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Abstract—This letter studies a wireless powered sensor net-
work, in which a number of sensor nodes send common informa-
tion to a far apart information access point (AP) via distributed
beamforming, by using the wireless energy transferred from a set
of nearby multi-antenna energy transmitters (ETs). We consider
practical sensing and circuit power consumption at sensor nodes,
in addition to their transmission power. In this case, each sensor
node is activated in information transmission only when its
harvested power is larger than the sensing and circuit power.
Under this setup, we aim to maximize the received signal-to-
noise ratio (SNR) at the information AP, by jointly optimizing
the collaborative energy beamforming at ETs, and the distributed
information beamforming and the inactive/active status of sensor
nodes, subject to individual power constraints at ETs and sensor
nodes. We propose both optimal and suboptimal solutions to this
problem based on the exhaustive search and the greedy algorithm
for selecting active sensor nodes, respectively.

Index Terms—Wireless sensor networks, wireless energy trans-
fer, collaborative energy beamforming, distributed information
beamforming, sensing and circuit power consumption.

I. INTRODUCTION

Recently, radio frequency (RF) signal based wireless energy
transfer (WET) has emerged as a perpetual and cost-effective
solution to power wireless sensor networks [1], [2], where
dedicated energy transmitters (ETs) broadcast wireless energy
to power sensor nodes to sense and send information to access
points (APs). In such networks, each sensor node’s energy con-
sumption for sensing and communication should not exceed
its harvested wireless energy from ETs. By considering the
new wireless energy harvesting constraints at sensor nodes, it
is essential to jointly optimize the WET at the ETs and the
information transmission at sensor nodes, so as to optimize
the network performance (see, e.g., [3]–[7] for such joint
optimizations under different setups).

The optimization of wireless powered sensor networks is
fundamentally affected by the energy consumption model
of sensor nodes. In the existing studies (e.g., [3]–[7]), the
authors assumed that the transmission energy is their sole
energy consumption. This assumption, however, cannot be
true for most practical applications. In particular, practical
sensor nodes have non-negligible sensing and circuit power
consumption in addition to the transmission power [8]. It
remains unknown how the sensing and circuit power con-
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Fig. 1. System model of a wireless powered sensor network.

sumption affects the joint WET and information transmission
optimization for wireless powered sensor networks.

To overcome this issue, in this letter we consider a specific
wireless powered sensor network as shown in Fig. 1, in which
a number of sensor nodes send common information to a far
apart AP,1 by using the wireless energy transferred from a set
of nearby multi-antenna ETs. The multiple ETs employ energy
beamforming [10] in a collaborative manner to improve the
energy transfer efficiency to sensor nodes, and the set of sensor
nodes use distributed information beamforming [9] to improve
the transmission range and data rates to the information AP.
We consider practical sensing and circuit power consumption
at sensor nodes, in addition to their transmission power. In this
case, each sensor node is activated in information transmission
only when its harvested power is larger than the sensing and
circuit power.

Under this setup, we aim to maximize the received signal-to-
noise ratio (SNR) at the information AP by jointly optimizing
the collaborative energy beamforming at the ETs, and the
distributed information beamforming and the active/inactive
status of the sensor nodes, subject to individual power con-
straints at ETs and sensor nodes. This problem is non-convex
and difficult to be solved in general. Despite this fact, we
propose the optimal solution to this problem based on the
exhaustive search for selecting active sensor nodes, which,
however, has a high computation complexity. To overcome
this issue, we further propose a suboptimal solution with
lower complexity by using the greedy algorithm for selecting
active sensor nodes. Numerical results show that the proposed
optimal and suboptimal solutions significantly outperform the
conventional design that ignores the non-zero sensing and
circuit power consumption of sensor nodes, which is due
to the fact that with non-zero sensing and circuit power
consumption, certain sensor nodes should be inactivated in the

1Practical examples include a sensor network transmitting measurements
to an overflying unmanned aerial vehicle (UAV) [9].
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design of collaborative energy beamforming, while all sensor
nodes should be considered under the case with zero sensing
and circuit power consumption. Furthermore, the suboptimal
solution achieves a similar received SNR at the information
AP as compared to the optimal solution.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a wireless sensor network as shown in Fig. 1,
in which a total of K sensor nodes send common information
to an information AP via distributed beamforming by using
the wireless energy transferred from N distributed ETs.2 Let
K , {1, . . . ,K} and N , {1, . . . , N} denote the sets of
sensor nodes and ETs, respectively. The sensor nodes are each
equipped with two antennas (one for energy harvesting and
the other for information transmission), the information AP is
equipped with a single antenna, and the ETs are each deployed
with M antennas. We assume that the WET of the ETs and
the information transmission of the sensor nodes operate over
orthogonal frequency bands with identical bandwidth, and thus
the sensor nodes can harvest energy and transmit information
at the same time without co-channel interference between
WET and information transmission links. For the purpose of
initial investigation, we assume that there is a central controller
that can gather the global channel state information (CSI) from
the ETs to the sensor nodes and that from the sensor nodes to
the information AP, and can thus coordinate the collaborative
energy beamforming at ETs and the distributed information
beamforming at sensor nodes, while each sensor node is only
aware of its local CSI. We consider a block-based frequency-
nonselective fading channel model, where wireless channels
remain constant over each block of our interest. The block
length is normalized for the ease of description, and the terms
“energy” and “power” are used in the sequel without loss of
generality.

First, consider the collaborative energy beamforming from
the ETs to the sensor nodes. Let the transmitted energy signal
by the ET i ∈ N be denoted as xEi =

∑d
j=1 vijs

E
j , where

vij ∈ CM×1 denotes the jth energy beamforming vector at ET
i, sEj denotes the jth energy-carrying signal, j ∈ {1, . . . , d},
and d represents the number of energy beams. Here, the
energy-carrying signal sEj ’s are assumed to be a priori gen-
erated Gaussian random sequences with zero mean and unit
variance [10]. Accordingly, sEj ’s are perfectly known by all the
N ETs. We further aggregate the transmitted energy signal by

all the N ETs as xE =
[
xE1

T
, · · · ,xEN

T
]T

=
∑d
j=1 vjs

E
j ,

where vj =
[
vT1j , · · · ,vTNj

]T ∈ CMN×1, and the superscript
T denotes the transpose of a matrix. As a result, the transmit
covariance matrix of the N ETs can be denoted as S =
E
(
xExE

H
)
=
∑d
j=1 vjv

H
j , which is positive semi-definite,

i.e., S � 0. Here, E(·) denotes the statistical expectation
and the superscript H denotes the conjugate transpose of
a matrix. Note that given any positive semi-definite matrix
S, the corresponding collaborative energy beam vj’s can be
obtained based on the eigenvalue decomposition (EVD) of S

2Note that the ETs are dedicatedly designed for energy transmission, and
not capable of decoding and forwarding the sent information of sensor nodes.

with d = rank(S) [10]. By letting hk ∈ CMN×1 denote the
channel vector from the MN antennas of the N ETs to the
sensor node k, the harvested energy at the sensor node k is

expressed as Ek = ηkE
(∣∣∣hHk xE

∣∣∣2) = ηkh
H
k Shk, k ∈ K,

where 0 < ηk ≤ 1 denotes the energy harvesting efficiency at
the sensor node k. Suppose that the maximum transmit power
at each ET i ∈ N is denoted as Pmax,i. Therefore, we have

E
(∣∣xEi ∣∣2) = tr(BiS) ≤ Pmax,i,∀i ∈ N , (1)

where tr(·) denotes the trace of a square matrix, and Bi ,

Diag

(
0, · · · , 0︸ ︷︷ ︸
(i−1)M

, 1, · · · , 1︸ ︷︷ ︸
M

, 0, · · · , 0︸ ︷︷ ︸
(N−i)M

)
, with Diag(a) denoting

a diagonal matrix with the diagonal elements given in the
vector a.

Next, consider the distributed information beamforming
from the sensor nodes to the information AP. It is assumed
that each sensor node has the common information sI with
zero mean and unit variance to be sent, and such common
information can either be obtained by each sensor node mea-
suring the same information (e.g., temperature information),
or via them sharing such information with each other (to
enable distributed information beamforming) [9]. It is also
assumed that all sensor nodes are perfectly synchronized in
both time and frequency, which may require the information
AP to help send common reference signals. Let the channel
coefficient from the sensor node k to the information AP be
denoted as gk. Then, each sensor node k sets its transmit
information signal as xIk =

√
Qkg

H
k s

I/|gk|, where Qk ≥ 0
denotes the transmit power of sensor node k. Consequently, the
transmitted information signals from all the K sensor nodes
can be coherently combined at the information AP, for which
the received SNR is denoted as γ =

∑
k∈K |gk|

2Qk
σ2 , where σ2

denotes the noise power at the information AP receiver.
In practice, when each sensor node k is activated in infor-

mation transmission (i.e., Qk > 0), it also consumes sensing
and circuit energy for maintaining its routine operation, in
addition to the transmission power Qk [11], [12].3 For the
ease of analysis, we denote the sensing and circuit energy
consumption as a constant αk > 0. As a result, the total
energy consumption for each sensor node k is expressed as
Qk/βk + αk1(Qk), where 0 < βk < 1 denotes the efficiency
of the RF chain for sensor node k, and 1(Qk) is an indicator

function given as 1(Qk) =

{
1, if Qk > 0,
0, if Qk = 0.

Note that the

energy consumed at each sensor node k cannot exceed that
harvested from all the N ETs (i.e., Ek). As a result, we have
the following wireless energy harvesting constraint for each
sensor node k:4

Qk/βk + αk1(Qk) ≤ ηkhHk Shk,∀k ∈ K. (2)
Also suppose that each sensor node k is subject to a maximum

3Note that the CSI feedback also consumes energy at each sensor node k.
We consider such energy consumption to be constant and included in Qk .

4We assume that each sensor node only has limited-capacity energy storage
and consider its used energy at each time to be no larger than its harvested
energy for ensuring the “energy causality” constraint. Dynamic energy storage
management over time and the associated storage structure are beyond the
scope of this letter.
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transmit power Qmax,k > 0. Therefore, we have
Qk ≤ Qmax,k,∀k ∈ K. (3)

We are interested in maximizing the received SNR at the
information AP (i.e., γ) by jointly optimizing the collaborative
energy beamforming at ETs (i.e., the transmit energy covari-
ance matrix S) and the distributed information beamforming
at sensor nodes (i.e., the transmit power Qk’s). As a result,
we formulate the optimization problem of our interest as

(P1) : max
S�0,{Qk}

∑
k∈K |gk|2Qk

σ2

s.t. (1), (2), and (3).
Note that with αk’s being non-zero, problem (P1) is in general
a difficult problem to be solved, since the constraints in (2) are
non-convex due to the indicator function 1(Qk)’s. There exists
a trade-off in optimizing S and {Qk} to maximize the received
SNR at the information AP: spreading the energy beams to
activate more sensor nodes can achieve higher distributed
information beamforming gain, but in turn consume higher
sensing and circuit energy.

III. OPTIMAL SOLUTION

In this section, we present the optimal solution to problem
(P1). For each sensor node k, we introduce an auxiliary
variable ρk ∈ {0, 1} to denote its inactive/active status, where
ρk = 0 represents that the sensor node k is not activated
with Qk = 0, whereas ρk = 1 means that it is activated with
Qk > 0. As a result, we can reformulate problem (P1) as

(P2) : max
S�0,{ρk,Qk}

∑
k∈K |gk|2Qk

σ2

s.t. Qk + ρkαk ≤ ηkhHk Shk,∀k ∈ K (4)
Qk ≤ ρkQmax,k, ∀k ∈ K (5)
ρk ∈ {0, 1},∀k ∈ K (6)
(1).

Problem (P2) is a mixed integer semi-definite program (MI-
SDP), which is still non-convex. To optimally solve the MI-
SDP (P2), we use a two-step approach by first optimizing
the collaborative energy beamforming S and the distributed
information beamforming {Qk} under any given {ρk}, and
then optimizing the inactive/active status of sensor nodes {ρk}
via the exhaustive search.

First, we consider the joint collaborative energy beamform-
ing and distributed information beamforming optimization
problem under any given {ρk}, which is expressed as

f({ρk}) = max
S�0,{Qk}

∑
k∈K |gk|2Qk

σ2
(7)

s.t. (1), (4), and (5),
where the optimal value f({ρk}) denotes the maximum SNR
at the information AP under given {ρk}. Problem (7) is a
convex semi-definite program (SDP), which can be solved via
standard convex optimization techniques such as the interior
point method. Here, we employ the convex optimization tool
named CVX [13] to solve this problem for obtaining f({ρk})
under any given {ρk}. Note that under certain {ρk}, problem
(7) may be infeasible. For example, when too many sensor
nodes are activated with ρk = 1, the collaborative energy
beamforming cannot support all the nodes’ sensing and circuit

power, and accordingly the constraints in (4) cannot be all
ensured at the same time. In this case, the objective value
is set as f({ρk}) = −∞. Also note that when problem (7)
is feasible, we denote its optimal solution as S({ρk}) and
{Q({ρk})

k }.
Next, with f({ρk}) obtained under any given {ρk}, we

obtain the optimal inactive/active status for sensor nodes by
solving the following problem:

max
{ρk}

f({ρk}) (8)

s.t. (6).
Since ρk’s are binary variables, we use the exhaustive search
to find the optimal inactive/active status of sensor nodes to
problem (8), denoted by {ρ∗k}. By combing this together with
the optimal solution to problem (7), we have obtained the
optimal solution to problem (P2) to be {ρ∗k}, S

∗ = S({ρ∗k})

and Q∗k = Q
({ρ∗k})
k ,∀k ∈ K.

Here, since the exhaustive search is employed to find the
optimal {ρ∗k} in (8), the complexity for optimally solving (P2)
increases exponentially as the number of sensor nodes K.

IV. SUBOPTIMAL SOLUTION WITH LOW COMPLEXITY

In this section, we propose a low-complexity suboptimal
solution to solve problem (P2), by using a similar two-step
approach as in Section III, in which problem (7) is solved
to obtain f({ρk}) under given {ρk} (same as in Section III),
and the greedy algorithm (different from the exhaustive search
in Section III) is employed to select active sensor nodes for
solving problem (8).

Specifically, in the greedy algorithm for selecting active
sensor nodes, we first define a candidate set of sensor nodes,
and initial it as A = K. Then, in each iteration, we try to
activate one sensor node from A, such that the received SNR
at the information AP can be maximally improved. When
the sensor node is activated, it is deleted from the candidate
set A. The iteration ends when the received SNR at the
information AP cannot be further increased, or problem (7)
becomes infeasible, or the candidate set A becomes null. We
denote the obtained suboptimal solution to problem (P2) as
{ρ∗∗k }, S∗∗ and {Q∗∗k }. The detailed algorithm is listed in
Table I.

Remark 4.1 (Complexity analysis): The suboptimal solution
in Table I needs to solve problem (7) in a total of K(K+1)/2
times in the worst case, while the optimal solution needs to
solve problem (7) in a total of 2K times. As a result, the worst-
case complexity of the proposed suboptimal solution is only
a K(K+1)

2K+1 portion of that of the optimal solution.

V. NUMERICAL RESULTS

In this section, we provide numerical results to validate
the performance of our proposed optimal and suboptimal
solutions. For comparison, we consider a benchmark scheme
employed in the existing literature, which ignores the sensing
and circuit power by assuming that αk = 0,∀k ∈ K. In this
case, problem (P1) is a convex SDP and thus can be optimally
solved by CVX, for which the optimal solution is denoted as
S? and Q̂k. Then the benchmark scheme sets the transmit en-
ergy covariance matrix at ETs as S?, and consequently the in-
active/active status and the transmit power of each sensor node
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TABLE I
GREEDY ALGORITHM FOR SOLVING PROBLEM (P2)

1) Initialization: set the candidate set of sensor nodes as A = K, and an
auxiliary parameter γ(0) = 0.
2) For k = 1 : K

a) Set the SNR at the information AP in the kth iteration as γ(k) = 0;
b) For l = 1 : K

• If l ∈ A
– Set ρl = 1, ρj = 1, ∀j ∈ K \ A, and ρj = 0, ∀j ∈
A \ {l};

– Under given {ρk}, solve problem (7) to obtain f({ρk});
– If f({ρk}) > γ(k), then set γ(k) = f({ρk}) and record

the index of sensor node as a(k) = l.
• End If

c) End For
d) Compare γ(k) and γ(k−1). If γ(k) > γ(k−1), update the candidate

set of sensor nodes as A ← A \ {a(k)}; otherwise, exit the “For”
loop.

3) End For
4) Set the inactive/active status of sensor nodes as ρ∗∗k = 0, ∀k ∈ A, and
ρ∗∗k = 1, ∀k ∈ K \ A, and accordingly set S∗∗ = S({ρ∗∗k }) and Q∗k =

Q
({ρ∗∗k })
k , ∀k ∈ K.
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Fig. 2. The received SNR γ at the information AP versus the maximum
transmit power Pmax at each ET.

k ∈ K are expressed as ρ?k =

{
0, if ηkh

H
k S?hk < αk

1, if ηkh
H
k S?hk ≥ αk,

and Q?k = min

(
βk

(
ηkh

H
k S?hk − αk

)+
, Qmax,k

)
, respec-

tively.
In the simulation, we consider a wireless sensor network

consisting of K = 10 sensor nodes that are randomly
distributed within a circle with the radius being 15 meters.
There are N = 4 ETs uniformly distributed in the circle,
and each ET is equipped with M = 4 antennas. Furthermore,
we consider that the information AP is an overflying UAV
far away from the sensor nodes, located 3000 meters away
from the center of the circle [9]. Also, we set the sensing and
circuit power consumption, the energy harvesting efficiency,
the RF efficiency, and the maximum transmit power at each
sensor node k as αk = 0.5 mW, ηk = 0.5, βk = 0.5, and
Qmax,k = 20 dBm, respectively, ∀k ∈ K.

Fig. 2 shows the received SNR γ at the information AP
versus the maximum transmit power Pmax at each ET, where
Pmax = Pmax,i,∀i ∈ N . It is observed that the received
SNR γ at the information AP increases as the maximum
transmit power Pmax at each ET becomes large. Specifically,
the proposed optimal and suboptimal solutions are observed
to significantly outperform the benchmark scheme, especially

when the maximum transmit power Pmax at each ET is small
(e.g., Pmax = 30 dBm). This is due to the fact that the pro-
posed optimal and suboptimal solutions can properly choose
active sensor nodes to balance the distributed information
beamforming gain and the non-zero sensing and circuit power
consumption cost, while the benchmark scheme fails to do so.
Furthermore, the suboptimal solution is observed to achieve a
similar received SNR γ at the information AP as compared
to the optimal solution. This, together with the complexity
analysis in Remark 4.1, shows that the proposed suboptimal
solution is very promising from the practical implementation
perspective.

VI. CONCLUSION

This letter considered a wireless powered sensor network,
where a number of sensor nodes send common information
to an information AP, by using the harvested wireless power
from dedicatedly deployed ETs. By taking into account the
practical non-zero sensing and circuit power consumption at
each sensor node, we jointly optimize the collaborative energy
beamforming at the ETs and the distributed information beam-
forming at the sensor nodes (together with their inactive/active
status), to maximize the received SNR at the information
AP. Our proposed design improves the system performance
significantly, as compared to the conventional design that
ignores the non-zero sensing and circuit power consumption
of sensor nodes.
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