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Abstract—Wireless sensor networks (WSNs) are increasingly deployed for mission-critical applications such as emergency man-

agement and health care, which impose stringent requirements on the communication performance of WSNs. To support these

applications, it is crucial to model and measure the effect of wireless interference, which is the major factor that limits WSN performance.

Accurate modeling and measurement of interference faces two key challenges. First, as shown in our experimental results, interference

yields considerable spatial and temporal variations of WSN performance, which poses a major challenge for measurement at rum-

time. Second, in the unlicensed band, the communication of WSN is interfered by coexisting wireless devices such as smartphones

and laptops equipped with 802.11 radios, which lead to cross-technology interference that are difficult to characterize due to the

heterogeneous PHY. To tackle these challenges, this paper presents a novel accuracy-aware approach to interference modeling and

measurement for WSNs. First, we propose a new regression-based interference model and analytically characterize its accuracy based

on statistics theory. Second, we develop a novel protocol called accuracy-aware interference measurement (AIM) for measuring the

proposed interference model with assured accuracy at run time. Third, building on interference modeling, we propose an algorithm

that accurately forecasts the performance of WSNs in the presence of cross-technology interference. Our extensive experiments on a

testbed of 17 TelosB motes show that the proposed approaches achieve high accuracy of interference modeling and WSN performance

forecasting with significantly lower overhead than state-of-the-art approaches.

✦

1 INTRODUCTION

In recent years, Wireless Sensor Networks (WSNs) have
been increasingly deployed for mission-critical applica-
tions such as emergency management, civil infrastruc-
ture monitoring, and health care. These applications
impose stringent requirements on the communication
performance of WSNs. For instance, in the scenario
of wireless elderly and patient monitoring, ECG body
sensors must report the cardiac rhythm data within
bounded delay for real-time diagnosis. Audio sensor
networks deployed for disaster response must stream
survivors’ voice (20-50 Kbps/stream) to rescuers with
assured Quality of Service (QoS) [18].

To support these applications, it is crucial to under-
stand the effect of wireless interference, which is the
major factor that limits the communication performance
of wireless networks. The situation is even worsened for
WSNs due to their already limited bandwidth. When
multiple sensor nodes are event-triggered, simultaneous
transmissions of sensor nodes lead to significant interfer-
ence, resulting in lower throughput and higher packet
delivery delay. Moreover, operating in the unlicensed
ISM band, WSNs suffer cross-technology interference (CTI)
from coexisting wireless devices such as smartphones
and laptops equipped with 802.11 radio. The transmis-

sion power of 802.11 is orders of magnitude higher than
low-power sensor nodes, leading to frequent commu-
nication outages in WSNs [12] [19] [31]. Understanding
interference is thus crucial to support mission-critical ap-
plications in WSNs. Early work on wireless interference
modeling has widely assumed simple abstract models
(e.g., the protocol model [10]). Unfortunately, empirical
studies on both WSNs [22] [28] showed that these mod-
els are largely inaccurate. It is suggested that the packet-
level physical interference model, also referred to as the
SINR versus packet reception ratio (PRR) model or the
SINR-PRR model, offers significantly improved realism.
Taking advantage of the SINR-PRR model, several recent
efforts have been made to improve the performance of
link scheduling, topology control, medium access control
(MAC), and directional antenna based protocols [9] [22]
[27] [14] [29] [4].

Our experimental results based on real WSN platforms
show that the SINR-PRR model yields significant spatial
and temporal variations and hence requires accurate
measurement at run time. In particular, the packet recep-
tion performance of a radio must be carefully profiled
under different SINRs within the transitional region where
the PRR varies from zero to 100%. Recently, several
interference measurement methods have been proposed
[15] [21] [25] [26]. However, they either require nodes
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to transmit/receive a large number of measurement
packets or must sample extensive statistics of data pack-
ets, which leads to high measurement overhead. For
instance, the methods proposed in [22] [26] [28] need
to be periodically seeded by at least O(N) trials in
an N -node network where each node transmits a large
number of measurement packets in turn. In addition,
none of existing methods is designed to measure inter-
ference models with assured accuracy, where the error of
generated SINR-PRR model is guaranteed to within a
given range. As a result, the errors of these models may
cause the upper-layer protocols (e.g., link scheduling
MAC protocols [6] [22] [27]) built upon them to yield
unpredictable performance. Moreover, none of existing
methods consider the effect of CTI on WSN performance.

In this paper, we propose a novel accuracy-aware ap-
proach to interference modeling and measurement for
WSNs. Our approach offers several key advantages.
First, it employs a regression-based SINR-PRR model,
which significantly simplifies the complexity of measure-
ment at run time. Second, it leverages statistical tools
to characterize the accuracy of SINR-PRR model, which
allows a WSN node to achieve the desired measurement
accuracy with minimum overhead. Moreover, building
on interference modeling and measurement, we propose
a forecasting algorithm for WSNs to predict packet deliv-
ery under CTI. Our major contributions are summarized
as follows.

1) We present a comprehensive measurement-based
study on the SINR-PRR model using TelosB motes.
Our results show that the SINR-PRR model yields
significant spatial and temporal variations. In par-
ticular, the PRR measured on a WSN node may
vary up to 50% under the same level of SINR
in different environments and at different times,
which demonstrates the necessity of accurate mea-
surement at run time.

2) We propose a regression-based model to charac-
terize the relation between SINR and PRR. Our
approach features a linear transformation of the
theoretical SINR-PRR model, which allows us to
use regression analysis in interference measure-
ment. Based on this result, we develop a novel an-
alytic framework to rigorously control the trade-off
between measurement overhead and accuracy. Our
analysis correlates the error of generated SINR-
PRR models with key measurement parameters
including the selection of SINR values and the
size of samples., which allows us to limit measure-
ment error within a given range by sampling ”just
enough statistics of data packets.

3) We develop the Accuracy-aware Interference Measure-
ment (AIM) protocol for measuring the SINR-PRR
model at run time. AIM consists of several novel
mechanisms that substantially reduce the overhead
of online measurement, including lightweight clock
calibration to reduce the overhead of synchronous
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Fig. 1. The measured SINR-PRR model at different time in different
environments.

timestamping, localized interference statistic aggre-
gation, and accuracy control which allows a WSN
node to achieve the desired accuracy of interference
measurement by sampling “just enough” statistics
of data packets.

4) Building on interference modeling and measure-
ment, we develop an algorithm to forecast the PRR
of WSNs under CTI. Through extensive analysis of
CTI traces captured in real environments, we show
that PRR forecasting under CTI is feasible because
in most scenarios the CTI is a time-dependent
process. Motivated by this observation, we develop
an algorithm to forecast the SINR of WSNs, which
enables accurate PRR prediction using the SINR-
PRR model calibrated at run time. Our PRR fore-
casting algorithm can be utilized in various ways
to improve the performance of WSNs under CTI.
For instance, once PRR degradation is forecasted,
WSN can switch to another channel or proactively
enable error protection schemes to reduce packet
loss.

5) We implemented the AIM protocol and the perfor-
mance forecasting algorithm in TinyOS and con-
ducted extensive experiments on a testbed of 17
TelosB motes to evaluate their performance. Our
results show that the proposed approaches achieve
accurate SINR-PRR modeling and PRR forecasting
with significantly lower communication overhead
compared with state-of-the-art approaches.

2 RELATED WORK

Early work [32] showed that the communication links
of WSNs are often lossy and asymmetric. Several recent
studies are focused on experimental characterization of
the SINR-PRR model. Son et al. [28] studied the SINR-
PRR model of CC1000 radios. In [22], several inter-
ference models including the SINR-PRR model, disc
model, and the thresholded physical interference model,
are studied for their accuracies. Interference and packet
delivery models are proposed by Reis et al. [26], which
can be instantiated by packet transmission traces. Qiu
et al. [25] proposed a general interference model to
characterize the interference among arbitrary number of
802.11 senders. In [15], a measurement-based approach
is proposed to model the interference and link capacity
in 802.11 networks. All the above studies employed
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the active approach to measure the interference model,
which requires nodes to periodically transmit/receive
extensive measurement beacons. To accurately measure
interference, a calibration mechanism is presented in [7]
to remove the artifacts in the raw RSSI measurements.
the errors of raw RSSI readings are consistent across
radio platforms of the same model. Therefore, accurate
RSSI calibration can be achieved based on off-line mea-
surement. In comparison, AIM is designed to deal with
the tempospatial variation of SINR-PRR model, which
must be captured at run-time.

In our previous work, we proposed a protocol called
passive interference measurement (PIM) [21]. PIM sam-
ples the statistics of timestamps and received signal
strength (RSS) of data packets and use them to de-
rive the nodes’ interference relationship and build their
SINR-PRR models. Without generating any measure-
ment packets, PIM reduces the overhead of active ap-
proaches [22] [26] [28]. However, it suffers from the
following issues. First, PIM adopts a centralized tree-
based statistics collection algorithm which incurs high
overhead in large networks. Second, PIM requires fre-
quent time synchronization and constant overhearing,
which leads to unnecessary energy consumption of idle
listening. Third, like all existing solutions, PIM has no
accuracy control over the measured interference model.
As a result, it may over/under-sample the data traffic
leading to long measurement delay, high messaging
overhead, or poor measurement accuracy.

The problem of link scheduling under the physical
interference model has received significant attention. It
is shown in [9] that the problem of finding a minimum-
length collision-free schedule is NP-complete. A compu-
tationally efficient heuristic with provable performance
bound is proposed in [6]. The complexity of scheduling
a set of communication requests is also studied in [24].
In [27], a new MAC protocol called C-MAC is developed
to maximize the aggregate throughput of a wireless cell
based on the empirical SINR-PRR model. All the above
works require accurate interference models.

3 UNDERSTANDING THE SINR-PRR MODEL

In this section, we first provide the theoretical back-
ground on the SINR-PRR model. We then present sev-
eral findings from real testbed experiments. Finally, we
present a regression-based SINR-PRR model.

3.1 Background on the Theoretical SINR-PRR Model

According to communication theory, the bit error rate
(BER) , i.e., the probability that a receiver fails to receive
an incoming bit, is a function of SINR at the receiver,
which can be computed as follows,

β = 1−Q(

√
2εBN

R
) (1)

where Q(·) is the tail probability of the standard normal
distribution. ε is the SINR at the receiver. R is the

modulation rate. BN is the noise bandwidth. Because
a packet is successfully received when all bits are de-
coded correctly, the packet reception ratio (PRR) can be
computed as,

ρ = (1− β)λ, (2)

where λ is the number of bits in the packet. Let P(·) be
the SINR-PRR model. Based on Eq. (1) and Eq. (2), the
SINR-PRR model can be expressed as follows,

P(ε) =

(
1

2
+

1

2
× erf(

√
εBN

R
)

)λ

. (3)

3.2 Empirical Observation

In this subsection, we provide an empirical study on the
SINR-PRR model. Our objective is two-fold. First, we
compare the real-world SINR-PRR measurements with
the theoretical SINR-PRR model discussed in Section 3.1.
Second, we investigate the SINR-PRR relationship under
different spatial and temporal settings. We show that the
model yields significant spatial and temporal variation,
which poses a major challenge for interference measure-
ment and modeling on low-power wireless sensor nodes.

Our experiments are conducted on TelosB motes
equipped with 802.15.4-compliant CC2420 radios. The
SINR-PRR curves are measured using an existing
method [22] [27] [28]. Specifically, a large number of
packets are sent by two interfering links with different
transmission power levels, and the SINR and PRR statis-
tics of these transmissions are collected at the receiver
to generate the model. The SINR of a packet reception
is computed using the received signal strength (RSS) of
the incoming packets, interfering packets, and the noise
power. The RSS of a packet can be obtained by reading
the RSS indicator register of the radio. The noise power
can also be obtained from the RSS indicator when there is
no packet transmission. We note that the SINR is always
integers as the RSS precision level of CC2420 radio is
1 dB. More details about the measurement method can
be found in [22] [27] [28]. The experiments last about 12
hours and are conducted in three different environments:
an office, the square between two academic buildings,
and a small park. Each data point (PRR,SINR) is mea-
sured with 12000 packets of 128 bytes and a confidence
interval of 90% is computed. Fig. 1(a) depicts the SINR-
PRR model measured on different nodes in an office
in the morning. Fig. 1(b) and 1(c) show the model on
the same node measured at different time in different
environments. From the results, we have the following
observations.

First, we observe that each SINR-PRR curve has a
transitional region of about 10 dB wide, in which the PRR
grows from zero to one. This result is consistent with
the findings reported by recent empirical studies [27]
except the slight variation in the width of the transitional
region.
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Second, we observe that the SINR-PRR model is sig-
nificantly influenced by the spatial and temporal factors.
Fig. 1(a) shows that the PRR under the same SINR may
vary as much as 50%, when the model is measured
on different nodes. From Fig. 1(b) and Fig. 1(c), we
also observe significant variations when the model is
measured at different time, or the node is placed in
different environments. For example, when the SINR
is 2 dB at the receiver, the PRR measured in office is
45% higher than the PRR in the square; and the PRR
measured at 11am is 55% lower than 12pm.

Third, the theoretical model given in Eq. (3) fails to
capture the significant temporal and spatial variations
observed in reality. For instance, Fig. 1(a) shows that
under the same SINR, the difference between theoretical
and measured model can be as much as 85%. This is
partially due to the fact that the theoretical model is
instantiated by the parameters defined on ideal channel,
which do not account for the diversity of environments.
Although it is possible to improve the accuracy of the
theoretical model by carefully measuring some param-
eters (e.g., the bandwidth and power spectral density
of noise) in a particular environment, doing so is time-
consuming and particularly difficult at run time. We also
note that the bit-level SINR required by the theoretical
model cannot be measured on commodity radios. The
results in Fig. 1 clearly demonstrate the need of measur-
ing the SINR-PRR model in an on-line manner at run
time.

3.3 The SINR-PRR Regression Model

As discussed in the previous subsection, the accuracy
of the theoretical SINR-PRR model is poor due to the
spatial and temporal variation of SINR-PRR relation
in reality. To obtain high accuracy, we may directly
measure the SINR-PRR relation for every SINR point
to construct a discrete SINR-PRR model, as shown in
Fig. 1. However, all (PRR, SINR) pairs in the transitional
region of every node must be continuously measured
due to the spatiotemporal variation. Therefore, such an
approach poses significant message overhead.

In this paper, we propose to build a regression model
for characterizing the SINR-PRR relation. Our approach
has two major advantages. First, the measurement over-
head is significantly reduced because only a subset
of (PRR, SINR) samples in the transitional region are
needed to build the model. Second, the model allows us
to leverage the existing theory in statistics to formally
characterize the modeling accuracy and hence provide
key guidance on minimizing the overhead in interference
measurement.

The regression model is built as follows. First, to
approximate the actual SINR-PRR model, we scale and
shift the theoretical model by transforming the predictor
variable x through a linear transformation as follows:

x′ = α1x+ α2.
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According to the theoretical model given in Eq. (3),
we can use the following parameterized model to char-
acterize the SINR-PRR relation in practice:

y =

(
1

2
+

1

2
× erf(

√
BN (α1x+ α2)

R
)

)λ

, (4)

where λ is the packet length, α1 and α2 are the param-
eters to be estimated in real-world settings. Since the
(x, y) relation as described by Eq. (4) is non-linear, we
cannot directly apply the model in regression analysis.
To address this issue, we first approximate the function
erf(·) according to an existing formula Eq. (5), so that we
can derive closed-form solution to the (x, y) relation:

erf(x) ≈
√
1− e−(2x/

√
π)2 (5)

Then, we derive the following based on Eq. (4):

−ln(1− (2y
1
λ − 1)2)

πR

4BN
= α1x+ α2. (6)

Now, we let y′ to represent the left side of Eq. (6),

y′ = −ln(1− (2y
1
λ − 1)2)

πR

4BN
, (7)

Equaiton 6 is now transformed into a linear model,

y′ = α1x+ α2. (8)

Based on this linear model, we can conduct regression
analysis to derive α1 and α2 using on-line measure-
ments. That is, for each sample point (x, y) where x
is a SINR value and y is the corresponding PRR, we
can derive a transformed sample point (x, y′) using Eq.
(7); using the set of transformed sample points and Eq.
(8), we can derive the values for parameters α1 and α2

through regression analysis; finally, plugging the derived
α1 and α2 back into Eq. (4) gives the SINR-PRR model.

We now evaluate the accuracy of the above regression-
based model. First, Fig. 2 shows the (x, y) and (x, y′)
relations without and with the transformation (as shown
in Eq. (7)) for three sets of measurements. The x-axis
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in Fig. 2(a) is the SINR in the unit of ratio of received
powers. Note that it is not converted to decibel. Fig.
2(b) shows that, after transformation, the values of y′

are highly linear with respect to x for each set of PRR-
SINR measurement, which demonstrates the validity of
our linear transformation. Second, we evaluate the error
of regression with respect to real measurement based
on commonly used metric called Coefficient of Deter-
mination (CoD) [16], which measures how well the data
observed in reality are replicated by a statistical model.
The model perfectly fits the data if CoD equals one.
Fig. 3 shows the CDF of CoD of 208 sets of SINR-PRR
curves measured in the experiments described earlier.
Our result shows that in more than 80% of sets, the CoD
lies above 97%, which demonstrates the accuracy of our
regression-based modeling approach.

4 MODEL-BASED ACCURACY CONTROL

In this section, we analyze the accuracy of regression-
based SINR-PRR model and the overhead of measuring
it at run time. Given the significant temporal variation of
the SINR-PRR relation shown in Section 3.2, the SINR-
PRR model needs to be updated via regression of run-
time measurements to obtain high accuracy. Therefore,
it is critical to understand the impact of measurement
overhead on the model’s accuracy. There are two ma-
jor factors that affect the overhead in the SINR-PRR
regression modeling: 1) the number of SINR points
for which we collect sample PRR values and 2) the
number of PRR samples we collect for each individual
SINR point. Besides affecting modeling overhead, these
two factors directly affect the accuracy of regression
modeling. Therefore, our approach is to control the
overhead in regression modeling while achieving the
desired modeling accuracy. Our approach consists of two
key techniques: principal SINR selection and sampling size
selection, which are discussed in the following.

Given the parameterized theoretical model Eq. (4) and
its transformed linear model Eq. (8), we first identify a
set of principal SINR points for which we will measure
the corresponding PRRs. We refer to the SINR points
whose PRRs will not be measured the secondary SINR
points; the PRR corresponding to a secondary SINR
point is predicted using the regression model Eq. (8),
where the regression model is built based on mea-
surement data for the principal SINR points. Based on
the selected principal SINR points, we then decide the
number of PRR samples to collect for each principal
SINR point according to the requirements on the mea-
surement accuracy of the principal SINR point and the
prediction accuracy of the secondary SINR points. In
what follows, we elaborate on our method of selecting
principal SINR points and determining the sample size
for each principal SINR point. These results will be used
in Section 5 to develop the accuracy-aware interference
measurement (AIM) protocol.

4.1 Selection of Principal SINR Points

The objective of choosing the principal SINR points is
such that we can achieve the desired regression mod-
eling accuracy while using the minimum number of
principal SINR points. The regression modeling accuracy
can be characterized by the mean-squared-errors (MSE)
in linear regression [13]. Thus the goal is to choose the
minimum number of principal SINR points to satisfy the
maximum tolerable MSE. Given that the total number
of integer SINR points is not very large (e.g., about 10
for a typical transitional region), we perform exhaustive
search to identify the minimum set of principal SINR
points, and we have found this approach to be effective
in practice and affordable for WSN platforms. To identify
the principal SINR points, we need to take a small num-
ber of measurements for every SINR point (including the
secondary SINR points); once the principal SINR points
have been identified, they will be used to build the
SINR-PRR model until the accuracy of the model exceeds
the required bound due to the temporal variation. We
will discuss more details about the implementation of
principal SINR points selection in Section 5.4.

4.2 Sample Size Selection for Principal SINR Points

Given a selected set of principal SINR points, the overall
accuracy of the regression-based modeling can be en-
sured by controlling the measurement accuracy of the
PRRs corresponding to the principal SINR points and
by controlling the prediction accuracy for the PRRs cor-
responding to the secondary SINR points. To minimize
the overhead in the regression analysis, we need to
control the sampling process to minimize the number of
samples taken while ensuring the required measurement
accuracy and prediction accuracy. For each principal
SINR point xi, we first compute the minimum number of
PRR samples, denoted by mxi , that we need to ensure the
measurement accuracy for the PRR corresponding to xi;
then we compute the minimum number of PRR samples,
denoted by nxi , that we need for each principal SINR
point to ensure the required prediction accuracy for the
PRRs corresponding to secondary SINR points; finally,
we compute the number of PRR samples for a principal
SINR point xi as max{mxi, nxi}. In what follows, we
elaborate on our method of sample size computation
for ensuring the required measurement accuracy and
prediction accuracy.

4.2.1 Sample size for ensuring measurement accuracy

Asssume that we need to control the measurement accu-
racy for a principal SINR point xi. Let yi be the measured
PRR. Based on the Central Limit Theorem, yi is approx-
imately normally distributed when there is a sufficient
number of measurement samples. Note that, in this case,
each sample reflects the status (i.e., success or failure)
of a packet transmission whose corresponding receiver-
side SINR is xi. In order to limit the measurement
error within rm% of the mean PRR at the 100(1 − α)%
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confidence level, the minimum number of samples to
ensure the required accuracy, denoted by mxi , can be
derived as follows.

First, given a set of mxi samples, the 100(1 − α)%
confidence interval for the mean PRR is

yi ∓ z1−α/2

√
yi(1− yi)

mxi

, (9)

where z1−α/2 is the (1 − α/2)-quantile of the standard
normal variate [13]. To satisfy the required accuracy, the
following should hold

z1−α/2

√
yi(1− yi)

mxi

≤ yi
rm
100

. (10)

From (10), we have the following on the required sample
size mxi :

mxi ≥
10000z21−α/2yi(1 − yi)

r2m
. (11)

Therefore,
10000z21−α/2yi(1−yi)

r2m
samples of packet transmis-

sion status is enough to ensure the required accuracy of
(100− rm)% for the SINR point xi.

4.2.2 Sample size for ensuring prediction accuracy

Given n pairs of measurement data, denoted by (xi, yi)
(i = 1...n) on principal SINR points, where xi is SINR
and yi is a sample of the corresponding PRR, we can
derive the regression model y′ = α1x + α2 (see Eq. 8)
with the corresponding standard deviation of errors se =√

SSE
n−2 . When predicting y′j for an secondary SINR point

xj , the mean value of the predicted y′j is

ŷ′j = α1xj + α2, (12)

and the standard deviation of y′j is

s
ŷ′

j
= se

[
1

n
+

(xj − x)2∑n
i=1 x

2
i − nx2

]1/2
(13)

where x =
∑n

i=1 xi

n [13]. Then the 100(1−α)% confidence

interval for y′j is ŷ′j ∓ s
ŷ′

j
t[1−α/2,n−2], where t[1−α/2,n−2]

is the (1−α/2)-quantile of a t-variate with n− 2 degrees
of freedom. Assume that the prediction error is required
to be within rp% of the mean value at the 100(1 − α)%
confidence level, then the following should hold

s
ŷ′

j
t[1−α/2,n−1] ≤ ŷ′j

rp
100

. (14)

From (14) and (13), we have the following on the re-
quired sample size n:

n ≥
2xj

∑n
i=1 xi − Y (

∑n
i=1 xi)

2 −
∑n

i=1 x
2
i

x2
j − Y

∑n
i=1 x

2
i

, (15)

where Y =
ŷ′

j

2
r2p

10000s2et
2
[1−α/2,n−2]

. Let

nxj =
2xj

∑n
i=1 xi − Y (

∑n
i=1 xi)

2 −
∑n

i=1 x
2
i

x2
j − Y

∑n
i=1 x

2
i

.

Then the minimum required sample size

n = max
xj∈Xa

nxj (16)

where Xa is the set of secondary SINR points whose
corresponding PRRs need to be predicted.

To simplify the implementation of measurement proto-
col, we evenly distribute the n samples to the K principal
SINR points. Therefore, to ensure prediction accuracy for
secondary SINR points, the number of samples for the
principal SINR point xi must satisfy,

nxi ≥ ⌈
n

K
⌉. (17)

5 THE DESIGN OF AIM

This section presents the design of AIM. We first give
an overview of our approach, and then discuss each
component in details.

5.1 Overview

AIM is a novel protocol for accurately measuring the
SINR-PRR model with minimum overhead. The system
architecture of AIM is illustrated in Fig. 4. AIM consists
of several novel mechanisms. (1) Interference statistics
collection. AIM collects interference statistics from normal
network traffic, and piggybacks the statistics in data
packets that are forwarded to the base station of the
network. For each node whose interference model is to
be measured, an aggregator is chosen on the routing tree
to generate the SINR-PRR model using collected interfer-
ence statistics. (2) Regression-based model generation. With
collected statistics, each aggregator infers the packet-
level interference, correlates PRR and SINR values, and
generates the regression-based SINR-PRR model in real
time. (3) Accuracy control. AIM controls the accuracy of
measured models to a specified bound based on the
rigorous error analysis described in Section 5.4, while
minimizing the overall measurement overhead. AIM
also tracks the temporal variations of measured models
and dynamically adjusts measurement parameters like
principal SINR values. (4) Lightweight clock calibration.
AIM calibrates local clocks on each nodes for accurate
interference detection. The clock calibration mechanism
is developed based on the empirical observation of clock
drift on real sensor hardware.

5.2 Interference Statistics Collection

We now discuss how AIM collects data packet statistics
that are needed to build the regression SINR-PRR model.
We assume that network has a tree-based topology in
which all nodes send their data to the base station. Tree-
based topologies have been commonly used in WSN
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Fig. 4. Architecture of the AIM protocol. Fig. 5. An example of network topology
where node m1’s model is generated at the
aggregator.

Fig. 6. The collected statistics at
aggregator.

applications. The design of AIM is not dependent on
any particular MAC, although it relies on collecting the
statistics of packet events (transmissions, receptions and
collisions) for generating SINR-PRR models. We note
that significant contention and packet collisions may ex-
ist even when a network adopts interference mitigation
techniques such as CSMA and TDMA. In particular,
the TDMA schedule constructed based on simplistic
interference models often cannot effectively avoid packet
collisions because these models do not account for the
spatiotemporal dynamics of interference.

In contrast to most existing methods that rely on
extensive measurement packets [27] [28], AIM adopts
a passive scheme [21] that infers the SINR-PRR model
purely from the statistics of data packets. We now briefly
discuss the basic idea of passive interference measure-
ment. We denote the nodes whose SINR-PRR models
are to be measured as m-nodes. For a given m-node,
a set of reference nodes, referred as r-nodes, is selected
to help the measurement of the SINR-PRR model. The
transmission of r-nodes must interfere with the packet
reception of m-node, so that the transitional region of
the SINR-PRR model can be fully captured. The se-
lection of r-nodes can be optimized using an existing
algorithm [21]. The m-nodes/r-nodes timestamp packet
reception/transmission events. The precise timestamp-
ing is crucial, since the timestamps recorded by different
nodes are correlated to infer the packet interference at m-
nodes. Each m-node works in promiscuous mode, and
records the RSS values and reception/loss statistics of
overheard packets. The statistics are then piggybacked
in data packets, and transmitted to the base station of
the network. Along the routing tree, an aggregator node
is selected for each m-node for SINR-PRR model gener-
ation. With the collected timestamps and RSS statistics,
the aggregator can infer the SINR of each packet recep-
tion or loss for the m-node. Combined with the packet
reception statistics, the SINR-PRR model of the m-node
can be accurately generated. The aggregator can send
the parameters of generated models to the m-node or
base station to support the performance optimization of
upper layer protocols.

Due to the piggybacking of interference statistics in
data packets, AIM induces additional overhead in multi-
hop forwarding. To address this problem, AIM employs
an efficient distributed aggregator selection algorithm.
Let Tu be the minimum sub-routing tree that includes

an m-node u and all the r-nodes of u. The root of
Tu should be selected as the aggregator, as only the
interference statistics collected by the m-node and r-
nodes will be needed for model generation. The details
are omitted here due to space limitation and can be
found in [11]. After the aggregator is determined, it
starts model generation for m-node u using the collected
interference statistics. For each data packet transmission
of r-node, a record consisting of transmission power,
packet ID and timestamp will be generated. In our
implementation on the TelosB platform, the value of
transmission power is obtained from an 8-bit register of
CC2420. In 802.15.4, the packet ID is described using
an 8-bit sequence number. A 16-bit timer of MSP430
is employed for packet timestamping. Therefore, each
transmission record of r-node consists of only 4-byte.
Similarly, a 4-byte record will be generated at m-node
for each received r-node packet. As a result, statistic
collection incurs an overhead of at most 8-byte per r-
node packet transmission. In comparison, the maximum
size of 802.15.4 data packet is 128-byte. We note that
data packets of large size are common in the traffic
of data-intensive WSN applications like infrastructure
and environment monitoring. This is because, when
compared with packet of small sizes, large packets are
more efficient in amortizing the overhead of protocol
header transmission. In these scenarios, the overhead
incurred by AIM is extremely low when compared with
the volume of data traffic.

5.3 Regression based Model Generation

An aggregator in AIM generates the SINR-PRR model
by applying regression on a set of (PRR,SINR) samples.
That is, the parameters of the linear model Eq. (8) are
computed using curve fitting. We now discuss how
an aggregator computes (PRR,SINR) samples for an m-
node using collected statistics. By analyzing the timing
information, the aggregator can infer that a collision oc-
curred at m-node if the air-time of r-nodes’ transmissions
overlap with each other. We note that this condition is
necessary but not sufficient for a packet collision because
two non-interfering nodes may transmit simultaneously.
AIM employs an interferer detection algorithm [21] to
avoid such false positives. The aggregator then derives
the resulting SINR using RSS measurements. Assuming
that packet pu,v transmitted by r-node u is received by
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m-node v. The SINR of pu,v, denoted as εηu,v can be
calculated as

εηu,v =
RSS(u, v)∑

x∈J RSS(x, v) + I
(18)

where RSS(u, v) is RSS of the packet transmitted from
u to v, and I is the noise power. And J is the set
of r-nodes whose transmissions collide with ηu,v . The
interference caused packet loss can be detected, if packet
transmissions of r-nodes are overlapped in time, but the
receiver does not record any packet receptions. Finally
the aggregator uses the statistics collected at the m-node
to compute the reception ratio of all packets that have
the same SINR, and finally generates a set of (PRR, SINR)
samples for each m-node.

We now use a simple example to illustrate the basic
idea of generating a (PRR,SINR) sample. Fig. 5 shows
the topology of the network. Communication and in-
terference links are marked as solid and dashed lines,
respectively. Two r-nodes, r1 and r2 are selected to
measure the SINR-PRR model of m-node m1. The m-
node and r-nodes are required to timestamp the trans-
missions/receptions. In addition, m1 measures the RSS
for each overheard packet. The collected statistics, which
are given in Fig. 6, are then forwarded to the aggregator.
From collected statistics, the aggregator finds that r2 has
transmitted p22, but m1 did not receive it. As a result,
p22 is identified as a lost packet. By analyzing the times-
tamps, the aggregator infers that packets p12 and p22
collided at m1, as they have close timestamps. To com-
pute the SINR, the aggregator uses the measured RSS
of non-interfered packets, i.e., p11 and p21, to infer the
signal power and interference power. In this example,
the resulted SINR will be 2 dB. This example illustrates
how a single (PRR,SINR) sample is computed. A similar
process can obtain a set of measured (PRR,SINR) pairs
used to generate the regression based model.

5.4 Accuracy Control

The accuracy of the SINR-PRR model is crucial for
the performance of upper-layer protocols. We now dis-
cuss how AIM implements the accuracy control scheme
described in Section 4. Specifically, AIM employs the
following three mechanisms for ensuring an accuracy
upper bound specified by users: principal SINR iden-
tification, adaptive sampling, and temporal variation
correction.

First, we identify the principal SINR points in the
transitional region of the SINR-PRR model for regression
modeling. To begin with, we take a small number of
PRR measurements for every SINR points during the
initialization phase of AIM. Then we conduct an optimal
exhaustive search to find the required number of princi-
pal points. The objective is to use the minimum principal
points, while achieving the required modeling accuracy,
quantified by the mean-squared-errors (MSE) in linear
regression. For each m-node whose model needs to
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Fig. 7. Error of time synchronization.

be measured, a principal SINR set is found and then
stored on aggregator. Our experiments show that a small
number of principal SINR points are enough to achieve
satisfactory accuracy (see Section 7).

Second, at run time, an adaptive sampling algorithm
is run by each aggregator to count the number of
(PRR,SNR) samples received so far, and notifies the m/r-
nodes to stop measurement once the desired number
of samples is received. As discussed in Section 4, the
overall accuracy of the regression model is decided by
1) the measurement accuracy of PRRs at each principal
SINR points, 2) and the prediction accuracy at each sec-
ondary SINR points. Specifically, in the accuracy control
component of AIM, we use Eq. (11) to control the mea-
surement accuracy, and Eq. (16) for prediction accuracy.
The aggregator will notify its m/r-nodes once enough
samples have been collected for model generation. Then
the m/r-node will stop local measurement and statistic
sampling, if they are not involved in model generation
of other m-nodes.

The third mechanism used by AIM for accuracy con-
trol copes with the temporal variation of the SINR-
PRR model. As shown in Section 3.2, the SINR-PRR
model may vary with time considerably, which leads to
accuracy degradation of measured models. AIM deals
with this issue by two solutions: (1) An aggregator
tracks the starting and ending SINR points of the mea-
sured transitional region and regenerates the principal
SINR points once the transitional region has shifted.
In such a case, the original principal SINR points no
longer guarantee the accuracy of the measured model.
As shown by our measurement results in Section 3.2, the
shape of SINR-PRR curve remains relatively stable over
time. Therefore, a new set of principal SINR points can
be generated based on the empirically profiled SINR-
PRR model. (2) When the shape of the fitted SINR-PRR
curve varies substantially over time (e.g., due to the
environmental dynamics), the aggregator asks the m/r-
nodes to measure all (PRR, SINR) pairs in the transitional
region, and then generates a new set of principal SINR
points. Note that an aggregator incurs higher storage
overhead in such a case due to the need of buffering
more statistics for computing the discrete SINR-PRR
model. However, once the new set of principal SINR
points is generated, it resumes to normal operation in
which only the PRRs corresponding to principal SINR
points need to be computed.
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Fig. 8. Overview of PRR forecasting under CTI.

5.5 Lightweight Clock Calibration

In AIM, two packets are deemed to collide at the receiver
if their transmission times are overlapped. To accurately
detect packet collisions, the local clocks of m-node and r-
nodes must be synchronized when timestamping packet
transmissions and receptions. For TelosB nodes, the time
required to transmit a 100-byte packet is about 4 ms. In
our implementation, we find that packet collision can be
accurately detected when clock synchronization error is
below 1 ms.

AIM adopts a lightweight algorithm to maintain clock
synchronization between m-node and r-nodes. Our algo-
rithm is inspired by the Flooding Time Synchronization
Protocol (FTSP) [23], which consists of two operations,
including (1) periodic message flooding, where participat-
ing nodes synchronize their clocks based on the times-
tamps of received messages; and (2) local calibration,
where each node measures the rate of its clock drift, and
performs local drift compensation to maintain clock syn-
chronization during the interval of periodic floodings.

In AIM, the design of FTSP is adapted in two as-
pects to further reduce synchronization overhead. First,
FTSP is designed for global clock synchronization, which
requires network-wide message flooding. In compari-
son, our algorithm is performed on a sub-tree of the
network to synchronize the clocks of m-node and r-
nodes, which substantially reduces flooding overhead.
Second, to detect packet collisions, AIM needs to limit
synchronization error below 1 ms. In comparison, FTSP
is designed for clock synchronization with error in the
micro-second range, which requires frequent flooding
[23]. To determine the optimal flooding period for AIM,
we conducted a 12-hour empirical measurement on 8
TelosB nodes. We found that a flooding period of 1 hour
is enough to meet the requirement of packet collision
detection. Specifically, Fig. 7 shows the CDF of errors
when flooding period is 1 hour. As shown in the figure,
the average error is 0.59 ms, and the error is within 1
ms most of the time.

6 PRR FORECASTING UNDER CROSS TECH-
NOLOGY INTERFERENCE

Operating in the unlicensed 2.4 GHz frequency bands,
WSNs suffer significant cross-technology interference
(CTI) from coexisting wireless devices such as smart-
phones and laptops equipped with 802.11 radios. The
transmission power of 802.11 is significantly higher than

WSN nodes, leading to frequent communication outages
in WSNs. In this section, we propose a forecasting algo-
rithm to predict the PRR of WSN under CTI. Through
extensive analysis of CTI traces captured in real envi-
ronments, we show that in most scenarios the CTI is
a time-dependent process. Motivated by this result, we
develop an algorithm to forecast the SINR of WSNs,
which enables accurate PRR prediction using the SINR-
PRR model calibrated at run time. Our algorithm can
be integrated with channel assignment mechanisms [17]
[30] [33], power control protocols [27] [20], and error
protection schemes [19] [8], to avoid communication
outage under CTI.

6.1 System Overview

In the unlicensed band, the communication performance
of WSNs is affected by noise and CTI, which causes
the PRR of WSNs to vary with the traffic dynamics of
coexisting wireless devices. The goal of PRR forecasting
is to predict the distribution of PRR for WSNs in the
presence of time-varying CTI patterns. As shown in Fig.
8, the algorithm consists of three phases, including signal
and interference measurement, SINR forecasting and PRR
prediction.

In the measurement stage, the receiver measures the
signal strength of the sender, denoted by s, using the
RSSs of received data packets. The strength of noise
and CTI, denoted by φ, can be obtained by measuring
the noise floor at the receiver when there is no WSN
transmission. Specifically, a signal is classified as CTI if
its power is higher than the noise floor, but no decodable
packet is detected at the WSN node. As an example, Fig.
9 shows the trace of noise and CTI measured using a
TelosB node in an office building, where a large-scale
802.11-based WLAN is deployed and heavily used. As
shown in the figure, the traffic of WLAN yields frequent
spikes during noise floor measurement.

The goal of SINR forecasting is to predict the dis-
tribution of SINR under CTI. This is challenging due
to the temporal variation of CTI pattern, depending
on the traffic dynamics of coexisting wireless devices.
Based on statistical analysis, we develop a forecasting
algorithm that accurately predicts the CDF of noise
and CTI strength using historical observations, and then
tranforms the result into the CDF of SINR. Specifically,
the SINR of WSN communication can be computed as,

ε = s− φ (19)

where s and φ are measured in dBm, and ε is measured
in dB. Let Fε(x) be the CDF of SINR under CTI. Based
on Eq (19), Fε(x) can be computed as,

Fε(x) = 1− Fφ(s− x), (20)

where Fφ(x) is the CDF of noise and CTI strength. To
forecast the CDF of SINR, the receiver first forecasts
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Fφ(x) and then computes Fε(x) using Eq (20). We will
discuss how to forecast Fφ(x) in Section 6.2.

In the PRR prediction stage, the receiver calibrates
the theoretical SINR-PRR model at run-time and then
predicts the CDF of PRR using predicted Fε(x). Denote
the theoretical SINR-PRR model as P(x), which is given
in Eq (3). As we discussed in Section 3.3, to account
for the spatiotemporal variations of SINR-PRR model,
P(x) needs to be calibrated through scaling and shifting
using a linear transformation, which can be expressed
as P(α1x+α2). As a result, we can compute the CDF of
PRR as follows,

FP(x) = Fε

(
P−1(x)− α2

α1

)
= 1−Fφ

(
s−

P−1(x)− α2

α1

)
.

(21)
Due to the heterogeneous PHY of coexisting wireless
devices, the AIM protocol described in Section 5 cannot
be used to calibrate the theoretical SINR-PRR model
under CTI. To tackle this problem, we propose a com-
putationally efficient heuristic to estimate the optimal
α1 and α2 that achieve minimum PRR forecasting error,
which is described in detail in Section 6.3.

6.2 Noise and CTI Forecasting

We first discuss how to forecast the distribution of noise
and CTI strength. Probability distribution forecasting is
known to be computationally expensive [5]. Due to con-
straints on computation resource in WSNs, we employ
a simple discrete heuristic to approach this problem.
Specifically, we divide the domain of signal strength into
small segments of d dB. Let ni be the number of signal
measurements whose strengths fall into the i-th segment.
The CDF of noise and CTI strength can be approximated
as follows,

Fφ(x) =

∑⌈x/d⌉
i=1 ni∑

i ni
. (22)
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The accuracy of Eq. (22) depends on the segment size d.
Small d leads to fine-grained CDF prediction but incurs
high computational overhead. In our implementation on
TelosB motes, d is empirically set to 5 dB. On other
platforms of different computing capability, d can be
tuned to achieve the desired trade-off between prediction
accuracy and computational cost.

We next discuss how to forecast ni. Specifically, We
divide the time into windows of equal size. Let ni,j be
the number of signal measurements falling into the i-th
segment during the j-th time window. ni,1, ni,2, ... can
be considered as a time series, which can be predicted
using time series forecasting algorithms [5] based on the
statistic characteristic of ni. To understand the statisti-
cal behavior of ni, we conducted a measurement-based
study using two traces collected in an office building
and a university library. The traces contain 269,614 mea-
surements of noise and CTI signal strength, covering a
range of 100dB in signal strength domain. Fig. 10 shows
the trace of ni for the segment from −60dBm to −55dBm.
We observe that the trace exhibits strong non-stationarity,
where ni changes over time following a specific trend
decided by the traffic pattern of the coexisting WLAN.
In comparison, Fig. 11 plots the trace of a stationary
Gaussian process with the same mean and variance,
whose behavior is significantly different from ni. To
formally test the non-stationarity of ni, we perform the
Augmented Dickey-Fuller (ADF) test, which computes
the Dickey-Fuller statistic. The more negative the statistic
is, the stronger the non-stationarity is. As shown in
Fig. 12, data collected in 91% of segments show non-
stationarity with a confidence level of 95%. Based on this
result, we forecast ni using the Autoregressive integrated
moving average (ARIMA) model, which is widely used
for forecasting non-stationary time series. Given a time
series ni = {ni,1, ni,2, ...}, the ARIMA(u, v, z) model can
be expressed as follows,

(1−

u∑

k=1

ϕkL
k)(1− L)zni,j = (1 +

v∑

k=1

θkL
k)µ (23)

where u, v and z are the orders of the autoregressive,
moving average, and integrated parts of the model. ϕk

and θk are the parameters of the autoregressive and
moving average parts, respectively. µ is a white noise
error term. L is the delay operator, and Lkni,j = ni,j−k .
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6.3 SINR-PRR Model Calibration

We now discuss how to calibrate the theoretical SINR-
PRR model P(x) under CTI. Our goal is to compute
the optimal α1 and α2 such that the prediction error is
minimized when predicting PRR using Eq (21). In the
rest of this section, we first formulate this problem and
then present the solution.

As discussed in Section 6.2, we divide the time into
windows of ts. During a specific time window j, the
real PRR, denoted by pj , can be obtained at the receiver
based on the sequence number of received data packets.
Denote the predicted PRR by p̂j . By dividing the domain
of signal strength into segments of d dB, p̂j can be
computed using the following discrete approximation,

p̂j =

∑
i P(α1 × d× i+ α2)× ni,j∑

i ni,j
(24)

where ni,j is the number of noise and CTI signals in the
i-th segment measured during the j-th time window;
P(α1 × d× i+α2) computes the PRR when the strength
of noise and CTI falls into the i-th segment. To improve
the accuracy, we calibrate the SINR-PRR model based
on the historical observations in the past N time win-
dows. Specifically, the goal of model calibration can be
formulated as,

argmin
α1,α2

N∑

j=1

∣∣∣∣pj −
∑

i P(α1 × d× i+ α2)× ni,j∑
i ni,j

∣∣∣∣ (25)

Large t and N improve the confidence of parameter
estimation, but reduces the responsiveness when the
SINR-PRR model experiences temporal variation. Based
on empirical observations, we set t = 20s and N = 3 in
our implementation.

Due to stringent constraints of computation resource
on WSN nodes, we employ a simple heuristic to solve
the problem formulated in Eq (25). Specifically, we per-
form exhaustive search in the two-dimensional space
defined by α1 and α2, to find the optimal linear trans-
formation that achieves the minimum forecasting error
in the past N time windows. The search is empirically
confined to a 5×10 space. Since we set t = 20s and
N = 3, model calibration only requires 3 × 50 = 150
computations of Eq (24) every 20s.

7 EXPERIMENTATION

We experimentally analyze the performance of AIM,
and compare AIM with other state-of-the-art interference
measurement methods. We first discuss the experimental
methodology and then the experimental results.

7.1 Experimental Methodology

We have implemented AIM in TinyOS-2.0.2. We use
a testbed of 17 TelosB motes [2] for the evaluation.
The motes are organized such that 16 of them generate
data packets that will be delivered to the 17th mote

which serves as the sink. The interference models of
all the nodes except the sink are measured. To obtain
accurate signal strength measurement on TelosB nodes,
we calibrate the raw RSSI readings based on CC2420
datasheet [1]. As discussed in Section 5, an aggregator
node is chosen for measuring the SINR-PRR model of
each node. Note that a m-node may serve as the r-node
and/or aggregator for other m-nodes. The collection-
tree-protocol (CTP) [3] is adopted as the routing protocol.
The 16 source nodes are deployed in a 4 × 4 grid in an
office, with the distance between two closest grid-points
being 10 feet. We then tune the transmission power of
nodes to generate different multi-hop topologies up to
4 hops. We conduct an experiment of 2 hours for each
topology. We note that AIM does not assume any prior
knowledge of network topology. In addition, the grid-
based testbed deployment will not affect the fairness
of performance comparison between AIM and other
measurement protocols. In our experiments, each source
continuously generates data packets of 128 bytes at an
average frequency of 10 packets per second.

In the following, we first evaluate the performance of
accuracy control in AIM, then comparatively study AIM
with respect to two baseline interference measurement
methods: 1) ACTIVE: a representative active method [27]
[28] which generates the SINR-PRR models using mea-
surement packets. The number of measurement packets
is varied in different experiments; 2) PIM [21]: a state-
of-the-art passive method which builds the SINR-PRR
model using interference statistics collected in normal
network traffic. In contrast to AIM, both methods are
designed with no accuracy control over the generated
models.

7.2 Performance of Accuracy Control

We now evaluate the performance of accuracy control,
which includes the control of measurement accuracy,
regression accuracy and prediction accuracy. The (PRR,
SINR) measurements were collected from aggregators
and then used to generate SINR-PRR models according
to various settings. At the same time, the active method
[22] [27] [28] is periodically executed to measure the
SINR-PRR models. Each model is measured with about
8000 measurement packets. It was shown [22] that such
an approach can achieve high accuracy at the price of
high measurement overhead. These models are used as
“ground truth” to evaluate the accuracy of the models
generated by AIM.

We first analyze measurement accuracy control, whose
purpose is to ensure the accuracy of measuring PRR
for each single principle SINR value. We generate a
different SINR-PRR model using every m samples where
each sample is the status (i.e., success or failure) of a
packet transmission. Fig. 13 shows the CDF of average
measurement errors with respect to the ”ground truth”
profiled using 8000 measurement packets. It can be seen
that the number of transmission status samples required
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is small. For instance, the average error is less than
7% even with a sample size of 10. As the number
of samples collected increases, the measurement error
further decreases. For instance, with 100 samples, the
error is usually less than 1.5%. From this, we see that
accuracy-aware adaptive sampling can save significant
sampling overhead since it only takes very few samples
in general.

The regression accuracy depends on the number of
principal SINR points and the principal selection strat-
egy. Fig. 14 shows the impact of the number of principal-
SINR-points on the accuracy of the regression mod-
eling, which is measured by the mean-squared-errors
(MSE) in linear regression as defined in Section 5.4. The
MSE quantifies the error, when the regression SINR-PRR
model generated from principal SINR points is used
to predict the PRRs of secondary SINR points. We see
that a small number of principal points is enough to
ensure small MSE. For instance, the MSE is less than
10% even if we only use 3 principal points. As the
number of principal points increases, the MSE quickly
decreases. For instance, the MSE is less than 3% when the
number of principal points is 8. Fig. 15 shows the CDF
of the average prediction errors for different number of
principal points. We see that, similar to the regression
error MSE, the prediction error tends to be small and
decreases quickly as the number of principal points
increases.

We now evaluate the impact of principal selection
strategy on the regression accuracy of SINR-PRR mod-
eling. Fig. 16 shows the CDF of MSEs of all measured
models when the number of principal SINR points is
6. Three principal selection strategies are evaluated. The
“Uniform-Principal-Point” strategy selects the principal
SINR points for an arbitrary node in the network using
the AIM method and then uses these principal SINR
points for every node in the network. The “Oracle”
strategy continuously recomputes the optimal principal
points based on the current network condition. Specif-
ically, it selects the principal SINR points by analyzing
all SINR measurements during a given period of time
while a practical method like AIM only has access to the
historical data before starting a new round of measure-
ment and model generation. The Oracle strategy serves
as a reference on the optimal performance that could
be achieved. We see that the uniform-principal-point
strategy performs the worst as it neglects the diversity

among nodes. The gap between AIM and the oracle
strategy is small, and the MSE is less than 4% most of
the time, which is accurate enough for model generation.
This result demonstrates the effectiveness of principal
selection in AIM.

7.3 Accuracy and Overhead

Here we comparatively study AIM, PIM, and ACTIVE
in terms of their accuracy and overhead. We first study
the accuracy of AIM. For AIM, we use 6 measured
(PRR,SINR) pairs for regression model generation, and
collect 100 samples for each (PRR,SINR) pair of principal
SINR point. That is, the measurement overhead of each
model is 600 samples. Fig. 17 shows the PRR modeling
error in AIM and ACTIVE, where the error is defined as
the absolute difference between the actual PRR and the
modeled PRR for each SINR point. For ACTIVE, we vary
the number of samples (e.g., measurement packets) used
for each model to evaluate its effect on the performance.
We see that the accuracy of ACTIVE increases with
number of samples used. We also observe that the AIM
with 600 samples achieves an accuracy similar to that
in ACTIVE with 4096 samples. We observed that this is
caused by the diversity of radio performance at different
SINRs. Due to unpredictable environmental factors and
hardware biases, the PRR of radio at each SINR has
different variance. However, ACTIVE cannot choose the
right number of samples for measuring each individual
PRR. In contrast, based on the accuracy control mech-
anism, AIM controls the number of samples for each
SINR point in the model measurement, which leads to
significantly lower overhead.

We now evaluate the communication overhead of
different methods. For a fair comparison, we measure the
overhead when they achieve the same error of 5%, where
the overhead is measured as the additional bytes used
to generate the SINR-PRR models. For AIM, we set the
accuracy bound to 5%. Each node in the network runs
the accuracy control component to guide the SINR-PRR
model generation. To understand the impact of adaptive
sampling in AIM, we also study AIM-CS that is a vari-
ant of AIM without the adaptive sampling mechanism
described in Section 4.2, (i.e., continuously sample the
principal SINR points). We see that ACTIVE is the most
costly approach with the overhead growing linearly with
the number of m-nodes. AIM-CS, PIM and AIM perform
significantly better than ACTIVE, and their overhead do
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not increase quickly with the number of m-nodes. This
is because they employ a passive approach for model
generation where interference samples are collected from
normal network traffic and forwarded to the aggregator
by piggybacking data packets. We also observe that AIM
introduces the lowest overhead. Compared with AIM-
CS and PIM, AIM stops sampling when the required
modeling accuracy is achieved. This result demonstrates
the effectiveness of accuracy-aware sampling in AIM.

7.4 Performance of PRR Forecasting

To evaluate the PRR forecasting algorithm proposed in
Section 6, we deploy low-power wireless links composed
of telosB motes in two different environments, includ-
ing an office building and a university library. In both
experiments, the communication of motes is interfered
by the large-scale coexisting WLANs, as well as nearby
Bluetooth devices such as wireless headsets.

We first evaluate the performance of noise and CTI
forecasting algorithm described in Section 6.2. Specifi-
cally, we compute the Kolmogorov-Smirnov (KS) statistic
to compare the predicted distribution of noise and CTI
strength with the distribution observed in reality. Fig.
19 shows the result obtained in the library experiment.
The dashed line gives the critical value of 95% confi-
dence level, above which the predicted distribution is
considered different with the groundtruth. As shown in
the figure, the proposed algorithm accurately forecasts
the distribution of noise and CTI strength in 97.5% of
experiments. The small prediction error could be caused
by the discrete approximation when transforming CTI
signals into time series. We observed similar results in
the office experiment.

To evaluate the forecasting accuracy, we compare the
proposed algorithm with a baseline called probing-γ,
which transmits γ probing packets every time window

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20 25 30 35 40 45 50

C
D

F
 (

%
)

Relative Error (%)

Probing-10
Probing-50

Probing-200
Our approach

(a) Library experiment.

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20 25 30 35 40 45 50

C
D

F
 (

%
)

Relative Error (%)

Probing-10
Probing-50

Probing-200
Our approach
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Fig. 20. Relative error of PRR forecasting in two traces using different
approaches.

to measure PRR, and then forecasts PRR based on mea-
surement history. In comparison, our approach forecasts
PRR by learning the pattern of noise and CTI strength,
which can be done by measuring the noise floor locally
when there is no WSN transmission, thereby avoiding
communication overhead.

Fig. 20 compares the relative error of our approach
with three variations of the probing baseline, including
probing-10, probing-50 and probing-200, which forecast
PRR based on the PRR history measured using 10, 50
and 200 packets per time window, respectively. We find
that the accuracy of probing-based approach increases
when more packets are transmitted to measure the PRR.
However, the improved accuracy can be easily offset by
the increased communication overhead. In comparison,
our approach achieves similar accuracy with probing-
200, without extra communications. We observe that the
average forecasting error of our approach is 3% in the
office experiment. The forecasting error is higher in the
library, which is most likely caused by the frequent
movement of people who carry wireless devices. Peo-
ple movement not only changes the signal propagation
environment, but also induces dynamic network traffic,
leading to fast variation of CTI patterns. As shown in the
figure, our approach is able to maintain a low forecasting
error around 15% in the library experiment despite the
challenging environment.

8 CONCLUSION

This paper presents an accuracy-aware approach to in-
terference modeling and measurement for WSNs. First,
we propose a new regression-based SINR-PRR model
whose accuracy is analytically characterized based on
statistics theory. Second, we develop a novel protocol
called accuracy-aware interference measurement (AIM) for
measuring the proposed SINR-PRR model with assured
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accuracy. AIM enforces a specified accuracy bound by
adaptively controlling the measurement process at run
time. AIM also adopts new clock calibration and in-
network aggregation techniques to reduce the overhead
of interference measurement. Moreover, building on in-
terference modeling, we propose an efficient algorithm
for forecasting the PRR of WSN in the presence of cross-
technology interference. We conduct extensive experi-
ments on a testbed of 17 TelosB motes to evaluate the
performance of AIM and the PRR forecasting algorithm.
Our results show that the proposed approaches achieve
high accuracy of SINR-PRR modeling and PRR forecast-
ing with significantly lower overhead than state of the art
approaches. Due to spatiotemporal variations, SINR-PRR
model needs to be periodically re-measured to maintain
satisfactory accuracy. In this work, we focus on reducing
the per-round communication overhead of interference
measurement. In future work, we plan to develop adap-
tive controller to optimize the period of measurement at
run-time. Such design will further reduce the communi-
cation overhead of interference measurement.
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