
1089-778X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2015.2511142, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

Manuscript received ...; revised …; accepted … This work was partially

supported by the National Natural Science Foundation of China (NSFC) Key

Project No. 61332002 and by the NSFC Youth Projects No. 61502542 and No.

61300044 (Y.-J. Gong and J. Zhang are equally contributed corresponding

authors, email: gongyuejiao@gmail.com; junzhang@ieee.org).

X.-Y. Zhang, Y.-J. Gong, Z.-H. Zhan, W.-N. Chen, and J. Zhang are with

the Key Laboratory of Machine Intelligence and Advanced Computing,

Ministry of Education, China and with the Engineering Research Center of

Supercomputing Engineering Software, Ministry of Education, China.

Y.-J. Gong is also with Department of Computer and Information Science,

University of Macau, Macau.

Y. Li is with the School of Engineering, University of Glasgow, Glasgow

G12 8QQ, U.K.

Abstract—Operating mode scheduling is crucial for the

lifetime of wireless sensor networks. However, the growing scale

of networks has made such a scheduling problem more and more

challenging, as existing set cover and evolutionary algorithms

become unable to provide satisfactory efficiency due to the curse

of dimensionality. In this paper, a Kuhn-Munkres parallel

genetic algorithm is developed to solve the set cover problem and

is applied to lifetime maximization of large-scale wireless sensor

networks. The proposed algorithm schedules the sensors into a

number of disjoint complete cover sets and activates them in

batch for energy conservation. It uses a divide-and-conquer

strategy of dimensionality reduction, and the polynomial

Kuhn-Munkres algorithm are hence adopted to splice the

feasible solutions obtained in each subarea to enhance the search

efficiency substantially. To further improve global efficiency, a

redundant-trend sensor schedule strategy is developed.

Additionally, we meliorate the evaluation function through

penalizing incomplete cover sets, which speeds up convergence.

Eight types of experiments are conducted on a distributed

platform to test and inform the effectiveness of the proposed

algorithm. The results show that it offers promising performance

in terms of the convergence rate, solution quality, and success

rate.

Index Terms—parallel genetic algorithm, set cover problem,

large-scale wireless sensor networks, Kuhn-Munkres algorithm.

I. INTRODUCTION

IRELESS sensor networks (WSNs) have been widely

used in a number of fields to satisfy various

requirements, such as road traffic monitoring [1],

environmental observation [2], healthcare sensing [3], and

asset monitoring [4]. Typically, hundreds or even thousands of

sensors, each with a series of transceivers, a battery and a

micro central processing unit, are deployed in a target area.

Since it is impossible to recharge or replace the battery in some

scenarios, how to extend the lifetime of WSNs becomes a

critical task [5].

Existing ways for lifetime enhancement are classified into

five categories: operation mode control [6], data processing

[7][8], sink relocation [9]-[11], topology control [12][13], and

optimal routing [14]-[16]. There are various definitions of the

network lifetime. In this paper, the lifetime of a WSN refers to

the duration of time that the network is able to carry out its set

mission. Normally, the networks can fulfill its mission if it can

guarantee the specified coverage requirements by the sensors

deployed, i.e., the set cover condition is satisfied [17].

As summarized in [18]-[20], the deployment methods for

sensors in WSNs vary with applications, which can be

categorized into deterministic deployment and random

deployment. Deterministic deployment is applied to a small-

or medium-scale network in a friendly sensory environment

[21]-[23]. The set cover problem here can be transformed into

a minimum set cover problem or its dual problem. There are

some certain theoretical developments [24]-[26] and

optimization algorithms [18][21] related to this field. Since

this problem is NP-hard, evolutionary-computation based

solvers are potentially promising because of their

powerfulness in dealing with NP-hard problems. However, the

optimal number of sensors cannot be known in advance, which

increases the difficulty of applying an evolutionary algorithm,

such as the genetic algorithm (GA). The variable length

chromosome puts a great challenge to the crossover operation

of GA. Nevertheless, this issue has been well solved recently

by using a bi-objective GA [27].

When the environment is inaccessible or unfriendly, or the

number of sensors is too large, sensors are often scattered from

an aircraft or by other means of transportation, which in effect

results in random deployment. In order to guarantee coverage

and connectivity, the sensors are to be densely deployed in

target areas. To construct an energy-efficient WSN in this case,

sensors are assigned to different cover sets independent of one

another [28]. Activating them in batch ensures that only one

cover set is active at a time and the others are scheduled to

sleep. This scientific problem is known as the Set K-cover

problem [29] or Disjoint Set Covers problem [30], which is a

nondeterministic polynomial complete (NP) problem and

hence its optimization is NP-hard.

A common objective of solving the Set K-cover problem is

to maximize the lifetime of the WSN, but they differ slightly in

terms of coverage constraints. In [31], sensors are aimed to be

scheduled into K disjoint sets while guaranteeing that the

coverage ratio of each set is as high as possible by modeling

Kuhn-Munkres Parallel Genetic Algorithm for

the Set Cover Problem and Its Application to

Large-Scale Wireless Sensor Networks
Xin-Yuan Zhang, Yue-Jiao Gong, Member, IEEE, Zhi-Hui Zhan, Member, IEEE, Wei-Neng

Chen, Member, IEEE, Yun Li, Member, IEEE, and Jun Zhang, Senior Member, IEEE

W

1089-778X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2015.2511142, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

R

z1

z2

s

s

Fig. 1. Boolean Disk model. Considering two points z1 and z2 in the target

area, we have f (D(s, z1)) = 1 and f (D(s, z2)) = 0.

the Set K-cover problem as an N-person card game, and

solutions are obtained after a gaming process. A heuristic

method, termed the Most Constrained-Minimally

Constraining Covering (MCMCC), is proposed in [29]. The

essence of MCMCC is to minimize the coverage of sparsely

covered areas within one cover set. It requires that each cover

set is able to cover the target area completely. We focus on

complete cover sets in this paper.

Owing to their success in solving nondeterministic

polynomial problems, GAs [32]-[34] and other evolutionary

algorithms (EAs) [35]-[37] have been applied to the lifetime

problem in WSNs recently. Lai et al. [38] propose a GA for

maximum disjoint set covers (GAMDSC), which applies a

scattering operator to the EA offspring to keep critical sensors

from joining the same cover set. Hu et al. [39] propose a

schedule transition hybridized genetic algorithm (STHGA),

which adopts a forward encoding scheme for chromosomes

and utilizes redundancy information via designing a series of

transition operations. Ant-colony optimization for maximizing

the number of connected cover (ACO-MNCC) is proposed in

[40], which maximizes the lifetime of heterogeneous WSNs.

These algorithms are shown competitive in solving small to

medium sized WSNs. However, the performance of existing

methods decreases substantially when dealing with a

large-scale Set K-cover Set problem.

To improve set cover efficiency and large-scale WSN

performance over existing algorithms, a Kuhn-Munkres

scheduled parallel GA (KMSPGA) is developed in this paper,

so as to provide the following features and benefits:

 A divide-and-conquer strategy to achieve dimensionality

reduction in a simple but effective way and solve the

small-scale Set K-cover problem separately in each

subarea;

 The merging of local feasible solution is modeled as a

Maximum Weight Perfect Matching (MWPM) problem

such that Kuhn-Munkres (KM) algorithm [41][42] is

applicable;

 A redundant-trend sensor schedule strategy (RTSS) to

further improve global search efficiency, which is easier

to implement than the existing auxiliary schedule

strategies [39], and

 A modified fitness index by introducing a coverage

inadequate penalty to guide convergence better.

The rest of this paper is organized as follows. In Section II,

we describe the Set K-cover problem for WSNs, with

assumptions and definitions given. In Section III, we develop

KMSPGA in detail. This parallel genetic algorithm is

comprehensively tested for performance through simulations

in Section IV. Finally, conclusions are drawn in Section V.

II. PROBLEM FORMULATION

A. Sensor Model

In this section, we introduce the sensor model adopted in

our algorithm, which is crucial for the coverage, connectivity,

and energy consumption.

A sensor coverage model is an abstract concept to measure

the sensing capability and to quantify how well a sensor can

monitor the occurrence of events within its sensing range.

Various models have been proposed, such as the Boolean

sector coverage model and the attenuated disk coverage model

[43]. Comparisons of existing models are made in [44]-[46].

In this paper, we adopt the Boolean disk model because of

its concise definition and wide applicability [19][43], which is

illustrated in Fig. 1. This model ignores the dependency of

environmental conditions. A point in the space of the target

area is considered to be covered only if it is within the range of

at least one sensor. A coverage function is formalized as:

1, if (,)

((,))
0,

sD s z R
f D s z

otherwise


 


 (1)

2 2(,) () ()x x y yD s z s z s z    (2)

where s = (sx, sy) is the central coordinate of a sensor and (zx, zy)

is the coordinate of point z in a 2-dimensional space, Rs is the

sensing radius and D(s, z) calculates the Euclidean distance

between s and z. Once a point is covered by a sensor, the

coverage function value is 1, otherwise, it is 0. In [47], a

geometric analysis of the relationship between coverage and

connectivity is provided, showing that the connectivity can be

guaranteed inherently if 1) coverage is satisfied and 2) the

communication range of sensors is no less than twice of the

sensing range. Afterwards, many related publications for

solving the Set K-cover problems are based on this proof

[31][39] that they use the sensors with communication range at

least twice than the sensing range and consider the coverage

constraint only. In this paper, we also make such an

assumption and meet the connectivity constraint by satisfying

the coverage constraint.

In WSNs, the energy consumption of a specific sensor can

be determined by the following aspects: 1) the communication

when sending and receiving data; 2) the data type and size

acquired for processing; 3) the differences in the inherent

characteristic of the battery; 4) the different local working

condition, such as temperature. These are, however, diverse

and highly related to the application scene. In this paper, we

focus on the Set K-cover problem. Instead of fully formulating

the above issues influencing the energy consumption, we

simplify the model by making the following three assumptions:

1) for every active sensor, the amount of energy consumption

is identical per unit time; 2) for every sleep sensor, they

consume negligible energy compared with the active ones; 3)

every sensor carries the same amount of energy in the initial

stage. Based on these assumptions, the lifetime of each

complete cover set is identical to each one another.

Nevertheless, it is to be noted that the energy consumption

model in use have no direct relationship with the operations or

parameters of our proposed KMSPGA. In practical application,

1089-778X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2015.2511142, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

E1

E2

E3

E4
E5

E6

E7

E8

(a) (b)

Ex

Fig. 2. Notion of an element and a K-covered element. (a) The shaped area is

divided into eight elements E1, E2, …, E8, where four elements are covered by

two sensors and the remaining four by one only. (b) Element Ex is called

K-covered, if it is covered by K sensors, in which case K = 4.

1

2

3

4

5

6

7

8

9

10

11
12

13

14

15

16

Fig. 3. Elements E1, E3, E6, E8, and E15 are called critical elements, as they are

covered by the minimum number of sensors.

there is still room for KMSPGA to adapt this framework to

fitting new forms of energy constraints.

B. Set K-Cover Problem

In this paper, we focus on maximizing the lifetime of a

large-scale WSN using a static optimization strategy. The

proposed KMSPGA is an off-line algorithm that pre-calculates

K disjoint complete cover sets at a time. By alternatively

activating the K cover sets in batch, the lifetime of the WSN

can be K times larger than the lifetime of a single cover set.

Hence, maximizing the lifetime of the WSN is equivalent to

finding the maximum disjoint complete cove sets.

We consider the Set K-cover problem a scheduling problem.

For a positive integer K, sensors are judiciously scheduled into

K disjoint cover sets such that each cover set is able to meet the

coverage requirement. In this paper, we focus on a complete

coverage. The premise of finding K disjoint complete cover

sets is that every element of the target area is covered by at

least K sensors. Sufficiency of this premise is proven in the

following of this subsection. Fig. 2 illustrates the concept of an

element and a K-covered element. In Fig. 2 (a), the grey square

area is divided into eight elements. Element Ex in Fig. 2 (b) is

covered by four sensors; hence it is called 4-covered.

Without loss of generality, assume that a target area Γ is a

rectangle and that N sensors S1, S2, …, SN are randomly

deployed in Γ. A constraint of the coverage requirements is a

complete coverage. Given a positive number K, sensors are

scheduled into K cover sets C = {C1, C2, …, CK}. For each

cover set Ci (i = {1, 2, …, K}), if every element of Γ is covered

by at least one sensor in Ci, then C would be considered as a

feasible solution of the Set K-cover problem. The Set K-cover

problem can be formalized as:

 ()
k i

kS C
E S

 
 (3)

1

K

i

i

C S


 (4)

 , , , {1,2,..., }i jC C i j i j K   (5)

where E(Sk) represents the element sensed by sensor Sk, k is the

sensor index, S is the collection of sensors. Assume that the

target area is partitioned into M elements E1, E2, …, EM. To

make a clear explanation of how to calculate the upper bound

of K, we first give the following proposition and its proof:

Proposition 1: The prerequisite of finding K disjoint cover

sets is that each element is covered by at least K sensors.

Proof: Assume that Eτ is covered by Q sensors SCτ = {Sτ,1,

Sτ,2, …, Sτ,Q}, where SCτ is the collection of sensors covering

element Eτ. There still exist K disjoint complete cover sets with

Q < K.

Let C be a feasible solution of the Set K-cover problem.

Then, we have |C| = K. Considering the same element Eτ in the

assumption, Eτ is expected to be covered in each Ci ∈ C

according to (3). Then, K cover sets are considered as K

covering tasks, and we have Q sensors that can perform this

task. Then, K tasks are assigned to Q sensors. Since we have

|C| = K > |SCτ| = Q, there exist cover sets Cp, Cq ∈ C, and

sensor Sτ,m ∈ SCτ (m ∈ {1, 2, …, Q}) satisfying Sτ,m ∈ Cp ∩ Cq

according to the drawer principle, and therefore it contradicts

(5). In conclusion, the assumption is invalid and hence the

proposition is proven to be tenable.

In order to better explain how to estimate the upper limit of

K, the notion of critical element and critical sensor is

introduced as follows. The target area is partitioned into a

number of elements by thousands of densely deployed sensors.

An element covered by the minimum number of sensors is

called a ‘critical element’ and the corresponding sensors

‘critical sensors’. Fig. 3 illustrates critical elements and critical

sensors, where six sensors divide the rectangular area into

sixteen elements E1-E16. Being covered by one sensor only,

elements E1, E3, E6, E8, and E15 are critical elements.

Let Ec be a critical element. Assume that the number of

sensors covering Ec is Û. According to Proposition 1, we can

at most find Û disjoint complete cover sets only if the Û

critical sensors are chosen in Û disjoint cover sets which

guarantee that Ec is covered by every cover set, and therefore

Û is regarded as the upper limit of K.

C. Critical Parameters

In this subsection, we discuss some critical parameters

related to a large-scale WSN. A redundant rate represents the

density of sensors deployed in the target area. The redundant

rate in the 2D ideal plane model is computed as (6) according

to [39], where area(Γ) is the area of Γ and N is the number of

sensors.

2

Û ()

sN R

area




 


 
 (6)

It is difficult to compute the coverage ratio of Γ accurately

when applying the Boolean disk model. For this reason, we

divide the target area into T smaller square grids (g1, g2, …, gT),

T being computed as (7), where d is the width of the grid. A

coverage ratio is defined as (8), where Ng(Si) represents the

collection of grids covered by sensor Si and |Ng(Si)| is the

number of grids in Ng(Si). Equation (9) indicates that a grid

belongs to no more than one collection in case of a repeat

count.

2

()area
T

d


 (7)

1089-778X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2015.2511142, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

Algorithm 1 Preprocessing of choosing a proper grid width

1: Procedure WIDTHCHOOSE {d1,…,dΨ}

2: d ← d1 ;

3: Compute Û1 ;

4: for i = Ψ → 2 do

5: d ← di ;

6: Compute Ûi

7: if Ûi = Û1 then

8: d ← di ;

9: break ;

10: end if

11: end for

12: return d ;

13: end procedure

(a) (b) (c)

Fig. 4. Calculation of the coverage ratio. (a) The light grey grids are covered

while the black one is not covered because one of its vertices is beyond the

sensing range of the sensor. (b) The black grid is covered by two sensors Sp

and Sq, but only belongs to either of Ng (Si), i ∈ {p, q}, in the case of a repeat

count. (c) The coverage ratio is 11/25 = 0.44.

(a) (b)

Fig. 5. An example to show how the grid width influences the computation of

the coverage ratio. (a) The grey grid is regarded as uncovered due to the

coverage criteria. (b) The grey grid becomes covered by either of the two

sensors after the grid width is shortened.

Start

end

Population initialization

DIVIDE (Γ)

Fitness Evaluation

Crossover

Mutation

RTSS
f = fs

. . .

No

Compute state factor ζ

Yes

ζ > ζ c ?
No

Conquer (C1, C2,�, CL×W)

Example Rank [i]

Termination condition ?
No

Yes

Parallel processing module

. . .

P
ro

cess [L
×

 W
]

P
ro

cess [1
]

P
ro

cess [L
×

 W
-1

]

P
ro

cess [i]

P
ro

cess [2
]

Selection

Yes

Fig. 6. Flowchart of the Kuhn-Munkres parallel GA framework.

1

1
| () |

N

g i

i

N S
T




  (8)

 () () , , , {1,2,..., }g i g jN S N S i j i j N   (9)

The coverage criteria stipulates that grid gj is covered by

sensor Si only if all its four vertices are within the sensing

range of Si. Fig. 4 shows how to calculate the coverage ratio.

This calculation method is widely used to estimate the

coverage ratio [39][40]. However, the grid width can influence

the computation of the coverage ratio in terms of

computational complexity and accuracy. Fig. 5 gives an

example to explain this special case, where the grey grid is

apparently covered by the WSN. Unfortunately, it is regarded

as uncovered due to the above coverage criteria whether a grid

is covered. If the width of this grid is halved, two resultant

grids become covered. However, the calculation of the

coverage ratio is of an O(N×T) computational complexity. A

shorter width means a higher computational complexity

according to (7).

In our work, we adopt a simple strategy to determine the

grid width in a preprocessing step. Given Ψ kinds of di (i = {1,

2, …, Ψ}, di < di+1) in the process of estimating the upper limit

of K, we choose the smallest d1 first to obtain an exact value Û1,

because d1 is small enough to guarantee accuracy. Then di (i =

{2, 3, …, Ψ}) is adopted to work out Ûi in sequence. The

largest di (ensuring Ûi = Û1) is used for calculating the

coverage ratio. Algorithm 1 presents a set of pseudocode of

this preprocess of choosing a proper grid width. In this paper,

we adopt 5 kinds of grid widths: (d1, d2, d3, d4, d5) = (0.625,

0.78125, 1, 1.25, 1.5625).

III. PROPOSED PARALLEL GENETIC ALGORITHM

A. Kuhn-Munkres Parallel Genetic Approach

KMSPGA is designed on a divide-and-conquer strategy,

and the polynomial KM algorithm is adopted to splice the

feasible solutions obtained in each subarea. The framework of

KMSPGA is shown in Fig. 6. In the first step, we uniformly

divide the target area into a number of subareas and encode

them. Assuming that the number of sensors within subarea Ai

is Ni, it satisfies:

1

L W

i

i

N N




 (10)

where L and W denote the number of partitions along

horizontal and vertical directions respectively, and hence L ×

W denotes the number of subareas obtained. Therefore, the Set

K-cover problem size of subarea Ai is whittled down to Ni.

After the partition process, the small-scale Set K-cover

problem within each subarea is separately solved by a parallel

processing module. When local solutions of each small-scale

Set K-cover problem reach a predefined state, they are spliced

through a KM combination operation to achieve global

optimization efficiently. There are two termination conditions:

1) FEs reaches its upper limit and/or 2) the number of

complete cover sets reach Û. KMSPGA deploys a

termination-controller in its master process. The controller

checks whether the current process has reached the

termination condition at the end of every generation. If so, the

master process broadcasts a termination signal to all the slave

1089-778X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2015.2511142, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

Algorithm 2 Process of divide-and-conquer.

1: Procedure DIVIDE (Γ)

2: Divide Γ into L×W subareas (A1, A2, …, AL×W)

3: for i = 1 → N do

4: for j = 1 → L×W

5: if Si falling in Aj then

6: Add Si into SEj;

7: end if

8: end for

9: end for

10: end procedure

1: Procedure PARALLELPROCESSING (SP)

2: DIVIDE (Γ) ;

3: Repeat

4: for process = 1 → L×W parallel do

5: processing (Pprocess); // gc is the current generation

6: if gc % fs = 0 then // “%” is a modulus operator

7: compute the state factor ζ.

8: if ζ > ζc then

9: CONQUER (C1, C2, …, CL×W) ;

10: end if

11 end if

12: end for

13: Until termination conditions are satisfied.

14: end procedure

1: Procedure CONQUER (C1 , C2, …, CL×W).

2: Repeat

3: Compute the weight matrix wE.

4: Combine neighbor cover sets (Cp, Cq) ;

5: Until all local cover sets are merged into a global one.

6: end procedure

A1

A7

A5

A3

A1

A8

A6

A4

A2

A29

A25

A21

A17

A13

A9

A5

A1

A30

A26

A22

A18

A14

A10

A6

A2

A31

A27

A23

A19

A15

A11

A7

A3

A32

A28

A24

A20

A16

A12

A8

A4

.

.

.

.

.

.

.

.

(a) 1´2 (b) 2´4 (c) 4´8 (d) L´W

A2

Fig. 7. Division of the target area and encoding of the subareas. The target area

is divided into 2, 8, 32, and L×W subareas in figure (a), (b), (c), and (d).
C7

C5

C3

C1

C8

C6

C4

C2

C7-8

C5-6

C3-4

C1-2

C7

C5

C3

C1

C8

C6

C4

C2

C1-4

C5-8

C1-4

C5-8

C1-8

Step 1 Step 2 Step 3

Fig. 8. Combination of the subareas.

Cp,1

Cp,2

Cp,3

Cp,4

Cp,5

Cp,6

Cp,7

Cp,8

Cp,9

Cp,10

Cq,1

Cq,2

Cq,3

Cq,4

Cq,5

Cq,6

Cq,7

Cq,8

Cq,9

Cq,10

Cp-q,1

Cp-q,2

Cp-q,3

Cp-q,4

Cp-q,5

Cp-q,6

Cp-q,7

Cp-q,8

Cp-q,9

Cp-q,10

Cp Cq Cp-q

Fig. 9. Bipartite combinations of solutions Cp and Cq obtained by neighbor

sub-populations, such that the Kuhn-Munkres algorithm can be applied.

processes and, afterwards, all the processes of KMSPGA

terminate. Pseudocode of this divide-and-conquer strategy is

given in Algorithm 2.

Divide() contains two steps. Firstly, the target area Γ is

uniformly partitioned into L×W subareas A = (A1, A2, …, AL×W).

Fig. 7 gives four examples where Γ is divided into 2, 8, 32, and

L×W subareas in Fig. 7 (a), (b), (c), and (d), respectively. Then,

the centers of all sensors are traversed to obtain a classification

SE = {SE1, SE2, …, SEL×W}, where SEi is the collection of

sensors falling in subarea Ai. Every sensor within SEi satisfies

that its central coordinate (sx, sy) ∈ Ai (k = {1, 2, …, Ni}).

Additionally, if the center of a sensor falls on the boundaries of

two or more subareas, it will be randomly scheduled into any

one of the subareas. In order to keep the concision of

KMSPGA, we adopt a uniform partition here instead of other

ways such as clustering techniques. Besides, the uniform

partition is convenient for the following combination

operation.

In the parallel processing module, each process evolves a

sub-population to obtain a feasible solution. The collection of

sub-populations is formulized as SP = (SP1, SP2, …, SPL×W).

Each sub-population size is Np. They are evolved

independently through a selection, crossover, mutation, and

RTSS operation in processing(). We estimate the state of each

sub-population through periodically sampling the information

of the best individual at a sampling frequency fs. A state factor

ζ is computed as follows:

1

1

Û

L W

i

i

U




  (11)

where Ui is the number of disjoint complete cover sets

obtained by the best individual of SPi. Since Ui ≤ Û (i = 0,

1, …, L×W), we have ζ ≤ L×W. Therefore, the upper limit of

the threshold value, ζc, is set to L×W–1. The value of ζ

determines whether the KM combination operation will be

applied. The independent evolution process will be terminated

until ζ reaches ζc. Therefore, instead of performing the KM

operation every generation, the execution timing of KM is

adaptively adjusted based on the state factor. This way, the

effectiveness of the operation is improved, and hence the

computational cost is substantially reduced. The threshold ζc

determines the frequency of performing the KM operation

(merging the local feasible solutions) and then checking for the

termination condition. This procedure however does not affect

the main evolution process of solutions to much extent. Thus,

different settings of ζc will not change the output solution

quality of the proposed algorithm, but only influence the

execution time. The standard uniform crossover and uniform

mutation are adopted in the evolutionary process. RTSS is

conducted right after mutation, and before fitness evaluation,

which is introduced in detail in Subsection D. The tournament

selection is adopted because of its efficiency, with a

tournament size Ts.

Conquer() is a combination operation in order to merge the

feasible local solutions C = (C1, C2, …, CL×W)T, Ci = (Ci,1,

Ci,2, …, Ci,Û). Ci is the best solution of the small-scale Set

K-cover in subarea Ai. Fig. 8 shows an example of this merging

process, where Γ is divided into 2×4 subareas. We need three

steps to merge (C1, C2, …, C8) into C1-8. Considering a couple

of neighboring sub-populations p and q, Conquer() is expected

1089-778X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2015.2511142, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

X x x x x x x x x

4 1 3 2 3 2 4 1

S ,S S ,S S ,S S ,S

{ }C

=

C =

1 2 3 4 5 6 7 8

2 8 4 6 3 5 1 7

1 2 3 4C C CX

Fig. 10. Representation of chromosome. C is an equivalent way of

representing a chromosome, where genes of the same value form a cover set.

Algorithm 3 Fitness evaluation

SFk: a flag variable in case of repeat count.

RFi: a flag variable representing whether Si is redundant.

1: Procedure CHROMOSOMEEVALUATION (x1,…,xN)

2: for i = 1 → N do

3: SFi ← 0;

4: RFi ← true; // Si is redundant if RFi is true

5: end for

6: for i = 1 → T do

7: for j = 1 → N do

8: k ← xj ;

9: if gi  Ng(Sj) and SFk = 0 then

10: CNk ← CNk+1 ;

11: SFk ← 1;

12: RFj ← false;

13: end if ;

14: end for

15: end for

16: f ← 0;

17: for i = 1 → Û do

18: δi ←CNi∙T
-1 ;

19: f ← f +δi∙P(δi) ;

20: end for

21: end procedure

to find a best combination Cp-q for each dimension of Cp and Cq

ensuring that the coverage ratio summation of Cp-q,k is maximal.

The total number of matching combinations is Û!. As shown in

Fig. 9, given Û = 10, we have 10! kinds of matching ways of

Cp and Cq. This combination problem can be modeled as a

MWPM problem in graph theory, which can now be solved

using the KM algorithm.

In the literature, KM algorithm has been successfully

applied to a number of fields, such as allocation of

vehicle-to-infrastructure and vehicle-to- vehicle links [48],

group role assignment [49], and user grouping for grouped

OFDM-IDMA [50].Given a bipartite graph G = (V, E) and

weight function w(e), MWPM aims at finding a perfect

matching of maximum weight. The weight of the matching M

is formulized as (12). Cover sets (Ci,1, Ci,2, …, Ci,Û) are

considered as the vertices of G (i ∈ {p, q}). Weight wi,j of edge

e between Cp,i and Cq,j is computed as (13), where

|Ng(Cp,i∪Cq,j)| represents the number of grids covered by the

sensors within Cp,i and Cq,j, and |Ng (Ap∪Aq)| is the number of

grids covered within Ap and Aq. Then, the weight matrix WE is

represented as (14). KM combination is constantly conducted

until all local solutions are totally combined into a global

solution.

 () ()
k

ke M
w M w e


 (12)

, ,

,

| () |

| () |

g p i q j

i j
g p q

N C C
w

N A A
 (13)

ˆ1,1 1,U

ˆ ˆ ˆU,1 U,U

w w

w w

 
 

  
  
 

EW (14)

B. Chromosome Representation

In this subsection, we describe the chromosome

representation in KMSPGA. We compute the value of Û in the

whole target area. It is worth mentioning that even if we

divided the target area into subareas, we still have to ensure

that the whole target area can be covered by Û complete cover

sets. Therefore, Û is also the upper limit of the number of

complete cover sets for each subarea, then, sub populations

SP1, SP2, …, SPL×W share the same Û. Taking Population SPk

as an example, each chromosome is encoded as X = (x1, x2, …,

xn), where xi represents the batch number of sensor i, and n is

the number of sensors falling in Ak
 (n = Nk). Since there is at

most Û batches, we have xi ∈ {1, 2, …, Û}.

For chromosome X, sensors with same batch number are

chosen to a same cover set. Therefore, X is transformed into CX

= (C1, C2, …, CÛ), which is a candidate solution of Set K-cover

problem. Fig. 10 gives an example of chromosome

representation and shows the relationship between X and CX,

where n is eight and Û is four. On the contrary, X can be easily

transformed from CX. Therefore, X and CX are equivalent on

representing an individual. In the remainder of this section, we

adopt the CX structure in representing a chromosome because

this form is more convenient for introducing and descripting

the operations of KMSPGA while X is adopted in the practical

implementation of KMSPGA.

C. Improved Fitness Index

In STHGA [39], the evaluation function is defined as (15),

where δi represents the coverage ratio of cover set Ci. The

computation of δi is shown in (16), where the value of δi,k is 1 if

grid k is covered by Ci. The value of δi (i ∈ {1, 2, …, Û-1}) is 1

in STHGA because of the forward encoding scheme. The

evaluation function of GAMDSC [38] is shown in (18), where

fB represents the number of disjoint complete cover sets and ⌊x⌋
denotes the floor of x.

ˆ

1

1 U

A i

i

f
T




  (15)

1()

,

1

T L W

i i k

k

L W

T
 

 




  (16)

 ,

1,

0,

i
i j

if grid j is covered by C

otherwise



 


 (17)

ˆ

1

U

B i

i

f 


    (18)

In order to improve the convergence rate, we adopt a

penalty function P(δi) of (19), where λ is the penalty

coefficient. The fitness evaluation function of KMSPGA is

given in (20). Hence, the contribution of an incomplete cover

set is lower than a complete one because of this penalty.

Therefore, individuals with more incomplete cover sets are

1089-778X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2015.2511142, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

(a) (b) (c)

Fig. 11. Illustration of a redundant-trend sensor, with a redundant state

uncertain after crossover and mutation operations. (a) Since the area covered

by this sensor has already been covered by other sensors in the same cover set,

the grey sensor is considered to be a redundant one. Figure (b) and (c) show

two situations of redundant state of the grey sensor after the crossover and

mutation operations. The grey sensor is redundant in (b) while it is no longer

redundant in (c).

S2,1

S2,2

S2,7

S2,5

S2,6

S2,3

S2,4

S3,1

S3,3

S3,2

S3,5

S3,4

S4,6

S4,1

S4,2

S4,4

S4,3

S6,1

S6,4

S6,2

S6,5

S4,5

S5,1 S5,2

S5,4 S5,3

S1,1

S1,2 S1,3

S6,1

S6,1

S2,7 S1,3

S3,4

S5,4

C

C

C

C

C

C

C

1

2

3

4

5

6

Fig. 12. Redundant-trend sensors transition between disjoint cover sets,

where grey sensors are redundant-trend sensors. Different cover sets are

represented

by different polygons, such as the triangle representing cover set C1.

TABLE I

THE PARAMETER SETTING OF KMSPGA

Parameter Description Value

Ψ Number of grid width classification. 5

λ Penalty coefficient in cost evaluation. 0.2

L Number of partitions along horizontal direction. {2,4}

W Number of partitions along vertical direction. {2,4,8}

fs Sampling frequency. 3000

Pc Crossover probability. 0.6

Pm Mutation probability. 0.001

Nc Number of candidates in RTSS. [3-1Û]

Np Sub-population size. 15

Ts Tournament size 5

ζc

Threshold of the state factor with 2×2 partitions. 3.0

Threshold of the state factor with 2×4 partitions. 7.0

Threshold of the state factor with 4×4 partitions. 15.0

Threshold of the state factor with 4×8 partitions. 30.0

eliminated more easily than those with more complete cover

sets. Algorithm 3 shows the pseudocode of the fitness

evaluation in KMSPGA.

1, 1

()
,

i
i

if d =
P

otherwise





 


 (19)

Û

1

()i i

i

f P 


  (20)

D. Redundant-Trend Sensors Schedule Operation

In RTSS, the redundant information is indirectly utilized in

order to improve search efficiency. The redundant information

is collected in the fitness evaluation process. In Algorithm 3,

steps 2 to 15 give this collection process. As can be noted from

the pseudocode, the collection process is embedded in the

fitness evaluation in case of increasing computational

complexity. Note that after collecting the redundant

information, RTSS is not applied directly after the fitness

evaluation, but, as introduced in subsection A, it is performed

after crossover and mutation operations, the landscape of the

chromosome may change. Thus, the redundant information

utilized in RTSS is hysteretic.

Considering that Sk is a member of Cj, whether Sk is

redundant for Cj depending on its contributions to Cj. Sk is

considered to be redundant only if it has no contributions to Cj,

which is judged in the fitness evaluation. However, Sk may not

still be redundant, because crossover and mutation operations

may change the members of Cj. Therefore, Sk is called

redundant-trend sensors in RTSS due to this uncertainty of the

redundant state. Fig. 11 shows an example of this uncertainty.

The grey sensor is considered to be redundant after the fitness

evaluation operation. However, it is uncertain whether it is still

redundant after crossover or mutation.

The process of RTSS is described as follows. Suppose that

the cover set is C = {C1, C2, …, CÛ}. Firstly, we traverse the

redundant information of the sensors in Ci. Assuming Si,k is the

kth member of Ci, if Si,k is judged to be redundant for Ci in

Algorithm 3, we then consider it a redundant-trend sensor in

RTSS. A cover set Cm (m ∈ {1, 2, …, Û}) will receive Si,k

through a tournament selection, where Nc candidates are

randomly selected and the one with the lowest coverage ratio

is chosen to receive Si,k as one of its members. Fig. 12

illustrates this schedule strategy between disjoint cover sets. In

Fig. 12, different polygons represent different cover sets, the

grey sensors are redundant-trend sensors, and the direction of

arrow represents the schedule direction. RTSS has twofold

functions. It helps enhance the coverage ratio through the

schedule strategy if the redundant-trend sensor is actually a

redundant one. However, if the redundant sensor is no longer

redundant for the current cover set, the scheduling operation

becomes a disturbance for the population. This kind of

stochastic disturbance enriches the diversity of the population.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

In this section, experiments are conducted to ascertain the

performance of KMSPGA. In Subsection B, we compare

KMSPGA with the state-of-the-art algorithms. MCMCC,

GAMDSC, and STHGA are serial algorithms which perform

well in solving the Set K-cover problem. The experiments and

comparisons are used to verify the effectiveness of our

proposed KMSPGA algorithm for lifetime maximization of

large-scale WSNs. In Subsection C, we compare KMSPGA

with a traditional pure parallel genetic algorithm (PGA).

Further, the performance of the PGA embedding only RTSS

(SPGA) or KM combination (KMPGA) are also tested in order

to study the effectiveness of the two operations. Experiments

in Subsection D and E are designed to evaluate the robustness

of KMSPGA with different partitions and the redundant rates.

In Subsection F, we conduct parameter investigation and give

their suggested values. Finally, experiments in Subsections

G-I are conducted with new and different testing scenarios to

further verify the performance of KMSPGA.

KMSPGA and other algorithms are tested on a computer

cluster of 25 nodes (with a total of 100 processing cores),

which is homogenous with the same Intel core i3-3240 CPU

running at 3.40 GHz, 4GB memory and Ubuntu 12.04 LTS

1089-778X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2015.2511142, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

(a) (b)

0 10000 20000 30000 40000

0

50

100

150

200

250

M
ea

n
 U

Mean FEs

 KMSPGA

 STHGA

 GAMDSC

0 20000 40000 60000 80000

0

50

100

150

200

M
ea

n
 U

Mean FEs

KMSPGA

STHGA

GAMDSC

Fig. 13. Convergence curves of the compared algorithms. (a) I3-2. (b) I6-1.

64-bit operating system. The parallel programming practice

uses the Message Passing Interface (MPI). Table I shows the

parameter settings. Pc and Pm, the constant crossover and

mutation rates, are set as Pc = 0.6 and Pm = 0.001, respectively.

The value of λ determines the degree of punishment for the

individuals with incomplete cover sets. In all of the test

instances, we adopt λ = 0.2 as default value. Nc, the number of

candidates in RTSS, is empirically setting to 3-1Û. Sample

frequency fs is set to 3000 function evaluations (FEs). In

Subsections B-H, Γ is a 50×50 square area, and in Subsection I,

Γ is a 3-D surface. PL×W denotes the partition way of Γ. ζc is set

to 3.0, 7.0, 15.0, and 30.0 for P2×2, P2×4, P4×4, and P4×8,

respectively. Thirty trials are performed for each instance and

the results are averaged over the trials. A two-tailed t-test of

the null hypothesis is conducted in Subsections B, G, H, and I.

The null hypothesis will be rejected if p-value is smaller than

the significance level α = 0.05.

B. Comparison with State-of-the-Art Serial Algorithms

We conduct experiments on 12 instances to verify the

performance of KMSPGA in comparison with the serial

algorithms: MCMCC, GAMDSC, and STHGA. P2×4 is

adopted in this subsection.

The experimental results are listed in Table II. Mean and Std

are the mean quality and standard deviation. Sr is the success

rate. The best solutions are marked in bold. KMSPGA

outperforms the other algorithms in terms of the convergence

rate and solution quality. Furthermore, KMSPGA produces

significant increases both in the convergence rate and in the

success rate in the higher dimensional space. The success rate

of instances I1-1, I1-2, I2-1, I2-2, I3-2, I4-2, I5-2, I6-1, and

I6-2 reach 1.00. The mean FEs is far less than the serial

algorithms. MCMCC is not available because it took an

unacceptable time before termination. The worst runtime of

MCMCC is O(N2) [39], where N is the number of sensors. This

heuristic method performs efficiently when the number of

sensors is small or medium. However, the computational

complexity of MCMCC becomes so high in terms of

large-scale WSNs that it fails to work out a feasible solution in

an acceptable time, i.e., I2-1, a single run of MCMCC exceeds

eight hours. GAMDSC is another genetic algorithm used in

this experiment. Since GAMDSC lacks an efficient search

strategy to handle such a large number of sensors, solutions

obtained by GAMDSC are fewer than Û. STHGA possesses

high quality of solutions in the low-dimensional spaces when

the number of sensors is less than 5000. The complicated local

search operations help STHGA search the problem space

efficiently. However, the performance of this serial GA is

badly influenced by curse of dimensionality. The success rate

of instance I3-1 obtained by STHGA is 0.03. At the same time,

the large number of function evaluations indicates that the

searching efficiency reduces due to the curse of

dimensionality.

Fig. 13 shows the convergence curves of the compared

algorithms on instances I3-2 and I6-1, where the x-axis

represents the mean FEs and the y-axis the mean U over 30

trials. The convergence rate of KMSPGA is higher than

STHGA and GAMDSC. Furthermore, KMSPGA generates

higher-quality solutions. In Fig. 13 (a), KMSPGA obtains the

optimal value at about 15,000 FEs, STHGA reaches the near

optimal value at 35,000 FEs, and GAMDSC evolves very

slowly with a low-quality solution. Similarly, in Fig. 13 (b),

KMSPGA converges to the optimal value at about 20,000 FEs,

STHGA obtains the near optimal value at about 80,000 FEs,

and GAMDSC still evolves very slowly with a low-quality

solution.

 In this subsection, we investigate the effectiveness and

reliability of KMSPGA and the other compared algorithms

with the same maximum number of function evaluations so

that the comparison is fair. Some of the compared algorithms,

e.g., STHGA, are not suitable for parallelism. The reasons are

as follow. As can be noted from our description of the

proposed parallel genetic framework, the disjoint cover sets

within the same chromosome are supposed to be peer to each

other. In STHGA, Ci is a complete cover set while CU+1 is

incomplete due to the forward encoding scheme, which makes

Ci (i ∈ {1, 2, …, U}) is not peer to cover set CU+1. Combination

between any Cp,i and Cq,j (i, j < U) makes no sense to these

already complete cover sets. The complicated auxiliary search

TABLE II

EXPERIMENT ON 12 INSTANCES IN COMPARISON WITH SERIAL ALGORITHMS

INSTANCE N Rs η Û
GAMDSC STHGA KMSPGA

FEs U t-test
1

Sr
FEs U t-test

2

Sr
FEs U

Sr
Mean Mean Std p-value Mean Mean Std p-value Mean Mean std

I1-1

I1-2
5000

5 4.760 33 15000 2.0 0 0 0 10248 33 0 N/A 1.00 2688 33 0 1.00
8 4.845 83 15000 7.4 0.67 3.31e-61 0 11507 82.9 0.25 1.6e-01 0.93 2922 83 0 1.00

I2-1

I2-2
10000

5 4.488 70 30000 1.8 0.50 4.10e-65 0 25466 69.9 0.25 1.6e-01 0.93 8418 70 0 1.00
8 4.493 179 30000 10.2 0.57 1.76e-73 0 27077 178.8 0.38 2e-02 0.83 9324 179 0 1.00

I3-1

I3-2
15000

5 4.446 106 45000 1.3 0.50 1.15e-61 0 44887 103.9 1.13 8.90e-09 0.03 28350 105.8 0.55 0.87
8 4.435 272 45000 12.5 0.57 6.76e-79 0 40946 271.8 0.50 2e-02 0.8 15488 272 0 1.00

I4-1

I4-2
20000

5 4.303 146 60000 1.1 0.35 9.21e-76 0 59956 143.7 1.33 1.75e-09 0.06 33086 145.9 0.25 0.93
8 4.347 370 60000 13.2 0.76 3.12e-79 0 59802 367.9 1.36 3.7e-00 0.1 35838 370 0 1.00

I5-1

I5-2
25000

5 4.462 176 75000 1.6 0.51 9.25e-62 0 72679 175.4 0.63 3.8e-01 0.5 26761 175.7 1.27 0.93
8 4.458 451 75000 16.1 0.57 2.46e-85 0 74496 449.7 0.87 8.22e-09 0.2 36955 451 0 1.00

I6-1

I6-2
30000

5 4.446 212 90000 2.5 0.50 1.032e-77 0 87592 211.1 0.74 1.35e-07 0.3 22845 212 0 1.00
8 4.570 528 90000 20.8 0.92 3.30e-81 0 86594 527.6 0.62 1e-02 0.67 34785 528 0 1.00

1 Two tailed t-test of the null hypothesis that GAMDSC is equal to KMSPGA. 2 Two tailed t-test of the null hypothesis that STHGA is equal to KMSPGA.

1089-778X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2015.2511142, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

TABLE III

EXPERIMENTAL RESULTS ON 12 INSTANCES IN COMPARISON WITH PARALLEL ALGORITHMS OF A 2×4 PARTITION.

INSTANCE

PGA KMPGA SPGA KMSPGA

FEs U
Sr

FEs U
Sr

FEs U
Sr

FEs U
Sr

Mean Mean Std Mean Mean Std Mean Mean Std Mean Mean Std

I1-1 15000 28.7 1.34 0.00 14719 31.37 1.24 0.17 15000 28.9 1.73 0.00 2688 33 0 1.00

I1-2 15000 71.0 2.06 0.00 1500 78 1.68 0.00 4114 83 0 1.00 2922 83 0 1.00

I2-1 30000 63.5 2.19 0.00 29998 68.4 1.04 0.13 14688 69.8 0.50 0.80 8418 70 0 1.00

I2-2 30000 119.5 5.36 0.00 30000 159.8 3.77 0.00 29640 176.7 1.18 0.03 9324 179 0 1.00

I3-1 45000 83.2 3.85 0.00 45000 96.7 2.03 0.00 45000 100.3 2.12 0.00 28350 105.8 0.55 0.87

I3-2 45000 160.7 6.30 0.00 45000 231.3 6.01 0.00 43619 270.4 1.30 0.23 15488 272 0 1.00

I4-1 60000 106.1 4.90 0.00 60000 122.4 3.01 0.00 56098 144.2 1.19 0.17 33086 145.9 0.25 0.93

I4-2 60000 156.0 6.24 0.000 60000 290 3.06 0.00 60000 358.2 4.03 0.00 35838 370 0 1.00

I5-1 75000 137.8 3.96 0.00 75000 156.7 3.06 0.00 40688 175.8 0.41 0.80 26761 175.7 1.27 0.93

I5-2 75000 198.7 9.10 0.00 75000 370.1 6.10 0.00 74700 447.6 1.99 0.03 36955 451 0 1.00

I6-1 90000 138.8 6.18 0.00 90000 170.2 5.30 0.00 31485 211.9 0.18 0.97 22845 212 0 1.00

I6-2 90000 277.4 8.40 0.00 90000 428.3 7.66 0.00 39085 528 0 1.00 34785 528 0 1.00

TABLE IV
EXPERIMENTAL RESULTS ON 12 INSTANCES IN COMPARISON WITH PARALLEL ALGORITHMS OF A 4×4 PARTITION.

INSTANCE

PGA KMPGA SPGA KMSPGA

FEs U
Sr

FEs U
Sr

FEs U
Sr

FEs U
Sr

Mean Mean Std Mean Mean Std Mean Mean Std Mean Mean Std

I1-1 14900 28.9 1.76 0.03 14597 31.8 0.86 0.20 14920 29.4 1.57 0.03 3660 33 0 1.00

I1-2 15000 70.8 2.59 0.00 15000 78.7 1.57 0.00 6414 82.9 0.25 0.93 4314 83 0 1.00

I2-1 30000 65.3 1.54 0.00 29599 65.8 3.93 0.07 25997 68.5 1.07 0.20 3960 70 0 1.00

I2-2 30000 135.7 5.02 0.00 30000 170.0 2.03 0.00 30000 175.1 1.89 0.00 11748 179 0 1.00

I3-1 45000 90.4 2.33 0.00 45000 101.1 1.46 0.00 45000 99.6 1.85 0.00 13230 106 0 1.00

I3-2 45000 198.1 6.48 0.00 45000 258.7 3.42 0.00 44580 268.7 1.91 0.03 23876 271.9 0.18 0.97

I4-1 60000 129.2 2.85 0.00 60000 132.6 9.10 0.00 60000 141.6 2.04 0.00 22782 145.9 0.25 0.93

I4-2 60000 219.4 9.36 0.000 60000 340.0 4.69 0.00 60000 361 2.36 0.00 29412 370 0 1.00

I5-1 75000 169.2 2.36 0.00 72395 174.8 1.28 0.30 31588 175.8 0.41 0.80 8625 176 0 1.00

I5-2 75000 305.1 8.55 0.00 75000 410.3 5.78 0.00 71599 449.1 1.53 0.20 29802 451 0 1.00

I6-1 90000 203.2 2.57 0.00 89399 209.7 1.70 0.07 25586 211.9 0.18 0.97 9975 212 0 1.00

I6-2 90000 453.3 5.29 0.00 90000 504.5 4.73 0.00 26985 528 0 1.00 24285 528 0 1.00

(a) (b)

(c) (d)

Fig. 14. Visual illustration of correlative areas under representative partitions.

Grey areas represent the special correlative areas where sensors are relevant

with the largest number of subareas. Sensors falling in grey areas are

correlation with 2, 4, 6 and 6 subareas in (a), (b), (c), and (d) separately.

operations adopted by STHGA also increases the difficulty of

parallelizing the algorithm.

C. Comparison with Parallel Algorithms

In this subsection, we compare KMSPGA with the pure

PGA, KMPGA, and SPGA. The PGA combined only with the

KM combination or RTSS form KMPGA or SPGA. The

experimental instances in Subsection B are adopted here. We

conduct the experiments under two different partitions: P2×4

and P4×4.

The experimental results are given in Table III and Table IV.

KMSPGA outperforms KMPGA and SPGA in all of the

instances. Although Sr of KMPGA and SPGA is 0 in the

majority of the instances, the mean U obtained by KMPGA

and SPGA is much larger than PGA, which reveals that the

KM combination and RTSS contribute to the enhancement of

the solution quality, which is made available by KMSPGA.

Take instance I4-2 of partition 2×4 as an example, where Û is

370. The mean U obtained by PGA is 156.0, accounting for

only 42.16%. As for KMPGA and SPGA, the mean U obtained

are 290 and 358.2, accounting for 78.38% and 96.81%. SPGA

obtains larger mean U than KMPGA in the majority of the

instances, and therefore contribution of RTSS is larger than

that of KM combination when it comes to the degree of the

improvement of solution quality.

It is worth mentioning that parallel evolutionary algorithms

are suitable for the problems of a high dimensionality or of

complex and time-consuming computation features [51], such

as large-scale air traffic flow optimization [52], discrete

resource allocation in classic economic field [53], and

large-scale function optimization [54][55]. They are adopted

to either speed up the optimization or enhance the solution

quality through a dimensionality reduction strategy. In this

paper, the dimensionality and computational complexity of Set

K-cover problem become so high in large-scale WSN that we

adopt a parallel evolutionary algorithm for performance

enhancement.

D. Discussion on Correlation between Sensors and Subareas

We investigate how the number of partitions affects the

solution quality in this subsection. It can be intuitively noted

that the number of subareas covered by one sensor increases as

the target area is divided more finely. A larger number of

subareas covered by one sensor means a higher correlation

between the sensors and subareas. The high correlation

influence the performance of parallel processing module and

the KM combination. Fig. 14 gives a visual illustration of a

special kind of correlative area (marked as grey), and sensors

1089-778X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2015.2511142, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

TABLE V

EXPERIMENTAL RESULTS UNDER DIFFERENT PARTITIONS ON 12 INSTANCES

INSTANCE

P2×2 (ω-5= 1.38, ω-8=1.67) P2×4 (ω-5= 1.79, ω-8=2.41) P4×4 (ω-5=2.30 , ω-8=3.43) P4×8 (ω-5= 3.41, ω-8=5.55)

FEs U
Sr

FEs U
Sr

FEs U
Sr

FEs U
Sr

Mean Mean Std Mean Mean Std Mean Mean Std Mean Mean Std

I1-1 4965 33 0 1.00 2688 33 0 1.00 3660 33 0 1.00 4935 33 0 1.00

I1-2 2730 83 0 1.00 2922 83 0 1.00 4314 83 0 1.00 2016 83 0 1.00

I2-1 14604 69.9 0.57 0.83 8418 70 0 1.00 3960 70 0 1.00 4650 70 0 1.00

I2-2 9010 179 0 1.00 9324 179 0 1.00 11748 179 0 1.00 3744 179 0 1.00

I3-1 41490 104 1.24 0.37 28350 105.8 0.55 0.87 13230 106 0 1.00 15159 106 0 1.00

I3-2 3718 272 0 1.00 15488 272 0 1.00 23876 271.9 0.18 0.97 37464 265.1 4.55 0.23

I4-1 59445 143.8 1.44 0.1 33086 145.9 0.25 0.93 22782 145.9 0.25 0.93 45330 145.7 0.65 0.8

I4-2 52500 369.7 0.71 0.76 35838 370 0 1.00 29412 370 0 1.00 57060 346.6 6.89 0.07

I5-1 67695 174.5 1.98 0.43 26761 175.7 1.27 0.93 8625 176 0 1.00 10230 176 0 1.00

I5-2 66675 449.3 1.82 0.37 36955 451 0 1.00 29802 451 0 1.00 71010 433.2 5.71 0.07

I6-1 87660 209.6 2.22 0.2 22845 212 0 1.00 9975 212 0 1.00 12084 212 0 1.00

I6-2 78615 526.1 2.83 0.43 34785 528 0 1.00 24285 528 0 1.00 68115 521.4 5.06 0.30

 falling in the grey area will be correlate with 2, 4, 6 and 6

subareas in (a), (b), (c), and (d), respectively. A sensor covers

at least two subareas when it falls into the correlative areas.

The correlative areas influence the independence of the

evolution of each sub-population. The average number of

subareas covered by one sensor is adopted to reveal the degree

of correlation between sensors and subareas. A Monte Carlo

method is utilized to estimate this value. One hundred

thousand sensors (i.e., N = 100,000) are randomly deployed

into the target area, then the number of subareas covered by

each sensor is computed. The average number of subareas

covered by one sensor is computed as ω:

1

1
()

N

sa i

i

N S
N




  (22)

where Nsa(Si) is the number of subareas covered by sensor Si. A

larger value of ω means a stronger correlation between sensors

and subareas. The target area is expected to be divided into

more subareas in order to achieve dimensionality reduction as

the number of sensors increases. However, it is unreasonable

to increase the number of subareas without constraints,

because the efficiency of combination strategy decreases as

the number of subareas increases.

Table V lists the results with different partitions: P2×2, P2×4,

P4×4, and P4×8, where ω-r represents the value of ω with sensing

radius r. P4×4 achieves the best performance in the majority of

test instances in terms of convergence rate, solution quality,

and success rate. The success rate is low considering the

performance of P2×2 and P4×8. However, the reason is

completely different. As for P2×2, the partition quantity is not

enough to reduce the dimensionality to an acceptable level. On

the contrary, the partition quantity of P4×8 is so large that the

correlation between sensors and subareas becomes too high to

apply the divide-and-conquer strategy. As can be noted in

instance Ix-1 and Ix-2, the success rate of the former is clearly

higher than the later because of the smaller value of ω in Ix-1

than that in Ix-2. Consequently, the number of partitions is

restricted by the value of ω. In order to help the

divide-and-conquer strategy work efficiently, the partition

quantity is limited to an appropriate range.

E. Experiments with Different Redundant Rate

In this subsection, we study the influence of different

redundant rates on the solution quality. Two groups of

experimental instances are adopted in this experiment, where

the sensor radius is 5. Instances prefixed by “J” represent the

number of sensors is 20,000, whereas instances prefixed by “H”

represent the number of sensors is 25,000. Although the

number and the sensing radius of sensors are fixed, the

redundant rate can be different because of the random

deployment strategy. It is quite difficult to generate an instance

with a specified Û. Instead, to generate this test set with

different redundant rates, we create a relatively large number

of candidate instances, calculate their Ûs, and then select the

candidate instances with appropriate Û to the test set. The

redundant rate ranges from 3.997 to 5.003.

Performance of different partitions, i.e. P2×4, P4×4, and P4×8, is

tested. STHGA is also adopted for comparison. Results are

summarized in Table VI. KMSPGA (P2×4, P4×4, and P4×8)

achieves a high success rate in a large range of redundant rates,

which indicates that KMSPGA offers very promising

performance with robustness. P4×4 achieves the fastest

convergence rate, the largest mean U, and the highest Sr in the

majority of the instances in Table VI. As far as STHGA is

concerned, the success rate declines sharply when the

redundant rate decreases. The x-axis of Fig. 15 (a) and (b) is

the redundant rate, the y-axis of Fig.15 (a) represents mean Sr,

and the y-axis of Fig. 15 (b) represents the ratio of mean U to Û.

The best solution obtained by KMSPGA among different

partitions in each instance is represented by PBEST. In Fig. 15 (a),

KMSPGA (P2×4, P4×4, and P4×8) obtains a high Sr in most of the

instances while the Sr of STHGA declines sharply as η

decreases. Fig. 15 (b) also indicates that KMSPGA possesses

high solution quality within a large-scale range of η. In fact,

PBEST maintains a value of 1.00 in both Fig. 15 (a) and (b).

F. Parameter Investigation

We investigate the penalty coefficient λ and the threshold

value of state factor ζc in this subsection in order to show how

these parameters influence the performance of KMSPGA.

The penalty coefficient λ is adopted to improve the

convergence rate. We adopt test instances I4-2 and I5-1 with

partition P4×4. The value of λ is increased from 0 to 1 with step

0.05. Based on the experimental results, we give the

relationship between λ and FEs in Fig. 16. As can be noted

from the results, the value of FEs when λ is set within [0.05,

0.95], the required FEs is significantly less than that when λ is

set to 1 (no penalty). The experimental results indicate that the

penalty coefficient λ has an effect of improving the

convergence rate of KMSPGA. Meanwhile, KMSPGA is

generally insensitive to the value of λ, and it works identically

well when λ is set to [0.2, 0.7].

1089-778X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2015.2511142, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

TABLE VI

EXPERIMENTAL RESULTS WITH DIFFERENT REDUNDANT RATES ON 20 INSTANCES

INSTANCE STHGA P2×4 P4×4 P4×8

Na. Û η
FEs U

Sr
FEs U

Sr
FEs U

Sr
FEs U

Sr
Mean Mean Std Mean Mean Std Mean Mean Std Mean Mean Std

J01 129 4.871 51407 128.8 0.38 0.83 2824 129 0 1.00 2508

129 0 1.00 3394 129 0 1.00

J02 133 4.724 52332 132.9 0.25 0.93 5802 133 0 1.00 3684 133 0 1.00 3904 133 0 1.00

J03 135 4.654 53898 134.8 0.38 0.83 6334 135 0 1.00 4176 135 0 1.00 6222 135 0 1.00

J04 136 4.620 56295 135.8 0.50 0.80 9714 136 0 1.00 5856 136 0 1.00 6664 136 0 1.00

J05 139 4.520 54113 138.8 0.38 0.83 9210 139 0 1.00 7410 139 0 1.00 7485 139 0 1.00

J06 145 4.333 59789 143.1 1.05 0.06 18705 145 0 1.00 13350 145 0 1.00 15204 145 0 1.00

J07 149 4.217 59281 147.8 1.07 0.30 29544 149 0 1.00 16740 149 0 1.00 10512 149 0 1.00

J08 155 4.080 60000 146.1 1.58 0.00 60000 150.5 2.13 0.00 25875 155 0 1.00 53992 154.0 1.48 0.53

J09 157 4.002 60000 152 1.69 0.00 57819 155.5 1.57 0.37 35235 157 0 1.00 59925 151.7 2.63 0.03

J10 158 3.977 60000 154.0 1.52 0.00 37884 158 0 1.00 33045 157.9 0.40 0.93 57420 156.2 1.21 0.17

H01 157 5.003 56796 157 0 1.00 2674 157 0 1.00 4680 157 0 1.00 4035 157 0 1.00

H02 159 4.940 62349 158.9 0.35 0.86 3524 159 0 1.00 4485 159 0 1.00 5250 159 0 1.00

H03 162 4.848 63270 161.9 0.31 0.90 3954 162 0 1.00 4485 162 0 1.00 4635 162 0 1.00

H04 164 4.789 63223 163.9 0.31 0.90 5054 164 0 1.00 5085 164 0 1.00 5805 164 0 1.00

H05 167 4.703 67287 166.9 0.35 0.87 7305 167 0 1.00 4635 167 0 1.00 6030 167 0 1.00

H06 173 4.540 72310 172.5 0.63 0.57 15330 173 0 1.00 7632 173 0 1.00 16059 173 0 1.00

H07 175 4.488 73608 174.1 0.92 0.40 19980 175 0 1.00 11430 175 0 1.00 19960 175 0 1.00

H08 178 4.412 74741 176.4 1.04 0.10 19685 178 0 1.00 10932 178 0 1.00 15810 178 0 1.00

H09 181 4.340 74003 179.9 0.96 0.33 20730 181 0 1.00 10575 181 0 1.00 15510 181 0 1.00

H10 185 4.245 74570 183.4 1.10 0.13 41559 185 0 1.00 18375 185 0 1.00 24435 185 0 1.00

5.25 5.00 4.75 4.50 4.25 4.00

0.00

0.25

0.50

0.75

1.00

S
u

cc
es

s
ra

te

Redundant Rate

STHGA

 P
24

 P
44

 P
48

 P
BEST

5.25 5.00 4.75 4.50 4.25 4.00
0.94

0.95

0.96

0.97

0.98

0.99

1.00

R
at

io
 o

f
m

ea
n

 U
 a

n
d

Û

Redundant rate

STHGA

 P
2

 P
4

 P
4

 P
BEST

(a) (b)
Fig. 15. Influence of redundant rate on the performance of KMSPGA. (a)

Influence on the mean success rates. (b) Influence on the mean ratios.

0.00 0.25 0.50 0.75 1.00

30000

40000

50000

60000

M
ea

n
 F

E
s



 Average FEs of KMSPGA

0.00 0.25 0.50 0.75 1.00

9000

12000

15000

18000

M
ea

n
 F

E
s



 Average FEs of KMSPGA

(a) (b)
Fig. 16. Influence of λ on the performance of KMSPGA. (a) I4-2. (b) I5-1.

0 2 4 6
0

8

16

24

32

40

48

F
E

s

T
im

e/
s

Threshold value of state factor

 Execution time

0

5000

10000

15000

20000

25000

30000

 FEs

0 3 6 9 12 15
0

10

20

30

40

50

F
E

s

T
im

e/
s

Threshold value of state factor

 Execution time

0

5000

10000

15000

20000

25000

30000

 FEs

(a) (b)

Fig. 17. Influence of threshold value ζc on the performance of KMSPGA. (a)

P2×4. (b) P4×4.

Fig. 18. Illustration of “tessellation” placement strategy, and the polygons

adopted here is triangle.

The threshold value of the state factor, ζc, determines the

frequency of executing the KM operation. We adopt test

instance I2-2 to investigate the effect of this parameter. For

partition P2×4 and P4×4, ζc is increased from 0 to 7 with step 0.5

and from 0 to 15 with step 1, respectively. The experimental

results show that, KMSPGA achieves a 100% success rate

with different ζc. Therefore, ζc has no influence on the solution

quality. Fig. 17 shows the influence of the value of ζc on the

FEs and a practical execution time of KMSPGA. It can be

observed that ζc has negligible influence on the convergence

rate. Based on the experimental results, we suggest that the

value of ζc is set to ⌊0.94 × L × W⌋.

G. Proof-of-Principle Experiments

To conduct proof-of-principle experiments, we first apply a

deterministic deployment strategy to generate K complete

cover sets. The superposition of these K complete cover sets

results in a Set K-cover instance, to which an optimal solution

is known. Then KMSPGA and other compared algorithms are

applied to solving this instance.

Here, it is to be noted that deterministically deploying the

least number of circles to cover any polygon is an NP-hard

problem as discussed in [21], [56], and [57]. Nevertheless, if

we relax the requirement of that the layout should be

“theoretically best with the least circles”, there exists an

efficient deterministic node placement strategy to cope with

this issue. Fig. 18 shows a “tessellation” placement strategy.

First, the target area is completely tiled by a number of

compact polygons. Then, sensors are placed at the vertices of

polygons. If each polygon is covered by at least one sensor, the

target area is completely covered. Fig. 18 is adopted as 1-cover

set (unit set) since it is the optimal tessellation requiring the

minimum number of sensors. We then repeatedly add K unit

sets into a cover set to generate a K-cover as the instance of the

proof-of-principle experiment. Six new instances are

1089-778X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2015.2511142, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

TABLE VII

EXPERIMENTAL RESULTS OF THE PROOF-OF-PRINCIPLE EXPERIMENT ON 6 INSTANCES

INSTANCE R Û

GAMDSC STHGA KMSPGA

FEs U
Sr

t-test
1

FEs U
Sr

t-test
2

FEs U
Sr

Mean Std Mean p-value Mean Std Mean p-value Mean Std Mean

DD1-1 5
100

13500 0 1 0 4.14e-80 598 0.46 100 1.00 1.09e-22 463.5 25.94 100 1.00

DD1-2 8 6600 0 4.1 0 3.31e-70 598 0.58 100 1.00 1.09e-30 328.5 27.39 100 1.00

DD2-1 5
300

40500 0 1 0 1.30e-86 1798 0.72 300 1.00 3.13e-40 779.5 47.13 300 1.00

DD2-2 8 19800 0 6.2 0 3.07e-78 1798 0.50 300 1.00 2.56e-44 494.0 44.56 300 1.00

DD3-1 5
600

81000 0 1 0 5.18e-82 3598 0.52 600 1.00 1.87e-37 1285.5 136.35 600 1.00

DD3-2 8 39600 0 8.0 0 8.54e-82 3598 0.46 600 1.00 3.08e-49 661.0 67.76 600 1.00

TABLE VIII

EXPERIMENTAL RESULTS WITH SENSORS OF DIFFERENT RADIUSES ON 5 INSTANCES

INSTANCE Û

GAMDSC STHGA KMSPGA

FEs U t-test
1

Sr
FEs U t-test

2

Sr
FEs U

Sr
Mean Mean Std p-value Mean Mean Std p-value Mean Mean Std

DR1 159 45000 5.1 0.48 1.98e-74 0 44815 157.7 0.71 3.6e-11 0.1 11714 159 0 1.00

DR2 220 45000 8.1 0.71 1.65e-73 0 44148 219.0 0.96 2.28e-06 0.33 12954 220 0 1.00

DR3 276 45000 15.8 0.92 8.4e-73 0 41145 275.6 0.61 2.8e-03 0.7 14794 276 0 1.00

DR4 163 45000 5.4 0.50 4.0e-74 0 40232 162.8 0.40 1.2e-02 0.8 6914 163 0 1.00

DR5 232 45000 7.7 0.58 4.31e-75 0 44762 230.7 0.99 8.3e-07 0.16 25714 231.9 0.25 0.93

1 Two tailed t-test of the null hypothesis that GAMDSC is equal to KMSPGA. 2 Two tailed t-test of the null hypothesis that STHGA is equal to KMSPGA.

TABLE IX

EXPERIMENTAL RESULTS IN 3-D ENVIRONMENT ON 6 INSTANCES

INSTANCE N Rs Û

GAMDSC STHGA KMSPGA

FEs U t-test
1

Sr
FEs U t-test

2

Sr
FEs U

Sr
Mean Mean Std p-value Mean Mean Std p-value Mean Mean Std

3D1-1
5000

5 25 15000 1 0 0 0 12673 24.9 0.31 8e-02 0.9 4785 25 0 1.00

3D1-2 8 76 15000 3.5 0.51 2.84e-64 0 13449 75.9 0.25 16e-01 0.93 4618 76 0 1.00

3D2-1
10000

5 54 30000 1 0 4.91e-69 0 30000 50.5 0.97 8.3e-18 0 16309 53.9 0.25 0.93

3D2-2 8 163 30000 3.2 0.43 4.12e-67 0 30000 157.2 1.31 2.09e-18 0 20756 162.5 0.62 0.67

3D3-1
15000

5 84 45000 1 0 2.34e-63 0 45000 75.1 1.18 1.70e-25 0 41736 83.6 0.62 0.67

3D3-2 8 250 45000 3.5 0.51 1.35e-66 0 45000 234.7 2.17 5.03e-24 0 34290.5 249.1 1.35 0.63

1 Two tailed t-test of the null hypothesis that GAMDSC is equal to KMSPGA. 2 Two tailed t-test of the null hypothesis that STHGA is equal to KMSPGA.

generated in this way with K setting to 100, 300, and 600. The

numbers of sensors covering the target area are 45 and 22

when Rs is 5 and 8, respectively.

The experimental results are given in Table VII. Both

STHGA and KMSPGA achieve 100% success rate in the tests.

However, KMSPGA achieves a higher convergence rate than

STHGA. The experimental results also indicate that these ideal

and regular test instances are easy to solve by the two

algorithms. The reasons are presented as follow. Aiming at

using the least number of circles to realize complete coverage,

the deterministic deployment strategy tends to minimize the

overlapping area of neighboring circles. Thus, for each sensor,

the coverage ratio of each cover set will be quite different

considering whether or not the sensor is assigned to the right

cover set. This feature makes the fitness evolution possess

good differentiation for different individuals (candidate

solutions) and hence provides a promising guidance for the

search. Furthermore, this feature also benefits the proposed

redundancy-based schedule strategy, owing to the uniqueness

of sensor within each unit set.

H. Experiments with Sensors of Different Radiuses

Although in the above experiments, sensors of identical

radius are assumed for simplicity. However, as the proposed

KMSPGA algorithm does not contain any radius-related

parameters or operators, it is a generic algorithm suitable for

both application scenarios with homogenous or heterogeneous

sensors deployed. In this subsection, we conduct experiments

using sensors of different radiuses to investigate the

performance of KMSPGA. Five new instances are generated

and tested, in which the radiuses of sensors follow Gaussian

distribution with different mean values and standard

deviations. The radius of sensor j in instance i is set to Ri+rj,

where rj is a random number following a standard normal

distribution. For i ∈ {0, 1, 2}, Ri is set to 6, 7, and 8,

respectively. For i = 3 and i = 4, Ri is randomly chosen within

an integer interval [5, 7] and [6, 8], respectively. The number

of each instance is 15000.

From the experimental results given in Table VIII, it is still

observed that KMSPGA achieves significantly higher solution

quality and success rate among the compared algorithms in

most of the instances. Besides, KMSPGA achieves smallest

standard deviations, which indicates that KMSPGA possesses

high stability. The results confirm that KMSPGA works well

with sensors of different radiuses.

I. Experiment in a 3-D Environment

In the literature of WSN lifetime maximization, sensors are

assumed to be uniformly distributed on an ideal square plane.

However, in practice, this is not always the case. Instead,

sensors are often deployed on a 3-D surface so that the sensor

distribution is no longer uniform, but it is highly dependent to

the shape/landscape of the surface [58]. This uneven

distribution makes it even harder to optimally schedule the

sensors into the right complete cover sets. In this subsection,

we implement KMSPGA to test its effectiveness and

reliability on this application scene.

1089-778X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2015.2511142, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

Fig. 19. Simulated free flowing contour.

-20
-10

0
10

20

-20

-10

0

10

20

-10

-5

0

5

10

15

The multi-peak function used to simulate the 3-D surface is

given as

2 2

2 2 2 2

() (1)
2 10 10

3 D

() () (1) ()
3 5 10 10 10 10

(,) (3 (1) e 10 (
10 50

1
() ()) e e) 2
10 5 3

x y

x y x y

x x
x y

x y

  



    

       

    

 (22)

which consists of three peaks and three valleys. Its 3-D view is

shown in Fig. 19. The number of sensors is set to 500, 10000,

and 15000. GAMDSC and STHGA are also modified to solve

the Set K-Cover problem in this 3-D environment.

Experimental results given in Table IX indicate that these

instances are significantly hard to solve. The performance of

all the algorithms decreases on this test set. GAMDSC and

STHGA are unable to achieve an acceptable solution within

the limited FEs. In comparison, the proposed KMSPGA still

offers a high success rate and solution quality, which further

confirms the effectiveness and reliability of KMSPGA.

V. CONCLUSION

Due to the curse of dimensionality, existing set cover

algorithms are unable to provide satisfactory efficiency for

large-scale WSNs scheduling. In this paper, we have

developed a Kuhn-Munkres parallel genetic algorithm,

KMSPGA, for the set cover problem and applied it to lifetime

maximization of large-scale WSNs. The KMSPGA framework

is based on a divide-and-conquer strategy of dimensionality

reduction. Firstly, the target area is divided into several

subareas, and then individuals are evolved independently in

each subarea until the state factor reaches a predefined value.

The polynomial Kuhn-Munkres algorithm is then utilized to

splice the solutions obtained in each subarea so as to generate

global optimal solution of the entire problem. KMSPGA also

includes a novel schedule operation for further improvement

in performance.

Eight types of experiments have been conducted to verify

the design and effectiveness of KMSPGA. The experimental

results indicate that KMSPGA achieves a higher convergence

rate, solution quality, success rate, and scalability. Further, by

investigating the influence of different partitions, redundant

rate, penalty coefficient on the performance of KMSPGA,

KMSPGA is also seen to offer high robustness. Finally,

experimental results on new testing scenarios indicate that

KMSPGA achieves wide applicability.

Future work includes the development of an improved

matching algorithm for the combination operation, of

distributed, cloud and multi-objective versions of KMSPGA

and their applications to various kinds of real-world problems.

REFERENCES

[1] J. Guevara, F. Barrero, E. Vargas, J. Becerra, and S. Toral,

“Environmental wireless sensor network for road traffic applications,”

IET Intelligent Transport Systems, vol. 6, no. 2, pp. 177-186, Jun. 2012.

[2] R. Mittal and M. P. S. Bhatia, “Wireless Sensor Networks for monitoring

the environmental activities,” in Proceedings of IEEE International

Conference on Computational Intelligence and Computing Research, pp.

1-5, 2010.

[3] J. G. Ko, C. Lu, M. B. Srivastava, J. A. Stankovic, A. Terzis, and M.

Welsh, “Wireless sensor networks for healthcare,” in Proceedings of the

IEEE, vol. 98, no. 11, pp. 1947-1960, 2010.

[4] M. C. Rodríguez-Sánchez, S. Borromeo, and J. A. Hernández-Tamames,

“Wireless sensor networks for conservation and monitoring cultural

assets,” IEEE Sensors Journal, vol. 11, no. 6, pp. 1382-1389, Jun. 2011.

[5] K. Römer, F. Mattern, and E. Zurich, “The design space of wireless

sensor networks,” IEEE Wireless Communications, vol. 11, no. 6, pp.

54-61, 2004.

[6] G. Anastasi, M. Conti, and M. D. Francesco, “Extending the lifetime of

wireless sensor networks through adaptive sleep,” IEEE Transactions on

Industrial Informatics, vol. 5, no. 3, pp. 351-365, 2009.

[7] V. Shah-Nansouri and V. W. S. Wong, “Lifetime-resource tradeoff for

multicast traffic in wireless sensor networks,” IEEE Transaction on

Wireless Communication, vol. 9, no. 6, pp. 1924-1934, 2010.

[8] X. -Y. Tang and J. -L. Xu, “Optimizing lifetime for continuous data

aggregation with precision guarantees in wireless sensor networks,”

IEEE Transactions on Networking, vol. 16, no. 4, pp. 904-917, 2008.

[9] C. -F. Wang, I. -D. Shih, B. -H. Pan, and T. -Y. Wu, “A network lifetime

enhancement method for sink relocation and its analysis in wireless

sensor networks,” IEEE Sensors Journal, vol. 14, no. 6, pp. 1932-1943,

2014.

[10] M. N. Rahman and M. A. Matin, “Efficient algorithm for prolonging

network lifetime of wireless sensor networks,” Tisinghua Science and

Technology, vol. 16, no. 6, pp. 561-568, 2011.

[11] W. Wang, V. Srinivasan, and K. -C. Chua, “Extending the lifetime of

wireless sensor networks through mobile relays,” IEEE/ACM

Transactions on Networking, vol. 16, no. 5, 2008.

[12] K. Pradeepa, W. R. Anne, and S. Duraisamy, “Improved sensor network

lifetime using multiple mobile sinks: a new predetermined trajectory,” in

Proceedings of International Conference on Computing Communication

and Networking Technologies, pp. 1-6, 2010.

[13] A. A. Aziz, Y. A. Sekercigolu, P. Fitzpatrick, and M. Ivanovich, “A

survey on distributed topology control techniques for extending the

lifetime of battery powered wireless sensor networks,” IEEE

Communications Surveys & Tutorials, vol. 15, no. 1, pp. 121-144, 2013.

[14] D. P. Dahnil, Y. P. Singh, and C. K. Ho, “Topology-controlled adaptive

clustering for uniformity and increased lifetime in wireless sensor

networks,” Wireless Sensor Systems, vol. 2, no. 4, pp. 318-327, 2012.

[15] I. S. AlShawi, L. Yan, W. Pan, and B. Luo, “Lifetime enhancement in

wireless sensor networks using fuzzy approach and a-star algorithm,”

IEEE Sensors Journal, vol. 12. No. 10, pp. 3010-3018, 2012.

[16] J. –H. Chang and L. Tassiu, “Maximizing lifetime routing in wireless

sensor networks,” IEEE/ACM Transactions on Networking, vol. 12, no.

4, pp. 609-619, 2004.

[17] I. F. Akyildiz, W. -L. Su, Y. Sankarasubramaniam, and E. Cayirci, “A

survey on sensor networks,” IEEE Communications Magazine, vol. 40,

no. 8, pp. 102-114, 2002.

[18] J. -M. Chen, E. -T. Shen, and Y. -X. Sun, “The deployment algorithms in

wireless sensor networks: a survey,” Information Technology Journal,

pp. 293-301, 2009.

[19] G. -J. Fan and S. -Y. Jin, “Coverage problem in wireless sensor networks:

a survey,” Journal of Networks, vol. 5, no. 9, pp. 1033-1040, Sept. 2010.

[20] H. -T Zhang and C. Liu, “A review on node deployment of wireless

sensor networks,” International Journal of Computer Science Issues, vol.

9, no. 3, Nov. 2013.

[21] Y. Yoon and Y. -H. Kim, “An efficient genetic algorithm for maximum

coverage deployment in wireless sensor networks,” IEEE Transactions

on Cybernetics, vol. 43, no. 5, pp. 1473-1483, Dec. 2013.

1089-778X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2015.2511142, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

[22] S. -B. He, X. -W. Gong, J. -S. Zhang, J. -M. Chen, and Y. -X. Sun,

“Curve-based deployment for barrier coverage in wireless sensor

networks,” IEEE Transactions on Communications, vol. 13, no. 2, pp.

724-735, Feb. 2014.

[23] Y. Zou and K. Chakrabarty, “Sensor deployment and target localization

in distributed sensor networks,” ACM Transactions on Embedded

Computing Systems, vol. 3, no. 1, pp. 61-91, 2004.

[24] R. Kershner, “The number of circles covering a set”, American Journal

of Mathematics, vol. 61, no. 3, pp. 665-671, Jul. 1939.

[25] S. Verblunsky, “On the least number of unit circles which can cover a

square”, Journal of London Mathematical Society, vol. 24, no. 3, pp.

164-170, 1949.

[26] T. Tabirca, L. T. Yang, and S. Tabira, “Smallest number of sensors for

k-covering”, International Journal of Computers Communications &

Control, vol. 8, no. 2, pp. 312-319, Apr. 2013.

[27] M. Ryerkerk, R. Averill, K. Deb, and E. Goodman, “Meaningful

representation and recombination of variable length genomes”,

Proceedings of Genetic and Evolutionary Computation Conference, pp.

1471-1472, 2012.

[28] A. Makhoul and C. Pham, “Dynamic scheduling of cover-sets in

randomly deployed wireless video sensor networks for surveillance

applications,” Wireless Days, pp. 1-6, Dec. 2009.

[29] S. Slijepcevic and M. Potkonjak, “Power efficient organization of

wireless sensor networks,” IEEE International Conference on

Communications, vol. 2, pp. 472-476, 2001.

[30] M. Cardei and D. -Z. Du, “Improving wireless sensor network lifetime

through power aware organization,” Wireless Networks, vol. 11, no. 3,

pp. 333-340, May. 2005.

[31] Q. Wang, W. -J. Yan, and Y. Shen, “N-person card game approach for

solving set k-cover problem in wireless sensor networks,” IEEE

Transactions on Instrumentation and Measurement, vol. 61, no. 5, pp.

1522-1535, May. 2012.

[32] O. E. David, H. J. van den Herik, M. Koppel, and N. S. Netanyahu,

“Genetic algorithms for evolving computer chess programs,” IEEE

Transactions on Evolutionary Computation, vol. 18, no. 5, pp. 779-789,

Oct. 2014.

[33] W. B. Langdon and M. Harman, “Optimizing existing software with

genetic programming,” IEEE Transactions on Evolutionary

Computation, vol. 19, no. 1, pp. 118-135, Feb. 2015.

[34] K. Seo, S. Hyun, and Y. -H. Kim, “An edge-set representation based on a

spanning tree for searching cut space,” IEEE Transactions on

Evolutionary Computation, vol. 19, no. 4, Aug. 2015.

[35] D. Perez, J. Togelius, S. Samothrakis, and P. Rohlfshagen, “Automated

map generation for the physical traveling salesman problem,” IEEE

Transactions on Evolutionary Computation, vol. 18, no. 5, pp. 708-720,

Oct. 2014.

[36] G. M. Khan, R. Arshad, S. A. Mahmud, and F. Ullah, “Intelligent

bandwidth estimation for variable bit rate traffic”, IEEE Transactions on

Evolutionary Computation, vol. 19, no. 1, pp. 151-155, Fed. 2015.

[37] M. K. Marichelvam, T. Prabaharan, and X. -S. Yang, “A discrete firefly

algorithm for the multi-objective hybrid flowshop scheduling problems,”

IEEE Transactions on Evolutionary Computation, vol. 18, no. 2, pp.

301-305, Apr. 2014.

[38] C. C. Lai, T. C. Kang, and K. R. Song, “An effective genetic algorithm to

improve wireless sensor network lifetime for large-scale surveillance,”

IEEE Congress on Evolutionary Computation, pp. 3531-3538, 2007.

[39] X.-M. Hu, J. Zhang, and Y. Yu, “Hybrid genetic algorithm using a

forward encoding scheme for lifetime maximization of wireless sensor

networks,” IEEE Transactions on Evolutionary Computation, pp.

766-781, 2010.

[40] Y. Lin, J. Zhang, H. S. -H. Chung, Y. Li, and Y. H. Shi, “An ant colony

optimization approach for maximizing the lifetime of heterogeneous

wireless sensor networks,” IEEE Transactions on Systems, Man, and

Cybernetics, Part C: Applications and Reviews, vol. 42, no. 3, pp.

408-420, May 2012.

[41] H. W. Kuhn, “The Hungarian method for the assignment problem,”

Naval Research Logistics Quarterly, vol. 2, pp. 83-97, Mar. 1955.

[42] J. Munkres, “Algorithms for the assignment and transportation

problems,” Journal of the society for industrial and applied mathematics,

vol. 5, no. 1, pp. 32-38, 1957.

[43] B. Wang, “Coverage problems in sensor networks: a survey,” ACM

Computing Surveys, vol. 43, no. 4, pp. 32:1-32:53, Oct. 2011.

[44] A. Hossain, P. K. Biswas, and S. Chakrabarti, “Sensing models and its

impact on network coverage in wireless sensor network,” in Proceedings

of IEEE Region 10 and the Third international Conference on Industrial

and Information Systems, pp. 1-5, 2008.

[45] N. -N. Qin, F. Xu, J. Yang, and G. -S. Liang, “Research on the sensing

model in wireless sensor networks,” in Proceedings of International

Conference on Intelligent Computation Technology and Automation, pp.

169-172, 2010.

[46] S. Pudasaini, S. Moh, and S. Seokjoo, “Stochastic coverage analysis of

wireless sensor network with hybrid sensing model,” in Proceedings of

International Conference on Advanced Communication Technology, pp.

549-553, 2009.

[47] X. -R. Wang, G. -L. Xing, Y. -F. Zhang, C. -Y. L, R. Pless, and C. Gill,

“Integrated coverage and connectivity configuration in wireless sensor

networks,” in Proceedings of the 1st International Conference on

Embedded Sensor Systems, pp. 28-39, 2003.

[48] K. Zheng, F. Liu, Q. Zheng, and W. Xiang, “A graph-based cooperative

scheduling scheme for vehicular networks”, IEEE Transactions on

Vehicular Technology, vol. 62, no. 4, pp. 1450-1458, Feb. 2013.

[49] H. -B. Zhu, M. -C. Zhou, and R. Alking, “Group role assignment via a

Kuhn-Munkres algorithm-based solution”, IEEE Transactions on

Systems, Man and Cybernetics, Part A: Systems and Humans, vol. 42, no.

3, pp. 739-750, Nov. 2011.

[50] X. -T. Zhou, L. -Q. Yang, and D. -F. Yuan, “Bipartite matching based

user grouping for grouped OFDM-IDMA”, IEEE Transactions on

Wireless Communications, vol. 12, no. 10, pp. 5248-5257, Sep. 2013.

[51] Y. -J. Gong, W. -N. Chen, Z. -H. Zhan, et al., “Distributed evolutionary

algorithms and their models: a survey of the state-of-the-art,” Applied

Soft Computing, vol. 34, pp. 286-300, Sep. 2015.

[52] Y. Cao and D. -F. Sun, “A parallel computing framework for large-scale

air traffic flow optimization,” IEEE Transactions on Intelligent

Transportation Systems, vol. 13, no. 4, pp. 1855-1864, Dec. 2012.

[53] B. B. M and H. R. Rao, “A parallel hypercube algorithm for discrete

resource allocation problems,” IEEE Transactions on Systems, Man and

Cybernetics, Part A: Systems and Humans, vol. 36, no. 1, Jan. 2006.

[54] X. -D. Li and X. Yao, “Cooperatively coevolving particle swarms for

large scale optimization,” IEEE Transactions on Evolutionary

Computation, vol. 16, no. 2, Apr. 2012.

[55] M. N. Omidvar, X. -D. Li, Y. Mei, and X. Yao, “Cooperative

co-evolution with differential grouping for large scale optimization,”

IEEE Transactions on Evolutionary Computation, vol. 18, no. 3, pp.

378-393, Jun. 2014.

[56] M. Garey and D. S. Johnson, Computers and Intractability: A Guide to

the Theory of NP-Completeness, San Francisco, CA, USA: Freeman,

1979.

[57] T. Tabirca, L. T. Yang, and S. Tabira, “Smallest number of sensors for

k-covering”, International Journal of Computers Communications &

Control, vol. 8, no. 2, pp. 312-319, Apr. 2013.

[58] L. -H. Kong, M. -C. Zhao, X. -Y. Liu, and J. L. Lu, “Surface coverage in

sensor networks,” IEEE Transactions on Parallel and Distributed

Systems, vol. 25, no. 1, pp. 234-243, Jan. 2014.

 Xin-Yuan Zhang (S’14) received the B. S.

degree from Sun Yat-sen University, China, in

2014, where he is currently pursuing the Ph. D.

degree. His current research interests include

evolutionary computation algorithms, swarm

intelligence algorithms, their applications in

real-world problems, and smart grid.

 Yue-Jiao Gong (S’10-M’15) received the

Ph.D. degree in Computer Science from Sun

Yat-sen University, China, in 2014. She is

currently a Post-Doctoral Research Fellow with

the Department of Computer and Information

Science, University of Macau, Macau.

Her research interests include evolutionary

computation, swarm intelligence, and their applications to

intelligent transportation scheduling, wireless sensor network,

and image processing. She has published over 30 papers,

including ten IEEE Trans. papers, in her research area. Dr.

1089-778X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2015.2511142, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

Gong currently serves as a reviewer for IEEE Trans. on

Evolutionary Computation, IEEE Trans. on Cybernetics, and

IEEE Trans. on Intelligent Transportation Systems.

 Zhi-Hui Zhan (S’09-M’13) received the

Bachelor’s degree and the Ph. D degree in

2007 and 2013, respectively, from the

Department of Computer Science of Sun

Yat-Sen University, Guangzhou, China. He is

currently an associate professor with the

School of Advanced Computing, Sun Yat-sen University.

His current research interests include evolutionary

computation algorithms, swarm intelligence algorithms, and

their applications in real-world problems, and in environments

of cloud computing and big data. Dr. Zhan’s doctoral

dissertation was awarded the China Computer Federation

Outstanding Dissertation in 2013. Dr. Zhan received the

Natural Science Foundation for Distinguished Young

Scientists of Guangdong Province, China in 2014 and was

awarded the Pearl River New Star in Science and Technology

in 2015. Dr. Zhan is listed as one of the Most Cited Chinese

Researchers in Computer Science.

 Wei-Neng Chen (S’07-M’12) received the

Bachelor’s degree and the Ph.D. degree from

the Department of Computer Science of Sun

Yat-sen University, Guangzhou, China, in

2006 and 2012, respectively. He is currently an

associate professor with the School of

Advanced Computing, Sun Yat-sen University, China.

His current research interests include swarm intelligence

algorithms and their applications on cloud computing,

financial optimization, operations research and software

engineering. He has published more than 30 papers in

international journals and conferences. His doctoral

dissertation was awarded the China Computer Federation

(CCF) outstanding dissertation in 2012.

 Yun Li (S’87-M’90) received his Ph.D. in

computing and control in 1990. He is currently a

professor with Department of Systems

Engineering, University of Glasgow, U.K. He

served as Founding Director of University of

Glasgow Singapore during 2011-2013 and acted

as Founding Director of the University’s international joint

program with University of Electronic Science and

Technology of China (UESTC) in 2013. He was invited to

Kumamoto University, Japan, as Visiting Professor in 2002

and is currently Visiting Professor to UESTC and Sun Yat-sen

University, China, researching into smart design with market

informatics via the cloud to complete the value chain for

Industry 4.0.

Dr. Li is an Associate Editor of the IEEE Trans. on

Evolutionary Computation and of the SM Journal of

Engineering Sciences. He has 200 publications and is a

Chartered Engineer.

 Jun Zhang (M’02–SM’08) received the Ph.D.

degree from the City University of Hong Kong,

Hong Kong, in 2002. He is currently a

Changjiang Chair Professor with Key

Laboratory of Machine Intelligence and

Advanced Computing, Ministry of Education,

China.

His research interests include computational intelligence,

cloud computing, data mining, and power electronic circuits.

He has published over 200 technical papers in his research area.

Dr. Zhang was a recipient of the China National Funds for

Distinguished Young Scientists from the National Natural

Science Foundation of China in 2011 and the First-Grade

Award in Natural Science Research from the Ministry of

Education, China, in 2009. He is currently an Associate Editor

of the IEEE Trans. on Evolutionary Computation, IEEE Trans.

on Industrial Electronics and IEEE Trans. on Cybernetics.

