
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 1

A Hierarchical Correlation Model for Evaluating
Reliability, Performance, and Power

Consumption of a Cloud Service
Xiwei Qiu, Yuanshun Dai, Member, IEEE, Yanping Xiang, and Liudong Xing, Senior Member, IEEE

Abstract—Cloud computing is a new emerging technology
aimed at large-scale resource sharing and service-oriented com-
puting. To achieve the efficient use of cloud resources for
supporting a cloud service, many important factors need to be
considered, particularly, reliability, performance, and power con-
sumption of the cloud service. Evaluation of these metrics is
essential for further designing rational resource scheduling strate-
gies. However, these metrics are closely related; they do affect one
another. The cloud system should consider correlations among
the metrics to make more precise evaluation. Most of the exist-
ing approaches and models handle these metrics separately, and
thus they cannot be used to study the correlations. This paper
presents a new hierarchical correlation model for analyzing and
evaluating these correlated metrics, which encompasses Markov
models, queuing theory, and a Bayesian approach. Various dis-
tinctive characteristics of the cloud system are investigated and
captured in the model, such as multiple virtual machines (VMs)
hosted on the same server, common cause failures of co-located
VMs caused by server failures, and logical mapping mechanisms
for multicore CPUs. Moreover, for evaluating and balancing the
tradeoff between performance and power consumption, a trade-
off parameter and a pure profit optimization model are developed
based on the presented correlation model. Numerical examples
are provided.

Index Terms—Cloud computing, cloud reliability, correlation,
hierarchical Markov model, power efficiency.

I. INTRODUCTION

CLOUD computing is a newly developed technology
with numerous novel characteristics, such as large-

scale resource sharing, on-demand resource provisioning,
and service-oriented computing [1], [2]. The use of virtual
machines (VMs) enables safe isolation of co-located appli-
cations and further implements various new service modes,

Manuscript received December 22, 2014; accepted April 20, 2015. This
work was supported in part by the Natural Science Foundation of China under
Grant 61170042, in part by the Fundamental Research Funds for the Central
Universities under Grant ZYGX2011Z001, and in part by the Innovational
Team Project of Sichuan Province under Grant 2015TD0002. This paper was
recommended by Associate Editor H. Tianfield.

X. Qiu, Y. Dai, and Y. Xiang are with the Collaborative
Autonomic Computing Laboratory, School of Computer Science and
Engineering, University of Electronic Science and Technology of China,
Chengdu 611731, China (e-mail: qiu_uestc@aliyun.com; dai@cloudian.org;
yanping_xiang@163.com).

L. Xing is with the Department of Electrical and Computer Engineering,
University of Massachusetts, Dartmouth, MA 02747 USA (e-mail:
ldxing@ieee.org).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMC.2015.2452898

including software as a service (SaaS), platform as a service,
and infrastructure as a service (IaaS) [3]. In real-world sce-
narios, many serious problems existing in the conventional
IT systems can be effectively solved by the cloud system.
For example, the resource utilization of the conventional IT
systems is highly inefficient since most physical servers only
operate at 10%–50% of their full capacity most of the time [4],
and the conventional IT systems usually keep almost all the
servers active even though some of the servers are idle, which
results in a massive waste of power consumption [5], [6].
The cloud system applying VM consolidation can significantly
improve the resource utilization of physical servers. This is not
only has a positive effect on power saving, but also provides
a feasible method to improve service performance.

For providing a stable cloud service while efficiently sav-
ing the consumed power, performance and power consumption
become important metrics of the cloud service that must be
simultaneously taken into account. This is not a trivial issue
since performance and power consumption are mutually cor-
related metrics. For example, more VMs serving users in
parallel can enhance the performance of the cloud service.
However, more VMs also require occupying more physi-
cal resources, which inevitably leads to an increase in the
power consumption. In fact, there exists a complicated trade-
off between the performance and power metrics [7]. The
cloud system requires an important capability of estimating
this tradeoff to further develop optimal resource scheduling
strategies.

Although many recent studies have proposed var-
ious approaches for balancing the performance–power
tradeoff [8]–[10], none of them considered reliability, another
significant factor of the cloud service. More importantly, in
realistic scenarios, both performance and power consumption
are indeed affected by reliability. For example, an unreliable
cloud system with a higher probability of resource failures
inevitably results in more interruption of running VMs, which
implies a reduction in the performance of the cloud ser-
vice. Subsequent failure recovery also incurs additional power
consumption. Thus, reliability, performance, and power con-
sumption are closely related and should not be considered
separately.

To evaluate these important metrics systemically, theoreti-
cal modeling is a feasible and efficient method that can cover
a large realistic parameter space to ensure fidelity. Since relia-
bility has a significant influence on the other metrics, it needs

2168-2216 c© 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:qiu_uestc@aliyun.com
mailto:dai@cloudian.org
mailto:yanping_xiang@163.com
mailto:ldxing@ieee.org
http://ieeexplore.ieee.org
http://www.ieee.org/publications_standards/publications/rights/index.html

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

being first analyzed in detail. However, the virtualization tech-
nology brings new challenges in reliability modeling. For
example, once server failures occur, none of the co-located
VMs on the server can operate. This is a new kind of com-
mon cause failures (CCFs) that does not exist in the traditional
systems. Meanwhile, execution of co-located VMs is noninter-
fering, which means failures of different VMs are independent.
These distinctive characteristics of the cloud system should be
investigated for reliability modeling.

On the other hand, for precisely evaluating performance
and power metrics, the existing correlations (i.e., random
changes of performance and power consumption due to ran-
dom failures and recovery) must be captured. This is a critical
factor that affects accuracy of evaluation. However, for the
cloud system with a large-scale structure, directly employ-
ing a monolithic model to capture the correlations is difficult
because the model always tends to be complex and intractable.
In contrast, a more flexible modeling approach such as inter-
acting stochastic submodels [11] can contribute to overcoming
this difficulty. Once such a systemic evaluation model is built,
solutions of the model can be treated as an efficient measure-
ment of performance and power consumption taking the effect
of reliability into account. However, there also exists a criti-
cal issue of analyzing the performance–power tradeoff since
it is difficult to find a general method to directly estimate the
balance of the tradeoff.

To remedy this lack, we propose a new and comprehen-
sive theoretical model for evaluating reliability, performance,
and power consumption of a cloud service. According to the
precise evaluation of the proposed model, we further design
a tradeoff parameter and a pure profit optimization model to
analyze the tradeoff of performance and power consumption.
The primary innovation of this paper is that it investigates
server failures, VM failures, and corresponding recovery to
build a reliability model of the cloud service. Another major
contribution of this paper is a tractable and flexible hier-
archical modeling approach. We first propose a three-layer
logical structure in a hierarchical manner, which consists of
resource layer, application layer, and management layer for
analyzing reliability, performance, and power consumption,
respectively. The existing correlations (or interacting parame-
ters) are captured by clearly defining the interfaces between
different layers. Then, Markov reward models (MRMs) are
used to connect these logical layers, and overall solutions of
the hierarchical model can be obtained by using a Bayesian
approach.

The remainder of this paper is organized as follows.
Section II describes the general cloud computing paradigm,
and presents a three-layer logical structure of cloud services
in a hierarchical manner. Section III introduces a hierarchi-
cal correlation model for evaluating reliability, performance,
and power consumption of a cloud service. The tradeoff
between performance and power consumption is also studied
by designing a tradeoff parameter and developing a pure profit
optimization model. Numerical examples are also illustrated in
Section III. Section IV describes some related researches fol-
lowed by highlights of new contributions made by this paper.
Section V concludes this paper.

Fig. 1. General structure of a cloud computing system.

II. ANALYSIS OF CLOUD SYSTEM AND

CORRELATED METRICS

Cloud computing has emerged as an important field, distin-
guished from the conventional distributed computing systems
by its focus on sharing of cloud infrastructure, innovative cloud
service modes, and, in some cases, an orientation toward high
performance and power saving.

A. Description of the Cloud System and Cloud Services

A general representation of the cloud system is depicted
by Fig. 1. The cloud system has an essential component, i.e.,
cloud operating system (COS), which is the “brain” of cloud
computing. The COS receives service requests from users and
translates them into “jobs.” According to some scheduling
strategies, these jobs are sent to some local agents (LAs),
which can be treated as VM allocators and supervisors. After
the processing of the LAs, the jobs are finally executed by
some VMs.

Conventional services in a distributed computing environ-
ment can typically be divided into two categories: large online
services and individual services. A large online service such as
a social networking service, a traffic information service, and
a Web service is usually supported by multiple active servers.
These servers are running continuously and simultaneously for
serving millions of users in real time. In contrast, an individ-
ual service emphasizes on providing various applications (e.g.,
processing programs, office tools, and professional software)
to users for performing some specific functions.

In cloud computing environments, large online services can
be supported by IaaS clouds while individual services are bet-
ter fit with SaaS clouds. In this paper, we focus on the large
online service in the IaaS cloud (we use the term “cloud ser-
vice” to mean a large online service in the following of this
paper). Using the virtualization technology, active physical
servers in the conventional computing systems become VMs,
which can be treated as “logical servers,” and these VMs are
consolidated on fewer physical servers for more efficient use
of cloud infrastructure.

B. Logical Layers for Analyzing Correlated Metrics

To analyze the correlation among reliability, performance,
and power consumption, we build a three-layer logical

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

QIU et al.: HIERARCHICAL CORRELATION MODEL FOR EVALUATING A CLOUD SERVICE 3

Fig. 2. Three-layer logical structure for the correlated metrics.

structure in a hierarchical manner, as shown in Fig. 2. The
resource layer represents physical servers and VMs in the
cloud resource pool. The application layer includes various
cloud services, each having multiple VMs (i.e., logical servers)
processing users’ requests in parallel. The management layer
focuses on controlling power consumption of servers and
the cloud services. The interactions between different lay-
ers identify the existing correlations, which are described as
follows.

1) Reliability–Performance Correlation: For a cloud ser-
vice, the number of available VMs directly decides its
performance. However, these VMs may be failed due to
server failures or VM failures. Thus, the number of avail-
able VMs is a random variable affected by the reliability
parameter, which implies that performance is a resulting
attribute of reliability.

2) Reliability–Power Correlation: A critical factor decid-
ing dynamic power consumption of servers is resource
usage. Sine each VM has a certain resource require-
ment, the resource usage of servers can be expressed as
a function of the number of available VMs. Thus, power
consumption is also a resulting attribute of reliability.

3) Performance–Power Correlation: The amount of
resources assigned to a cloud service has inverse effects
on performance and power consumption. This implies
that the performance–power correlation is essentially
a tradeoff relationship.

Due to the hierarchical nature of the correlated metrics,
we find that hierarchical correlation modeling should be
a clear and tractable approach for achieving precise evaluation.
Resource usage associated with random failures and recovery
is the critical parameter that builds the essential connections
between these metrics.

C. Analysis of Resource Usage Pattern

CPU frequency is one of the most important computational
resources in the cloud resource pool. Modern physical servers
widely deploy multicore CPUs and, in general, the essen-
tial way to take full advantage of computational capability
of a multicore CPU is to implement parallel execution in all
of its cores [12]. The cloud system manages multicore CPUs
by using frequency scaling and logical mapping.

Fig. 3. Typical cloud service scenario.

Logical mapping decides how many cores can be assigned
as a logical CPU to a VM. For VMs of a cloud service
that need to remain active so as to serve users at any time,
one-to-one mapping from a physical core to a logical CPU
can be considered as a reasonable resource usage pattern in
most cases. With this mechanism, a VM exclusively occupies
a physical core and thus absolutely avoids potential resource
competition of the other co-located VMs. There also exist
two other mapping mechanisms: one-to-many and many-to-
one mapping from the physical core to the logical CPU. The
former solution is usually used for VMs that do not have
strong demand of CPU resource; the latter solution is more
suitable for VMs with the capability of parallel computing.
In this paper, we assume VMs of a cloud service employ the
one-to-one mapping mechanism, meaning that only one VM
runs in each core at any time.

Fig. 3 illustrates a typical cloud service scenario, where
all servers possess multicore CPU structures. For example,
the CPU of N1 consists of 4 × 2.0 GHz cores, which means
that it can support four VMs running simultaneously, with
a maximum computational capacity of 2000 MIPS assigned
to each VM. In this paper, we apply a virtual tree topol-
ogy to represent a server and its co-located VMs. This tree
structure enables modeling of CCFs of VMs caused by server
failures.

Two typical kinds of cloud services, i.e., the Web ser-
vice and the online transaction processing (OLTP) service,
are taken as examples in Fig. 3. Each VM of these ser-
vices is a logical server that processes users’ requests one
by one. The logical CPU frequency of a VM decides its
computing speed, which also notably affects the mean time
to serve a request. For both of these two services, increas-
ing the number of active VMs contributes to improving the
capability of serving requests in parallel, ultimately having
a positive effect on the performance. As shown in Fig. 3,
the Web service and the OLTP service have six VMs with
scaled frequencies of 2.0 GHz and four VMs with scaled

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

frequencies of 1.0 GHz, respectively. The average CPU fre-
quency of N1 is 2.0 GHz, which means all the cores are
working at the maximum frequency simultaneously. Although
two CPU cores of N4 are hosting VMs, the average CPU fre-
quency of N4 remains 1.0 GHz (i.e., the usage of N4 is 50%)
since the VMs do not totally occupy the CPU frequency of N4.

III. HIERARCHICAL MODELING FOR EVALUATING

CORRELATED METRICS

A. Reliability Modeling of Resource Layer

In this paper, the presented reliability model considers not
only VM failures but also server failures of the cloud service.
The influence of server failures always plays an important role
in any traditional services, and this influence is magnified in
the cloud service where a server usually hosts multiple co-
located VMs. If a server failure occurs, all the co-located
VMs will be halted by the COS. Although the analysis of
this phenomenon is similar in spirit to the traditional hard-
ware/software co-design [13], the distinctive feature of VM
isolation makes the cloud reliability modeling become differ-
ent. In this paper, we make the following assumptions for the
cloud reliability modeling.

1) A server may be down because of a certain hardware
failure. The server failure follows a Poisson process with
a failure rate θ . The hardware failures of different servers
are independent of one another. Once a server failure
occurs, all co-located VMs on the server are halted until
the failure is resolved.

2) A VM failure is an obvious software failure that can be
immediately detected by the COS, which means the run-
ning VM is instructed to halt as soon as the VM failure
is detected. A cloud service can have multiple VMs for
serving users in parallel. Software failures of these VMs
follow Poisson processes with the same failure rate λs.
Meanwhile, failures of different VMs are noninterfer-
ing and independent due to the isolating nature of the
virtualization technology.

3) Any failure initiates a repair process. The hardware
repair time and the software restore time follow expo-
nential distributions with repair rates η and μs, respec-
tively.

4) Due to the one-to-one logical mapping mechanism for
the cloud service, a server deployed with an M-core CPU
is only allowed to simultaneously host a maximum of
M co-located VMs.

5) The COS and LAs are fully reliable, which can be justi-
fied since a relatively short interval of their computation
is required for transmitting users’ requests and cloud
control commands.

For the first and second assumptions, the server and VM
failures are assumed to follow Poisson processes, which can
be explained as being either within the operational phase or
in a steady state after a long-time run [14]. The assumption
of independent failures in different physical servers is a good
approximation to reality since the servers are uncorrelated.
The third assumption of repair time in accordance with the
exponential distribution has also been widely accepted in [15].

Fig. 4. Markov model for a server hosting multiple VMs.

The fourth assumption is reasonable for a cloud service in most
cases, as illustrated in Section II-C.

Suppose a physical server with an M-core CPU has been
deployed with N(N ≤ M) co-located VMs running simulta-
neously. States of the VMs and the server can be modeled
as a Markov process, which is shown in Fig. 4. The state
n(n = N, N − 1, . . . , 1, 0) represents that the number of avail-
able VMs is n, which also implies that the other N−n VMs are
halted by their own software failures, not a hardware failure
of the server. The state Hn(n = N, N − 1, . . . , 1, 0) repre-
sents that a hardware failure of the server occurs when n
VMs are running, which results in the number of available
VMs on the server becoming 0 according to Assumption A1.
Note that states HN, HN−1, . . . , H1 and H0 are essentially dif-
ferent states, even though they all represent that no VMs
are available on the server. This is because that state Hn

implies that n VMs were available before the hardware fail-
ure occurred, and thus it can only transit back to state n.
Denote πn and πHn as the steady probabilities for the server
to stay at states n and Hn, respectively. It is easy to derive
πn and πHn by solving the following Chapman–Kolmogorov
equations:

(Nλs + θ)πN = μsπN−1 + ηπHN (1)

(nλs + (N − n)μs + θ)πn = (n + 1)λsπn+1

+ (N − n + 1)μsπn−1

+ ηπHn(n = N − 1, N − 2, . . . , 1)

(2)

(Nμs + θ)π0 = λsπ1 + ηπH0 (3)

ηπHn = θπn(n = N, N − 1, . . . , 1, 0) (4)
0∑

n=N

(
πn + πHn

) = 1(n = N, N − 1, . . . , 1, 0). (5)

Solving (1)–(5), the expressions of πn and πHn can be
obtained as

πN =
[

N∑

k=0

Ck
N(λs/μs)

k(1 + θ/η)

]−1

(6)

πN−k = Ck
N(λs/μs)

kπN(k = 1, 2, . . . , N) (7)

πHN−k = Ck
N(λs/μs)

k(θ/η)πN(k = 0, 1, 2, . . . , N). (8)

In fact, we need to pay more attention to the number of
available VMs rather than the detailed reasons or types of
occurred failures in a realistic environment, as the number
of available VMs directly affects the related performance and
power consumption. For a server with N co-located VMs, the
number of its available VMs is a discrete random variable

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

QIU et al.: HIERARCHICAL CORRELATION MODEL FOR EVALUATING A CLOUD SERVICE 5

denoted as X. From (6)–(8), the probability mass function for
X to take a value x(x = 0, 1, . . . , N) is derived as

p(x) = Pr(X = x) = πx(x = 1, 2, . . . , N) (9)

p(0) = π0 +
N∑

n=0

πHn

= (λs/μs)
NπN + (1 + λs/μs)

N(θ/η)πN . (10)

Suppose the COS assigns K servers to the cloud service
for deploying its VMs. The multicore CPUs of the K servers
have M1, M2, . . . , MK cores, respectively. The kth server hosts
Nk(Nk ≤ Mk) VMs, and there are a total of Nv = ∑K

k=1 Nk

VMs created for the cloud service. Denote the number of avail-
able VMs for the cloud service as Xa, which is a discrete
random variable that ranges from 0 to Nv. The probability
mass function of Xa can be obtained using

pa(x) = Pr(Xa = x)

= Pr

(
K∑

k=1

Xk = x

)
(x = 0, 1, . . . , Nv). (11)

In (11), Xk(k = 1, 2, . . . , K) is a random variable repre-
senting the number of available VMs in the kth server, and
its distribution law can be obtained by using (9) and (10).
Moreover, X1, X2, . . . , XK are i.i.d. random variables.

Then, the expected number of available VMs for the cloud
service is calculated by

E(Xa) = E

(
K∑

k=1

Xk

)
=

K∑

k=1

E(Xk). (12)

The reliability of the cloud service can be defined as the
probability that all of its VMs being unavailable does NOT
occur, which is derived by

R = 1 − pa(0). (13)

Illustrative Example 1: Consider the Web service shown
in Fig. 3 as an example. The service has four VMs hosted
on N1 and two VMs hosted on N2. The number of available
VMs at N1 and N2 can be represented as discrete random
variables X1 and X2, respectively. The software failure rate of
each VM is λs = 0.0008 s−1, and the repair rate is μs =
0.0030 s−1. Suppose that N1 and N2 are homogeneous, and
their hardware failure rate and repair rate are θ = 0.0004 s−1

and η = 0.0015 s−1, respectively. By evaluating (6)–(11), we
can obtain the distribution laws of X1, X2, and Xa, as given in
Table I.

Note that the homogeneous servers used in this example
are only for illustration; heterogeneous servers can also be
implemented in a similar way for more realistic scenarios. To
calculate (12), the expected number of available VMs for the
Web service is E(Xa) = 3.7396. From (13), the reliability of
the Web service can be derived by

R = 1 − pa(0) = 0.9479. (14)

Note that assigning more servers to support the Web service
can achieve a higher reliability. To demonstrate this situation,
we take three resource scheduling strategies with different

TABLE I
DISTRIBUTION LAWS OF X1, X2, AND Xa

numbers of assigned servers as examples, all of which host
six VMs for supporting the Web service. The strategies are
described as follows.
S1) Two servers are assigned for hosting four VMs and two

VMs, respectively, as shown in Fig. 3, denote by (4, 2).
S2) Three servers are assigned and each server hosts

two VMs, denoted by (2, 2, 2).
S3) Six servers are assigned and each server hosts only

one VM.
The first strategy S1 represents a greedy strategy that always

tries to occupy as many cores of a server as possible. The
second strategy S2 is a load balance strategy, which makes
all assigned servers have the same resource usage as much
as possible. The last strategy S3 is essentially the same as
a conventional resource scheduling strategy.

From (13), the reliability of the cloud service for S1–S3 are
0.9479, 0.9852, and 0.9971, respectively. Obviously, S3 has
the highest reliability among the three designed strategies. In
general, the reliability of a cloud service can be improved by
increasing the number of VMs and assigning them to more
servers.

To verify analytical results obtained by the proposed cloud
reliability model, a simulation program has been developed
which considers the CCFs of co-located VMs caused by the
failures of the corresponding physical server. To obtain a more
accurate estimation of the steady probability of the cloud
reliability model, the simulation program is designed to cap-
ture 500 times of failures (including VM failures and server
failures). Then, the simulation program runs 150 times for
calculating the reliability of the cloud service for S1–S3, as
shown in Fig. 5.

From Fig. 5, one can see that the simulation results for
S1–S3 fluctuate around the theoretical values of the reliability
(i.e., 0.9479, 0.9852, and 0.9971 calculated from our analytical
model), respectively. Note that the fluctuation ranges for S3,
S2, and S1 increase gradually. The main reason resulting in
such a situation is the CCFs of co-located VMs caused by the
server failures. Since S1 has the most number of co-located
VMs (i.e., four VMs) compared to S2 and S3, a server failure
of S1 can lead to the most serious effect on the reliability. This
phenomenon shows the significance of our reliability model on
the analysis of this kind of CCFs.

Let random variables XS1
a , XS2

a , and XS3
a represent the

random number of available VMs for Strategies S1–S3,
respectively. The distributions of XS1

a , XS2
a , and XS3

a obtained

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

Fig. 5. Reliability estimation of 150 runs of the simulation program.

Fig. 6. Analytical results versus simulation results.

by the simulation are depicted in Fig. 6. As shown in the fig-
ure, the analytical results calculated by the reliability model
are very close to the simulation results, which witness that the
proposed cloud reliability model is justified.

In the special case where the servers are homogeneous,
each VM of the cloud service has the same parame-
ters λs, μs, θ, and η, which means the operational state
of these VMs are identically distributed random vari-
ables that can be denoted as Xvm. Thus, even though
S1–S3 are different, we can find that the following equation is
satisfied:

E
(

XS1
a

)
= E

(
XS2

a

)
= E

(
XS3

a

)
= 6E(Xvm) = 3.7396. (15)

However, due to the CCFs of co-located VMs caused by
server failures, these VMs become dependent, e.g., four VMs
hosted on N1 in Fig. 3. Thus, the distribution of Xa associated
with S1–S3 are very different, as shown in Fig. 6. According
to the distribution of Xa derived from the proposed reliabil-
ity model, we can further evaluate performance metric in the
upper application layer.

B. Performance Modeling of Application Layer

To make performance modeling tractable while capturing
the correlation between the reliability and performance met-
rics, we first take the value of Xa as an input parameter during
the performance modeling, and then use a Bayesian approach

Fig. 7. Birth–death process for the request queue.

to remove it. The following assumptions are made for the
application layer.
B1) For a cloud service, the arrival of user requests follows

a Poisson process with an arrival rate λr. Limitation
of the request queue length is L. When a new request
arrives, it is blocked if the queue is full, which causes
a blocking failure and results in the request being
discarded by the COS.

B2) All available VMs of the cloud service serve the arrived
requests in parallel. The service time of a request is
exponentially distributed with the parameter μr.

B3) A request has its due time Td. If the sojourn time of
a request exceeds its due time Td, a time-out failure
occurs.

Assumption B1, which states that the arrival of requests
follows a Poisson process, can be justified as a memoryless
process for unknown users to submit requests. B2 is also
a commonly accepted assumption, which is more general than
assuming a fixed/constant service time.

Given x available VMs of the cloud service, the resulting
birth–death process Y(t) is modeled in Fig. 7. The state i(i =
0, 1, . . . , L) represents the number of requests in the queue. If
i < x, all i requests can be immediately served by i available
VMs, so the exit rate of any one request is equal to i · μr. If
i ≥ x, only x requests can be served by the x available VMs,
so the exit rate is x ·μr. Denote qi as the steady probability of
the request queue staying at state i, which can be derived as

q0 =
[

x−1∑

i=0

λi
r

i!μi
r

+
L∑

i=x

λi
r

xi−xx!μi
r

]−1

(16)

qi = λi
r

i!μi
r
q0 (1 ≤ i < x) (17)

qi = λi
r

xi−xx!μi
r
q0 (x ≤ i < L). (18)

If the request queue is full, new requests cannot be added
into the queue, which causes a blocking failure. At this point,
the COS discards the new requests so as to avoid overflowing
of the queue. Therefore, the probability of a blocking failure
occurring is

pblock = qL (19)

where qL is obtained by solving (16)–(18). Let λe represent
the effective arrival rate of the requests, giving the loss rate
of requests of λ̄e = λr − λe, which can be obtained as

λe = λr(1 − qL). (20)

Let Pr(i) represent the probability that there already exist
i requests in the queue when a new request is added into
the queue. If i < x, the added request can be served imme-
diately. If x ≤ i < L, the request needs to wait since all
x available VMs are occupied. Here, we adopt the rule of

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

QIU et al.: HIERARCHICAL CORRELATION MODEL FOR EVALUATING A CLOUD SERVICE 7

“first come first serve” for the request queue. The probability
Pr(i) can be determined by

Pr(i) = Pr(Y = i|i < L)

= qi

1 − qL
(i = 0, 1, . . . , L − 1). (21)

Denote the waiting time of the added request as Tw. The
probability that the request is served immediately without
a waiting period, that is, the probability of i < x, is given by

Fw(0) = Pr(Tw ≤ 0) =
x−1∑

i=0

Pr(i). (22)

For the other situation where x ≤ i < L, there already
exist i − x requests waiting to be served before the newly
added request. The time to complete any one request follows
an exponential distribution with the parameter x ·μr. Thus, the
waiting time of the new request is equal to the time for i−x+1
requests to be completed, which is a random variable denoted
as Ti−x+1, in accordance with the Erlang-(i−x+1) distribution,
with the probability density function (pdf) defined as

fi−x+1(t) = (xμrt)i−x

(i − x)!
xμre−xμrt (t ≥ 0, i > x). (23)

From (21) to (23), we can obtain the cumulative probability
distribution function of Tw as

Fw(t) =
{

Fw(0) t = 0
Fw(0) + ∑L−1

i=x Pr(i)
∫ t

0 fi−x+1(τ)dτ t > 0.

(24)

Obviously, the sojourn time of a request is the sum of its
queue time Tw and its execution time Te. As mentioned above,
the execution time of the request follows an exponential dis-
tribution with parameter μr. Hence, the pdf of the sojourn
time Ts can be obtained as

fs(t) =
x−1∑

i=0

Pr(i)fe(t) +
L−1∑

i=x

Pr(i)fi−x+1(t) ⊗ fe(t) (25)

where “⊗” represents the convolution operator of two func-
tions and fe(t) is the pdf of the execution time Te.

Finally, the probability of a timeout failure (i.e., the request
is not successfully completed within the due time Td) can be
computed by

ptimeout = Pr(Ts > Td) = 1 −
∫ Td

0
fs(t)dt. (26)

According to specific requirements of real-world scenarios,
many measures can be treated as performance metrics. For
the large online service considered in this paper, it needs
to run continuously, serving numerous requests from mil-
lions of users. Thus the throughput of the cloud service is of
critical importance, which can be defined as the average num-
ber of successfully completed requests (i.e., the requests are
completed within their due times) per unit of time. Denote
this performance metric of the cloud service as γ . When
the application has x available VMs serving user requests,
from (19) and (26), we can obtain γ (x) as

γ (x) = λr(1 − pblock)(1 − ptimeout). (27)

Fig. 8. Expected probability for the queue length to be i given x = 4.

Fig. 9. Probability density function of fi−x+1(t).

Now, we can implement a MRM to connect reliability with
performance. In addition to the steady probability pa(x)(x =
1, 2, . . . , Nv) derived from (11), each state x also has a reward
value, i.e., γ (x). For the cloud service with Nv VMs in total,
we can obtain the expected performance using

E(γ) =
Nv∑

x=1

pa(x)γ (x). (28)

Illustrative Example 2: Continue the example described
in Section III-A. Suppose that the maximum allowable
number of requests waiting in the request queue is 10
(i.e., L = 10), the arrival rate of the users’ requests of the
Web service is λr = 1.8 s−1 and the completion rate of each
request is μr = 0.5 s−1. The Web service has six VMs in
total (i.e., Nv = 6). For the purpose of illustration, we first
numerically set the number of available VMs as x = 4.
From (16)–(18), we can obtain qi, which is depicted in Fig. 8.

Given this scenario, the probability that a new request is
discarded by the COS can be obtained as pblock = 0.0672 by
using (19). Substituting the given parameters in (23) gives the
pdf fi−x+1(t) of the different values of x, which are depicted
in Fig. 9.

We can then substitute the values and functions of
Figs. 8 and 9 into (21)–(25) to obtain the pdf of the sojourn
time as

fs(t) = 1.0796e−0.5t − 0.8970e−2t − 1.2100te−2t

− 0.7856t2e−2t − 0.3196t3e−2t − 0.0869t4e−2t

− 0.0142t5e−2t. (29)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

Fig. 10. Conditional expected values of γ (x).

Numerically, we set the due time for successfully finishing
a service request as Td = 5 s. Then, from (26), the probability
that a time-out failure occurs can be obtained as

ptimeout = 1 − Fs(Td) = 0.1716. (30)

Therefore, given four available VMs, the conditional
expected values of the performance metrics is γ (4) =
1.3910 s−1. Fig. 10 illustrates all conditional expected values
of γ (x). Note that there also exists a special condition with
x = 0 indicating that all the VMs are down. The conditional
expected value for x = 0 becomes γ (0) = 0, which indicates
that no requests are completed.

With these results and the distributions of XS1
a , XS2

a , and
XS3

a obtained from Section III-A, as shown in Fig. 6, we can
substitute them into (28) to obtain the expected performance
of the cloud service with three different strategies S1–S3 as
1.0627 s−1, 1.0746 s−1, and 1.1074 s−1, respectively. The
corresponding expected request completion rates (i.e., γ /λ)
are 59.04%, 59.70%, and 61.52%. These results show that
the greedy strategy S1 and the load-balance strategy S2 lead
to a slight decrease in the service performance compared to
the conventional strategy S3. Note that the request completion
rates seem low, mainly due to the short queue capacity and
the relative small value of Nv designed in the example for
simplifying illustration.

For most cloud services in real-world scenarios, it should
be noted that the logical frequency of each VM has a sig-
nificant influence on the service performance, as described in
Section II-C. Usually, a request is ultimately translated into
an executable task, and the processing of the task includes
a set of computing operations, so the work requirement of
the request can be measured by the number of commands or
instructions to be executed. On the other hand, the logical fre-
quency of a VM can be defined by an MIPS rating, which
means the logical frequency directly affects the service rate
of the VM. Therefore, for a cloud service with the computing
intensive feature, we can establish an important relationship
between the request service rate and the logical frequency of
the VM, i.e.,

μr ∝ fvm. (31)

C. Power Modeling of Management Layer

In this paper, the power consumption of a cloud ser-
vice is defined as the total power consumption of all the

servers used for hosting VMs. In practice, the power model of
a server needs to be calibrated using some statistical methods.
However, the CPU power is always considered as the largest
and most variable component of the server power [16], [17].
In this paper, we simplify the power model of the server by
assuming that the power consumption of all other compo-
nents (e.g., disk, memory, and network) is essentially constant
regardless of system activities [18]. Thus, the dynamic power
consumption of the server depends on its CPU voltage and
frequency as well as its CPU utilization. Meanwhile, we also
assume that the active cores of the CPU are fully utilized since
VMs hosted on the cores run continuously. The validity of
this assumption is supported by results from prior research
reported in the literature, which concluded that the inten-
sity of workload directed at the VMs does not affect the
power consumption [19]. Denote the power consumption of
the server as P(f). It can be described using the following
formula:

P(f) = c0 + c1 · f 2 (32)

where c0 is a constant representing the basic power consump-
tion of the server, and c1 is the power coefficient. f in (23)
represents the average frequency of all the cores, which has
a significant influence on the dynamic power consumption
c1 ·f 2 [20]. For convenience, f is normalized in terms of a ratio
to the maximum average frequency of the multicore CPU, and
thus 0 < f ≤ 1. Note that the basic power consumption c0
always has a relatively large value, which implies that there
is significant overhead involved with running the server, and
thus it is inefficient to keep the server working with a low
average CPU frequency.

Suppose a CPU has M cores with x(1 ≤ x ≤ M) of
them being active cores. If the scaled frequency of the jth
(1 ≤ j ≤ x) active core is fcorej , the average CPU frequency of
the multicore CPU can be obtained as

f (x) = 1

M

x∑

j=1

fcorej

(
0 < fcorej ≤ 1

)
(33)

where fcorej is expressed as a ratio to the maximum frequency
of the jth core. The equation f = 1 is satisfied when all the
cores are simultaneously active and working at their maximum
frequencies.

Since f is dynamically changed due to the random server
failures, VM failures, and failure recovery, we make the
following assumptions to capture these details.
C1) After a VM failure occurs, the VM is suspended and its

hosting core remains inactive until a restoration action is
complete. The relatively small increase in average CPU
frequency caused by the restoration action (e.g., rollback
of the failed VM) is negligible since it is usually not
a computing intensive action.

C2) A server hardware failure results in all of its hosted VMs
being unable to operate. The power consumption of the
server is P(0+) = limf →0 P(f) = c0 during the fail-
ure recovery phase, which means the related large basic
power consumption c0 still exists during this period.

C3) For a cloud service in a realistic scenario, the COS
can dynamically change the number of VMs to fit the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

QIU et al.: HIERARCHICAL CORRELATION MODEL FOR EVALUATING A CLOUD SERVICE 9

fluctuation of the workload (i.e., the arrival rate of
requests). Thus, the logical frequency of the VM is
assumed to remain constant.

Suppose there are K(K ≥ 1) servers assigned to the cloud
service, and the kth (1 ≤ k ≤ K) server has xk co-located VMs.
According to Assumption C2, we can calculate the power
consumption of the kth server using

Pk(f (xk)) =
{

Pk

(
1
M

∑xk
j=1 fcorej

)
xk �= 0

c0 xk = 0.
(34)

Then, denote Ps as the power consumption of the cloud
service, which can be obtained by

Ps =
K∑

k=1

Pk(f (xk)). (35)

The average CPU frequency f (xk) also describes the
resource usage of the kth server. Note xk VMs on the kth
server have the same logical CPU frequency fvm. According
to the one-to-one logical mapping described in Section II-C,
the average frequency of the kth server can be simplified as
f (xk) = xkfvm/M, which shows that the resource usage of the
server is a function of xk.

As mentioned in Section III-A, the number of available VMs
on the kth server is a random variable denoted by Xk, and its
probability distribution is determined by the random failure
and recovery of the resource layer. Since the parameter xk

is the value of random variable Xk, the expected power con-
sumption of the cloud service can also be obtained by using
a Bayesian approach, which is written as

E(Ps) = E

(
K∑

k=1

Pk(Xk)

)

=
K∑

k=1

∑

xk

Pk(f (xk)) · p(xk) (36)

where p(xk) = Pr(Xk = xk) is the distribution law of Xk, which
can be derived from our presented reliability model.

Illustrative Example 3: Take the Web service shown in
Fig. 3 as an example. Suppose the basic power consumption
c0 and the peak power consumption c0 + c1 of the homoge-
neous servers are 90 and 160 w, respectively. The quadratic
function for evaluating the power consumption of the servers
can be written as

P(f) = 90 + 70 · f 2. (37)

The logical frequency of the VM on each active core is
the maximum frequency 2.0 GHz (i.e., fvm = 1). Substituting
the values of Table I into (36), we obtain the expected power
consumption of N1 and N2 for running the Web service as
follows:

E(P1) =
4∑

x=0

P1(x/4)p1(x) = 126.74 w

E(P2) =
2∑

x=0

P2(x/4)p2(x) = 99.76 w. (38)

From (36), the expected power consumption of the Web
service using S1 is

E(Ps) = E(P1) + E(P2) = 226.5 w. (39)

Similarly, the expected power consumptions of the Web ser-
vice using S2 and S3 are 299.28 and 556.36 w, respectively.
The results show that the conventional strategy S3 leads to
a tremendous increase in the expected power consumption
compared to the other strategies S1 and S2. Clearly, S3 is
an inefficient strategy from a power consumption perspective
since it requires more servers to remain in an active state and
thus induces very large basic power consumption.

D. Analysis of Performance–Power Tradeoff

In this paper, we present two methods to analyze the
performance–power tradeoff of a cloud service: 1) using
a new tradeoff parameter to describe the power efficiency of
a resource assignment strategy and 2) optimizing a pure profit
function that takes performance and power as inputs to find
the balance of the tradeoff.

In a realistic cloud scenario, the cloud provider usually
needs to develop a resource assignment strategy for deploying
the VMs of the cloud service. However, even though the num-
ber of VMs, i.e., Nv, is known, different assignment strategies
may result in totally different power efficiency. To describe
the power efficiency of a resource assignment strategy, we pro-
pose a tradeoff parameter called performance–power efficiency
ratio (PPER), which is defined as

ρ = E(γ)

E(Ps)
= m

E(Ps) · 	t
= m

	Es
(40)

where m = E(γ) · 	t and 	Es = E(Ps) · 	t are the expected
number of completed requests and the expected energy con-
sumption over the time period 	t, respectively. This tradeoff
parameter means the average number of completed requests
per unit of energy consumption, which is considered as a mea-
sure of the power efficiency of a resource assignment strategy
for supporting the cloud service.

The second method finds the balance of the tradeoff by
solving a pure profit optimization problem. In general, assign-
ing more resource (i.e., servers and VMs) to the cloud service
can improve the performance but incur more power consump-
tion, which results in more cost. As for this situation, we
assume that each server hosts the same number of VMs,
and thus the number of servers, N, needs to be optimized
for achieving the maximum of the pure profit. Note that
both performance and power metrics are functions of N,
so (28) and (36) can be expressed as functions G1(N) and
G2(N), respectively. The pure profit optimization model asso-
ciating with the performance and power metrics is developed
as follows:

Objective: Max profit(N) = G1(N) · 	t · cr − G2(N) · 	t · cp

Subject to: N = 1, 2, . . . , Nmax (41)

where cr and cp are the mean profit of finishing a request and
the mean cost of consuming per unit of energy, respectively.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

Fig. 11. Pure profit for the number of assigned servers.

Nmax is the limitation on the number of servers. The opti-
mization model can be solved by using a convergent search-
ing algorithm (see the Appendix). The optimal solution
denoted by N∗ implies the balance of the performance–power
tradeoff.

Illustrative Example 4: For the first method using the trade-
off parameter, take the above mentioned Web service with
Nv = 6 as an example. We calculate the PPERs of strate-
gies S1–S3 as 16.9 × 103, 12.9 × 103, and 7.2 × 103 kwh−1,
respectively. Clearly, S1 is the most power-efficient strategy as
it provides the most benefit in terms of the service performance
per kilowatt hour of consumed energy.

For the second method, we suppose each server hosts
two VMs for the Web service. Since the limitation of the
queue is usually related to the number of servers, we set
it as L = 2 · N. Suppose cr and cp are 0.1 × 10−3 dol-
lars/request and 0.0002 × 10−3 $/(w · s), respectively. The
optimal solution N∗ can be obtained using (41), as shown
in Fig. 11.

To show the trend, Fig. 11 depicts the pure profit for dif-
ferent numbers of assigned servers ranging from 1 to 8. It can
be observed that the pure profit increases at first, and then
decrease after N = 4, which means that the increased profit
achieved by adding one server is less than the additional cost
caused by running the server. Thus N∗ = 4 is the optimal
solution maximizing the pure profit of the Web service, which
also potentially represents the balance between performance
and power consumption.

IV. LITERATURE REVIEW AND DISCUSSION

Since cloud computing has been widely adopted, reliability
modeling of the cloud system is an important research field.
Although the cloud system is essentially a distributed system,
the traditional reliability modeling approaches for distributed
systems [21], [22] are not suitable for the cloud system due
to some unrealistic assumptions, such as constant opera-
tional probabilities of various resources. There are also many
other reliability models for software, hardware, or small-scale
distributed systems (see [14], [15], [23], [24]), which have
a more rational assumption that failure probabilities increase
with working time. However, these models cannot be directly
implemented for studying cloud reliability as the distinctive

features of the cloud system (e.g., cloud isolation and cloud
consolidation) were not considered. Many recent research
about cloud reliability focused on reducing the complexity
of the reliability model caused by large scale [25], using
fault-tolerant technologies to improving cloud reliability [26],
and connecting service failures with network failures [27],
but none of them concerned the CCFs of co-located VMs
caused by failures of the host server. Our cloud reliability
model systemically analyzes this new kind of CCFs, while
taking fault-tolerance into account. Moreover, our reliability
model can easily connect with network failures since both
server failures and VM failures are independent with network
failures.

In principle, reliability is always associated with ran-
dom failures and recovery of various kinds of resources. It
inevitably has a significant effect on other evaluation met-
rics, e.g., the performance and power metrics. For combining
reliability with performance, Meyer [28] proposed the notion
of performability, and corresponding theoretical models and
approaches were subsequently studied [29], [30]. For evalu-
ating the performability of cloud systems, many important
performance indices such as expected response delay, expected
waiting time, and expected execution time of cloud ser-
vices were evaluated based on different stochastic models in
reliability [11], [31]. However, the correlation between power
consumption and reliability does not attract much attention,
which to the best of our knowledge has not been done in prior
work. Meanwhile, the existing performability models cannot
be directly used or extended for being further associated with
power consumption, as they did not concern the usage of
resources that significantly affects power consumption. Our
correlation model takes the resource usage as the critical inter-
acting parameter between different logical layers, which thus
can effectively capture the random changes of the performance
and power metrics caused by failures and recovery.

There also exist many research studies on power effi-
cient computing, which try to analyze the tradeoff between
performance and power consumption. Gelenbe and Lent [8]
formulated an optimization problem from both power and
QoS perspectives for rationally selecting a mobile applica-
tion. Kliazovich et al. [9] investigated the correlation between
power consumption and network performance and proposed
a composite evaluation function. Xia et al. [10] presented
a queuing-network-based performance framework which also
applies dynamic voltage scaling to reduce power consump-
tion. Subirats and Guitart [32] considered the flow of power
consumption decided by batch cloud workloads, and used
aforementioned forecast to support on-demand performance.
Lee and Zomaya [33] applied processor utilization scaling and
task consolidation to reduce power consumption as well as to
ensure the minimal performance degradation of consolidated
cloud services. These models and approaches contribute to
combining performance with power consumption, but ignore
significant influence of reliability, which results in inaccurate
evaluation of performance and power consumption. Our cor-
relation model can effectively remedy this lack. Moreover, we
also present two feasible methods for effectively analyzing the
performance–power tradeoff based on our correlation model.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

QIU et al.: HIERARCHICAL CORRELATION MODEL FOR EVALUATING A CLOUD SERVICE 11

The methods, which use the tradeoff parameter to evaluate the
performance–power efficiency and maximize the pure profit to
balance the tradeoff, contribute to making rational VM deploy-
ment strategies and efficient server assignment strategies for
cloud services.

V. CONCLUSION

Over the last few years, cloud computing has been widely
deployed to provide various online services (i.e., cloud ser-
vices). To achieve the efficient use of cloud infrastructure,
the cloud provider must estimate multiple important metrics
of cloud services, particularly, reliability, performance, and
power consumption. This is a difficult issue as these metrics
are indeed correlated. Most of the existing research usually
treats these metrics separately with no effective model to
correlate the metrics, which makes it difficult for the cloud
provider to further develop a rational resource scheduling
strategy for balancing the tradeoff between the correlated
metrics.

This paper is original in that it systematically studies the
correlations amongst reliability, performance, and power con-
sumption of a cloud service. The logical structure consisting
of the resource layer, application layer, and management
layer is designed to capture the existing correlations. The
hierarchical modeling based on this logical structure makes
the evaluation of correlated metrics clear and tractable by
identifying the resource usage as critical interfaces between
the layers. Markov models, queuing theory, and Bayesian
theory are mainly used to build the presented hierarchical
model.

The numerical examples in this paper illustrated the proce-
dures for modeling, analyzing, and evaluating the reliability,
performance, and power metrics of a cloud service. These
examples also showed that the presented correlation model can
effectively help the cloud provider with a performance-power
tradeoff analysis. The typical resource scheduling strategies
described in the examples are representative in realistic cloud
scenarios. The presented model can also be extended to
evaluate the reliability, performance and power metrics for
a more complicated public cloud scenario with numerous dif-
ferent cloud services. Generally speaking, an optimal resource
scheduling strategy in such a complicated and large-scale
cloud scenario can be described as a multiobjective optimiza-
tion problem, which is usually an NP complete problem and
thus needs heuristic algorithms to find approximate optimal
solutions. The design of resource scheduling strategies for
optimizing the correlated metrics in more complicated cloud
scenarios is an important topic that will be studied in our
future work.

APPENDIX

The following lists the steps of the convergent searching
algorithm for the optimization model (41).

Step 1: Initialize N = 1 and compute G1(1) and G2(1)
from (28) and (36), respectively.

Step 2: Increase N by one at each iteration until Nmax.

Step 3: Use (28) and (36) to obtain G1(N) and G2(N), and
then calculate 	G1(N) and 	G2(N).

Step 4: If

	G1(N)

	G2(N)
<

cp

cr
(42)

then continue to the following step 5. Otherwise,
repeat steps 2–4.

Step 5: The optimal solution of (41) is N∗ = N − 1.

A. Convergence

For the situation that Nmax can be seen as infinity, we can
find that limN→∞ 	G1(N) = 0. Note that 	G2(N) is a con-
stant, thus limN→∞ 	G1(N)/	G2(N) = 0. There must exist
a finite integer N0 to satisfy the inequality (42). For the other
situation that Nmax has a certain value, the algorithm is nat-
urally stoppable (reaches Nmax at most). Thus, the searching
algorithm is convergent without an infinite loop.

B. Optimality

The inequality (42) means that the increased profit caused
by adding one server is less than the additional cost due
to running the server. Thus, the server should not be added
since it must lead to the decrease of the pure profit, and
N∗ = N − 1 must be the optimal solution of the optimiza-
tion model. Specially, if the pure profit function is observed
to be a monotonously decreasing function of N, the optimal
solution can be directly obtained as N∗ = 1.

ACKNOWLEDGMENT

The authors would like to thank the anonymous referees
and the Associate Editor for their constructive comments that
further improved this paper.

REFERENCES

[1] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud
computing and emerging IT platforms: Vision, hype, and reality for
delivering computing as the 5th utility,” Future Gener. Comput. Syst.,
vol. 25, no. 6, pp. 599–616, Jun. 2009.

[2] P. Barham et al., “Xen and the art of virtualization,” ACM SIGOPS Oper.
Syst. Rev., vol. 37, no. 5, pp. 164–177, Dec. 2003.

[3] M. N. Huhns and M. P. Singh, “Service-oriented computing: Key con-
cepts and principles,” IEEE Internet Comput., vol. 9, no. 1, pp. 75–81,
Jan./Feb. 2005.

[4] L. A. Barroso and U. Holzle, “The case for energy-proportional
computing,” Computer, vol. 40, no. 12, pp. 33–37, Dec. 2007.

[5] X. Fan, W. D. Weber, and L. A. Barroso, “Power provisioning for
a warehouse-sized computer,” in Proc. 34th Annu. Int. Symp. Comput.
Archit., New York, NY, USA, 2007, pp. 33–37.

[6] J. Baliga, R. W. Ayre, K. Hinton, and R. Tuchker, “Green cloud com-
puting: Balancing energy in processing, storage, and transport,” Proc.
IEEE, vol. 99, no. 1, pp. 149–167, Jan. 2011.

[7] A. Berl et al., “Energy-efficient cloud computing,” Comput. J., vol. 53,
no. 7, pp. 1045–1051, Sep. 2010.

[8] E. Gelenbe and R. Lent, “Energy-QoS trade-offs in mobile service
selection,” Future Internet, vol. 5, no. 2, pp. 128–139, Sep. 2013.

[9] D. Kliazovich, P. Bouvry, and S. U. Khan, “DENS: Data center energy-
efficient network-aware scheduling,” Cluster Comput., vol. 16, no. 1,
pp. 65–75, Mar. 2013.

[10] Y. Xia, M. C. Zhou, X. Luo, S. C. Pang, and Q. Zhu, “A stochastic
approach to analysis of energy-aware DVS-enabled cloud datacenters,”
IEEE Trans. Syst., Man, Cybern., Syst., vol. 45, no. 1, pp. 73–83,
Jan. 2015.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

[11] R. Ghosh, K. S. Trivedi, V. K. Naik, and D. S. Kim, “End-to-end
performability analysis for infrastructure as a service cloud: An
interacting stochastic models approach,” in Proc. 16th IEEE
Pac. Rim Int. Symp. Depend. Comput., Tokyo, Japan, 2010,
pp. 125–132.

[12] K. Lakshmanan, R. Rajkumar, and J. P. Lehoczky, “Partitioned fixed-
priority preemptive scheduling for multi-core processor,” in Proc.
ECRTS, Dublin, Ireland, 2009, pp. 239–248.

[13] G. D. Micheli and R. K. Gupta, “Hardware/software co-design,” Proc.
IEEE, vol. 85, no. 3, pp. 349–365, Mar. 1997.

[14] M. Xie, Y. S. Dai, and K. L. Poh, Computing Systems Reliability: Models
and Analysis. New York, NY, USA: Kluwer, 2004.

[15] K. S. Trivedi, Probability and Statistics With Reliability, Queuing,
and Computer Science Applications. New York, NY, USA:
Wiley, 2001.

[16] S. Rivoire, P. Ranganathan, and C. Kozyrakis, “A comparison of high-
level full-system power models,” in Proc. HotPower, Berkeley, CA,
USA, 2008, p. 3.

[17] A. Kansal, F. Zhao, J. Liu, N. Kothari, and A. A. Bhattacharya, “Virtual
machine power metering and provisioning,” in Proc. 1st ACM Symp.
Cloud Comput., New York, NY, USA, 2010, pp. 39–50.

[18] P. Bohrer et al., “The case for power management in Web servers,”
in Power Aware Computing. New York, NY, USA: Springer, 2002,
pp. 261–289.

[19] D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy, and G. Jiang,
“Power and performance management of virtualized computing environ-
ments via look ahead control,” Cluster Comput., vol. 12, no. 1, pp. 1–15,
Mar. 2009.

[20] I. Takouna, W. Dawoud, and C. Meinel, “Accurate multi-core proces-
sor power models for power-aware resource management,” in Proc. 9th
IEEE Int. Conf. Auton. Secure Comput., Sydney, NSW, Australia, 2011,
pp. 419–426.

[21] V. K. P. Kumar, S. Hariri, and C. S. Raghavendra, “Distributed program
reliability analysis,” IEEE Trans. Softw. Eng., vol. 12, no. 1, pp. 42–50,
Jan. 1986.

[22] D. J. Chen and T. H. Huang, “Reliability analysis of distributed systems
based on a fast reliability algorithm,” IEEE Trans. Parallel Distrib. Syst.,
vol. 3, no. 2, pp. 139–154, Mar. 1992.

[23] C. R. Das and J. Kim, “A unified task-based dependability model for
hypercube computers,” IEEE Trans. Parallel Distrib. Syst., vol. 3, no. 3,
pp. 312–324, May 1992.

[24] Z. T. Kalbarczyk, R. K. Iyer, S. Bagchi, and K. Whisnant,
“Chameleon: A software infrastructure for adaptive fault tolerance,”
IEEE Trans. Parallel Distrib. Syst., vol. 10, no. 6, pp. 560–579,
Jun. 1999.

[25] H. Cui, Y. Li, J. Chen, and Y. Liu, “Methods with low complex-
ity for evaluating cloud service reliability,” in Proc. 16th Int. Symp.
Wireless Pers. Multimedia Commun., Atlantic City, NJ, USA, 2013,
pp. 1–5.

[26] Z. Zheng, T. C. Zhou, M. R. Lyu, and I. King, “Component ranking for
fault-tolerant cloud applications,” IEEE Trans. Services Comput., vol. 5,
no. 4, pp. 540–550, Oct. 2012.

[27] Y. S. Dai, B. Yang, J. Dongarra, and G. Zhang, “Cloud service reliability:
Modeling and analysis,” in Proc. 15th IEEE Pac. Rim Int. Symp. Depend.
Comput., Shanghai, China, Nov. 2009, pp. 1–17.

[28] J. F. Meyer, “On evaluating the performability of degradable com-
puting systems,” IEEE Trans. Comput., vol. 100, no. 8, pp. 720–731,
Aug. 1980.

[29] R. M. Smith, K. S. Trivedi, and A. V. Ramesh, “Performability analysis:
Measures, an algorithm, and a case study,” IEEE Trans. Comput., vol. 37,
no. 4, pp. 406–417, Apr. 1988.

[30] K. R. Pattipati, Y. Li, and H. A. P. Blom, “A unified frame-
work for the performability evaluation of fault-tolerant computer
systems,” IEEE Trans. Comput., vol. 42, no. 3, pp. 312–326,
Mar. 1993.

[31] B. Yang, F. Tan, and Y. S. Dai, “Performance evaluation of cloud service
considering fault recovery,” J. Supercomput., vol. 65, no. 1, pp. 426–444,
Jul. 2013.

[32] J. Subirats and J. Guitart, “Assessing and forecasting energy efficiency
on cloud computing platforms,” Future Gener. Comput. Syst., vol. 45,
pp. 70–94, Apr. 2015.

[33] Y. C. Lee and A. Y. Zomaya, “Energy efficient utilization of resource in
cloud computing systems,” J. Supercomput., vol. 60, no. 2, pp. 268–280,
May 2012.

Xiwei Qiu received the B.S. degree in electronic
and information engineering from Jilin University,
Changchun, China, in 2004, and the M.S. degree
in software engineering from the University of
Electronic Science and Technology of China,
Chengdu, China, in 2009, where he is currently pur-
suing the Ph.D. degree in computer science with the
School of Computer Science and Engineering.

His current research interests include cloud com-
puting, reliability modeling and optimization, and
energy-efficient computing.

Yuanshun Dai (M’03) received the B.S. degree
in electronic engineering from Tsinghua University,
Beijing, China, in 2000, and the Ph.D. degree in
system engineering from the National University of
Singapore, Singapore, in 2003.

He is currently the Dean of the School of
Computer Science and Engineering, University
of Electronic Science and Technology of China
(UESTC), Chengdu, China, where he is also
a Chaired Professor and the Director of the
Collaborative Autonomic Computing Laboratory. He

has been the Chairman of the Professor Committee in the School of Computer
Science and Engineering, UESTC since 2012 and the Associate Director of
the Youth Committee of the “National 1000er Plan” in China. His current
research interests include cloud computing, dependability, security, big data,
and autonomic computing. He has published over 100 papers and five books,
with 62 papers indexed by SCI, including 31 IEEE/ACM Transactions papers.

Prof. Dai was the Program Chair of the 12th IEEE Pacific Rim Symposium
on Dependable Computing. He was also the Founder and the General Chair
of the IEEE Symposium on Dependable Autonomic and Secure Computing.
He served as a Guest Editor of the IEEE TRANSACTIONS ON RELIABILITY.
He is on the editorial boards of several journals.

Yanping Xiang received the B.S. and M.S. degrees
in computer science from Shanghai Jiao Tong
University, Shanghai, China, in 1993 and 1996,
respectively, and the Ph.D. degree in system engi-
neering from the National University of Singapore,
Singapore, in 2003.

She was a Research Fellow with the Industrial
and System Engineering Department, National
University of Singapore. In 2008, she joined
the School of Computer Science, University of
Electronic Science and Technology of China,

Chengdu, China, where she is currently a Professor with the Collaborative
Autonomic Computing Laboratory. Her current research interests include
cloud computing, decision making, reliability, and autonomic computing.

Liudong Xing (S’00–M’02–SM’07) received the
B.E. degree in computer science from Zhengzhou
University, Zhengzhou, China, in 1996, and the M.S.
and Ph.D. degrees in electrical engineering from the
University of Virginia, Charlottesville, VA, USA, in
2000 and 2002, respectively.

She is a Professor with the Department of
Electrical and Computer Engineering, University of
Massachusetts (UMass), Dartmouth, MA, USA. Her
current research interests include reliability model-
ing and analysis of complex systems and networks.

Prof. Xing was a recipient of the UMass Dartmouth Leo M. Sullivan
Teacher of the Year Award in 2014, the Scholar of the Year Award in
2010, the Outstanding Women Award in 2011, and the 2007 IEEE Region 1
Technological Innovation (Academic) Award and the co-recipient of the Best
Paper Award at the 2009 IEEE International Conference on Networking,
Architecture, and Storage. She is an Associate Editor of the International
Journal of Systems Science, the International Journal of Systems Science:
Operations and Logistics, and the Journal of Computational Engineering.
She is also an Assistant Editor-in-Chief of the International Journal of
Performability Engineering, and an Editorial Board Member of Reliability
Engineering and System Safety.

