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Abstract—Operating mode scheduling is crucial for the 

lifetime of wireless sensor networks. However, the growing scale 

of networks has made such a scheduling problem more and more 

challenging, as existing set cover and evolutionary algorithms 

become unable to provide satisfactory efficiency due to the curse 

of dimensionality. In this paper, a Kuhn-Munkres parallel 

genetic algorithm is developed to solve the set cover problem and 

is applied to lifetime maximization of large-scale wireless sensor 

networks. The proposed algorithm schedules the sensors into a 

number of disjoint complete cover sets and activates them in 

batch for energy conservation. It uses a divide-and-conquer 

strategy of dimensionality reduction, and the polynomial 

Kuhn-Munkres algorithm are hence adopted to splice the 

feasible solutions obtained in each subarea to enhance the search 

efficiency substantially. To further improve global efficiency, a 

redundant-trend sensor schedule strategy is developed. 

Additionally, we meliorate the evaluation function through 

penalizing incomplete cover sets, which speeds up convergence. 

Eight types of experiments are conducted on a distributed 

platform to test and inform the effectiveness of the proposed 

algorithm. The results show that it offers promising performance 

in terms of the convergence rate, solution quality, and success 

rate. 

Index Terms—parallel genetic algorithm, set cover problem, 

large-scale wireless sensor networks, Kuhn-Munkres algorithm. 

 

I. INTRODUCTION 

IRELESS sensor networks (WSNs) have been widely 

used in a number of fields to satisfy various 

requirements, such as road traffic monitoring [1], 

environmental observation [2], healthcare sensing [3], and 

asset monitoring [4]. Typically, hundreds or even thousands of 

sensors, each with a series of transceivers, a battery and a 

micro central processing unit, are deployed in a target area. 

Since it is impossible to recharge or replace the battery in some 

scenarios, how to extend the lifetime of WSNs becomes a 

critical task [5].  

Existing ways for lifetime enhancement are classified into 

five categories: operation mode control [6], data processing 

[7][8], sink relocation [9]-[11], topology control [12][13], and 

optimal routing [14]-[16]. There are various definitions of the 

network lifetime. In this paper, the lifetime of a WSN refers to 

the duration of time that the network is able to carry out its set 

mission. Normally, the networks can fulfill its mission if it can 

guarantee the specified coverage requirements by the sensors 

deployed, i.e., the set cover condition is satisfied [17].  

As summarized in [18]-[20], the deployment methods for 

sensors in WSNs vary with applications, which can be 

categorized into deterministic deployment and random 

deployment. Deterministic deployment is applied to a small- 

or medium-scale network in a friendly sensory environment 

[21]-[23]. The set cover problem here can be transformed into 

a minimum set cover problem or its dual problem. There are 

some certain theoretical developments [24]-[26] and 

optimization algorithms [18][21] related to this field. Since 

this problem is NP-hard, evolutionary-computation based 

solvers are potentially promising because of their 

powerfulness in dealing with NP-hard problems. However, the 

optimal number of sensors cannot be known in advance, which 

increases the difficulty of applying an evolutionary algorithm, 

such as the genetic algorithm (GA). The variable length 

chromosome puts a great challenge to the crossover operation 

of GA. Nevertheless, this issue has been well solved recently 

by using a bi-objective GA [27]. 

When the environment is inaccessible or unfriendly, or the 

number of sensors is too large, sensors are often scattered from 

an aircraft or by other means of transportation, which in effect 

results in random deployment. In order to guarantee coverage 

and connectivity, the sensors are to be densely deployed in 

target areas. To construct an energy-efficient WSN in this case, 

sensors are assigned to different cover sets independent of one 

another [28]. Activating them in batch ensures that only one 

cover set is active at a time and the others are scheduled to 

sleep. This scientific problem is known as the Set K-cover 

problem [29] or Disjoint Set Covers problem [30], which is a 

nondeterministic polynomial complete (NP) problem and 

hence its optimization is NP-hard. 

A common objective of solving the Set K-cover problem is 

to maximize the lifetime of the WSN, but they differ slightly in 

terms of coverage constraints. In [31], sensors are aimed to be 

scheduled into K disjoint sets while guaranteeing that the 

coverage ratio of each set is as high as possible by modeling 
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Fig. 1.  Boolean Disk model. Considering two points z1 and z2 in the target 

area, we have f (D(s, z1)) = 1 and f (D(s, z2)) = 0. 

the Set K-cover problem as an N-person card game, and 

solutions are obtained after a gaming process. A heuristic 

method, termed the Most Constrained-Minimally 

Constraining Covering (MCMCC), is proposed in [29]. The 

essence of MCMCC is to minimize the coverage of sparsely 

covered areas within one cover set. It requires that each cover 

set is able to cover the target area completely. We focus on 

complete cover sets in this paper. 

Owing to their success in solving nondeterministic 

polynomial problems, GAs [32]-[34] and other evolutionary 

algorithms (EAs) [35]-[37] have been applied to the lifetime 

problem in WSNs recently. Lai et al. [38] propose a GA for 

maximum disjoint set covers (GAMDSC), which applies a 

scattering operator to the EA offspring to keep critical sensors 

from joining the same cover set. Hu et al. [39] propose a 

schedule transition hybridized genetic algorithm (STHGA), 

which adopts a forward encoding scheme for chromosomes 

and utilizes redundancy information via designing a series of 

transition operations. Ant-colony optimization for maximizing 

the number of connected cover (ACO-MNCC) is proposed in 

[40], which maximizes the lifetime of heterogeneous WSNs. 

These algorithms are shown competitive in solving small to 

medium sized WSNs. However, the performance of existing 

methods decreases substantially when dealing with a 

large-scale Set K-cover Set problem. 

To improve set cover efficiency and large-scale WSN 

performance over existing algorithms, a Kuhn-Munkres 

scheduled parallel GA (KMSPGA) is developed in this paper, 

so as to provide the following features and benefits: 

 A divide-and-conquer strategy to achieve dimensionality 

reduction in a simple but effective way and solve the 

small-scale Set K-cover problem separately in each 

subarea;  

 The merging of local feasible solution is modeled as a 

Maximum Weight Perfect Matching (MWPM) problem 

such that Kuhn-Munkres (KM) algorithm [41][42] is 

applicable;  

 A redundant-trend sensor schedule strategy (RTSS) to 

further improve global search efficiency, which is easier 

to implement than the existing auxiliary schedule 

strategies [39], and 

 A modified fitness index by introducing a coverage 

inadequate penalty to guide convergence better. 

The rest of this paper is organized as follows. In Section II, 

we describe the Set K-cover problem for WSNs, with 

assumptions and definitions given. In Section III, we develop 

KMSPGA in detail. This parallel genetic algorithm is 

comprehensively tested for performance through simulations 

in Section IV. Finally, conclusions are drawn in Section V.  

II. PROBLEM FORMULATION 

A. Sensor Model 

In this section, we introduce the sensor model adopted in 

our algorithm, which is crucial for the coverage, connectivity, 

and energy consumption. 

A sensor coverage model is an abstract concept to measure 

the sensing capability and to quantify how well a sensor can 

monitor the occurrence of events within its sensing range. 

Various models have been proposed, such as the Boolean 

sector coverage model and the attenuated disk coverage model 

[43]. Comparisons of existing models are made in [44]-[46].  

In this paper, we adopt the Boolean disk model because of 

its concise definition and wide applicability [19][43], which is 

illustrated in Fig. 1. This model ignores the dependency of 

environmental conditions. A point in the space of the target 

area is considered to be covered only if it is within the range of 

at least one sensor. A coverage function is formalized as: 

 
1, if ( , )

( ( , ))
0,

sD s z R
f D s z

otherwise


 


  (1) 

 
2 2( , ) ( ) ( )x x y yD s z s z s z      (2) 

where s = (sx, sy) is the central coordinate of a sensor and (zx, zy) 

is the coordinate of point z in a 2-dimensional space, Rs is the 

sensing radius and D(s, z) calculates the Euclidean distance 

between s and z. Once a point is covered by a sensor, the 

coverage function value is 1, otherwise, it is 0. In [47], a 

geometric analysis of the relationship between coverage and 

connectivity is provided, showing that the connectivity can be 

guaranteed inherently if 1) coverage is satisfied and 2) the 

communication range of sensors is no less than twice of the 

sensing range. Afterwards, many related publications for 

solving the Set K-cover problems are based on this proof 

[31][39] that they use the sensors with communication range at 

least twice than the sensing range and consider the coverage 

constraint only. In this paper, we also make such an 

assumption and meet the connectivity constraint by satisfying 

the coverage constraint.  

In WSNs, the energy consumption of a specific sensor can 

be determined by the following aspects: 1) the communication 

when sending and receiving data; 2) the data type and size 

acquired for processing; 3) the differences in the inherent 

characteristic of the battery; 4) the different local working 

condition, such as temperature. These are, however, diverse 

and highly related to the application scene. In this paper, we 

focus on the Set K-cover problem. Instead of fully formulating 

the above issues influencing the energy consumption, we 

simplify the model by making the following three assumptions: 

1) for every active sensor, the amount of energy consumption 

is identical per unit time; 2) for every sleep sensor, they 

consume negligible energy compared with the active ones; 3) 

every sensor carries the same amount of energy in the initial 

stage. Based on these assumptions, the lifetime of each 

complete cover set is identical to each one another. 

Nevertheless, it is to be noted that the energy consumption 

model in use have no direct relationship with the operations or 

parameters of our proposed KMSPGA. In practical application, 
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Fig. 2.  Notion of an element and a K-covered element. (a) The shaped area is 

divided into eight elements E1, E2, …, E8, where four elements are covered by 

two sensors and the remaining four by one only. (b) Element Ex is called 

K-covered, if it is covered by K sensors, in which case K = 4. 
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Fig. 3.  Elements E1, E3, E6, E8, and E15 are called critical elements, as they are 

covered by the minimum number of sensors. 

there is still room for KMSPGA to adapt this framework to 

fitting new forms of energy constraints. 

B. Set K-Cover Problem 

In this paper, we focus on maximizing the lifetime of a 

large-scale WSN using a static optimization strategy. The 

proposed KMSPGA is an off-line algorithm that pre-calculates 

K disjoint complete cover sets at a time. By alternatively 

activating the K cover sets in batch, the lifetime of the WSN 

can be K times larger than the lifetime of a single cover set. 

Hence, maximizing the lifetime of the WSN is equivalent to 

finding the maximum disjoint complete cove sets. 

We consider the Set K-cover problem a scheduling problem. 

For a positive integer K, sensors are judiciously scheduled into 

K disjoint cover sets such that each cover set is able to meet the 

coverage requirement. In this paper, we focus on a complete 

coverage. The premise of finding K disjoint complete cover 

sets is that every element of the target area is covered by at 

least K sensors. Sufficiency of this premise is proven in the 

following of this subsection. Fig. 2 illustrates the concept of an 

element and a K-covered element. In Fig. 2 (a), the grey square 

area is divided into eight elements. Element Ex in Fig. 2 (b) is 

covered by four sensors; hence it is called 4-covered.  

Without loss of generality, assume that a target area Γ is a 

rectangle and that N sensors S1, S2, …, SN are randomly 

deployed in Γ. A constraint of the coverage requirements is a 

complete coverage. Given a positive number K, sensors are 

scheduled into K cover sets C = {C1, C2, …, CK}. For each 

cover set Ci (i = {1, 2, …, K}), if every element of Γ is covered 

by at least one sensor in Ci, then C would be considered as a 

feasible solution of the Set K-cover problem. The Set K-cover 

problem can be formalized as: 

 ( )
k i

kS C
E S

 
   (3) 

 
1

K

i

i

C S


   (4) 

 , , , {1,2,..., }i jC C i j i j K     (5) 

where E(Sk) represents the element sensed by sensor Sk, k is the 

sensor index, S is the collection of sensors. Assume that the 

target area is partitioned into M elements E1, E2, …, EM. To 

make a clear explanation of how to calculate the upper bound 

of K, we first give the following proposition and its proof: 

Proposition 1: The prerequisite of finding K disjoint cover 

sets is that each element is covered by at least K sensors. 

Proof: Assume that Eτ is covered by Q sensors SCτ = {Sτ,1, 

Sτ,2, …, Sτ,Q}, where SCτ is the collection of sensors covering 

element Eτ. There still exist K disjoint complete cover sets with 

Q < K. 

Let C be a feasible solution of the Set K-cover problem. 

Then, we have |C| = K. Considering the same element Eτ in the 

assumption, Eτ is expected to be covered in each Ci ∈ C 

according to (3). Then, K cover sets are considered as K 

covering tasks, and we have Q sensors that can perform this 

task. Then, K tasks are assigned to Q sensors. Since we have 

|C| = K > |SCτ| = Q, there exist cover sets Cp, Cq ∈ C, and 

sensor Sτ,m ∈ SCτ (m ∈ {1, 2, …, Q}) satisfying Sτ,m ∈ Cp ∩ Cq 

according to the drawer principle, and therefore it contradicts 

(5). In conclusion, the assumption is invalid and hence the 

proposition is proven to be tenable. 

In order to better explain how to estimate the upper limit of 

K, the notion of critical element and critical sensor is 

introduced as follows. The target area is partitioned into a 

number of elements by thousands of densely deployed sensors. 

An element covered by the minimum number of sensors is 

called a ‘critical element’ and the corresponding sensors 

‘critical sensors’. Fig. 3 illustrates critical elements and critical 

sensors, where six sensors divide the rectangular area into 

sixteen elements E1-E16. Being covered by one sensor only, 

elements E1, E3, E6, E8, and E15 are critical elements.  

Let Ec be a critical element. Assume that the number of 

sensors covering Ec is Û. According to Proposition 1, we can 

at most find Û disjoint complete cover sets only if the Û 

critical sensors are chosen in Û disjoint cover sets which 

guarantee that Ec is covered by every cover set, and therefore 

Û is regarded as the upper limit of K. 

C. Critical Parameters 

In this subsection, we discuss some critical parameters 

related to a large-scale WSN. A redundant rate represents the 

density of sensors deployed in the target area. The redundant 

rate in the 2D ideal plane model is computed as (6) according 

to [39], where area(Γ) is the area of Γ and N is the number of 

sensors.  

 
2

Û ( )

sN R

area




 


 
  (6) 

It is difficult to compute the coverage ratio of Γ accurately 

when applying the Boolean disk model. For this reason, we 

divide the target area into T smaller square grids (g1, g2, …, gT), 

T being computed as (7), where d is the width of the grid. A 

coverage ratio is defined as (8), where Ng(Si) represents the 

collection of grids covered by sensor Si and |Ng(Si)| is the 

number of grids in Ng(Si). Equation (9) indicates that a grid 

belongs to no more than one collection in case of a repeat 

count. 

 
2

( )area
T

d


   (7) 
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Algorithm 1 Preprocessing of choosing a proper grid width 

1:     Procedure      WIDTHCHOOSE {d1,…,dΨ} 

2:            d ← d1 ; 

3:            Compute Û1 ; 

4:            for i = Ψ → 2 do 

5:                    d ← di ; 

6:                    Compute Ûi  

7:                    if  Ûi  =  Û1  then 

8:                          d ← di ; 

9:                          break ; 

10:                    end if 

11:            end for 

12:            return d ; 

13:     end procedure 

 

(a) (b) (c)
 

Fig. 4.  Calculation of the coverage ratio. (a) The light grey grids are covered 

while the black one is not covered because one of its vertices is beyond the 

sensing range of the sensor. (b) The black grid is covered by two sensors Sp 

and Sq, but only belongs to either of Ng (Si), i ∈ {p, q}, in the case of a repeat 

count. (c) The coverage ratio is 11/25 = 0.44.  

(a) (b)
 

Fig. 5.  An example to show how the grid width influences the computation of 

the coverage ratio. (a) The grey grid is regarded as uncovered due to the 

coverage criteria. (b) The grey grid becomes covered by either of the two 

sensors after the grid width is shortened. 
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Fig. 6.  Flowchart of the Kuhn-Munkres parallel GA framework. 
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The coverage criteria stipulates that grid gj is covered by 

sensor Si only if all its four vertices are within the sensing 

range of Si. Fig. 4 shows how to calculate the coverage ratio. 

This calculation method is widely used to estimate the 

coverage ratio [39][40]. However, the grid width can influence 

the computation of the coverage ratio in terms of 

computational complexity and accuracy. Fig. 5 gives an 

example to explain this special case, where the grey grid is 

apparently covered by the WSN. Unfortunately, it is regarded 

as uncovered due to the above coverage criteria whether a grid 

is covered. If the width of this grid is halved, two resultant 

grids become covered. However, the calculation of the 

coverage ratio is of an O(N×T) computational complexity. A 

shorter width means a higher computational complexity 

according to (7).  

In our work, we adopt a simple strategy to determine the 

grid width in a preprocessing step. Given Ψ kinds of di (i = {1, 

2, …, Ψ}, di < di+1) in the process of estimating the upper limit 

of K, we choose the smallest d1 first to obtain an exact value Û1, 

because d1 is small enough to guarantee accuracy. Then di (i = 

{2, 3, …, Ψ}) is adopted to work out Ûi in sequence. The 

largest di (ensuring Ûi = Û1) is used for calculating the 

coverage ratio. Algorithm 1 presents a set of pseudocode of 

this preprocess of choosing a proper grid width. In this paper, 

we adopt 5 kinds of grid widths: (d1, d2, d3, d4, d5) = (0.625, 

0.78125, 1, 1.25, 1.5625). 

III. PROPOSED PARALLEL GENETIC ALGORITHM 

A. Kuhn-Munkres Parallel Genetic Approach 

KMSPGA is designed on a divide-and-conquer strategy, 

and the polynomial KM algorithm is adopted to splice the 

feasible solutions obtained in each subarea. The framework of 

KMSPGA is shown in Fig. 6. In the first step, we uniformly 

divide the target area into a number of subareas and encode 

them. Assuming that the number of sensors within subarea Ai 

is Ni, it satisfies: 

 
1

L W

i

i

N N




   (10) 

where L and W denote the number of partitions along 

horizontal and vertical directions respectively, and hence L × 

W denotes the number of subareas obtained. Therefore, the Set 

K-cover problem size of subarea Ai is whittled down to Ni. 

After the partition process, the small-scale Set K-cover 

problem within each subarea is separately solved by a parallel 

processing module. When local solutions of each small-scale 

Set K-cover problem reach a predefined state, they are spliced 

through a KM combination operation to achieve global 

optimization efficiently. There are two termination conditions: 

1) FEs reaches its upper limit and/or 2) the number of 

complete cover sets reach Û. KMSPGA deploys a 

termination-controller in its master process. The controller 

checks whether the current process has reached the 

termination condition at the end of every generation. If so, the 

master process broadcasts a termination signal to all the slave 
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Algorithm 2 Process of divide-and-conquer. 

1:  Procedure  DIVIDE (Γ) 

2:     Divide Γ into L×W subareas (A1, A2, …, AL×W) 

3:          for i = 1 → N do 

4:                for j = 1 → L×W 

5:                      if  Si falling in Aj  then 

6:                          Add Si into SEj; 

7:                      end if 

8:                end for 

9:           end for 

10: end procedure 

1:  Procedure  PARALLELPROCESSING (SP) 

2:       DIVIDE (Γ) ; 

3:       Repeat  

4:         for  process = 1 → L×W  parallel do 

5:            processing (Pprocess);  // gc is the current generation 

6:            if  gc % fs = 0  then    // “%” is a modulus operator 

7:                  compute the state factor ζ. 

8:                  if  ζ > ζc  then 

9:                       CONQUER (C1, C2, …, CL×W) ; 

10:                end if 

11           end if 

12:       end for 

13:     Until termination conditions are satisfied. 

14: end procedure 

1:  Procedure CONQUER (C1 , C2, …, CL×W). 

2:    Repeat 

3:    Compute the weight matrix wE. 

4:    Combine neighbor cover sets (Cp, Cq) ; 

5:    Until all local cover sets are merged into a global one. 

6:  end procedure 
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Fig. 7.  Division of the target area and encoding of the subareas. The target area 

is divided into 2, 8, 32, and L×W subareas in figure (a), (b), (c), and (d). 
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Fig. 8.  Combination of the subareas. 
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Fig. 9.  Bipartite combinations of solutions Cp and Cq obtained by neighbor 

sub-populations, such that the Kuhn-Munkres algorithm can be applied. 
 

processes and, afterwards, all the processes of KMSPGA 

terminate. Pseudocode of this divide-and-conquer strategy is 

given in Algorithm 2.  

Divide() contains two steps. Firstly, the target area Γ is 

uniformly partitioned into L×W subareas A = (A1, A2, …, AL×W). 

Fig. 7 gives four examples where Γ is divided into 2, 8, 32, and 

L×W subareas in Fig. 7 (a), (b), (c), and (d), respectively. Then, 

the centers of all sensors are traversed to obtain a classification 

SE = {SE1, SE2, …, SEL×W}, where SEi is the collection of 

sensors falling in subarea Ai. Every sensor within SEi satisfies 

that its central coordinate (sx, sy) ∈ Ai (k = {1, 2, …, Ni}). 

Additionally, if the center of a sensor falls on the boundaries of 

two or more subareas, it will be randomly scheduled into any 

one of the subareas. In order to keep the concision of 

KMSPGA, we adopt a uniform partition here instead of other 

ways such as clustering techniques. Besides, the uniform 

partition is convenient for the following combination 

operation. 

In the parallel processing module, each process evolves a 

sub-population to obtain a feasible solution. The collection of 

sub-populations is formulized as SP = (SP1, SP2, …, SPL×W). 

Each sub-population size is Np. They are evolved 

independently through a selection, crossover, mutation, and 

RTSS operation in processing(). We estimate the state of each 

sub-population through periodically sampling the information 

of the best individual at a sampling frequency fs. A state factor 

ζ is computed as follows:  

 
1

1

Û

L W

i

i

U




    (11) 

where Ui is the number of disjoint complete cover sets 

obtained by the best individual of SPi. Since Ui ≤ Û ( i = 0, 

1, …, L×W), we have ζ ≤ L×W. Therefore, the upper limit of 

the threshold value, ζc, is set to L×W–1. The value of ζ 

determines whether the KM combination operation will be 

applied. The independent evolution process will be terminated 

until ζ reaches ζc. Therefore, instead of performing the KM 

operation every generation, the execution timing of KM is 

adaptively adjusted based on the state factor. This way, the 

effectiveness of the operation is improved, and hence the 

computational cost is substantially reduced. The threshold ζc 

determines the frequency of performing the KM operation 

(merging the local feasible solutions) and then checking for the 

termination condition. This procedure however does not affect 

the main evolution process of solutions to much extent. Thus, 

different settings of ζc will not change the output solution 

quality of the proposed algorithm, but only influence the 

execution time. The standard uniform crossover and uniform 

mutation are adopted in the evolutionary process. RTSS is 

conducted right after mutation, and before fitness evaluation, 

which is introduced in detail in Subsection D. The tournament 

selection is adopted because of its efficiency, with a 

tournament size Ts. 

Conquer() is a combination operation in order to merge the 

feasible local solutions C = (C1, C2, …, CL×W)T, Ci = (Ci,1, 

Ci,2, …, Ci,Û). Ci is the best solution of the small-scale Set 

K-cover in subarea Ai. Fig. 8 shows an example of this merging 

process, where Γ is divided into 2×4 subareas. We need three 

steps to merge (C1, C2, …, C8) into C1-8. Considering a couple 

of neighboring sub-populations p and q, Conquer() is expected 
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Fig. 10.  Representation of chromosome. C is an equivalent way of 

representing a chromosome, where genes of the same value form a cover set. 

Algorithm 3 Fitness evaluation 

SFk: a flag variable in case of repeat count. 

RFi: a flag variable representing whether Si is redundant.  

1:  Procedure  CHROMOSOMEEVALUATION (x1,…,xN) 

2:            for i = 1 → N do 

3:                   SFi ← 0; 

4:                   RFi ← true; // Si is redundant if RFi is true 

5:             end for 

6:             for i = 1 → T do 

7:                  for j = 1 → N do 

8:                          k ← xj ; 

9:                          if  gi  Ng(Sj) and SFk = 0  then 

10:                                  CNk ← CNk+1 ; 

11:                                  SFk ← 1; 

12:                                  RFj ← false; 

13:                           end if ; 

14:                   end for 

15:             end for 

16:             f ← 0; 

17:             for i = 1 → Û do 

18:                   δi ←CNi∙T
-1 ; 

19:                   f ← f +δi∙P(δi) ; 

20:             end for 

21:  end procedure 

 

to find a best combination Cp-q for each dimension of Cp and Cq 

ensuring that the coverage ratio summation of Cp-q,k is maximal. 

The total number of matching combinations is Û!. As shown in 

Fig. 9, given Û = 10, we have 10! kinds of matching ways of 

Cp and Cq. This combination problem can be modeled as a 

MWPM problem in graph theory, which can now be solved 

using the KM algorithm.  

In the literature, KM algorithm has been successfully 

applied to a number of fields, such as allocation of 

vehicle-to-infrastructure and vehicle-to- vehicle links [48], 

group role assignment [49], and user grouping for grouped 

OFDM-IDMA [50].Given a bipartite graph G = (V, E) and 

weight function w(e), MWPM aims at finding a perfect 

matching of maximum weight. The weight of the matching M 

is formulized as (12). Cover sets (Ci,1, Ci,2, …, Ci,Û) are 

considered as the vertices of G (i ∈ {p, q}). Weight wi,j of edge 

e between Cp,i and Cq,j is computed as (13), where 

|Ng(Cp,i∪Cq,j)| represents the number of grids covered by the 

sensors within Cp,i and Cq,j, and |Ng (Ap∪Aq)| is the number of 

grids covered within Ap and Aq. Then, the weight matrix WE is 

represented as (14). KM combination is constantly conducted 

until all local solutions are totally combined into a global 

solution.  
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B. Chromosome Representation 

In this subsection, we describe the chromosome 

representation in KMSPGA. We compute the value of Û in the 

whole target area. It is worth mentioning that even if we 

divided the target area into subareas, we still have to ensure 

that the whole target area can be covered by Û complete cover 

sets. Therefore, Û is also the upper limit of the number of 

complete cover sets for each subarea, then, sub populations 

SP1, SP2, …, SPL×W share the same Û. Taking Population SPk 

as an example, each chromosome is encoded as X = (x1, x2, …, 

xn), where xi represents the batch number of sensor i, and n is 

the number of sensors falling in Ak
 (n = Nk). Since there is at 

most Û batches, we have xi ∈ {1, 2, …, Û}. 

For chromosome X, sensors with same batch number are 

chosen to a same cover set. Therefore, X is transformed into CX 

= (C1, C2, …, CÛ), which is a candidate solution of Set K-cover 

problem. Fig. 10 gives an example of chromosome 

representation and shows the relationship between X and CX, 

where n is eight and Û is four. On the contrary, X can be easily 

transformed from CX. Therefore, X and CX are equivalent on 

representing an individual. In the remainder of this section, we 

adopt the CX structure in representing a chromosome because 

this form is more convenient for introducing and descripting 

the operations of KMSPGA while X is adopted in the practical 

implementation of KMSPGA. 

C. Improved Fitness Index 

In STHGA [39], the evaluation function is defined as (15), 

where δi represents the coverage ratio of cover set Ci. The 

computation of δi is shown in (16), where the value of δi,k is 1 if 

grid k is covered by Ci. The value of δi (i ∈ {1, 2, …, Û-1}) is 1 

in STHGA because of the forward encoding scheme. The 

evaluation function of GAMDSC [38] is shown in (18), where 

fB represents the number of disjoint complete cover sets and ⌊x⌋ 
denotes the floor of x.  
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In order to improve the convergence rate, we adopt a 

penalty function P(δi) of (19), where λ is the penalty 

coefficient. The fitness evaluation function of KMSPGA is 

given in (20). Hence, the contribution of an incomplete cover 

set is lower than a complete one because of this penalty. 

Therefore, individuals with more incomplete cover sets are 
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(a) (b) (c)

Fig. 11.  Illustration of a redundant-trend sensor, with a redundant state 

uncertain after crossover and mutation operations. (a) Since the area covered 

by this sensor has already been covered by other sensors in the same cover set, 

the grey sensor is considered to be a redundant one. Figure (b) and (c) show 

two situations of redundant state of the grey sensor after the crossover and 

mutation operations. The grey sensor is redundant in (b) while it is no longer 

redundant in (c). 
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Fig. 12.  Redundant-trend sensors transition between disjoint cover sets, 

where grey sensors are redundant-trend sensors. Different cover sets are 

represented  

by different polygons, such as the triangle representing cover set C1. 

TABLE I 

THE PARAMETER SETTING OF KMSPGA 

Parameter Description Value 

Ψ Number of grid width classification. 5 

λ Penalty coefficient in cost evaluation. 0.2 

L Number of partitions along horizontal direction. {2,4} 

W Number of partitions along vertical direction. {2,4,8} 

fs Sampling frequency. 3000 

Pc Crossover probability. 0.6 

Pm Mutation probability. 0.001 

Nc Number of candidates in RTSS. [3-1Û] 

Np Sub-population size. 15 

Ts Tournament size 5 

ζc 

Threshold of the state factor with 2×2 partitions. 3.0 

Threshold of the state factor with 2×4 partitions. 7.0 

Threshold of the state factor with 4×4 partitions. 15.0 

Threshold of the state factor with 4×8 partitions. 30.0 

 

eliminated more easily than those with more complete cover 

sets. Algorithm 3 shows the pseudocode of the fitness 

evaluation in KMSPGA. 
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D. Redundant-Trend Sensors Schedule Operation 

In RTSS, the redundant information is indirectly utilized in 

order to improve search efficiency. The redundant information 

is collected in the fitness evaluation process. In Algorithm 3, 

steps 2 to 15 give this collection process. As can be noted from 

the pseudocode, the collection process is embedded in the 

fitness evaluation in case of increasing computational 

complexity. Note that after collecting the redundant 

information, RTSS is not applied directly after the fitness 

evaluation, but, as introduced in subsection A, it is performed 

after crossover and mutation operations, the landscape of the 

chromosome may change. Thus, the redundant information 

utilized in RTSS is hysteretic. 

Considering that Sk is a member of Cj, whether Sk is 

redundant for Cj depending on its contributions to Cj. Sk is 

considered to be redundant only if it has no contributions to Cj, 

which is judged in the fitness evaluation. However, Sk may not 

still be redundant, because crossover and mutation operations 

may change the members of Cj. Therefore, Sk is called 

redundant-trend sensors in RTSS due to this uncertainty of the 

redundant state. Fig. 11 shows an example of this uncertainty. 

The grey sensor is considered to be redundant after the fitness 

evaluation operation. However, it is uncertain whether it is still 

redundant after crossover or mutation. 

The process of RTSS is described as follows. Suppose that 

the cover set is C = {C1, C2, …, CÛ}. Firstly, we traverse the 

redundant information of the sensors in Ci. Assuming Si,k is the 

kth member of Ci, if Si,k is judged to be redundant for Ci in 

Algorithm 3, we then consider it a redundant-trend sensor in 

RTSS. A cover set Cm (m ∈ {1, 2, …, Û}) will receive Si,k 

through a tournament selection, where Nc candidates are 

randomly selected and the one with the lowest coverage ratio 

is chosen to receive Si,k as one of its members. Fig. 12 

illustrates this schedule strategy between disjoint cover sets. In 

Fig. 12, different polygons represent different cover sets, the 

grey sensors are redundant-trend sensors, and the direction of 

arrow represents the schedule direction. RTSS has twofold 

functions. It helps enhance the coverage ratio through the 

schedule strategy if the redundant-trend sensor is actually a 

redundant one. However, if the redundant sensor is no longer 

redundant for the current cover set, the scheduling operation 

becomes a disturbance for the population. This kind of 

stochastic disturbance enriches the diversity of the population. 

IV. EXPERIMENTAL RESULTS 

A. Experimental Setup 

In this section, experiments are conducted to ascertain the 

performance of KMSPGA. In Subsection B, we compare 

KMSPGA with the state-of-the-art algorithms. MCMCC, 

GAMDSC, and STHGA are serial algorithms which perform 

well in solving the Set K-cover problem. The experiments and 

comparisons are used to verify the effectiveness of our 

proposed KMSPGA algorithm for lifetime maximization of 

large-scale WSNs. In Subsection C, we compare KMSPGA 

with a traditional pure parallel genetic algorithm (PGA). 

Further, the performance of the PGA embedding only RTSS 

(SPGA) or KM combination (KMPGA) are also tested in order 

to study the effectiveness of the two operations. Experiments 

in Subsection D and E are designed to evaluate the robustness 

of KMSPGA with different partitions and the redundant rates. 

In Subsection F, we conduct parameter investigation and give 

their suggested values. Finally, experiments in Subsections 

G-I are conducted with new and different testing scenarios to 

further verify the performance of KMSPGA.  

KMSPGA and other algorithms are tested on a computer 

cluster of 25 nodes (with a total of 100 processing cores), 

which is homogenous with the same Intel core i3-3240 CPU 

running at 3.40 GHz, 4GB memory and Ubuntu 12.04 LTS 
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Fig. 13.  Convergence curves of the compared algorithms. (a) I3-2. (b) I6-1. 

64-bit operating system. The parallel programming practice 

uses the Message Passing Interface (MPI). Table I shows the 

parameter settings. Pc and Pm, the constant crossover and 

mutation rates, are set as Pc = 0.6 and Pm = 0.001, respectively. 

The value of λ determines the degree of punishment for the 

individuals with incomplete cover sets. In all of the test 

instances, we adopt λ = 0.2 as default value. Nc, the number of 

candidates in RTSS, is empirically setting to 3-1Û. Sample 

frequency fs is set to 3000 function evaluations (FEs). In 

Subsections B-H, Γ is a 50×50 square area, and in Subsection I, 

Γ is a 3-D surface. PL×W denotes the partition way of Γ. ζc is set 

to 3.0, 7.0, 15.0, and 30.0 for P2×2, P2×4, P4×4, and P4×8, 

respectively. Thirty trials are performed for each instance and 

the results are averaged over the trials. A two-tailed t-test of 

the null hypothesis is conducted in Subsections B, G, H, and I. 

The null hypothesis will be rejected if p-value is smaller than 

the significance level α = 0.05.  

B. Comparison with State-of-the-Art Serial Algorithms 

We conduct experiments on 12 instances to verify the 

performance of KMSPGA in comparison with the serial 

algorithms: MCMCC, GAMDSC, and STHGA. P2×4 is 

adopted in this subsection. 

The experimental results are listed in Table II. Mean and Std 

are the mean quality and standard deviation. Sr is the success 

rate. The best solutions are marked in bold. KMSPGA 

outperforms the other algorithms in terms of the convergence 

rate and solution quality. Furthermore, KMSPGA produces 

significant increases both in the convergence rate and in the 

success rate in the higher dimensional space. The success rate 

of instances I1-1, I1-2, I2-1, I2-2, I3-2, I4-2, I5-2, I6-1, and 

I6-2 reach 1.00. The mean FEs is far less than the serial 

algorithms. MCMCC is not available because it took an 

unacceptable time before termination. The worst runtime of 

MCMCC is O(N2) [39], where N is the number of sensors. This 

heuristic method performs efficiently when the number of 

sensors is small or medium. However, the computational 

complexity of MCMCC becomes so high in terms of 

large-scale WSNs that it fails to work out a feasible solution in 

an acceptable time, i.e., I2-1, a single run of MCMCC exceeds 

eight hours. GAMDSC is another genetic algorithm used in 

this experiment. Since GAMDSC lacks an efficient search 

strategy to handle such a large number of sensors, solutions 

obtained by GAMDSC are fewer than Û. STHGA possesses 

high quality of solutions in the low-dimensional spaces when 

the number of sensors is less than 5000. The complicated local 

search operations help STHGA search the problem space 

efficiently. However, the performance of this serial GA is 

badly influenced by curse of dimensionality. The success rate 

of instance I3-1 obtained by STHGA is 0.03. At the same time, 

the large number of function evaluations indicates that the 

searching efficiency reduces due to the curse of 

dimensionality.  

Fig. 13 shows the convergence curves of the compared 

algorithms on instances I3-2 and I6-1, where the x-axis 

represents the mean FEs and the y-axis the mean U over 30 

trials. The convergence rate of KMSPGA is higher than 

STHGA and GAMDSC. Furthermore, KMSPGA generates 

higher-quality solutions. In Fig. 13 (a), KMSPGA obtains the 

optimal value at about 15,000 FEs, STHGA reaches the near 

optimal value at 35,000 FEs, and GAMDSC evolves very 

slowly with a low-quality solution. Similarly, in Fig. 13 (b), 

KMSPGA converges to the optimal value at about 20,000 FEs, 

STHGA obtains the near optimal value at about 80,000 FEs, 

and GAMDSC still evolves very slowly with a low-quality 

solution.  

 In this subsection, we investigate the effectiveness and 

reliability of KMSPGA and the other compared algorithms 

with the same maximum number of function evaluations so 

that the comparison is fair. Some of the compared algorithms, 

e.g., STHGA, are not suitable for parallelism. The reasons are 

as follow. As can be noted from our description of the 

proposed parallel genetic framework, the disjoint cover sets 

within the same chromosome are supposed to be peer to each 

other. In STHGA, Ci is a complete cover set while CU+1 is 

incomplete due to the forward encoding scheme, which makes 

Ci (i ∈ {1, 2, …, U}) is not peer to cover set CU+1. Combination 

between any Cp,i and Cq,j (i, j < U) makes no sense to these 

already complete cover sets. The complicated auxiliary search 

TABLE II  

EXPERIMENT ON 12 INSTANCES IN COMPARISON WITH SERIAL ALGORITHMS 

INSTANCE N Rs η Û 
GAMDSC STHGA KMSPGA 

FEs U t-test
1 

Sr 
FEs U t-test

2 

Sr 
FEs U 

Sr 
Mean Mean Std p-value Mean Mean Std p-value Mean Mean std 

I1-1 

I1-2 
5000 

5 4.760 33 15000 2.0 0 0 0 10248 33 0 N/A 1.00 2688 33 0 1.00 
8 4.845 83 15000 7.4 0.67 3.31e-61 0 11507 82.9 0.25 1.6e-01 0.93 2922 83 0 1.00 

I2-1 

I2-2 
10000 

5 4.488 70 30000 1.8 0.50 4.10e-65 0 25466 69.9 0.25 1.6e-01 0.93 8418 70 0 1.00 
8 4.493 179 30000 10.2 0.57 1.76e-73 0 27077 178.8 0.38 2e-02 0.83 9324 179 0 1.00 

I3-1 

I3-2 
15000 

5 4.446 106 45000 1.3 0.50 1.15e-61 0 44887 103.9 1.13 8.90e-09 0.03 28350 105.8 0.55 0.87 
8 4.435 272 45000 12.5 0.57 6.76e-79 0 40946 271.8 0.50 2e-02 0.8 15488 272 0 1.00 

I4-1 

I4-2 
20000 

5 4.303 146 60000 1.1 0.35 9.21e-76 0 59956 143.7 1.33 1.75e-09 0.06 33086 145.9 0.25 0.93 
8 4.347 370 60000 13.2 0.76 3.12e-79 0 59802 367.9 1.36 3.7e-00 0.1 35838 370 0 1.00 

I5-1 

I5-2 
25000 

5 4.462 176 75000 1.6 0.51 9.25e-62 0 72679 175.4 0.63 3.8e-01 0.5 26761 175.7 1.27 0.93 
8 4.458 451 75000 16.1 0.57 2.46e-85 0 74496 449.7 0.87 8.22e-09 0.2 36955 451 0 1.00 

I6-1 

I6-2 
30000 

5 4.446 212 90000 2.5 0.50 1.032e-77 0 87592 211.1 0.74 1.35e-07 0.3 22845 212 0 1.00 
8 4.570 528 90000 20.8 0.92 3.30e-81 0 86594 527.6 0.62 1e-02 0.67 34785 528 0 1.00 

1 Two tailed t-test of the null hypothesis that GAMDSC is equal to KMSPGA. 2 Two tailed t-test of the null hypothesis that STHGA is equal to KMSPGA. 
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TABLE III 

EXPERIMENTAL RESULTS ON 12 INSTANCES IN COMPARISON WITH PARALLEL ALGORITHMS OF A 2×4 PARTITION. 

INSTANCE 

PGA KMPGA SPGA KMSPGA 

FEs U 
Sr 

FEs U 
Sr 

FEs U 
Sr 

FEs U 
Sr 

Mean Mean Std Mean Mean Std Mean Mean Std Mean Mean Std 

I1-1 15000 28.7 1.34 0.00 14719 31.37 1.24 0.17 15000 28.9 1.73 0.00 2688 33 0 1.00 

I1-2 15000 71.0 2.06 0.00 1500 78 1.68 0.00 4114 83 0 1.00 2922 83 0 1.00 

I2-1 30000 63.5 2.19 0.00 29998 68.4 1.04 0.13 14688 69.8 0.50 0.80 8418 70 0 1.00 

I2-2 30000 119.5 5.36 0.00 30000 159.8 3.77 0.00 29640 176.7 1.18 0.03 9324 179 0 1.00 

I3-1 45000 83.2 3.85 0.00 45000 96.7 2.03 0.00 45000 100.3 2.12 0.00 28350 105.8 0.55 0.87 

I3-2 45000 160.7 6.30 0.00 45000 231.3 6.01 0.00 43619 270.4 1.30 0.23 15488 272 0 1.00 

I4-1 60000 106.1 4.90 0.00 60000 122.4 3.01 0.00 56098 144.2 1.19 0.17 33086 145.9 0.25 0.93 

I4-2 60000 156.0 6.24 0.000 60000 290 3.06 0.00 60000 358.2 4.03 0.00 35838 370 0 1.00 

I5-1 75000 137.8 3.96 0.00 75000 156.7 3.06 0.00 40688 175.8 0.41 0.80 26761 175.7 1.27 0.93 

I5-2 75000 198.7 9.10 0.00 75000 370.1 6.10 0.00 74700 447.6 1.99 0.03 36955 451 0 1.00 

I6-1 90000 138.8 6.18 0.00 90000 170.2 5.30 0.00 31485 211.9 0.18 0.97 22845 212 0 1.00 

I6-2 90000 277.4 8.40 0.00 90000 428.3 7.66 0.00 39085 528 0 1.00 34785 528 0 1.00 

TABLE IV 
EXPERIMENTAL RESULTS ON 12 INSTANCES IN COMPARISON WITH PARALLEL ALGORITHMS OF A 4×4 PARTITION. 

INSTANCE 

PGA KMPGA SPGA KMSPGA 

FEs U 
Sr 

FEs U 
Sr 

FEs U 
Sr 

FEs U 
Sr 

Mean Mean Std Mean Mean Std Mean Mean Std Mean Mean Std 

I1-1 14900 28.9 1.76 0.03 14597 31.8 0.86 0.20 14920 29.4 1.57 0.03 3660 33 0 1.00 

I1-2 15000 70.8 2.59 0.00 15000 78.7 1.57 0.00 6414 82.9 0.25 0.93 4314 83 0 1.00 

I2-1 30000 65.3 1.54 0.00 29599 65.8 3.93 0.07 25997 68.5 1.07 0.20 3960 70 0 1.00 

I2-2 30000 135.7 5.02 0.00 30000 170.0 2.03 0.00 30000 175.1 1.89 0.00 11748 179 0 1.00 

I3-1 45000 90.4 2.33 0.00 45000 101.1 1.46 0.00 45000 99.6 1.85 0.00 13230 106 0 1.00 

I3-2 45000 198.1 6.48 0.00 45000 258.7 3.42 0.00 44580 268.7 1.91 0.03 23876 271.9 0.18 0.97 

I4-1 60000 129.2 2.85 0.00 60000 132.6 9.10 0.00 60000 141.6 2.04 0.00 22782 145.9 0.25 0.93 

I4-2 60000 219.4 9.36 0.000 60000 340.0 4.69 0.00 60000 361 2.36 0.00 29412 370 0 1.00 

I5-1 75000 169.2 2.36 0.00 72395 174.8 1.28 0.30 31588 175.8 0.41 0.80 8625 176 0 1.00 

I5-2 75000 305.1 8.55 0.00 75000 410.3 5.78 0.00 71599 449.1 1.53 0.20 29802 451 0 1.00 

I6-1 90000 203.2 2.57 0.00 89399 209.7 1.70 0.07 25586 211.9 0.18 0.97 9975 212 0 1.00 

I6-2 90000 453.3 5.29 0.00 90000 504.5 4.73 0.00 26985 528 0 1.00 24285 528 0 1.00 

 

(a) (b)

(c) (d)  

Fig. 14.  Visual illustration of correlative areas under representative partitions. 

Grey areas represent the special correlative areas where sensors are relevant 

with the largest number of subareas. Sensors falling in grey areas are 

correlation with 2, 4, 6 and 6 subareas in (a), (b), (c), and (d) separately. 

operations adopted by STHGA also increases the difficulty of 

parallelizing the algorithm. 

C. Comparison with Parallel Algorithms 

In this subsection, we compare KMSPGA with the pure 

PGA, KMPGA, and SPGA. The PGA combined only with the 

KM combination or RTSS form KMPGA or SPGA. The 

experimental instances in Subsection B are adopted here. We 

conduct the experiments under two different partitions: P2×4 

and P4×4.  

The experimental results are given in Table III and Table IV. 

KMSPGA outperforms KMPGA and SPGA in all of the 

instances. Although Sr of KMPGA and SPGA is 0 in the 

majority of the instances, the mean U obtained by KMPGA 

and SPGA is much larger than PGA, which reveals that the 

KM combination and RTSS contribute to the enhancement of 

the solution quality, which is made available by KMSPGA. 

Take instance I4-2 of partition 2×4 as an example, where Û is 

370. The mean U obtained by PGA is 156.0, accounting for 

only 42.16%. As for KMPGA and SPGA, the mean U obtained 

are 290 and 358.2, accounting for 78.38% and 96.81%. SPGA 

obtains larger mean U than KMPGA in the majority of the 

instances, and therefore contribution of RTSS is larger than 

that of KM combination when it comes to the degree of the 

improvement of solution quality.  

It is worth mentioning that parallel evolutionary algorithms 

are suitable for the problems of a high dimensionality or of 

complex and time-consuming computation features [51], such 

as large-scale air traffic flow optimization [52], discrete 

resource allocation in classic economic field [53], and 

large-scale function optimization [54][55]. They are adopted 

to either speed up the optimization or enhance the solution 

quality through a dimensionality reduction strategy. In this 

paper, the dimensionality and computational complexity of Set 

K-cover problem become so high in large-scale WSN that we 

adopt a parallel evolutionary algorithm for performance 

enhancement.  

D. Discussion on Correlation between Sensors and Subareas 

We investigate how the number of partitions affects the 

solution quality in this subsection. It can be intuitively noted 

that the number of subareas covered by one sensor increases as 

the target area is divided more finely. A larger number of 

subareas covered by one sensor means a higher correlation 

between the sensors and subareas. The high correlation 

influence the performance of parallel processing module and 

the KM combination. Fig. 14 gives a visual illustration of a 

special kind of correlative area (marked as grey), and sensors 
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TABLE V 

EXPERIMENTAL RESULTS UNDER DIFFERENT PARTITIONS ON 12 INSTANCES 

INSTANCE 

P2×2 (ω-5= 1.38, ω-8=1.67) P2×4 (ω-5= 1.79, ω-8=2.41) P4×4 (ω-5=2.30 , ω-8=3.43) P4×8 (ω-5= 3.41, ω-8=5.55) 

FEs U 
Sr 

FEs U 
Sr 

FEs U 
Sr 

FEs U 
Sr 

Mean Mean Std Mean Mean Std Mean Mean Std Mean Mean Std 

I1-1 4965 33 0 1.00 2688 33 0 1.00 3660 33 0 1.00 4935 33 0 1.00 

I1-2 2730 83 0 1.00 2922 83 0 1.00 4314 83 0 1.00 2016 83 0 1.00 

I2-1 14604 69.9 0.57 0.83 8418 70 0 1.00 3960 70 0 1.00 4650 70 0 1.00 

I2-2 9010 179 0 1.00 9324 179 0 1.00 11748 179 0 1.00 3744 179 0 1.00 

I3-1 41490 104 1.24 0.37 28350 105.8 0.55 0.87 13230 106 0 1.00 15159 106 0 1.00 

I3-2 3718 272 0 1.00 15488 272 0 1.00 23876 271.9 0.18 0.97 37464 265.1 4.55 0.23 

I4-1 59445 143.8 1.44 0.1 33086 145.9 0.25 0.93 22782 145.9 0.25 0.93 45330 145.7 0.65 0.8 

I4-2 52500 369.7 0.71 0.76 35838 370 0 1.00 29412 370 0 1.00 57060 346.6 6.89 0.07 

I5-1 67695 174.5 1.98 0.43 26761 175.7 1.27 0.93 8625 176 0 1.00 10230 176 0 1.00 

I5-2 66675 449.3 1.82 0.37 36955 451 0 1.00 29802 451 0 1.00 71010 433.2 5.71 0.07 

I6-1 87660 209.6 2.22 0.2 22845 212 0 1.00 9975 212 0 1.00 12084 212 0 1.00 

I6-2 78615 526.1 2.83 0.43 34785 528 0 1.00 24285 528 0 1.00 68115 521.4 5.06 0.30 

 falling in the grey area will be correlate with 2, 4, 6 and 6 

subareas in (a), (b), (c), and (d), respectively. A sensor covers 

at least two subareas when it falls into the correlative areas. 

The correlative areas influence the independence of the 

evolution of each sub-population. The average number of 

subareas covered by one sensor is adopted to reveal the degree 

of correlation between sensors and subareas. A Monte Carlo 

method is utilized to estimate this value. One hundred 

thousand sensors (i.e., N = 100,000) are randomly deployed 

into the target area, then the number of subareas covered by 

each sensor is computed. The average number of subareas 

covered by one sensor is computed as ω: 

 
1

1
( )

N

sa i

i

N S
N




    (22) 

where Nsa(Si) is the number of subareas covered by sensor Si. A 

larger value of ω means a stronger correlation between sensors 

and subareas. The target area is expected to be divided into 

more subareas in order to achieve dimensionality reduction as 

the number of sensors increases. However, it is unreasonable 

to increase the number of subareas without constraints, 

because the efficiency of combination strategy decreases as 

the number of subareas increases.  

Table V lists the results with different partitions: P2×2, P2×4, 

P4×4, and P4×8, where ω-r represents the value of ω with sensing 

radius r. P4×4 achieves the best performance in the majority of 

test instances in terms of convergence rate, solution quality, 

and success rate. The success rate is low considering the 

performance of P2×2 and P4×8. However, the reason is 

completely different. As for P2×2, the partition quantity is not 

enough to reduce the dimensionality to an acceptable level. On 

the contrary, the partition quantity of P4×8 is so large that the 

correlation between sensors and subareas becomes too high to 

apply the divide-and-conquer strategy. As can be noted in 

instance Ix-1 and Ix-2, the success rate of the former is clearly 

higher than the later because of the smaller value of ω in Ix-1 

than that in Ix-2. Consequently, the number of partitions is 

restricted by the value of ω. In order to help the 

divide-and-conquer strategy work efficiently, the partition 

quantity is limited to an appropriate range.  

E. Experiments with Different Redundant Rate 

In this subsection, we study the influence of different 

redundant rates on the solution quality. Two groups of 

experimental instances are adopted in this experiment, where 

the sensor radius is 5. Instances prefixed by “J” represent the 

number of sensors is 20,000, whereas instances prefixed by “H” 

represent the number of sensors is 25,000. Although the 

number and the sensing radius of sensors are fixed, the 

redundant rate can be different because of the random 

deployment strategy. It is quite difficult to generate an instance 

with a specified Û. Instead, to generate this test set with 

different redundant rates, we create a relatively large number 

of candidate instances, calculate their Ûs, and then select the 

candidate instances with appropriate Û to the test set. The 

redundant rate ranges from 3.997 to 5.003. 

Performance of different partitions, i.e. P2×4, P4×4, and P4×8, is 

tested. STHGA is also adopted for comparison. Results are 

summarized in Table VI. KMSPGA (P2×4, P4×4, and P4×8) 

achieves a high success rate in a large range of redundant rates, 

which indicates that KMSPGA offers very promising 

performance with robustness. P4×4 achieves the fastest 

convergence rate, the largest mean U, and the highest Sr in the 

majority of the instances in Table VI. As far as STHGA is 

concerned, the success rate declines sharply when the 

redundant rate decreases. The x-axis of Fig. 15 (a) and (b) is 

the redundant rate, the y-axis of Fig.15 (a) represents mean Sr, 

and the y-axis of Fig. 15 (b) represents the ratio of mean U to Û. 

The best solution obtained by KMSPGA among different 

partitions in each instance is represented by PBEST. In Fig. 15 (a), 

KMSPGA (P2×4, P4×4, and P4×8) obtains a high Sr in most of the 

instances while the Sr of STHGA declines sharply as η 

decreases. Fig. 15 (b) also indicates that KMSPGA possesses 

high solution quality within a large-scale range of η. In fact, 

PBEST maintains a value of 1.00 in both Fig. 15 (a) and (b).  

F. Parameter Investigation 

We investigate the penalty coefficient λ and the threshold 

value of state factor ζc in this subsection in order to show how 

these parameters influence the performance of KMSPGA.  

The penalty coefficient λ is adopted to improve the 

convergence rate. We adopt test instances I4-2 and I5-1 with 

partition P4×4. The value of λ is increased from 0 to 1 with step 

0.05. Based on the experimental results, we give the 

relationship between λ and FEs in Fig. 16. As can be noted 

from the results, the value of FEs when λ is set within [0.05, 

0.95], the required FEs is significantly less than that when λ is 

set to 1 (no penalty). The experimental results indicate that the 

penalty coefficient λ has an effect of improving the 

convergence rate of KMSPGA. Meanwhile, KMSPGA is 

generally insensitive to the value of λ, and it works identically 

well when λ is set to [0.2, 0.7]. 
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TABLE VI 

EXPERIMENTAL RESULTS WITH DIFFERENT REDUNDANT RATES ON 20 INSTANCES 

INSTANCE STHGA P2×4  P4×4 P4×8  

Na. Û η 
FEs U 

Sr 
FEs U 

Sr 
FEs U 

Sr 
FEs U 

Sr 
Mean Mean Std Mean Mean Std Mean Mean Std Mean Mean Std 

J01 129 4.871 51407 128.8 0.38 0.83 2824 129 0 1.00 2508
 

129 0 1.00 3394 129 0 1.00 

J02 133 4.724 52332 132.9 0.25 0.93 5802 133 0 1.00 3684 133 0 1.00 3904 133 0 1.00 

J03 135 4.654 53898 134.8 0.38 0.83 6334 135 0 1.00 4176 135 0 1.00 6222 135 0 1.00 

J04 136 4.620 56295 135.8 0.50 0.80 9714 136 0 1.00 5856 136 0 1.00 6664 136 0 1.00 

J05 139 4.520 54113 138.8 0.38 0.83 9210 139 0 1.00 7410 139 0 1.00 7485 139 0 1.00 

J06 145 4.333 59789 143.1 1.05 0.06 18705 145 0 1.00 13350 145 0 1.00 15204 145 0 1.00 

J07 149 4.217 59281 147.8 1.07 0.30 29544 149 0 1.00 16740 149 0 1.00 10512 149 0 1.00 

J08 155 4.080 60000 146.1 1.58 0.00 60000 150.5 2.13 0.00 25875 155 0 1.00 53992 154.0 1.48 0.53 

J09 157 4.002 60000 152 1.69 0.00 57819 155.5 1.57 0.37 35235 157 0 1.00 59925 151.7 2.63 0.03 

J10 158 3.977 60000 154.0 1.52 0.00 37884 158 0 1.00 33045 157.9 0.40 0.93 57420 156.2 1.21 0.17 

H01 157 5.003 56796 157 0 1.00 2674 157 0 1.00 4680 157 0 1.00 4035 157 0 1.00 

H02 159 4.940 62349 158.9 0.35 0.86 3524 159 0 1.00 4485 159 0 1.00 5250 159 0 1.00 

H03 162 4.848 63270 161.9 0.31 0.90 3954 162 0 1.00 4485 162 0 1.00 4635 162 0 1.00 

H04 164 4.789 63223 163.9 0.31 0.90 5054 164 0 1.00 5085 164 0 1.00 5805 164 0 1.00 

H05 167 4.703 67287 166.9 0.35 0.87 7305 167 0 1.00 4635 167 0 1.00 6030 167 0 1.00 

H06 173 4.540 72310 172.5 0.63 0.57 15330 173 0 1.00 7632 173 0 1.00 16059 173 0 1.00 

H07 175 4.488 73608 174.1 0.92 0.40 19980 175 0 1.00 11430 175 0 1.00 19960 175 0 1.00 

H08 178 4.412 74741 176.4 1.04 0.10 19685 178 0 1.00 10932 178 0 1.00 15810 178 0 1.00 

H09 181 4.340 74003 179.9 0.96 0.33 20730 181 0 1.00 10575 181 0 1.00 15510 181 0 1.00 

H10 185 4.245 74570 183.4 1.10 0.13 41559 185 0 1.00 18375 185 0 1.00 24435 185 0 1.00 
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Fig. 15.  Influence of redundant rate on the performance of KMSPGA. (a) 

Influence on the mean success rates. (b) Influence on the mean ratios. 
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Fig. 16.  Influence of λ on the performance of KMSPGA. (a) I4-2. (b) I5-1. 
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Fig. 17. Influence of threshold value ζc on the performance of KMSPGA. (a) 

P2×4. (b) P4×4. 

 
Fig. 18. Illustration of “tessellation” placement strategy, and the polygons 

adopted here is triangle. 

The threshold value of the state factor, ζc, determines the 

frequency of executing the KM operation. We adopt test 

instance I2-2 to investigate the effect of this parameter. For 

partition P2×4 and P4×4, ζc is increased from 0 to 7 with step 0.5 

and from 0 to 15 with step 1, respectively. The experimental 

results show that, KMSPGA achieves a 100% success rate 

with different ζc. Therefore, ζc has no influence on the solution 

quality. Fig. 17 shows the influence of the value of ζc on the 

FEs and a practical execution time of KMSPGA. It can be 

observed that ζc has negligible influence on the convergence 

rate. Based on the experimental results, we suggest that the 

value of ζc is set to ⌊0.94 × L × W⌋. 

G. Proof-of-Principle Experiments 

To conduct proof-of-principle experiments, we first apply a 

deterministic deployment strategy to generate K complete 

cover sets. The superposition of these K complete cover sets 

results in a Set K-cover instance, to which an optimal solution 

is known. Then KMSPGA and other compared algorithms are 

applied to solving this instance. 

Here, it is to be noted that deterministically deploying the 

least number of circles to cover any polygon is an NP-hard 

problem as discussed in [21], [56], and [57]. Nevertheless, if 

we relax the requirement of that the layout should be 

“theoretically best with the least circles”, there exists an 

efficient deterministic node placement strategy to cope with 

this issue. Fig. 18 shows a “tessellation” placement strategy. 

First, the target area is completely tiled by a number of 

compact polygons. Then, sensors are placed at the vertices of 

polygons. If each polygon is covered by at least one sensor, the 

target area is completely covered. Fig. 18 is adopted as 1-cover 

set (unit set) since it is the optimal tessellation requiring the 

minimum number of sensors. We then repeatedly add K unit 

sets into a cover set to generate a K-cover as the instance of the 

proof-of-principle experiment. Six new instances are 
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TABLE VII 

EXPERIMENTAL RESULTS OF THE PROOF-OF-PRINCIPLE EXPERIMENT ON 6 INSTANCES 

INSTANCE R Û 

GAMDSC STHGA KMSPGA 

FEs U 
Sr 

t-test
1 

FEs U 
Sr 

t-test
2 

FEs U 
Sr 

Mean Std Mean p-value Mean Std Mean p-value Mean Std Mean 

DD1-1 5 
100 

13500 0 1 0 4.14e-80 598 0.46 100 1.00 1.09e-22 463.5 25.94 100 1.00 

DD1-2 8 6600 0 4.1 0 3.31e-70 598 0.58 100 1.00 1.09e-30 328.5 27.39 100 1.00 

DD2-1 5 
300 

40500 0 1 0 1.30e-86 1798 0.72 300 1.00 3.13e-40 779.5 47.13 300 1.00 

DD2-2 8 19800 0 6.2 0 3.07e-78 1798 0.50 300 1.00 2.56e-44 494.0 44.56 300 1.00 

DD3-1 5 
600 

81000 0 1 0 5.18e-82 3598 0.52 600 1.00 1.87e-37 1285.5 136.35 600 1.00 

DD3-2 8 39600 0 8.0 0 8.54e-82 3598 0.46 600 1.00 3.08e-49 661.0 67.76 600 1.00 

TABLE VIII 

EXPERIMENTAL RESULTS WITH SENSORS OF DIFFERENT RADIUSES ON 5 INSTANCES 

INSTANCE Û 

GAMDSC STHGA KMSPGA 

FEs U t-test
1 

Sr 
FEs U t-test

2 

Sr 
FEs U 

Sr 
Mean Mean Std p-value Mean Mean Std p-value Mean Mean Std 

DR1 159 45000 5.1 0.48 1.98e-74 0 44815 157.7 0.71 3.6e-11 0.1 11714 159 0 1.00 

DR2 220 45000 8.1 0.71 1.65e-73 0 44148 219.0 0.96 2.28e-06 0.33 12954 220 0 1.00 

DR3 276 45000 15.8 0.92 8.4e-73 0 41145 275.6 0.61 2.8e-03 0.7 14794 276 0 1.00 

DR4 163 45000 5.4 0.50 4.0e-74 0 40232 162.8 0.40 1.2e-02 0.8 6914 163 0 1.00 

DR5 232 45000 7.7 0.58 4.31e-75 0 44762 230.7 0.99 8.3e-07 0.16 25714 231.9 0.25 0.93 

1 Two tailed t-test of the null hypothesis that GAMDSC is equal to KMSPGA. 2 Two tailed t-test of the null hypothesis that STHGA is equal to KMSPGA. 

TABLE IX 

EXPERIMENTAL RESULTS IN 3-D ENVIRONMENT ON 6 INSTANCES 

INSTANCE N Rs Û 

GAMDSC STHGA KMSPGA 

FEs U t-test
1 

Sr 
FEs U t-test

2 

Sr 
FEs U 

Sr 
Mean Mean Std p-value Mean Mean Std p-value Mean Mean Std 

3D1-1 
5000 

5 25 15000 1 0 0 0 12673 24.9 0.31 8e-02 0.9 4785 25 0 1.00 

3D1-2 8 76 15000 3.5 0.51 2.84e-64 0 13449 75.9 0.25 16e-01 0.93 4618 76 0 1.00 

3D2-1 
10000 

5 54 30000 1 0 4.91e-69 0 30000 50.5 0.97 8.3e-18 0 16309 53.9 0.25 0.93 

3D2-2 8 163 30000 3.2 0.43 4.12e-67 0 30000 157.2 1.31 2.09e-18 0 20756 162.5 0.62 0.67 

3D3-1 
15000 

5 84 45000 1 0 2.34e-63 0 45000 75.1 1.18 1.70e-25 0 41736 83.6 0.62 0.67 

3D3-2 8 250 45000 3.5 0.51 1.35e-66 0 45000 234.7 2.17 5.03e-24 0 34290.5 249.1 1.35 0.63 

1 Two tailed t-test of the null hypothesis that GAMDSC is equal to KMSPGA. 2 Two tailed t-test of the null hypothesis that STHGA is equal to KMSPGA. 

generated in this way with K setting to 100, 300, and 600. The 

numbers of sensors covering the target area are 45 and 22 

when Rs is 5 and 8, respectively.  

The experimental results are given in Table VII. Both 

STHGA and KMSPGA achieve 100% success rate in the tests. 

However, KMSPGA achieves a higher convergence rate than 

STHGA. The experimental results also indicate that these ideal 

and regular test instances are easy to solve by the two 

algorithms. The reasons are presented as follow. Aiming at 

using the least number of circles to realize complete coverage, 

the deterministic deployment strategy tends to minimize the 

overlapping area of neighboring circles. Thus, for each sensor, 

the coverage ratio of each cover set will be quite different 

considering whether or not the sensor is assigned to the right 

cover set. This feature makes the fitness evolution possess 

good differentiation for different individuals (candidate 

solutions) and hence provides a promising guidance for the 

search. Furthermore, this feature also benefits the proposed 

redundancy-based schedule strategy, owing to the uniqueness 

of sensor within each unit set.  

H. Experiments with Sensors of Different Radiuses 

Although in the above experiments, sensors of identical 

radius are assumed for simplicity. However, as the proposed 

KMSPGA algorithm does not contain any radius-related 

parameters or operators, it is a generic algorithm suitable for 

both application scenarios with homogenous or heterogeneous 

sensors deployed. In this subsection, we conduct experiments 

using sensors of different radiuses to investigate the 

performance of KMSPGA. Five new instances are generated 

and tested, in which the radiuses of sensors follow Gaussian 

distribution with different mean values and standard 

deviations. The radius of sensor j in instance i is set to Ri+rj, 

where rj is a random number following a standard normal 

distribution. For i ∈ {0, 1, 2}, Ri is set to 6, 7, and 8, 

respectively. For i = 3 and i = 4, Ri is randomly chosen within 

an integer interval [5, 7] and [6, 8], respectively. The number 

of each instance is 15000.  

From the experimental results given in Table VIII, it is still 

observed that KMSPGA achieves significantly higher solution 

quality and success rate among the compared algorithms in 

most of the instances. Besides, KMSPGA achieves smallest 

standard deviations, which indicates that KMSPGA possesses 

high stability. The results confirm that KMSPGA works well 

with sensors of different radiuses. 

I. Experiment in a 3-D Environment 

In the literature of WSN lifetime maximization, sensors are 

assumed to be uniformly distributed on an ideal square plane. 

However, in practice, this is not always the case. Instead, 

sensors are often deployed on a 3-D surface so that the sensor 

distribution is no longer uniform, but it is highly dependent to 

the shape/landscape of the surface [58]. This uneven 

distribution makes it even harder to optimally schedule the 

sensors into the right complete cover sets. In this subsection, 

we implement KMSPGA to test its effectiveness and 

reliability on this application scene. 
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Fig. 19.  Simulated free flowing contour. 
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  (22) 

which consists of three peaks and three valleys. Its 3-D view is 

shown in Fig. 19. The number of sensors is set to 500, 10000, 

and 15000. GAMDSC and STHGA are also modified to solve 

the Set K-Cover problem in this 3-D environment. 

Experimental results given in Table IX indicate that these 

instances are significantly hard to solve. The performance of 

all the algorithms decreases on this test set. GAMDSC and 

STHGA are unable to achieve an acceptable solution within 

the limited FEs. In comparison, the proposed KMSPGA still 

offers a high success rate and solution quality, which further 

confirms the effectiveness and reliability of KMSPGA.  

  

V. CONCLUSION 

Due to the curse of dimensionality, existing set cover 

algorithms are unable to provide satisfactory efficiency for 

large-scale WSNs scheduling. In this paper, we have 

developed a Kuhn-Munkres parallel genetic algorithm, 

KMSPGA, for the set cover problem and applied it to lifetime 

maximization of large-scale WSNs. The KMSPGA framework 

is based on a divide-and-conquer strategy of dimensionality 

reduction. Firstly, the target area is divided into several 

subareas, and then individuals are evolved independently in 

each subarea until the state factor reaches a predefined value. 

The polynomial Kuhn-Munkres algorithm is then utilized to 

splice the solutions obtained in each subarea so as to generate 

global optimal solution of the entire problem. KMSPGA also 

includes a novel schedule operation for further improvement 

in performance. 

Eight types of experiments have been conducted to verify 

the design and effectiveness of KMSPGA. The experimental 

results indicate that KMSPGA achieves a higher convergence 

rate, solution quality, success rate, and scalability. Further, by 

investigating the influence of different partitions, redundant 

rate, penalty coefficient on the performance of KMSPGA, 

KMSPGA is also seen to offer high robustness. Finally, 

experimental results on new testing scenarios indicate that 

KMSPGA achieves wide applicability. 

Future work includes the development of an improved 

matching algorithm for the combination operation, of 

distributed, cloud and multi-objective versions of KMSPGA 

and their applications to various kinds of real-world problems. 

REFERENCES 

[1] J. Guevara, F. Barrero, E. Vargas, J. Becerra, and S. Toral, 

“Environmental wireless sensor network for road traffic applications,” 

IET Intelligent Transport Systems, vol. 6, no. 2, pp. 177-186, Jun. 2012. 

[2] R. Mittal and M. P. S. Bhatia, “Wireless Sensor Networks for monitoring 

the environmental activities,” in Proceedings of IEEE International 

Conference on Computational Intelligence and Computing Research, pp. 

1-5, 2010. 

[3] J. G. Ko, C. Lu, M. B. Srivastava, J. A. Stankovic, A. Terzis, and M. 

Welsh, “Wireless sensor networks for healthcare,” in Proceedings of the 

IEEE, vol. 98, no. 11, pp. 1947-1960, 2010. 

[4] M. C. Rodríguez-Sánchez, S. Borromeo, and J. A. Hernández-Tamames, 

“Wireless sensor networks for conservation and monitoring cultural 

assets,” IEEE Sensors Journal, vol. 11, no. 6, pp. 1382-1389, Jun. 2011. 

[5] K. Römer, F. Mattern, and E. Zurich, “The design space of wireless 

sensor networks,” IEEE Wireless Communications, vol. 11, no. 6, pp. 

54-61, 2004. 

[6] G. Anastasi, M. Conti, and M. D. Francesco, “Extending the lifetime of 

wireless sensor networks through adaptive sleep,” IEEE Transactions on 

Industrial Informatics, vol. 5, no. 3, pp. 351-365, 2009. 

[7] V. Shah-Nansouri and V. W. S. Wong, “Lifetime-resource tradeoff for 

multicast traffic in wireless sensor networks,” IEEE Transaction on 

Wireless Communication, vol. 9, no. 6, pp. 1924-1934, 2010. 

[8] X. -Y. Tang and J. -L. Xu, “Optimizing lifetime for continuous data 

aggregation with precision guarantees in wireless sensor networks,” 

IEEE Transactions on Networking, vol. 16, no. 4, pp. 904-917, 2008. 

[9] C. -F. Wang, I. -D. Shih, B. -H. Pan, and T. -Y. Wu, “A network lifetime 

enhancement method for sink relocation and its analysis in wireless 

sensor networks,” IEEE Sensors Journal, vol. 14, no. 6, pp. 1932-1943, 

2014. 

[10] M. N. Rahman and M. A. Matin, “Efficient algorithm for prolonging 

network lifetime of wireless sensor networks,” Tisinghua Science and 

Technology, vol. 16, no. 6, pp. 561-568, 2011. 

[11] W. Wang, V. Srinivasan, and K. -C. Chua, “Extending the lifetime of 

wireless sensor networks through mobile relays,” IEEE/ACM 

Transactions on Networking, vol. 16, no. 5, 2008. 

[12] K. Pradeepa, W. R. Anne, and S. Duraisamy, “Improved sensor network 

lifetime using multiple mobile sinks: a new predetermined trajectory,” in 

Proceedings of International Conference on Computing Communication 

and Networking Technologies, pp. 1-6, 2010. 

[13] A. A. Aziz, Y. A. Sekercigolu, P. Fitzpatrick, and M. Ivanovich, “A 

survey on distributed topology control techniques for extending the 

lifetime of battery powered wireless sensor networks,” IEEE 

Communications Surveys & Tutorials, vol. 15, no. 1, pp. 121-144, 2013. 

[14] D. P. Dahnil, Y. P. Singh, and C. K. Ho, “Topology-controlled adaptive 

clustering for uniformity and increased lifetime in wireless sensor 

networks,” Wireless Sensor Systems, vol. 2, no. 4, pp. 318-327, 2012. 

[15] I. S. AlShawi, L. Yan, W. Pan, and B. Luo, “Lifetime enhancement in 

wireless sensor networks using fuzzy approach and a-star algorithm,” 

IEEE Sensors Journal, vol. 12. No. 10, pp. 3010-3018, 2012. 

[16] J. –H. Chang and L. Tassiu, “Maximizing lifetime routing in wireless 

sensor networks,” IEEE/ACM Transactions on Networking, vol. 12, no. 

4, pp. 609-619, 2004. 

[17] I. F. Akyildiz, W. -L. Su, Y. Sankarasubramaniam, and E. Cayirci, “A 

survey on sensor networks,” IEEE Communications Magazine, vol. 40, 

no. 8, pp. 102-114, 2002. 

[18] J. -M. Chen, E. -T. Shen, and Y. -X. Sun, “The deployment algorithms in 

wireless sensor networks: a survey,” Information Technology Journal, 

pp. 293-301, 2009. 

[19] G. -J. Fan and S. -Y. Jin, “Coverage problem in wireless sensor networks: 

a survey,” Journal of Networks, vol. 5, no. 9, pp. 1033-1040, Sept. 2010. 

[20] H. -T Zhang and C. Liu, “A review on node deployment of wireless 

sensor networks,” International Journal of Computer Science Issues, vol. 

9, no. 3, Nov. 2013. 

[21] Y. Yoon and Y. -H. Kim, “An efficient genetic algorithm for maximum 

coverage deployment in wireless sensor networks,” IEEE Transactions 

on Cybernetics, vol. 43, no. 5, pp. 1473-1483, Dec. 2013. 



1089-778X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2015.2511142, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 

 

[22] S. -B. He, X. -W. Gong, J. -S. Zhang, J. -M. Chen, and Y. -X. Sun, 

“Curve-based deployment for barrier coverage in wireless sensor 

networks,” IEEE Transactions on Communications, vol. 13, no. 2, pp. 

724-735, Feb. 2014. 

[23] Y. Zou and K. Chakrabarty, “Sensor deployment and target localization 

in distributed sensor networks,” ACM Transactions on Embedded 

Computing Systems, vol. 3, no. 1, pp. 61-91, 2004. 

[24] R. Kershner, “The number of circles covering a set”, American Journal 

of Mathematics, vol. 61, no. 3, pp. 665-671, Jul. 1939. 

[25] S. Verblunsky, “On the least number of unit circles which can cover a 

square”, Journal of London Mathematical Society, vol. 24, no. 3, pp. 

164-170, 1949. 

[26] T. Tabirca, L. T. Yang, and S. Tabira, “Smallest number of sensors for 

k-covering”, International Journal of Computers Communications & 

Control, vol. 8, no. 2, pp. 312-319, Apr. 2013. 

[27] M. Ryerkerk, R. Averill, K. Deb, and E. Goodman, “Meaningful 

representation and recombination of variable length genomes”, 

Proceedings of Genetic and Evolutionary Computation Conference, pp. 

1471-1472, 2012. 

[28] A. Makhoul and C. Pham, “Dynamic scheduling of cover-sets in 

randomly deployed wireless video sensor networks for surveillance 

applications,” Wireless Days, pp. 1-6, Dec. 2009. 

[29] S. Slijepcevic and M. Potkonjak, “Power efficient organization of 

wireless sensor networks,” IEEE International Conference on 

Communications, vol. 2, pp. 472-476, 2001. 

[30] M. Cardei and D. -Z. Du, “Improving wireless sensor network lifetime 

through power aware organization,” Wireless Networks, vol. 11, no. 3, 

pp. 333-340, May. 2005. 

[31] Q. Wang, W. -J. Yan, and Y. Shen, “N-person card game approach for 

solving set k-cover problem in wireless sensor networks,” IEEE 

Transactions on Instrumentation and Measurement, vol. 61, no. 5, pp. 

1522-1535, May. 2012. 

[32] O. E. David, H. J. van den Herik, M. Koppel, and N. S. Netanyahu, 

“Genetic algorithms for evolving computer chess programs,” IEEE 

Transactions on Evolutionary Computation, vol. 18, no. 5, pp. 779-789, 

Oct. 2014. 

[33] W. B. Langdon and M. Harman, “Optimizing existing software with 

genetic programming,” IEEE Transactions on Evolutionary 

Computation, vol. 19, no. 1, pp. 118-135, Feb. 2015. 

[34] K. Seo, S. Hyun, and Y. -H. Kim, “An edge-set representation based on a 

spanning tree for searching cut space,” IEEE Transactions on 

Evolutionary Computation, vol. 19, no. 4, Aug. 2015. 

[35] D. Perez, J. Togelius, S. Samothrakis, and P. Rohlfshagen, “Automated 

map generation for the physical traveling salesman problem,” IEEE 

Transactions on Evolutionary Computation, vol. 18, no. 5, pp. 708-720, 

Oct. 2014. 

[36] G. M. Khan, R. Arshad, S. A. Mahmud, and F. Ullah, “Intelligent 

bandwidth estimation for variable bit rate traffic”, IEEE Transactions on 

Evolutionary Computation, vol. 19, no. 1, pp. 151-155, Fed. 2015. 

[37] M. K. Marichelvam, T. Prabaharan, and X. -S. Yang, “A discrete firefly 

algorithm for the multi-objective hybrid flowshop scheduling problems,” 

IEEE Transactions on Evolutionary Computation, vol. 18, no. 2, pp. 

301-305, Apr. 2014. 

[38] C. C. Lai, T. C. Kang, and K. R. Song, “An effective genetic algorithm to 

improve wireless sensor network lifetime for large-scale surveillance,” 

IEEE Congress on Evolutionary Computation, pp. 3531-3538, 2007. 

[39] X.-M. Hu, J. Zhang, and Y. Yu, “Hybrid genetic algorithm using a 

forward encoding scheme for lifetime maximization of wireless sensor 

networks,” IEEE Transactions on Evolutionary Computation, pp. 

766-781, 2010. 

[40] Y. Lin, J. Zhang, H. S. -H. Chung, Y. Li, and Y. H. Shi, “An ant colony 

optimization approach for maximizing the lifetime of heterogeneous 

wireless sensor networks,” IEEE Transactions on Systems, Man, and 

Cybernetics, Part C: Applications and Reviews, vol. 42, no. 3, pp. 

408-420, May 2012. 

[41] H. W. Kuhn, “The Hungarian method for the assignment problem,” 

Naval Research Logistics Quarterly, vol. 2, pp. 83-97, Mar. 1955. 

[42] J. Munkres, “Algorithms for the assignment and transportation 

problems,” Journal of the society for industrial and applied mathematics, 

vol. 5, no. 1, pp. 32-38, 1957. 

[43] B. Wang, “Coverage problems in sensor networks: a survey,” ACM 

Computing Surveys, vol. 43, no. 4, pp. 32:1-32:53, Oct. 2011. 

[44] A. Hossain, P. K. Biswas, and S. Chakrabarti, “Sensing models and its 

impact on network coverage in wireless sensor network,” in Proceedings 

of IEEE Region 10 and the Third international Conference on Industrial 

and Information Systems, pp. 1-5, 2008. 

[45] N. -N. Qin, F. Xu, J. Yang, and G. -S. Liang, “Research on the sensing 

model in wireless sensor networks,” in Proceedings of International 

Conference on Intelligent Computation Technology and Automation, pp. 

169-172, 2010. 

[46] S. Pudasaini, S. Moh, and S. Seokjoo, “Stochastic coverage analysis of 

wireless sensor network with hybrid sensing model,” in Proceedings of 

International Conference on Advanced Communication Technology, pp. 

549-553, 2009. 

[47] X. -R. Wang, G. -L. Xing, Y. -F. Zhang, C. -Y. L, R. Pless, and C. Gill, 

“Integrated coverage and connectivity configuration in wireless sensor 

networks,” in Proceedings of the 1st International Conference on 

Embedded Sensor Systems, pp. 28-39, 2003. 

[48] K. Zheng, F. Liu, Q. Zheng, and W. Xiang, “A graph-based cooperative 

scheduling scheme for vehicular networks”, IEEE Transactions on 

Vehicular Technology, vol. 62, no. 4, pp. 1450-1458, Feb. 2013. 

[49] H. -B. Zhu, M. -C. Zhou, and R. Alking, “Group role assignment via a 

Kuhn-Munkres algorithm-based solution”, IEEE Transactions on 

Systems, Man and Cybernetics, Part A: Systems and Humans, vol. 42, no. 

3, pp. 739-750, Nov. 2011. 

[50] X. -T. Zhou, L. -Q. Yang, and D. -F. Yuan, “Bipartite matching based 

user grouping for grouped OFDM-IDMA”, IEEE Transactions on 

Wireless Communications, vol. 12, no. 10, pp. 5248-5257, Sep. 2013. 

[51] Y. -J. Gong, W. -N. Chen, Z. -H. Zhan, et al., “Distributed evolutionary 

algorithms and their models: a survey of the state-of-the-art,” Applied 

Soft Computing, vol. 34, pp. 286-300, Sep. 2015.  

[52] Y. Cao and D. -F. Sun, “A parallel computing framework for large-scale 

air traffic flow optimization,” IEEE Transactions on Intelligent 

Transportation Systems, vol. 13, no. 4, pp. 1855-1864, Dec. 2012. 

[53] B. B. M and H. R. Rao, “A parallel hypercube algorithm for discrete 

resource allocation problems,” IEEE Transactions on Systems, Man and 

Cybernetics, Part A: Systems and Humans, vol. 36, no. 1, Jan. 2006. 

[54] X. -D. Li and X. Yao, “Cooperatively coevolving particle swarms for 

large scale optimization,” IEEE Transactions on Evolutionary 

Computation, vol. 16, no. 2, Apr. 2012. 

[55] M. N. Omidvar, X. -D. Li, Y. Mei, and X. Yao, “Cooperative 

co-evolution with differential grouping for large scale optimization,” 

IEEE Transactions on Evolutionary Computation, vol. 18, no. 3, pp. 

378-393, Jun. 2014. 

[56] M. Garey and D. S. Johnson, Computers and Intractability: A Guide to 

the Theory of NP-Completeness, San Francisco, CA, USA: Freeman, 

1979. 

[57] T. Tabirca, L. T. Yang, and S. Tabira, “Smallest number of sensors for 

k-covering”, International Journal of Computers Communications & 

Control, vol. 8, no. 2, pp. 312-319, Apr. 2013. 

[58] L. -H. Kong, M. -C. Zhao, X. -Y. Liu, and J. L. Lu, “Surface coverage in 

sensor networks,” IEEE Transactions on Parallel and Distributed 

Systems, vol. 25, no. 1, pp. 234-243, Jan. 2014. 

 

 Xin-Yuan Zhang (S’14) received the B. S. 

degree from Sun Yat-sen University, China, in 

2014, where he is currently pursuing the Ph. D. 

degree. His current research interests include 

evolutionary computation algorithms, swarm 

intelligence algorithms, their applications in 

real-world problems, and smart grid. 

 

 

 Yue-Jiao Gong (S’10-M’15) received the 

Ph.D. degree in Computer Science from Sun 

Yat-sen University, China, in 2014. She is 

currently a Post-Doctoral Research Fellow with 

the Department of Computer and Information 

Science, University of Macau, Macau.  

Her research interests include evolutionary 

computation, swarm intelligence, and their applications to 

intelligent transportation scheduling, wireless sensor network, 

and image processing. She has published over 30 papers, 

including ten IEEE Trans. papers, in her research area. Dr. 



1089-778X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2015.2511142, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 

 

Gong currently serves as a reviewer for IEEE Trans. on 

Evolutionary Computation, IEEE Trans. on Cybernetics, and 

IEEE Trans. on Intelligent Transportation Systems. 

 

 Zhi-Hui Zhan (S’09-M’13) received the 

Bachelor’s degree and the Ph. D degree in 

2007 and 2013, respectively, from the 

Department of Computer Science of Sun 

Yat-Sen University, Guangzhou, China. He is 

currently an associate professor with the 

School of Advanced Computing, Sun Yat-sen University.  

His current research interests include evolutionary 

computation algorithms, swarm intelligence algorithms, and 

their applications in real-world problems, and in environments 

of cloud computing and big data. Dr. Zhan’s doctoral 

dissertation was awarded the China Computer Federation 

Outstanding Dissertation in 2013. Dr. Zhan received the 

Natural Science Foundation for Distinguished Young 

Scientists of Guangdong Province, China in 2014 and was 

awarded the Pearl River New Star in Science and Technology 

in 2015. Dr. Zhan is listed as one of the Most Cited Chinese 

Researchers in Computer Science. 

 

 Wei-Neng Chen (S’07-M’12) received the 

Bachelor’s degree and the Ph.D. degree from 

the Department of Computer Science of Sun 

Yat-sen University, Guangzhou, China, in 

2006 and 2012, respectively. He is currently an 

associate professor with the School of 

Advanced Computing, Sun Yat-sen University, China. 

His current research interests include swarm intelligence 

algorithms and their applications on cloud computing, 

financial optimization, operations research and software 

engineering. He has published more than 30 papers in 

international journals and conferences. His doctoral 

dissertation was awarded the China Computer Federation 

(CCF) outstanding dissertation in 2012.  

 

 Yun Li (S’87-M’90) received his Ph.D. in 

computing and control in 1990. He is currently a 

professor with Department of Systems 

Engineering, University of Glasgow, U.K. He 

served as Founding Director of University of 

Glasgow Singapore during 2011-2013 and acted 

as Founding Director of the University’s international joint 

program with University of Electronic Science and 

Technology of China (UESTC) in 2013. He was invited to 

Kumamoto University, Japan, as Visiting Professor in 2002 

and is currently Visiting Professor to UESTC and Sun Yat-sen 

University, China, researching into smart design with market 

informatics via the cloud to complete the value chain for 

Industry 4.0.  

Dr. Li is an Associate Editor of the IEEE Trans. on 

Evolutionary Computation and of the SM Journal of 

Engineering Sciences. He has 200 publications and is a 

Chartered Engineer. 

 

 Jun Zhang (M’02–SM’08) received the Ph.D. 

degree from the City University of Hong Kong, 

Hong Kong, in 2002. He is currently a 

Changjiang Chair Professor with Key 

Laboratory of Machine Intelligence and 

Advanced Computing, Ministry of Education, 

China.  

His research interests include computational intelligence, 

cloud computing, data mining, and power electronic circuits. 

He has published over 200 technical papers in his research area. 

Dr. Zhang was a recipient of the China National Funds for 

Distinguished Young Scientists from the National Natural 

Science Foundation of China in 2011 and the First-Grade 

Award in Natural Science Research from the Ministry of 

Education, China, in 2009. He is currently an Associate Editor 

of the IEEE Trans. on Evolutionary Computation, IEEE Trans. 

on Industrial Electronics and IEEE Trans. on Cybernetics. 

 
 

 

 

 

 


