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 

Abstract—When localizing the position of an unknown node for 
wireless sensor networks, the Received Signal Strength Indicator 
(RSSI) value is usually considered to fit a fixed attenuation model 
with a corresponding communication distance. However, due to 
some negative factors, the relationship is not valid in the actual 
localization environment, which leads to considerable localization 
error. Therefore, we present a method for improved RSSI-based 
localization through uncertain data mapping (LUDM). Starting 
from an advanced RSSI measurement, the distributions of the 
RSSI data tuples are determined and expressed in terms of 
interval data. Then, a data tuple pattern matching strategy is 
applied to the RSSI data vector during the localization procedure. 
Experimental results in three representative wireless 
environments show the feasibility and effectiveness of the 
proposed approach. 
 

Index Terms—Wireless Sensor Networks; Localization; RSSI; 
Uncertain data mapping  

I. INTRODUCTION 

HE localization information is of great importance to many 
systems applying wireless sensor networks (WSNs) [1], for 

instance, in navigation & emergency response, environmental 
monitoring, routing and topology control, etc. In general, 
localization methods can be classified into two groups. One is 
built on distance estimation, and the other is mapping-based 
localization. The former consists of two steps: first we perform 
the distance estimation via a certain technique, i.e., the 
Received Signal Strength Indicator (RSSI), Time of Arrival 
(TOA), Time Difference of Arrival (TDOA) or Angle of 
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Arrival (AOA) technique [2]. Then, based on the distance 
estimation results, we can obtain the location of an unknown 
node via a specific localization calculation method, which can 
be the trilateral, maximum likelihood or min-max method [3]. 
The latter mapping-based method determines the location of an 
unknown node via a strategy that matches the measured RSSI 
value to a RSSI database, which is built in advance. 

During the distance estimation step, the RSSI-based methods 
have the advantages of low cost, low power and accessibility, 
so they are commonly used in a diverse range of systems [2]. 
However, because of the uncertainty in the measured RSSI 
values, the accuracy of the distance estimation and localization 
is low. Although the uncertainty is considered during 
communication distance estimation [3-4], the localization 
calculation method may introduce an error, and thus the 
localization accuracy is not high. Other researchers have also 
conducted research on mapping-based localization and have 
proposed methods such as the BP-based [5], SVM-based [6], 
RADAR [7] and ARIADNE [8] methods. However, the 
uncertainty of RSSI values is not considered in these works, 
and the artificial neural network (ANN) and support vector 
machine (SVM)-based methods [6] are problematic because of 
their high complexity. 

Although the RSSI data have the characteristics of 
uncertainty in the actual localization environment, through 
measured RSSI values, we can know that the distributions of 
the RSSI data for each location point share the same 
homogenous statistical characteristics. Based on this, and 
considering the uncertainty of RSSI data, previous work in the 
literature [2] proposed its distribution in terms of interval data 
and obtained highly accurate distance estimation through a 
clustering algorithm, which achieved a significant 
improvement in the RSSI-based distance (RSSI-D) estimation 
accuracy. Furthermore, the estimation result was applied to a 
range-based WSN localization algorithm, resulting in a higher 
accuracy of the static localization estimation [9]. 

Because of the problem of low localization accuracy due to 
uncertain RSSI values and the high complexity of the existing 
localization methods, it is desirable to find a more effective way 
to overcome the uncertainty of RSSI values and achieve better 
WSN localization results. Therefore, in this paper, we present a 
mapping-based localization method via uncertain data 
processing. The technical contributions are as follows. 

 We consider the uncertainty in the RSSI values and 
evaluate and express the uncertainty in terms of 
interval data. 

RSSI-based Localization through Uncertain Data 
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 To improve the localization accuracy, we utilized a 
strategy that incorporates uncertain data clustering 
during the matching. 

 To improve the localization efficiency, we determine the 
location of an unknown node directly using a 
mapping-based uncertain data matching algorithm.  

The remainder of the paper is structured as follows: Section 
II reviews related work. Section III introduces the uncertain 
data expression, including the related definitions and the 
distance computation method in terms of the interval data; 
Section IV describes the mapping-based WSN localization 
method using uncertain data matching and its implementation; 
we evaluate the performance of the localization method in 
Section V; and Section VI provides concluding remarks. 

II. RELATED WORK 

Localization methods can be classified into two types: 
model-based methods and mapping-based localization methods.  
The former are flexible, but they are sensitive to the uncertainty 
of the environment and measured parameters, which leads to 
low localization accuracy, whereas the latter can overcome the 
uncertainty of the environment and measured parameters to 
improve the localization accuracy. However, the parameters 
measurement should be done in advance in the specific 
localization field.  

Model-based: Methods of this type are composed of two 
steps. First, based on RSSI, TOA, TDOA and AOA information 
[2], model-base methods are utilized to obtain distance 
estimation results. Then, one of the localization calculation 
algorithms [2] (including trilateral, maximum-likelihood, 
min-max, weighted min-max and other related algorithms) can 
be employed to obtain the localization results. The advantage of 
methods of this type is that they are flexible, i.e., they can be 
applied in arbitrary unknown environments. However, because 
the distance estimation model is difficult to implement 
accurately in practice, the distance estimation accuracy and 
localization accuracy are very poor. Although the uncertainty 
of RSSI data and the distance estimation model are considered 
in many research studies and many have proposed improved 
distance estimation methods and localization algorithms, the 
localization accuracy is not adequate. E.g., an angle 
estimation-based WSN localization method was proposed [10]. 
In the literature [11], polynomial modeling and trajectories 
were first applied to estimate the distance and then to conduct 
the localization calculation. The simulation results indicated 
higher localization accuracy, but the method was not validated 
in real localization environments. A bias-reduction localization 
method that mixes Taylor series and a maximum-likelihood 
estimate was proposed [12] and validated in simulation and in a 
SDR platform. Hong Shen et al. presented a TOA-based 
multiple source localization method, and utilized joint 
optimization to enhance the efficiency [13]. Joe et al. presented 
an improved version of the trilateration localization algorithm 
using a dynamic circle expanding mechanism [14], but the 
resulting improvement was not significant. 

Mapping-based: Due to the uncertainty of the RSSI, TOA, 

TDOA, AOA and distance estimation models, the distance 
estimation accuracy and localization accuracy are very low. To 
obtain satisfying distance estimation and localization results, 
mapping-based methods have been proposed. E.g., [9] 
presented a mapping-based distance estimation method and 
validation of the method in real localization environments, and 
an improved version for achieving higher efficiency has been 
presented [2]. In addition to the static distance estimation, a 
mapping-based dynamic distance is also considered. The 
DDEUDC method can obtain an accurate estimation efficiently 
[15]. For obtaining localization results, the RADAR 
mapping-based method was presented [7]. The ARIADNE 
algorithm utilizes a search strategy to achieve higher efficiency 
[8]. However, these works did not consider the uncertainty of 
RSSI data. Boon et al. presented a hybrid RF-mapping and 
Kalman filtered spring relaxation based localization [16], in 
which the RF-mapping provides the initial position information, 
and the Kalman filter is utilized to refine the position 
information; however, the localization model should be 
accurate. An Isomap and partial least squares method to 
improve localization has also been proposed [17], but it was not 
evaluated in an actual localization system. In addition, machine 
learning-based methods, including the BP-based [5] and 
SVM-based [6] methods, have been proposed for accurate 
distance estimation and precise localization, but the complexity 
of the system training is very high. 

In this paper, to improve the localization accuracy and 
efficiency, we consider the uncertainty of RSSI values, discard 
the two-step localization strategy, and utilize mapping to 
localize an unknown node directly. We first apply 
distribution-based mapping to represent the RSSI-Localization 
relationship. Then, a match strategy is explored to determine 
the location with high efficiency. 

III. RELATED EQUATION AND DEFINITIONS 

 In this paper, uncertain RSSI values are represented in the 
form of interval data, which is a powerful tool to express 
uncertain data. Some definitions related to interval data are 
provided as follows. 

1) Interval data [18-19]: For two real 

numbers LA , RA R and R LA A , the set 

[ , ] { | }L R L RA A A u A u A    is interval data, where LA  is 

the lower bound of the interval data, and RA is the higher bound. 

If R LA A , the higher bound is equal to the lower bound, and 

the interval data becomes exact data. 
2) Mid-point and width: [18-19]: For interval 

data [ , ]L RA A A , we define ( ) / 2A R Lr A A   and have the 

following relationship: 

L A AA m r  , R A AA m r                                
(1) 

Where Am and Ar  ( 0Ar  ) are the mid-point and width, 

respectively, of interval data A . Therefore, the interval data 

A can be represented in the following form: [ A Am r , A Am r ].  

3)  Interval data vector (multi-dimensional interval data) 

[20]: For an arbitrary dimension, element iA  (1 , Ni m i   ) 
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of an interval data vector 1 2{ , ,..., ,..., }i mX A A A A is 

represented as iA  =[
i iA Am r ,

i iA Am r ]. 

As we perform localization based on the exact RSSI data 
tuple during the WSN localization procedure, we need to define 
the dissimilarity between the exact data vector and the interval 
data vector as follows. 

4) Dissimilarity calculation between the interval data 
vector and the exact data vector: For an interval data 

vector 1 2{ , ,..., ,..., }i mX A A A A  and an exact data 

vector 1 2{ , ,..., ,..., }i mY y y y y , each element of interval data 

can be expressed as [ , ]i Ai Ai Ai AiA m r m r   , 

where Aim , Air , Ry  . The distance relationship in each 

dimension between the two data vectors is illustrated in Fig. 1. 

When iA  is separated from iy , as shown in (a), the minimum 

distance is | |Ai i Aim y r  , and the maximum distance 

is | |Ai i Aim y r  ; when the two data vectors are joined, as 

illustrated in (b), the minimum distance is 0, and the maximum 

distance is | | 2*Ai i Ai Aim y r r   ; when the interval data 

contains the exact data, as shown in (c), the minimum distance is 

0, and the maximum distance is | |Ai i Aim y r  . Therefore, the 

maximum distance ,maxid  and the minimum distance 

,m ni id between iA and iy in dimension i can be calculated as  

,m n

| | ,| | 0
( , )

0,| | 0
x i x x i x

i i

x i x

m y r m y r
d X Y

m y r

    
 

                
(2) 

,max( , ) | |i x i xd X Y m y r  
                             

(3) 

To perform the data matching analysis, we introduce a 
correlation factor λ [21], where 0  λ  1, and utilize it to 
combine these two distance extremes to calculate the distance 

( , )id X Y  as 

,min ,max( , ) * ( , ) (1 )* ( , )i i id X Y d X Y d X Y   
         

(4) 

Thus, the distance ( , )d X Y between the interval data vector 

X and the exact data vector Y can be calculated as 

2

1

( , ) ( ( , ) )
m

i
i

d X Y d X Y


                            
(5) 

In this way, the uncertainty and statistics of the measured 
RSSI values can be captured in terms of interval data. 
Furthermore, the uncertainty is also considered during the 

distance metric computation, which could result in it being more 
comprehensive and reasonable during localization.   

IV. LUDM: LOCALIZATION USING UNCERTAIN DATA 

MAPPING 
A. Architecture of LUDM 

The localization system is composed of a set of unknown 
nodes and anchor nodes with localization information 

( mX , mY ), respectively, where m =1, 2, 3, ..., M . Suppose that 

the unknown node is in the communication range of some 
anchors (at least three). The RSSI value can be measured 
through the unknown node sending a localization request 
message to the surrounding anchor nodes. All the surrounding 
anchor nodes measure the RSSI data and then respond by 
returning it to the unknown node. The localization in our paper 
can be achieved by the system and steps detailed in the 
following. 

Fig. 2 illustrates the architecture of LUDM. It comprises two 
main components: The Offline Mapping Generation module 
and the Online Localization module. The Offline Mapping 
Generation module comprises the RSSI Tuple Sample 
Generation sub-module and the Mapping Generation 
sub-module. Differing from the RADAR method [7], we 
express the RSSI-Location in terms of the distribution 
information of RSSI data tuples and interval data. Thus, we can 
improve the localization accuracy. 

RSSI Tuple Sample Generation: To obtain the necessary 
RSSI data tuple sample and corresponding location information 
dataset, we perform RSSI sampling measurements with 
specific times at each localization point in the wireless 
localization application system. 

Mapping Generation: Based on the RSSI data tuple sample 
dataset and the corresponding location information dataset, we 
conduct a statistical calculation to obtain the distribution 
information of the RSSI data tuples and represent the RSSI data 
tuple-Location mapping in terms of the distribution of RSSI 
data tuples at each localization point. 

Pattern Matching-based Localization: For an RSSI data 
tuple measured by a wireless sensor node (e.g., a CC2530 WSN 
node), we implement a pattern matching strategy on the RSSI 
data tuple to determine the nearest distribution and treat the 
location related to the distribution as the localization estimation 
result of the current RSSI data tuple.  

In the pattern mapping strategy, the RSSI Tuple Sample 
Generation sub-module and Mapping Generation sub-module 
achieve Offline Mapping Generation before Localization, 
which is used to determine the distribution characteristics of the 
RSSI data tuples of each localization point.  

 
Fig. 1.   Relationship between the interval data and the exact data.  
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Fig. 2.   The architecture of LUDM.  



1530-437X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2016.2524532, IEEE
Sensors Journal

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

4

In this way, the negative impact of the uncertainty in RSSI 
values can be overcome, so the localization accuracy can be 
improved with low calculation complexity. A selected set of 
typical experimental results are chosen to validate the proposed 
method and to express the potential of the approach. 

B. RSSI Sample Generation 

In the localization field, we locate the unknown node at the 

nth location sample point ( nx , ny ), ( n =1, 2, 3, ..., N ), and 

collect J  ( , 0J J N ) sets of the RSSI data between the 

unknown node and the surrounding m  ( 3 Mm  ) anchor 

nodes. Then, we can form the RSSI data and location 
information tuple: ( 1

,j nRSSI , 2
,j nRSSI , 3

,j nRSSI ,..., 

,
i
j nRSSI , ...,

,
m
j nRSSI ,( nx , ny )), where, i denotes the serial number 

of the anchor nodes, with 3 i m  , j denotes the serial number 

of the RSSI sample data tuple, with N, 1j j J   , and 

n denotes the serial number of the location sampling point. To 

obtain the distribution of the RSSI data for each sampling point, 
we set the value of J to 150. 

C. Mapping Generation 

For the RSSI data tuples of each location sampling point, we 
perform statistical calculations on them and obtain the 
distribution information of the RSSI data tuples of each 
location point, i.e., the mean _RSSI u  and standard deviation 

_RSSI d  in (6) and (7).  Then, we can express the RSSI 

distribution-based mapping in terms of interval data, i.e., for the 
kth location sample point, the mapping is follows.  

nA  ={ [ 1 1_ * _n nRSSI u k RSSI d , 1 1_ * _n nRSSI u k RSSI d ], 

[ 2 2_ * _n nRSSI u k RSSI d , 2 2_ * _n nRSSI u k RSSI d ], ..., 

[ _ * _i i
n nRSSI u k RSSI d , _ * _i i

n nRSSI u k RSSI d ], ..., 

[ _ * _m m
n nRSSI u k RSSI d , _ * _m m

n nRSSI u k RSSI d ], ( nx , ny )}, 

where the k is the coverage factor [2],  ( Rk , 0 3k  ).  

1
_ ,1

Ji i
RSSI u RSSIn j njJ

 


                                     (6) 

2

1

_,
1

_ ( )
1

J

j

i i i
RSSI RSSI un nj nRSSI d

J 

 

                            (7)  

The distribution-based mapping can be utilized to overcome 
the uncertainty in RSSI values and improve the accuracy of the 
RSSI-d estimation. 

D. Matching-based Estimation 

During the process of online localization, we measure the 
RSSI data tuple between the unknown node and the anchor 

nodes: T = ( 1R , 2R , 3R , ..., iR , ..., mR ). We calculate the 

distance (here, we adopt the Euclid distance) 

id betweenT and nA according to formula (2) - (5). Thus, the 

distance ( , )n nd A T can be computed as follows. 

2
,max ,min

1

( , ) ( ( , ) (1 ) ( , ) )
m

n n n i n i
i

d A T d A T d A T 


     (8) 

,max( , ) max(0, | _ | * _ )i i
n i i n nd A T R RSSI u k RSSI d     (9) 

,min( , ) | _ | * _i i
n i i n nd A T R RSSI u k RSSI d         (10) 

where   [5] is the correlation factor, and 0 1  . It is used 
to combine the two distance extremes to calculate the distance, 
and thus, we can express all the possible values of the 

distance ( , )n nd A T . Finally, we select ( , )r rd A T = 

min{ ( , )n nd A T }, 1 r m  , and treat the location ( rx , ry ) of 

the sampling point related to ( , )r rd A T  as the localization 

result ( ˆ
Tx , ˆ

Ty ). The pseudocode of the matching-based 

estimation process is described in the following. 

Algorithm 1  LUDM 

Input：T = ( 1R , 2R , 3R , ..., iR , .., , mR ), { nA } 

( 0 n N  , 0 j m  ) 

Output: ( ˆ
Tx , ˆ

Ty ) 

1.  Loop  

2.    If (input T ) 

3.      For j =1 to m  

4.        Calculate ( , )n nd A T  

5.      End for 

6.     ( , )r rd A T =min{ ( , )n nd A T } 

7.      ( ˆ
Tx , ˆ

Ty )=( rx , ry ) 

8.      Return ( ˆ
Tx , ˆ

Ty ) 

9.    Else  

10.     Continue 

11.    End If 

12.  End Loop 

 
Fig. 3.  The test bed for the localization method 
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V. PERFORMANCE EVALUATION 

The mapping-based wireless sensor localization method 
LUDM will be validated and evaluated in an actual localization 
environment. First, we conduct a feasibility evaluation of the 
localization method. Second, we evaluate the performance of 
LUDM in terms of the localization accuracy and localization 
efficiency and make comparisons with other related methods. 

A. Evaluation Setting 

1) Evaluation Conditions 
To comprehensively validate the localization method, we 

evaluate the performance of the LUDM method in three typical 
localization environments, i.e., indoors, hall and open air. We 
set up a test bed for the mapping-based localization method. In 
a 3.2 m×3.2 m field, four sensor nodes are deployed in the four 
corners of the field to work as anchor nodes with known 
location information, and an unknown node is located at 
different points (25 points), as shown in Fig. 3. We set the value 
of N to 25, the value of J to 200, and the value of M to 4. 

The wireless sensor node adopted in the test bed is the 
CC2530 shown in Fig. 4. To eliminate the negative effect of 
different heights of the sensor nodes, we set the height of each 
sensor nodes to 0.1 m. 
2) The Experimental Dataset 

In the test bed field, for each of the 25 localization points of 
the unknown node, the RSSI values of communications 
between each anchor node and the unknown node are sampled 
200 times, of which 150 RSSI sample values are used to 
generate the mapping, and the other 50 sample values are used 
to evaluate the RSSI-based localization methods. 

A statistical calculation is applied to the first part of the 
sample RSSI data tuple set to obtain the distribution 
information of the RSSI data tuples on these 25 localization 
points. Then, the map between the RSSI data tuple and the 
location is generated. Finally, the last 50 RSSI sample data 
tuples of the 25 localization points are utilized to evaluate the 
RSSI-based localization method. 
3) Evaluation Indexes 

The performance of the mapping-based localization method 
is validated in terms of its localization accuracy and 
localization efficiency. The absolute mean localization error 

( MAEe ) is adopted as an accurate index, which can be calculated 

according to (11). 

2 2

=1

1
ˆ ˆ( ( ) ( ) )

N

MAE n n n n
n

e x x y y
N

                           (11) 

where MAEe  is the mean absolute localization error, 

( ˆ
nx , ˆ

ny ) is the localization result of the unknown node, ( nx , ny ) 

is the reference location of unknown node, n is the serial 

number of the localization point,  and N is the total number of 

localization experiments. 

The smaller the MAEe is, the more accurate the localization 

result becomes. 
 The estimation efficiency is evaluated according to the 

processing time and the computational time complexity. The 
processing time is expressed in terms of the system training 

time tT , statistical computing time sT , localization 

computation time LT  and total processing time TT . The smaller 

these indexes are, the more efficient the method is. 

4) Experiment Design 
First, we conduct the validation of the localization method 

LUDM, and second, we evaluate the efficiency of the LUDM 
method in terms of the processing time and computational 
complexity compared with other related methods. Third, the 
LUDM method is implemented to perform localization in a test 
field, and the estimation accuracy is assessed and analyzed 
under different conditions. 

B. Validation of the LUDM Localization Method 

In this section, we will conduct validation of the LUDM 
localization method, i.e., we evaluate the effects of the 

coverage factor k and the correlation factor λ, and determine 
the appropriate set values of these parameters. 
1) Evaluation of the Effect of the Coverage Factor 

In the three representative localization environments, we 

adopt different values of the coverage factor k , apply the 

LUDM method to conduct localization, and compute the mean 

absolute localization error MAEe of the 25 localization points, as 

illustrated in Fig. 5. During experiment, the value of the 
correlation factor takes the value of 0.5. 

 Fig. 5 illustrates that the absolute mean localization error 

MAEe increases with the coverage factor in complex localization 

environments, whereas in the open air localization, the absolute 

mean localization error MAEe is very small with little deviation. 

This results mainly due to the many uncertain factors, which 
lead to a high localization error. Therefore, the appropriate set 

 
Fig. 4.  The sensor node adopted in the test bed 
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Fig. 5.  The affection evaluation of coverage factor. 
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value of the coverage factor k should be determined through 

experiment. 
In this paper, from Fig. 5 and the analysis above, we set the 

value of the coverage factor to 1, 0.25 and 0.25 in the corridor, 
hall and open air, respectively. 
2)  Evaluation of the Effect of the Correlation Factor 

Based on the determination of the set values of the coverage 
factor, we conduct an impact analysis of the correlation factor λ, 
i.e., we apply the LUDM method to perform localization with 
different values of the correlation factor λ and compute the 
mean absolute localization error of the 25 localization points. 
We show the localization error in the three typical 
environments in Fig. 6. 

From Fig. 6, we can see that correlation factor plays an 
important role in the localization performance in the corridor, 
while it has no effective impact on the localization performance 
in the other two types of environments. We can set the value of 
the correlation factor through experimental evaluation. From 
Fig. 6 and the analysis above, we set the value of the correlation 
factor to 0.1, 0 and 0 in the corridor, hall and open air, 
respectively. 

C. Evaluation of the LUDM Localization Efficiency 

We evaluate the efficiency of the LUDM method in terms of 
computational time complexity analysis and the processing 
time and compare the results with those of other related 
localization methods. 
1) Computational Time Complexity Analysis 

The mapping-based localization method LUDM is 
composed of the mapping generation part and the on-line 
localization part. In the RSSI-Location mapping generation, 
suppose the number of localization points is N , the number of 

samples for each localization point is J , and the number of 

anchor nodes is M . Then the computational time complexity 

of the localization method LUDM is shown in Table I. 
From Table I, we observe that the computational time 

complexity of the RSSI Tuple Sample Generation is ( )O NJ , 

that of the statistical computation including the means and 

standard deviation is ( )O NJ , that of the mapping expression 

is ( )O N , and that of the matching-based localization 

is ( )O MN . Therefore, the total computational time complexity 

is ( ) ( ) ( ) ( )O NJ O NJ O N O MN   , and when J M , 

N M , the total computational time complexity is simplified 

as ( )O NJ . 

To evaluate the efficiency in terms of the computational time 
complexity, as shown in Table II, we analyze and compare the 
computational time complexity of these localization algorithms, 

including the DEDF-based [22], DEUDC-based [2], 
BP-based [5], LS-SVC-based [6], and RADAR [7] 
algorithms. 

In Table II, N is the number of localization points, and J is 

the number of samples for each sample distance point. Table 
II, shows that the computational time complexity of the BP 
and LS-SVC methods are largest among these algorithms, 
which is explained by the fact that the two algorithms require 
more computations when training the model. The table also 
indicates that the computational time complexity of the 

LUDM method proposed in this paper is the lowest of all the 
methods. 
2) Processing Time Evaluation 

The efficiency of the LUDM method is analyzed according 

to the system training time tT , statistical computing time sT , 

estimating time eT  and total processing time TT , and the results 

is compared with those of the other related localization methods, 
including the DEDF-based [22], DEUDC-based [2], BP-based 
[5], LS-SVC-based [6], and RADAR [7] methods, as shown in 
Table III (based on Matlab 2011b). 

In the DEDF-based [22] and DEUDC-based [2] localization 
methods, the communication distance estimation between the 
anchor nodes and the unknown node is conducted first through 
an uncertain or certain data clustering algorithm, respectively. 
Then, based on the distance estimation results, the localization 
computation algorithm is utilized to obtain the localization 
result of the unknown node. The RADAR method obtains the 
localization result directly using a RSSI-Localization map, 
which is built in advance. As opposed to the RADAR method, 
the LUDM method considers the uncertainty in the RSSI tuples 
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Fig. 6.  Affection evaluation of the correlation factor. 

TABLE II 
COMPUTATIONAL TIME COMPLEXITY OF DIFFERENT LOCALIZATION 

METHODS 

Localization methods Computational Time Complexity 

DEDF-based ( )O NJ  

DEUDC-based ( )O NJ  

BP-based 3 3( )O m k  

LS-SVC-based 3 3( )O m k  

RADAR ( )O NJ  
LUDM ( )O NJ  

 

TABLE I 
COMPUTATIONAL TIME COMPLEXITY ANALYSIS OF LUDM 

Processing Computational Time Complexity 

RSSI Tuple Sample Generation ( )O NJ  

Statistical Computational ( )O NJ  

Mapping Expression ( )O N  

Matching-based Localization ( )O MN  

Total ( ) ( ) ( ) ( )O NJ O NJ O N O MN    
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and takes measures to process it.  
Analysis of the System Training Time 
Table III indicates that the machine-learning-based 

localization methods (including BP-based and LS-SVC-based) 
require a specified processing time during systematic training.  
On the contrary, there is no system training time for the 
DEDF-based, DEUDC-based, RADAR and LUDM 
mapping-based methods, so the training time is 0 s. 

Analysis of the Statistical Calculation Time 
From Table III, we can see that the statistical calculation time 

of the RADAR and LUDM methods is the same and is less than 
that of the DEDF-based and DEUDC-based localization 
methods, whereas that of the BP-based and LS-SVC-based 
methods is zero because these machine learning methods do not 
need statistical computation. 

Analysis of the Localization Time 
Table III illustrates that the DEDF-based, DEUDC-based, 

RADAR and LUDM localization methods require less 
estimation time, whereas the BP-based and LS-SVC-based 
localization methods need more time when performing 
localization. This is because the DEDF-based, DEUDC-based, 
RADAR and LUDM localization methods just need a simple 
calculation with the parameters determined in step (2) to 
determine the location of the unknown node. However, more 
complex calculations are required in the BP-based and 

LS-SVRM-based methods when conducting localization, so 
these two methods need more localization time. 

Analysis of the Total Processing Time 
From Table III, we can see that the total processing of the 

LUDM localization method is less than that of the BP-based 
and LS-SVC-based localization methods. The total processing 
time of the LUDM method is 1/6897 and 1/25427 of that of the 
BP-based and LS-SVC-based localization methods, 
respectively, and it has almost the same processing time as the 
DEDF-based, DEUDC-based and RADAR localization 
methods. Therefore, the LUDM method has less processing 
time and can enhance the efficiency to a large degree relative to 
the other methods, and this result is in accord with the results of 
the analysis in part C of section V. 

D. Evaluation of the LUDM Localization Accuracy 

For evaluation of the localization accuracy, some typical 
related methods are utilized to perform localization in different 
test fields. These methods include the DEDF-based [22], 
DEUDC-based [2], BP-based [5], LS-SVC-based [6], RADAR 
[7] and LUDM methods. The absolute mean localization error 

MAEe  according to statistical methods is shown in Table IV and 

Fig. 7. 
Accuracy analysis of the localization methods 
Table IV and Fig. 7 illustrate that the LUDM method has 

more accurate localization results than the other methods on 
average. Relative to the DEDF-based and DEUDC-based 
localization methods, the LUDM method reduced the 
localization error by 296 and 289 times, respectively, on 
average under different test bed conditions because these two 
localization methods require a localization calculation, which 
may introduce more error. Relative to the BP-based, 
LS-SVM-based and RADAR localization methods, the LUDM 
method reduced the localization error by 71, 68 and 1 times, 
respectively on average in the three typical environments. This 
is because the BP-based, LS-SVM-based and RADAR 
localization methods do not consider the uncertainties in the 
RSSI values, which leads to greater errors. 

Analysis of environmental impact on the accuracy 
From Table IV and Fig. 7, we see that localization accuracy 

of the LUDM method is lowest in the hall and is highest in open 
air. This agrees with the results in Fig. 5 and Fig. 6. The reason 
for this trend is that there are less uncertain factors in open air. 
The results of some of the other mapping-based localization 
methods including the BP-based, LS-SVC-based, and RADAR 
methods also follow this trend. 

In brief, in terms of the overall performance, the LUDM 
method obtains higher localization accuracy with lower 
calculation complexity, so it is appropriate for precise 
RSSI-based localization applications. 

E. Discussion of the Generality of LUDM in WSN Application 
Systems 

The LUDM localization method can be a more accurate 
localization method with low computational complexity. It 
should be noted that the Mapping Generation module is 
necessary for accurate localization. To improve the generality 

 
Fig. 1.Magnetization as a function of applied field. Note that “Fig.” is 
abbreviated. There is a period after the Fig. number, followed by two spaces. It 
is good practice to explain the significance of the figure in the caption. 
 

TABLE I 
COMPUTATIONAL TIME COMPLEXITY ANALYSIS OF LUDM 

Processing Computational Time Complexity 

RSSI Tuple Sample Generation ( )O NJ  

Statistical Computational ( )O NJ  

Mapping Expression ( )O N  

Matching-based Localization ( )O MN  

Total ( ) ( ) ( ) ( )O NJ O NJ O N O MN    

 

 
Fig. 7.  The absolute mean localization error of methods in test fields. 

TABLE III 
PROCESSING TIME OF DIFFERENT LOCALIZATION METHODS 

Localization method (s)tT  (s)sT  (s)eT  (s)TT  

DEDF-based 0 2.050E-3 1.501E-3 3.551E-3 
DEUDC-based 0 1.300E-2 1.506E-3 1.450E-2 

BP-based 2.737E1 0 8.842E-2 2.745E1 
LS-SVC-based 1.005E2 0 7.826E-1 1.012E2 

RADAR 0 6.66E-04 2.400E-3 3.066E-3 
LUDM 0 7.800E-4 3.200E-3 3.980E-3 

 

TABLE IV 
THE ABSOLUTE MEAN ERROR OF LOCALIZATION METHODS IN THREE 

TYPICAL ENVIRONMENTS 

Localization methods Corridor Hall Out door 

DEDF-based 0.6255 m 0.3951 m 0.1698 m 
DEUDC-based 0.524 m 0.4069 m 0.1785 m 

BP-based 0.1324 m 0.1743 m 0.0445 m 
LS-SVC-based 0.0953 m 0.1547 m 0.0481 m 

RADAR 0.0124 m 0.1532 m 0.0009 m 

LUDM 0.0058 m 0.1373 m 0.0009 m 
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in unknown localization environments, we can resort to the 
RSSI attenuation model, but the localization accuracy may be 
very low. 

VI. CONCLUSION 

For the problem of accurate RSSI-based localization in 
wireless sensor networks, we present a mapping-based 
localization method named LUDM. In this method, 
distribution-based mapping is utilized to overcome the 
uncertainty in RSSI values. Then, a RSSI tuple matching 
algorithm is implemented to determine the localization result. 
We also perform further validation in a real WSN localization 
test bed under different conditions. Through experimental 
results, it is demonstrated that the method yields more accurate 
RSSI-based localization with higher efficiency, especially in 
environments with a high level of uncertainty (e.g., the corridor 
and hall). This method is competitive in WSN localization 
systems for obtaining better localization accuracy. 
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