 and Fig. 16. It is easily observ-
able that the precision and the recall are too poor to be
useful in practice. From all the above experiments, one
may conclude that if the length of window is sufficiently
long the detection performance will become better and
better. This is true for frequently appearing anomalies.
However, longer windows imply longer detection delay.
If we can achieve a satisfying detection within a short
window, a shorter window is always preferable. When
anomalies appear not so often, longer windows may not
be beneficial and the gain is marginal as shown in Fig. 17,
in which the average interval between anomalies is 30
minutes and the granularity is 2.

There are also some cases, where our detection cannot
work well such as when many metrics data reach their
maximum. One example is the heavy workload, which
makes CPU Utilisation reach its maximum. In this case,
the metric of CPUUtilisation will not be effective any
longer, and the detection has to rely on other metrics.
Thus, the results cannot be as good as the system en-
vironment of normal workload. We will not show more
stress tests for our detection in this paper.

7 CONCLUSION

In this paper, we propose an approach that makes use of
log information to select different classifiers, which are

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETC.2016.2520883, IEEE
Transactions on Emerging Topics in Computing

ACCEPTED BY IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 11

trained with monitored metrics data via SVM, in public
clouds during DevOps operations. We specify our work
with a successful public cloud, AWS, and a representa-
tive DevOps operation, rolling upgrade. Through both
our analysis on the metrics data and the experiments,
we can conclude that non-intrusive anomaly detection
for data points, i.e. detection for 1 minute interval, is
not realistic in AWS during DevOps. Hence, we make
an improvement on the basic streaming and learning
approach by adopting simple moving average and en-
tropy features on longer detection windows. The experi-
ments show that our proposed approach can achieve the
accuracy, the precision and the recall no less than 90%
with the low false positive rate around 10% for 9-minute
window. Hence, we conclude that without low-level and
real-time information, only using the data provided by
cloud facilities to detect anomalies non-intrusively can
be achieved in practice, but the price is that the detection
is also not real-time and the delay longer than 3 minutes
is inevitable for DevOps operations in public clouds.

Provided that a cloud-based system can be monitored
and sampled more frequently and accurately, the result
in this paper can be dramatically improved to be real-
time. As we can know from this paper, detailed informa-
tion about DevOps, for example the procedure of rolling
upgrade, is very helpful for anomaly detection. Hence,
our future direction on anomaly detection for DevOps
is information retrieval and modelling of DevOps oper-
ations.

ACKNOWLEDGMENTS

Guoqiang Li is supported the National Natural Science
Foundation of China (No. 61472240, 91318301). NICTA
is funded by the Australian Government through the
Department of Communications and the Australian Re-
search Council through the ICT Centre of Excellence
Program.

REFERENCES

[1] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection : A
survey,” ACM Computing Surveys, September 2009.

[2] S. Zhang, I. Cohen, J. Symons, and A. Fox, “Ensembles of models
for automated diagnosis of system performance problems,” in
The 45th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN2005), Yokohama, Japan, 2005, pp. 644–
653.

[3] D. Oppenheimer, A. Ganapathi, and D. A. Patterson, “Why do in-
ternet services fail, and what can be done about it?” in Proceedings
of the 4th Conference on USENIX Symposium on Internet Technologies
and Systems - Volume 4. USENIX Association, 2003.

[4] S. Pertet and P. Narasimhan, “Causes of failure in web applica-
tions,” CMU, Tech. Rep. CMU-PDL-05-109, 2005.

[5] V. Kumar, K. Schwan, S. Iyer, Y. Chen, and A. Sahai, “A state-
space approach to sla based management,” in Network Operations
and Management Symposium, 2008. NOMS 2008. IEEE, April 2008,
pp. 192–199.

[6] V. Kumar, B. Cooper, G. Eisenhauer, and K. Schwan, “iman-
age: Policy-driven self-management for enterprise-scale systems,”
in Middleware 2007, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2007, pp. 287–307.

[7] [Online]. Available: https://aws.amazon.com/

[8] L. Wang, J. Tao, R. Ranjan, H. Marten, A. Streit, J. Chen, and
D. Chen, “G-hadoop: Mapreduce across distributed data centers
for data-intensive computing,” Future Generation Compter Systems,
vol. 29, no. 3, pp. 739–750, 2013.

[9] L. Wang, H. Geng, P. Liu, K. Lu, J. Kolodziej, R. Ranjan, and A. Y.
Zomaya:, “Particle swarm optimization based dictionary learning
for remote sensing big data,” Knowledge-based Systems, vol. 79, pp.
43–50, 2015.

[10] W. Song, L. Wang, R. Ranjan, J. Kolodziej, and D. Chen, “Particle
swarm optimization based dictionary learning for remote sensing
big data,” IEEE Systems Journal, vol. 9, no. 2, pp. 416–426, 2015.

[11] [Online]. Available: http://theagileadmin.com/what-is-devops/
[12] J. Humble and D. Farley, Continuous Delivery: Reliable Software Re-

leases through Build, Test, and Deployment Automation, ser. Addison-
Wesley Signature Series (Fowler). Pearson Education, 2010.

[13] [Online]. Available: http://techblog.netflix.com/2012/06/
asgard-web-based-cloud-management-and.html

[14] L. Wang, S. U. Khan, D. Chen, J. Kolodziej, R. Ranjan, C.-Z. Xu,
and A. Y. Zomaya:, “Energy-aware parallel task scheduling in
a cluster,” Future Generation Compter Systems, vol. 29, no. 7, pp.
1661–1670, 2013.

[15] [Online]. Available: http://www.hp.com/go/sim
[16] [Online]. Available: http://www.ibm.com/tivoli
[17] [Online]. Available: http://www.nagios.org/
[18] [Online]. Available: http://www.nimsoft.com
[19] S. Agarwala, F. Alegre, K. Schwan, and J. Mehalingham, “E2eprof:

Automated end-to-end performance management for enterprise
systems,” in Dependable Systems and Networks, 2007. DSN ’07. 37th
Annual IEEE/IFIP International Conference on, June 2007, pp. 749–
758.

[20] G. Bronevetsky, I. Laguna, B. de Supinski, and S. Bagchi, “Auto-
matic fault characterization via abnormality-enhanced classifica-
tion,” in Dependable Systems and Networks (DSN), 2012 42nd Annual
IEEE/IFIP International Conference on, June 2012, pp. 1–12.

[21] B. Sharma, P. Jayachandran, A. Verma, and C. Das, “Cloudpd:
Problem determination and diagnosis in shared dynamic clouds,”
in Dependable Systems and Networks (DSN), 2013 43rd Annual
IEEE/IFIP International Conference on, June 2013, pp. 1–12.

[22] L. Cherkasova, K. M. Ozonat, N. Mi, J. Symons, and E. Smirni,
“Anomaly? application change? or workload change? towards
automated detection of application performance anomaly and
change.” in DSN. IEEE Computer Society, 2008, pp. 452–461.

[23] R. S. Michalski, I. Bratko, and A. Bratko, Eds., Machine Learning
and Data Mining; Methods and Applications. New York, NY, USA:
John Wiley & Sons, Inc., 1998.

[24] S. Papadimitriou, J. Sun, and C. Faloutsos, “Streaming pattern
discovery in multiple time-series,” in Proceedings of the 31st Inter-
national Conference on Very Large Data Bases, ser. VLDB ’05, 2005,
pp. 697–708.

[25] K. Carter and W. Streilein, “Probabilistic reasoning for streaming
anomaly detection,” in Statistical Signal Processing Workshop (SSP),
2012 IEEE, Aug 2012, pp. 377–380.

[26] C. Wang, V. Talwar, K. Schwan, and P. Ranganathan, “Online
detection of utility cloud anomalies using metric distributions,”
in Network Operations and Management Symposium (NOMS), 2010
IEEE, April 2010, pp. 96–103.

[27] [Online]. Available: https://spark.apache.org/
[28] [Online]. Available: https://spark.apache.org/streaming/
[29] [Online]. Available: https://storm.apache.org/
[30] J. Dean and L. A. Barroso, “The tail at scale,” Commun.

ACM, vol. 56, no. 2, pp. 74–80, Feb. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2408776.2408794

[31] T. Dumitraş and P. Narasimhan, “Why do upgrades fail and what
can we do about it?: Toward dependable, online upgrades in
enterprise system,” in Middleware, 2009, pp. 18:1–18:20.

[32] V. Gramoli, L. Bass, A. Fekete, and D. Sun, “Rollup: Non-
disruptive rolling upgrade with fast consensus-based dynamic
reconfigurations,” IEEE Transactions on Parallel and Distributed
Systems, 2016.

[33] D. Sun, L. Bass, A. Fekete, V. Gramoli, A. Tran, S. Xu, and L. Zhu,
“Quantifying failure risk of version switch for rolling upgrade on
clouds,” in Proceedings of International Conference on Big Data and
Cloud Computing, 2014.

[34] D. Sun, D. Guimarans, A. Fekete, V. Gramoli, and L. Zhu, “Multi-
objective optimisation for rolling upgrade allowing for failures in
clouds,” in Proceedings of IEEE Symposium on Reliable Distributed
Systems (SRDS), 2015.

https://aws.amazon.com/
http://theagileadmin.com/what-is-devops/
http://techblog.netflix.com/2012/06/asgard-web-based-cloud-management-and.html
http://techblog.netflix.com/2012/06/asgard-web-based-cloud-management-and.html
http://www.hp.com/go/sim
http://www.ibm.com/tivoli
http://www.nagios.org/
http://www.nimsoft.com
https://spark.apache.org/
https://spark.apache.org/streaming/
https://storm.apache.org/
http://doi.acm.org/10.1145/2408776.2408794

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETC.2016.2520883, IEEE
Transactions on Emerging Topics in Computing

ACCEPTED BY IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 12

[35] X. Xu, L. Zhu, L. Bass, I. Weber, and D. Sun, “Pod-diagnosis: Error
diagnosis of sporadic operations on cloud applications,” in DSN,
2014.

[36] W. Sun, Y. Zhang, and Y. Inoguchi, “Dynamic task flow schedul-
ing for heterogeneous distributed computing: algorithm and strat-
egy,” IEICE Transaction on Information and Systems, vol. 90, no. 4,
pp. 736–744, 2007.

[37] T. M. Cover and J. A. Thomas, Elements of Information Theory
(Wiley Series in Telecommunications and Signal Processing). Wiley-
Interscience, 2006.

[38] P. Bodik, A. Fox, M. J. Franklin, M. I. Jordan, and D. A. Patterson,
“Characterizing, modeling, and generating workload spikes for
stateful services,” in Proceedings of the 1st ACM Symposium on
Cloud Computing, ser. SoCC ’10. New York, NY, USA: ACM,
2010, pp. 241–252.

Daniel Sun (S’06-M’08) received his Ph.D. in
information science from Japan Advanced In-
stitute of Science and Technology (JAIST) in
2008. From 2008 to 2012, he was an assistant
research manager in NEC central laboratories in
Japan. In 2013 he joint National ICT Australia
as a researcher. He is also a conjoint lecturer in
School of Computer Science and Engineering,
the University of New South Wales, Australia.
His current research interests include system
modelling and evaluation, algorithms and anal-

ysis, reliability, energy efficiency, and networking in parallel and dis-
tributed systems and big data.

Min Fu is currently a full-time PhD student in
both NICTA and the University of New South
Wales (UNSW). His current research topic is
”Recovery for Operations on Cloud Applica-
tions”. Prior to starting his PhD study, he has
worked in several Singapore IT industry compa-
nies for more than 5 years as software engineer,
system analyst, analyst developer, etc.

Liming Zhu is the Research Director of Soft-
ware and Computational Systems in Data61,
CSIRO, Australia. He holds conjoint positions
at University of New South Wales (UNSW) and
University of Sydney. He is a committee member
of the Standards Australia IT -015 (system and
software engineering) contributing to ISO/SC7.
His research interests include software architec-
ture and dependable systems.

Guoqiang Li received his BS degree, MS de-
gree, Ph.D. degree from Taiyuan University of
Technology in 2001, Shanghai Jiao Tong Uni-
versity in 2005, and Japan Advanced Institute
of Science and Technology in 2008, respec-
tively. He worked as a postdoctoral research
fellow in Graduate School of Information Sci-
ence, Nagoya University, Japan during 2008-
2009, and as an assistant professor in School of
Software, Shanghai Jiao Tong University, during
2009-2013. He now is an associate professor,

School of Software, Shanghai Jiao Tong University, China.

Qinghua Lu is a lecturer at Department
of Software Engineering, China University of
Petroleum, Qingdao, China. She received her
PhD from University of New South Wales
(UNSW) in 2013. Her research interests include
dependability of cloud computing, architecture of
big data applications, and service engineering.

