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With an Interference Canceling Fusion Center

Antonios Argyriou, Senior Member, IEEE, and Ozgii Alay, Member, IEEE

Abstract—In this paper, we consider Distributed Estimation
(DES) in a Wireless Sensor Network (WSN) and assume that
the number of sensors in the WSN is larger than the available
number of transmission slots. With classic DES, the sensors inde-
pendently transmit the sampled digitized data. However, the WSN
is an uplink multiuser channel where multiple sources share the
channel for communicating data to a Fusion Center (FC). To this
aim, we adopt the optimal communication scheme for this setup
that suggests interfering transmissions and the use of Successive
Interference Cancelation (SIC) at the FC. We propose a joint SIC
decoder and linear Minimum-Mean-Square-Error (MMSE) esti-
mator for digital interfering transmission of correlated data. We
further introduce an optimization framework that schedules and
allocates power to the sensors optimally. We formulate the prob-
lem in two ways: an expected distortion minimization problem
under a total power budget, and a transmission power minimiza-
tion problem under a distortion constraint. For both cases, we
consider the system performance under different operating condi-
tions, and we demonstrate the efficiency of the proposed scheme
compared to a system that employs optimized sensor selection
under orthogonal transmissions.

Index Terms—Wireless sensor networks, linear distributed esti-
mation, correlated data, interference cancelation.

I. INTRODUCTION

IRELESS Sensor Networks (WSNs) have a wide range

of applications including environmental monitoring,
battlefield surveillance, smart grid monitoring, health care mon-
itoring, home automation, farming, inventory tracking, etc. All
these applications are based on the same fundamental task of
sampling a random parameter and estimating it. Hence, it is
important to keep track of the quality of the estimation accuracy
through the Mean Square Error (MSE) distortion. Furthermore,
estimation has to be power-efficient since in these applications
the sensors are typically battery-operated. Improving power
efficiency for a given MSE can be accomplished by exploiting
the data correlation with Distributed Estimation (DES) algo-
rithms that process the collected data jointly at a Fusion Center
(FC). The dual problem of reducing the MSE subject to a power
constraint can be more appropriate for certain applications. One
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class of DES algorithms that solve the previous problems and
offer excellent performance, use only low-complexity linear
processing [1]-[7].

The challenge today is that linear DES algorithms [1]-[7]
have to operate in an environment where massive Machine Type
Communication (MTC) and Internet of Things (IoT) applica-
tions require the deployment of large numbers of sensor nodes
that all communicate to a FC. The problem is that even though
the amount of data available increases as the number of sensors
increases, it may not be possible to communicate them to the
FC. Hence, it is critical to investigate how to optimize DES as
the number of WSN nodes is increased.

This emerging DES scenario with multiple sensors commu-
nicating to a single FC could be modeled as a DES problem
subject to a constraint on the communication rate. A subset of
the literature on DES has studied this problem by employing
compression [5]-[7], or with the equivalent solution of sen-
sor selection/scheduling [1], [3], [8], which means that in both
cases the volume of the transmitted data is reduced. A common
feature of these works is that they assume orthogonal channel
access from the sensors using Time Division Multiple Access
(TDMA). TDMA is well-known to be suboptimal for achiev-
ing the capacity of the Multiple Access Channel (MAC) [9].
An alternative approach is to maximize the communication rate
leading to the transmission of more data to the FC. To this
aim, the authors in [10] considered transmit power allocation
across the wireless sensors. The final solution was a protocol
that schedules transmissions so that they interfere minimally.
However, this is not a capacity-achieving scheme for the MAC.
The optimal strategy that achieves the capacity of the fading
MAC when the data sources are uncorrelated, is Successive
Interference Cancelation (SIC) [9]. SIC decodes the received
signal with the highest power first, while treating the remaining
interfering signals as noise. SIC can also be optimized either by
selecting the transmission power of the simultaneously trans-
mitting sensors (power allocation problem), or by selecting the
sensors that will transmit simultaneously (scheduling problem).
The power allocation problem has been studied in the context of
CDMA systems [11], while the optimal scheduling of sources
for improving SIC has also been considered in the context of
ad-hoc networks [12].

A different class of research works has also investigated
DES in a MAC with non-orthogonal transmissions. Type-
Based Multiple Access (TBMA) has been proposed by Mergen
and Tong [13], as well as by Liu and Sayeed [14], as a
method to utilize the MAC in order to perform distributed
detection or estimation. With TBMA, each sensor transmits
over the MAC a different waveform depending on the type
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of the quantized observation. The authors assumed i.i.d. and
uncorrelated measurements across the sensors. The detection
problem for a deterministic signal in a MAC was considered by
Li and Dai in [15] under the the same channel gain from the
sensors towards the FC.

In this paper, we improve linear Minimum Mean Square
Error (MMSE) estimation for correlated sensors in a WSN as
their number is increased. To accomplish our goal, we first
investigate whether the capacity of the MAC can be increased
by exploiting data correlation. We show that unlike the Additive
White Gaussian Noise (AWGN) channel, data correlation at
the sources cannot be exploited to improve the capacity of the
fading MAC. This first result drives the first system design
choice in our paper: the separation of the linear MMSE signal
estimation at the FC from the optimal capacity-achieving SIC-
based digital receiver that does not need to exploit correlation.
The second design choice is on the system optimization where
a subset of the sensors with the most valuable information
is selected for transmission under the presence of bandwidth
limitations. In our system, this calls for a novel cross-layer
optimization of SIC and linear MMSE estimation. This con-
cept drives a novel problem formulation that considers jointly
SIC and linear MMSE estimation. The formulation is enabled
by the developed analytical expressions for the instantaneous
packet loss probability of sensor transmissions, and the average
MSE. The optimization problem is formulated and carried out
in two forms: distortion minimization under a power constraint,
and power minimization under a distortion constraint. For both
problems, we provide the results under the optimal scheme and
results for a low-complexity polynomial-time heuristic.

The contributions and main results of this paper are:

1) We show that for correlated sources the ergodic capac-
ity Upper Bound (UB) of the fading MAC cannot be
more that the capacity UB for uncorrelated sources. This
result motivates our approach for not exploiting the signal
correlation at the demodulator/decoder but at the signal
estimator. This result has a direct impact on the design of
potentially different demodulation/decoding and estima-
tion algorithms.

2) We propose an algorithm for joint SIC decoding and
MMSE estimation for correlated data in a WSN. The
algorithm can operate as a stand-alone system without
any sensor coordination (scheduling or power allocation).
Interestingly, for low data correlation across the sensors,
this system performs similarly to a state-of-the-art sensor
selection algorithm that uses TDMA.

3) We propose a sensor scheduling and power allocation
framework for minimizing the distortion or power. The
framework is accompanied by a low complexity heuristic
algorithm. Our optimization is enabled by an analyti-
cal MSE model of our joint SIC decoder and MMSE
estimator.

4) Our results indicate that for lower correlation across
the sensor data, the sub-optimality of TDMA increases
rapidly as the number of WSN nodes increases.
Furthermore, the MSE and power benefits of our scheme
are also increased when the variance of the random signal
is increased, i.e., when the signal is more random.
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Fig. 1. WSN model for estimating the random signal 6. Each sensor i transmits
Yd; » the digitized and modulated version of the analog sample. Simultaneously
transmitting sensors are decoded by the SIC decoder.

The rest of the paper is organized as follows. The system
model and an overview of the proposed scheme is described
in Section II. Section III serves as a detailed motivation of
this paper. The proposed algorithm for joint SIC decoding and
MMSE estimation is presented in Section IV. We jointly con-
sider SIC and MMSE and derive closed-form expressions for
the MSE that can be used for the optimization in Section V. The
problem formulation and the implementation of the solution are
presented in Sections VI and Section VII respectively. Finally,
Section VIII provides the performance results and Section IX
concludes this paper.

II. SYSTEM SETUP

We consider a WSN that consists of a set of nodes N with
IN| = N. Each sensor is making observations, x;, on a ran-
dom source signal 6 with zero mean and variance %2' The
analog observation x; is then digitized and transmitted to the
FC as illustrated in Figure 1. Upon collecting all the digitized
observations, FC’s mission is to estimate 0.

Observation Model and Signal Compression. We assume
that the sensors observe 6 with different correlation p; as x; =
0i0 + z;. The sampling noise z; is AWGN with zero mean,
variance Gzzi , and is uncorrelated across the sensors. The obser-

vations form the random vector X = [x; ... Xx; ... xN]T, and if
we similarly define the vectors p and z that contain the p;’s
and z;’s respectively, then we can write X = p6 + z. The obser-
vations are then quantized. The input signal to the quantizer
of sensor i is the analog sample x; and after quantization the
resulting signal is y; = p;0 + z; + g;. In the above, ¢; is the
quantization noise and is assumed independent across sensors
because it is performed locally at each sensor without coordi-
nation!. In the quantizer, 2%/ representation levels are used per
source sample (or R; bits). With a uniform probabilistic quan-
tizer the upper bound of the variance of the quantization noise at
sensor i is aqzi = %, where 2W is the range of the sensed
signal.

Communication Model. With K source samples, the total
number of bits that must be communicated is K R; over the L
time-domain samples (see Figure 2). These bits are coded with
a capacity-achieving channel code and modulated with a PSK
constellation that have a combined spectral efficiency of R;

IThis approximation, that is followed in the literature [1], [7] for tractability,
becomes more accurate for smaller quantization steps.
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Fig. 2. Modeling packet transmissions in the WSN under different channel
access assumptions: orthogonal (left), and asynchronous interfering (right).

bits/symbol. So the previous discussion leads to K R; = LR;.
The combined effect of channel coding and digital modulation
on the bits of the digitized samples is formally expressed for a
specific symbol transmitted during time-domain sample / as:

v4; 111 = CC-PSK(L, R;, input bits) (1

This function expresses the channel coding and the modulation
in a compact form. As an example, for a sample of 8 bits and
uncoded QPSK, 4 time domain samples/symbols will be pro-
duced each containing 2 bits. Similary, other PHYs could be
modeled with this approach (e.g., CDMA).

Channel Model. The transmission of a packet takes
place over a wireless link with slow flat Rayleigh fading.
Hence, h;[l] = h; for every time-domain sample/symbol dur-
ing the transmission of a packet, and |h;| ~ Ray(]E[|hl~|2]).
The Rayleigh fading channel is characterized by the average
received power that is defined as E[lhi|2] = 1/dist* where
dist is the distance between the sensors and the FC, and a is
the path loss exponent set to 3. The fading levels are accu-
rately measured at the FC, while the sensors/transmitters do
not require any channel knowledge. The channel is constant for
multiple packet transmissions [1]—[3], [16]. Finally, the vector
h packs the channel gains from all the sensors.

Channel Access Schemes. We assume that a set network-to-
FC slots T with |T| = T are available for transmitting packets,
each consisting of L time-domain samples. The notion of a slot
in this paper represents a modeling tool that allows us to capture
asynchrony between several packet transmissions, and does not
correspond to the complete duration of a packet transmission at
the PHY (Figure 2). Two channel access schemes are examined.
First, TDMA with orthogonal transmissions where sensors
access the channel sequentially. For TDMA, the received signal
from sensor i at the FC for the /-th time-domain sample is

Pl = V/Pihiyg 11 + wll], )

where w[!] is the noise sample at the FC that is AWGN with
zero mean and variance o2. Also P; is the transmit power at
sensor i. Since the power of the PSK symbol is equal to P;, we
set 0y2 -, = 1 to avoid complications in the derived expressions.
The avterage Signal-to-Noise Ratio (SNR) per symbol is

SNR; = PE[|h;[*]/02 3)

With TDMA, a packet transmission requires L time-domain
samples and so T sensors can transmit. TDMA communication
is typically used by the vast majority of today’s WSN systems
while any signal processing algorithms are developed on top
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of the TDMA scheme. This is consistent with slotted channel
access schemes for WSNs. Formally, in this case the set of
sensors that transmit is 8 while for any given slot 7, a subset
of sensors &; can transmit. The cardinality of this set is one
(I8;] = 1) since only one sensor can transmits in that slot.

The second scheme is our proposed approach that adopts
interfering transmissions within each slot as illustrated in
Figure 2 (right). At any given slot, a subset of sensors §; can
transmit. If we focus on a tagged sensor i, then the received
time-domain sample / at the FC is:

Pl = hiy/Piyg I+ Y hj/Pisa 1+ wll]  (4)

JEe8 i}

Here, Sd; [/] is the signal contribution of a sensor j during time-
domain sample [/, that can be asynchronous with the packet
transmitted from sensor i (as illustrated in Figure 2 (right)). As
we will later see, this potentially asynchronous situation is irrel-
evant for decoding the tagged sensor i since the contribution of
all the other sensors will be treated as noise (i.e., the symbols
of multiple sensors are not decoded jointly). To ensure a fair
comparison with the TDMA, we impose a sum transmit power
constraint P that is enforced over each time-domain sample as
a system parameter.

Synchronization. We assume that all sensors have a local
oscillator synchronized to the receiver carrier frequency. On the
other hand, our system does not require time synchronization
since the packets are decoded with SIC at the level of complete
packets, i.e., there is no symbol-level decoding with SIC.

Transmission/Estimation Schemes. To illustrate the effects
of interference on correlated sources, we study the following
schemes in this paper:

1) ORTH-MMSE-OPT: Each sensor compresses and trans-
mits its own signal directly to the destination in its own
time slot (Figure 2 (left)). The optimum set of sensors are
selected for transmission given the bandwidth constraint
expressed through the number of available slots 7. The
FC then uses linear MMSE estimation.

2) SIC-MMSE: Each sensor compresses its own signal, but
in this mode, interfering transmissions are allowed. The
sensors transmit and interfere in an uncoordinated fash-
ion and the result is an arbitrary interference pattern
(Figure 2 (right)). Next, SIC decoding is applied in the
digital packets at the FC and as a next step, the FC uses
MMSE estimation. This scheme offers significant prac-
tical implementation advantages: Any sensor is free to
transmit during any time slot it desires, and the recov-
ery from the implications of such an approach are in full
responsibility of the receiver/FC.

3) SIC-MMSE-OPT: Compression, and correlation exploita-
tion with MMSE is exercised as in the last scheme.
However, the optimum set of interfering sensors in spe-
cific slots (scheduling) and their transmission power
(power control) are selected under the scheme in Figure 2
(right). In particular the FC selects the sensors that will
transmit in such a way that they are decodable with SIC,
but also the decoded packets have the highest impact on
the distortion minimization.
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III. MOTIVATION

In this section, we review first the limitations of linear
MMSE estimation under orthogonal transmissions in multiple
access WSNs. Next, we discuss the limitations of employing
capacity-achieving multi-user communication (e.g., interfering
transmissions under SIC decoding [9]). Two critical observa-
tions motivate the need for our proposed SIC-MMSE-OPT
scheme.

A. Limitations of Orthogonal Transmissions

Consider a WSN with T available slots and a set N of |N]|
sensors, where [N| = N > T. For any set of sensors § C N that
transmit, we clearly need |§| = T'. The baseband received sig-
nal model is that of (2). Under linear MMSE estimation, and if
all the sensor observations are available at the FC, the MSE can
be easily proven to be a fractional expression that is inversely
proportional to the number of available observations. In particu-
lar the MSE under the linear MMSE estimator can be calculated
for our data model as [17]:

MSE = Tr(p” (2, + Z¢) 1o+ 2,1

2
g,
0
- 2N 02 )
9 2i=1 ;24,2 T1

With this orthogonal transmission scheme (denoted as ORTH),
and by extending the previous result to accommodate packet
losses, the resulting MSE becomes:

2
g,
MSEQRTH (8) = - 5 (6)
Pi
07 Kl ~ A A
ORTH

In the above, is the outage probability for packets
transmitted from sensor i and is a metric that is used for
characterizing slow fading channels [9]. In the denominator,
the fraction in the summation essentially corresponds to the
SNR contribution of each sensor. Note also that the MSE is a
function of the set S of transmitting sensors.

By further elaborating on the outage probability, it can
actually lead to a closed-form result:

P;i|hi|?
nPRTH — py {logz (l + d 2l| < Ri)}
Uw

1 -8 —1)
=1—-exp W (7)

The last equation follows from |4;| being Rayleigh.

By considering that only 7 sensors can transmit, the opti-
mal scheduling policy is to select the best sensors from the set
N given the limited number of slots. The term “best” can be

2
translated in terms of the ratio (1 — niORTH)GZpﬁ. The lin-
5 T%;

ear MMSE estimator collects these contributions and combines
them optimally. Thus, the sensor that has the highest ratio, has
the highest SNR contribution which means higher MSE reduc-
tion in (6). Consequently, from (6) we can see that an ordering
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of the sensors in terms of their SNR contribution, and then the
selection of the first 7', is the optimal strategy in this case. This
approach also serves as our baseline scheme.

B. Limitations of Multi-User Communication

Our intention is to calculate the capacity of the AWGN
and fading MAC channels in order to determine the maximum
transmission rate in the WSN when the data is correlated.

Theorem 1: The capacity UB of the fading MAC for cor-
related sources is equal to the capacity UB for uncorrelated
sources.

Proof: To prove this result, we reuse our existing WSN
model and focus on a slot ¢+ where the set of sensors that
transmit simultaneously is 8;. Also assume symbol-level syn-
chronization just for this proof to illustrate the idea. When the
correlation of simultaneously transmitting sources is captured
with p, the AWGN MAC capacity CawgN-mac(p), calculated
in [9], is a function of the correlation vector p. Hence, the multi-
user capacity for correlated data transmission in the AWGN
MAC depends on the data correlation vector and is higher
than the case of uncorrelated data, i.e., CawgN-MacC(p) >
CawGN-MAC(0).

Regarding the fading MAC, and due to the random nature
of the channel, there is the notion of the ergodic capacity that
is the capacity averaged over several channel realizations. To
achieve this capacity one must apply a channel coding across
all these realizations. We can calculate the UB as follows:

Crading-Mac(p) = E[logy (1 + SNR)] < log, (1 + E[SNR])]

UB
= CFading-Mac (P)

Peo )
_ 10g2 (1 + Fading-MAC 8)

2
T

The average power Pl?;fin o-MAC of the aggregate useful received
signal determines the capacity UB of the MAC [9]. Interfering
transmissions and SIC decoding can achieve the capacity of the
AWGN MAC and the ergodic capacity of the fading MAC [9].
To calculate this UB under Rayleigh fading in (8), recall that the

channel model for multi-user transmission is that of (4). Hence:
P

Pliﬁing-MAC(P) =K Z VPihiyg ) Z VPihiya 1]
i€8; i€8;
=Y PElAPlog +E[Y " Y PPk} yg [y}, 1]
i€8; i€8; je8;/{i}
= > PElhiPloj, = ) PEllhi]*] ©)
i€8; ie8;

The last follows from the uncorrelated Rayleigh channels and
is independent of p. Thus, the corresponding UB expression in
(8) becomes:

2
9w

D ies, PE[|h;]%]
CEB emac(P) = log, (1 | Zies, T
UB
= CFading—MAC(p = 0)

= CawaN-Mac(p = 0) (10)
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We observe that the ergodic capacity UB of the fading MAC
with correlated sources is equal to the capacity of both the fad-
ing MAC UB and AWGN MAC but with uncorrelated signals.
Or we can condense these results as follows:

Crading MAC(P) < Chiing-mac(©®) < Cawenmac(p) (1)

Therefore, we cannot exploit the correlation between the source
signals in a Rayleigh fading channel as effectively as in AWGN
channel where we would have a capacity gain. |

The previous results highlight the problems with the trans-
mission of correlated data from many sources in uncorrelated
Rayleigh fading channels. First, improving the MSE depends
on our ability to collect more data and to combine them
optimally with linear MMSE. Second, interference cannot be
exploited for increasing the multi-user capacity, i.e., we can-
not transmit more data. Motivated by these observations, our
objective in this paper is to use interference for increasing
the number of high value transmissions within T slots. This is
accomplished by optimizing SIC in such a way that the receiver
decodes the packets from the sensors that contribute more to the
MSE reduction.

IV. JOINT SIC DECODING AND MMSE ESTIMATION

Based on the ideas developed in the previous section, we now
present the joint SIC decoding and MMSE estimation algo-
rithm. For all the expressions we derive, the channel access
scheme we presented in Figure 2 (right) is used.

A. Successive Decoding Algorithm for Interfering Sensors

Let us first describe the algorithm operations during the z-th
slot where the set of the sensors that transmit is S;. After
the sensors transmit, the FC attempts to decode the transmit-
ted packets by employing ordered SIC (OSIC). That is, the
packet with the highest energy/bit is decoded first while the
other packets are treated as noise regardless of their content
[9]. For exposition purposes, let us assume that the packet
transmitted from sensor i and received at the FC has the high-
est power. The instantaneous Signal to Interference plus Noise
Ratio (SINR) for the packet from sensor i during slot ¢, and for
a given channel vector h, can be derived from (4):

Pi|h;|?
> sy Pilhjl* + o

SINR; (h, 8;) = (12)

The SINR is calculated only for sensor i while the remain-
ing sensor transmissions are considered as interference. Also
it is important to recall that P;, P; are the transmission power
per time-domain sample and so SINR; (h, 8,) is normalized per
time-domain sample.

Regarding the actual packet-level decoding it proceeds as fol-
lows: The start of each packet can be identified with a preamble
correlation operation [18]. After the packet with the highest
energy/bit is identified, a Matched Filter (MF) for the specific
sensor ¢ with its known channel gain /; is used. Then, Hard
Decision Decoding (HDD) is used for detection. After decoding
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the L R; bits of the packet correctly, then the packet is removed
from the aggregate signal in (4). Note that according to the the-
oretical description of SIC in §6.1 of [9], and a trace-driven
study that quantifies the prospective gains of SIC [12], OSIC
operates precisely as described above, i.e., at the packet-level
and without requiring symbol-level synchronization. The same
process is continued until it is completed for all the transmit-
ted packets in slot ¢. If a packet is not decoded successfully,
it cannot be removed from the aggregate signal and the SIC
decoding chain fails. The above may of course be true even if
the instantaneous SINR in (12) is more than the required packet
decoding threshold [19]. This is something that is considered in
our simulations, i.e., we do not assume ideal SIC decoding. The
final result will be that several packets will be decoded at the
receiver depending on the performance of SIC over the T avail-
able slots. Hence, the FC will have available multiple digital
observations that are mapped to their corresponding quantiza-
tion level through D/A conversion (also illustrated in Figure 1).
We denote the available quantized signals from this step as the
vector y. This mapping is necessary in order to proceed to the
estimation.

B. Correlation Exploitation with Linear MMSE Estimation

The next step in our proposed joint decoding/estimation algo-
rithm is to exploit the knowledge of the data model and the
correlation that exists in all the decoded quantized signals y.
Recall that our final goal is to estimate the random variable 6
from the several digitized decoded signals that are available in
y. Since we have a number of observations equal to the number
of decoded packets, the data model becomes:

y=p0+2+q (13)
Similarly with ¥, the bar in all the vectors denotes the subset
of the data model that corresponds to decoded packets (e.g., q
contains the g;’s of the decoded sensors). Next, we employ a
linear MMSE estimator for the received digital signals. So the
proposed estimator is:

0=+ o+, ) (S, + 297y (14

The covariance matrix of the source signal vector (denoted as
Yy) is actually a scalar, i.e., Xy = 092. This covariance can be
known, or it can be calculated online as we do in this paper.

V. MSE UNDER JOINT SIC/MMSE DECODING

In the last section, we discussed how the decoding and esti-
mation algorithms operate to obtain the desired estimate 6. Our
goal now is to model the performance of the previous scheme,
so that we can optimize it. For the optimization of the joint SIC
and MMSE, in the same spirit with our previous derivations for
(6), the average MSE for the complete WSN that consists of
sensors that interfere can be expressed as:

2
99

(-3 (8))p?
o240l
“1 1

MSEj |} (8) = (15)

2
05 D reT 2oies, +1
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In the previous equation

it 1 if logy (1 + SINR; (h, §)) < Ri
Tijn (S0) = {0 otherwise (16)

indicates if the instantaneous rate, expressed through the
Shannon formula, can meet the desired communication rate
of R; bits/symbol for sensor i, and SINR;(h, 8;) expresses
the average SINR during the complete duration of the trans-
mitted packet and was defined in (12). Note that 7 is a
function of the interference pattern/transmission schedule § =
{81,...,81,...,87}, and the channel gain h. The above
expression essentially says that the MSE depends on the spe-
cific schedule of the sensors that belong to the WSN. Therefore,
in order to minimize (15) for a given channel realization h, there
is a need to control nINT (8y).

For the orthogonal case, where each sensor digitizes and
compresses the signal while linear MMSE is executed after all
the signals are received at the FC, the MSE expression is again
that of (15) but in this case the outage probability is 7; ih ORTH (S8).
With orthogonal transmissions, even if the system performs
optimal sensor selection it can select at most 7" sensors, i.e.,
the maximum cardinality of the set S is 7. Next, we formulate
the optimization problems.

VI. PERFORMANCE OPTIMIZATION OF JOINT SIC
DECODING AND MMSE ESTIMATION

Before formulating the optimization problem, we first dis-
cuss the intuition behind our optimization. For our first objec-
tive where we consider distortion minimization under a power
constraint, each sensor i is assumed to transmit the digital
packet at power level P;. To be fair, a limit on the transmit
power of each time-domain sample or PHY symbol is consid-
ered. When the distortion is minimized for the TDMA scheme,
this will lead to the assignment P; = P where P is the allowed
power per time-domain sample. Each sensor will transmit at
the maximum allowed power, since only a single sensor is
allowed to transmit during each slot?>. However, with interfer-
ing transmissions, the available power P will be distributed
among multiple sensors. With SIC, this distribution can be
done in such a way that more packets can be decoded at the
FC, hence increasing the transmission efficiency of the sys-
tem. We will illustrate this with an example. Consider a WSN
with two sensors and one transmission slot. The first option is
that one sensor transmits at a power level P; = P and enjoys
a rate log(1 4+ = ) If this rate is higher than R; then we have

a successful transm1ss10n with high probability (precise value
in (7)). However, if two sensors transmit at power levels Py,
and P, respectively, with P + P, < P, with SIC they can
both enjoy a sum-rate equal to log(1 + (%) [9] This can hap-

pen if Py, P, are selected such that log(1 + Prtol 2) > R;, and

log(1 + P 2) > R;, i.e., the FC can decode both packets with
high probablhty Thus, this is an optimized power allocation

2Even though transmitting at the maximum allowed power may not be
needed for certain sensors, still it reduces the outage probability as per our
previous derivations (see (7)).
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so that more packets are decodable according to SIC. This has
been a typical optimization approach for SIC [11], [20].

For our system the question is how should the sensors be
selected at a given time slot 7, so that the information sent is
decodable but also leads to the minimum MSE. Next, we will
formulate this optimization problem. We consider two differ-
ent cases. First, we minimize the MSE under a fixed power
constraint and then we consider power minimization under a
distortion constraint.

Minimizing Distortion under a Power Constraint. We
first formulate the problem of MSE distortion minimization for
a fixed power consumption that is imposed per time-domain
sample. The distortion minimization problem is equivalent to
maximizing the MSE reduction (the denominator in (15)) by
selecting the sensors to transmit in each slot ¢ among all the
available N. This decision is captured with binary variable «; ;
that indicates if the FC is able to cancel the signal from sen-
sor i transmitted in slot #. Sensors are scheduled to interfere
only if SIC can decode them. Our goal is to increase the num-
ber of decoded packets by respecting an SNR packet decoding
constraint while also ensuring that these packets/signals con-
tribute more to minimizing the MSE. Therefore, if a packet
from a certain sensor cannot be canceled with SIC, it is not
scheduled in this specific slot # while it can be scheduled in
another slot. We also define the continuous variable P;; that
indicates the transmission power of sensor i in slot . Hence, the
decision vectors are: a=(a;; € {0,1}:i e N,t €7) and P =
(Pi; €{0,1} :i € N, t € 7). This problem is formulated as a
Mixed Integer Linear Program (MILP):

DIST: maxZZ 2+02

t=1i=1 7
st — Piglhl? 5 > 2R
oy + ZkeN,k>i Pksflhkl

—1,VieN,t e T(Cl)

T
> ari=ciai,, VieN, t€T (C2), Y a;,<1,Vi € § (C3)
keN ,k>i t=1

N
> Py <PVt eT(C4), Py <a;, P (C)

i=1

Constraint 1 (C1) is the SINR constraint for sensor i scheduled
in slot 7. For the SINR constraint to be satisfied, R; bits/symbol
need to be communicated successfully. To demodulate these
symbols, the SINR in (12) must be at least equal to 2R _q,
This leads to the formulation of C1 in our problem formula-
tion. In the denominator, the summation term contains all the
other sensors that can potentially transmit in the same slot and
have not been canceled yet. These sensors are accounted for as
destructive interference (k > i accounts for these sensors that
have been ordered in advance). If a sensor is not scheduled then
this constraint does not need to be satisfied. That is why we
have N x T of these constraints. Constraint 2 (C2) ensures that
the optimal SIC decoding order is followed. Here, we define c;
as the number of links after i, in the sorted sequence of the
values of |h;|?/(2% —1). C2 ensures that if sensor i is not
scheduled in slot ¢ through the variable a; ;, then none of the
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remaining sensors can be scheduled in that particular slot. The
reason is that they have lower energy/bit ratio by our ordering
requirement which means that the packet cannot be decoded. Of
course if a; ; = 1 then all the remaining sensors can be poten-
tially scheduled. The specific way of populating c; is central
in making the problem solvable: The power allocation variable
P; ; can effectively change the energy/bit in equation (12) for
a sensor i. However, if we cannot increase the power P;; for a
sensor i to a level that ensures that C1 is valid, then it is impos-
sible to do that for a sensor i’ that has lower energy/bit ratio
|hi|*/(2R" — 1). Hence, by using R; in this ratio, the event
that power allocation decisions in our optimization change the
optimal SIC ordering is avoided. Constraint 3 (C3) ensures that
sensor i transmits at most once within the 7 slots. Constraint 4
(C4) is the power constraint per time-domain sample that can-
not exceed P, while constraint 5 (C5) ensures that no power is
allocated to non-scheduled sensors.

Minimizing WSN Power under a Distortion Constraint.
Now we formulate the power minimization problem under a
distortion constraint. To be consistent with our previous nota-
tion, the power is minimized over the whole transmission time.
We define an MSE distortion threshold D that is the minimum
distortion constraint as in [1]. Then the power minimization
problem is formulated as:

PWR: mmZZPl,, s.t. (C1), (C2), (C3),
=1 i=1
T N

DB MZ,I_B — (C4), (C5)

t=1 l=1 99

Here, constraints C1-C3, and C5 are the same as in the DIST
problem. The new fourth constraint (C4’) ensures that the
distortion threshold in (15) is met.

Minimizing Power for ORTH. The previously described
optimization approach is also applied for the ORTH-MMSE-
OPT that considers orthogonal transmission and sensor selec-
tion. In particular, we present representatively its formulation
under the PWR objective:

mmZZP, ‘

t=1i=1

Pihi|?

—>1,V'€N,te‘T C1),
Sy = 1 (1)

N
Y @i <1, Vi € T(C2), (C3), (C4), (C5)
i=1

Note that the main difference is the removal of decoding order
constraints, a simpler SNR threshold constraint (C1°), while the
constraint for one sensor transmission/slot (C2’) was added.

VII. MILP RELAXATION AND APPROXIMATION

Even though designing the most efficient algorithm for solv-
ing the MILP is not the main focus of this paper (since this is a
hard problem in general), we present a solution by designing an
approximation algorithm. Since there are no polynomial time
algorithms for solving MILPs, we first relax the optimization
problems so that a Linear Program (LP) can be solved. LPs can
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be solved in polynomial time with interior point methods. Thus,
we allow the binary variables a; ; to take any value between 0
and 1. After the LP is solved the results of the relaxed LP, that
consists of a set of continuous values between 0 and 1, are con-
verted to binary values. We adopt the Randomized Rounding
(RR) approach that assigns the final binary values with a certain
probability. Let a; ; denote the solutions of the LP, the binary
values are approximated as:

. {1 P =i,

dir =

0 P0]l=1-—a, (7

This rule means that the final binary solution 4;; is equal to
1 with probability &@; ; and equal to O with probability 1 — a; ;.
Values of a; ; closer to 1 increase the probability that a binary
1 is assigned. This process ensures that the cost of the MILP
and LP solutions are the same. Since some constraints might be
violated after (17), they are first verified.

A side-effect of the relaxed problem formulation is that the
LP actually provides a solution that gives non-zero values for
a;,; for all the sensors and all the slots. Since the channel does
not change throughout the scheduling period of T slots, a; ;
obtains fractional values that are equal across all the slots even
though their sum is less than 1. So the heuristic algorithm that
we propose next is based on the application of the RR procedure
on a time slot basis. For each slot, we first obtain the results
of the RR algorithm, we then perform a constraint check and
keep the final result. Regarding the constraint check, C1 cannot
be violated by RR since it only contains the continuous vari-
able P;; and so the related solutions are retained. Furthermore,
when the value of 4;; is equal to O for a certain sensor, the
only constraint that must be checked is the ordering through
C2, i.e., a sensor with lower ranking in the list ¢; may not
be scheduled. So in this case we also set d;; equal to zero
for all the remaining sensors in slot #. Of course in this case
the power P;; is also set to zero according to C5. Finally, to
ensure C3, i.e., a sensor is only activated once within 7', then if
ai =1 we set a; » =0, V¢’ € T/{t}. The algorithm proceeds
by removing all the already scheduled sensors from the con-
straints. Subsequently, it repeats the same constraint checks for
the remaining sensors.

Correlation Estimation. Obtaining the value for the correla-
tion coefficients of each sensor might also be a non-trivial task.
To make our system fully implementable in practice, we employ
an estimator of the correlation coefficient vector p at the FC
(recall that this is a deterministic vector that contains the cor-
relation coefficients). Based on the available measurements, we
continuously update Xy. For known AWGN and quantization
variance at the sensors, this means we also know the diagonal
matrices ¥, Xq. From (13) we can obtain the expression for the
covariance matrix as Xy = ppt 00 + Xz + X4, from which we
only need 092.

VIII. PERFORMANCE EVALUATION

In our setup, the sensors are spread randomly and uniformly
in a disc, and in the center there is the FC. The spatial correla-
tion model is created so that it represents reduced correlation
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Fig. 3. The effect of the number of sensors on the distortion of all the proposed schemes for 062 = 10.
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as nodes are farther away from the center of the disc, i.e.,
pi = p@st@ where dist is normalized in the range [0, 1].
Different values for p are tested. The other parameters are set
as follows ozzi = 02 = 02 unless otherwise noted. Also o is
controlled through the transmit SNR given in (3). 002 may take
different values but it is equal to 10 unless otherwise specified.
We also used R; = 8 bits/source sample, the range of the sig-
nal was W =1 Volt, and R; = 1, i.e., BPSK modulation. Also
100 bits are transmitted (K = 12 samples per packet).

A. Results for Distortion Minimization

For the distortion minimization problem, we present the min-
imum distortion for the different schemes. We consider that
T = 4 slots are available, the number of available sensors vary,
while the total power budget is fixed (P = 2). In Figure 3, we
present results for the average distortion of all the schemes.
We observe that the proposed SIC-MMSE-OPT scheme out-
performs SIC-MMSE and ORTH-MMSE-OPT for every SNR
and p combination, since it ensures that SIC and MMSE are
jointly optimized. The heuristic has a good performance and the
gap is only increased for high values of the correlation coef-

ficient. Recall that with OPT-based schemes, the ratio 0,2[4);02
is included in the optimization objective. For the high Cofrelaii—
tion case, this means that the algorithm attempts to maximize
the number of decoded sensors that have high value observa-
tions. So the heuristic “misses” a number of opportunities for
decoding high value packets by not scheduling the correspond-
ing sensors. Hence, for the high correlation case (Figure 3(c),
(d)), these observations are more valuable for the performance

when compared to the low correlation case (Figure 3(a), (b)),

leading to an increase in the gap between the heuristic and
the optimal solution. More insight into the performance of the
heuristic is provided in the next subsection where we discuss
power minimization.

Next we compare the performance of SIC-MMSE with
ORTH-MMSE-OPT. Note that SIC-MMSE allows simulta-
neous transmission of many uncoordinated sensors and then
applies our joint SIC-MMSE decoding algorithm without opti-
mization. In the low p regime (Figure 3(a), (b)), we observe that
SIC-MMSE performs almost as good as ORTH-MMSE-OPT.
However, this picture changes significantly for higher p. For
p = 0.9 (Figure 3(c), (d)) the performance gap between ORTH-
MMSE-OPT and SIC-MMSE increases, since each observation
now has higher value and their optimal selection is more crit-
ical. In other words, the SIC-MMSE scheme that does not
perform any optimization, but simply decodes opportunistically
the observations with SIC, can reach the same performance
with ORTH-MMSE-OPT for low p. Finally, we notice that all
the schemes are more dependent on p rather than the transmit
power expressed through the SNR.

In Figure 4(a) we present average distortion results for differ-
ent 092 / O’Z2 ratios (variance of the signal to be estimated relative
to the power of the sampling noise). We observe that as this ratio
increases, the performance gap between the proposed scheme
(SIC-MMSE-OPT) and the two other schemes increases sig-
nificantly. As the signal variance is increased (the signal of
interest becomes more random), the estimation accuracy suffers
with ORTH-MMSE-OPT. The proposed scheme is less sensi-
tive to 092. We also investigated the effect of the correlation
coefficient on the average distortion for N = 10 sensors and
we present the results in Figure 4(b,c) for different SNR lev-
els. Here, we observe that for low data correlation, the impact
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of our scheme becomes more significant. But even for high
correlation coefficient, the proposed scheme offers significant
benefits, reducing the distortion by more than 50%.

B. Results for Power Minimization

For the power minimization, we set the MSE constraint
to 0.5, and present the results in Figure 5. SIC-MMSE-OPT
outperforms the other schemes for every N by ensuring a trans-
mit power allocation to specific sensors so that the signal is
decodable and no extra power is wasted. The SIC-MMSE-OPT
power optimization algorithm identifies the set of sensors that
require the minimum power for meeting the MSE constraint.
For higher p (Figure 5(c), (d)), the value of each observation
is higher since the observations across sensors are highly cor-
related, however, fewer packet decoding events are required.
Hence, the target MSE can be achieved with few sensor obser-
vations. This also means that sensors that are physically closer
the FC, hence, requiring low transmission power, are sched-
uled. So the heuristic works very well in this case. However,
when p is low (Figure 5(a), (b)), more observations are needed,
and more power must be spent to meet the MSE target. So
“missed” scheduling opportunities from the heuristic will result
in a higher performance gap from the optimal case. This result
highlights the importance of using p in the optimization objec-
tive and the heuristic. Also note that for 092 = 10,and p = 0.9
the optimization under ORTH-MMSE fails as illustrated in
Figure 5(d), i.e., there is no solution that can meet the MSE
requirement.

In Figure 6, we present the normalized average power per
sensor for the case of simultaneously transmitting sensors
under SIC-MMSE-OPT. As the signal variance increases in

6 7 8 9
Number of Nodes

(d)

Number of Nodes

()

Figure 6(a), only then the number of simultaneously sched-
uled sensors increases. For 092 = 1, we observe that the average
number of sensors used is two. Here, the small value of the
power for the third sensor means that only in a few chan-
nel realizations a third sensor was scheduled simultaneously.
The number of sensors used on average increases to three for
002 = 10 and four for 002 = 100. For higher transmit SNR illus-
trated in Figure 6(b), we notice that three sensors are used
nearly all the time since they all have a good channel. On the
other hand for low transmit SNR most of the time one sensor is
used since it requires the consumption of higher power.

IX. CONCLUSIONS

In this paper, we studied DES of a noise-corrupted random
parameter in WSN where the sensors are allowed to interfere
their transmissions. We first proposed a joint SIC decoder and
MMSE estimator for interfering transmissions of correlated
data. Next, we modeled the MSE performance of this system
and our analysis was compactly captured in a MILP optimiza-
tion model. Our optimization exploits SIC by selecting sensors
for simultaneous transmission so that the interfering signals
are decodable while their contribution to the MSE reduction is
maximized. We also proposed a heuristic that closely follows
the optimal solution. The proposed framework offers faster
rate of power or MSE reduction as the sensor population is
increased. As our future work, we plan to study the perfor-
mance of the system under average conditions in order to be
able to adapt even in longer timescales. This will allow the
inclusion of higher number of sensor populations at an even
lower computational cost for the proposed scheme.
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