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Abstract—In this paper, we provide a general networked con-
troller design methodology for networked plants and apply it to
solve the optimal H2 networked control problem. Both the plant
and the controller are interconnected systems, interacting over
the same arbitrary directed network with noiseless and delay-free
communication links. We introduce the notions of network imple-
mentability and network realizability and analyze the structure
of network implementable and realizable systems. Based on the
structural property of network implementable systems, under
certain network-related constraints, we characterize the set of
all stabilizing controllers that are implementable over the given
network using the state-space version of Youla parametrization.
Moreover, we provide a constructive procedure to implement the
controllers as sub-systems interacting over the given network
without affecting the stability of the feedback networked system.
The distributed H2 control problem is then cast as a convex
optimization problem and its solution is shown to provide the
optimal distributed controller over the given network in terms
of its network interacting components. The results of this paper
allow one to apply many classical results and approaches of multi-
variable robust control theory to networked systems.

Index Terms—Distributed control, network realizability theory,
networked control systems, optimal H2 control.

I. INTRODUCTION

A networked, or distributed, or interconnected system is a
group of plants or sub-systems interacting over a commu-

nication network. With the increasing number of applications in
the field of networked systems, there has been a great surge in
research towards networked controller design for such systems.

One of the main objectives of this research is to find optimal
networked controllers for networked plants and to provide
the constituent sub-systems of the designed controller. The
controllers need to be implementable over the existing commu-
nication network. This setting is reasonable in practice when the
network infrastructure of the plant is already in place, which
is often the case, or when networked plants and networked
controllers need to be built simultaneously on a given network.

In this paper, as an example of the general methodology we
propose, we solve the optimal networkedH2 control problem for
a large class of linear time-invariant discrete-time networked
systems.
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Our approach applies to general networked systems com-
posed by heterogenous sub-systems interacting over arbitrary
network topologies. Each subsystem only uses local informa-
tion but does not instantaneously relay its local inputs to its
neighbors. This requirement captures the practical aspect that
the communication over the network is not instantaneous and
focuses the development on the network topology, eliminating
confusion between network topology and information patterns.

The recent literature on distributed controller synthesis has
analyzed various classes of easily searchable structured systems
in the transfer function and in the state-space domain. Spatially
invariant systems were studied in [2]–[7]. [8], [9] considered
systems with triangular and band structures, [10] focused on
symmetrically interconnected systems, [11] considered poset-
causal systems. System structures satisfying quadratic invari-
ance property were studied in [12], [13] and [14], which
has lifted the restriction requiring a stable stabilizing central
controller and provided a complete parametrization of all the
stabilizing controllers with such structures. Systems over gen-
eral graphs were considered by [15], identical sub-systems con-
nected over a graph with diagonalizable “pattern matrix” were
considered by [16] and heterogeneous sub-systems connected
over arbitrary undirected graphs were considered by [17].

Networked systems and structured systems have become
so intertwined that they are often identified with each other.
However, and this is the starting point of the paper, it is not
always clear if and how a structured representation, consistent
with a given network, represents a networked system composed
of subsystems interacting over a network.

In the state-space approaches, the conditions for realizability
over the given network can be easily specified [17]. Thus, if a
controller is designed with state-space matrices following the
desired sparsity constraints, it can be easily realized as sub-
systems interacting over the given network. However, optimiza-
tion methods based on searching state-space structures tend to
be sub-optimal [16]–[18], due to the network constraints and
the variety of multi-objective specifications, which make the
optimal controller order unknown or difficult to know a priori.
Recent important exceptions are optimal state-space character-
izations for special cases specific to H2 cost: [19] provides
the optimal state space controller for two-player triangular
structures; while, [20] uses dynamic programming to provide
the optimal networked controller over strongly connected net-
works, with network settings similar to ours but in the case of
state-feedback. Our approach, instead, applies to output feed-
back, networks not necessarily strongly connected and other
performance measures as well, e.g., �1.

Input-output approaches are better suited when looking for
optimal networked controllers as they do not restrict the con-
troller order and thus more naturally handle multi-objective

0018-9286 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



130 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 61, NO. 1, JANUARY 2016

problems and network constraints. However, in general, it is
not clear how to realize a controller designed as a structured
transfer function matrix, in terms of local controllers exchang-
ing information over the given network.

Our methodology merges the state-space approach with an
input-output approach, combining their respective benefits. Our
development is centered on finding representations of net-
worked systems that are easily searchable. These representa-
tions need to be rich enough to guarantee an easy solution to
physical implementation of the structured system as a set of
subsystems interacting over the network.

In order to do so, we develop specific aspects of system
theory for networked systems pertaining to implementation and
realization theory, otherwise well understood for unstructured
LTI systems [21].

We first introduce the notion of network implementability
for systems with structured state-spaces. The implementation
of a networked system needs to be free from unobservable and
uncontrollable unstable modes. Based on implementability, we
propose the notion of network realizability for systems with
transfer functions having certain delay and sparsity structures.
The realization problem for LTI systems is about finding a
(minimal) state-space realization consistent with a given trans-
fer function or impulse response [21]. Finding a networked
realization is more difficult and apparently the problem has
not been studied. In fact, there are transfer function matrices,
consistent with a given graph, that are indeed not network real-
izable according to our definition, as shown in [22], motivated
by [1]. In particular, the question of network realizability of
optimal structured controllers has not been explicitly addressed
in the literature until [1], [23]. It has been implicitly guaranteed
in some special structured problems [9], [16]. However, no
explicit or general network realization procedures are known.

In this paper, we show that stable input-output represen-
tations consistent with the interconnection graph are always
network realizable and provide a realization procedure. We use
this result and our networked system representation to obtain
a parametrization of all the network stabilizing controllers im-
plementable over the given network, under certain conditions,
and provide a procedure to implement them. We finally apply
the approach to solve the networked H2 problem and present an
example, where explicit networked sub-controller are derived.

In summary, based on [1], [18], [23], this paper is among the
first to formulate the problem of networked system realization.
It also proposes a general networked controller design method-
ology applicable to a very large class of networked systems, and
provides a networked realization of the optimal controller.

II. NOTATION

A. Graph Model

In this paper, we deal with networked systems that are best
described using a directed graph G = (V, E) where V = {1,
. . . , n} represents the nodes/vertices of the graph or the sub-
systems in the network, and E ⊂ V2 represents the edge-set or
the set of communication links between different sub-systems.
We say, edge (j, i)∈E if there exists a directed link from node j
to node i.

For ease of notation, we consider (i, i) ∈ E ∀i ∈ V , i.e., we
allow self-loops at all the nodes of the graph. The first vertex j

in the edge (j, i) is called its tail and the second vertex i is
its head.

A walk in G is an alternating sequence v1e1v2e2 . . . ek−1vk
of vertices vi ∈ V and edges ej ∈ E such that the tail of ei is
vi and the head of ei is vi+1 for every i = 1, 2, . . . , k − 1. To
simplify the notation, since we assume unique directed edges
between nodes, we write the walk only as a sequence of the
vertices as v1v2 . . . vk. A path is a walk where all the vertices
are distinct. Length of a walk is defined as the number of edges
in the walk. A shortest path from node j to node i (j �= i) is
defined as a path from j to i with shortest length.

Given a directed graph G = (V, E), define the adjacency
matrix A(G) to be a binary matrix such that

[A(G)]ij =
{
1 if (j, i) ∈ E
0 otherwise.

(1)

Similarly, define an m-step adjacency matrix Am(G) to be a
binary matrix such that

[Am(G)]ij =
{
1 if there exists at least one walk

from node j to node i of length ≤ m
0 otherwise.

(2)

Let the shortest path length from node j to node i be denoted
by l(j, i). From (2), it is easy to see that the shortest path length
from node j to node i (j �= i) is given by

l(j, i) = inf
{
m : [Am(G)]ij �= 0

}
. (3)

For notational convenience, we define l(j, i) = ∞ if there is
no path from j to i, and we abuse the terminology by defining
l(j, j) = 0.

We will often use the adjacency matrix of G-without self-

loops. We denote it by Ã(G) Δ
= A(G)− I . Define directed

neighborhoods around each node i, the in-neighbors N−
i =

{j|(j, i) ∈ E} and the out-neighbors N+
i = {j|(i, j) ∈ E},

which are the sets of nodes that have edges to and from node i.
With a slight abuse of terminology, we shall refer to the network
by G as well as the underlying graph representing the network.

B. General

We refer to a column-vector as vector. To make representa-
tions compact, we use the notation vert[xi]i∈I and hor[xi]i∈I
for vertical and horizontal concatenation of vectors or matri-
ces {xi}i∈I , of appropriate dimension, where I is an index
set. Let [xij ]i,j∈I represent a matrix formed by arranging
the sub-matrices {xij}i,j as vert[hor[xij ]j∈I ]i∈I . Also, let
diag[xi]i∈I denote the matrix formed by arranging the vectors
or matrices {xi}i∈I in a block diagonal fashion and the remain-
ing entries being zeros. Sometimes, if the index set I equals
{1, . . . , n}, then we will not explicitly mention the index set.
Given a matrix A = [a1, . . . , an] ∈ C

m×n, where {ai}i denote
the columns of A, we associate a vector vec(A) = vert[ai]i ∈
C

mn which is a vector formed by vertically concatenating the
columns of matrix A. Define vec−1(·) as the inverse operation
of the vec(·) such that vec−1(vec(A)) = A. When required,
we shall use I for an identity matrix and 0 for a zero matrix of
appropriate size.
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In this paper, we will come across block matrices that are
made up of smaller sub-matrices. These matrices are best
described in terms of their sparsity structures.

Definition 1: We say a block matrix A = [Aij ]i,j∈{1,...,n} is
structured according to an n× n binary matrix J if the sub-
matrix Aij is a zero matrix whenever Jij = 0. The dimensions
of the sub-matrices {Aij}i,j are described using two integer-
valued vectors as follows. Let Pa = (a1, . . . , an) and Pb =
(b1, . . . , bn) be two n-tuples with ai and bi being integers for
all i ∈ {1, . . . , n}. Then, matrix A is said to be partitioned
according to (Pa,Pb) if the sub-matrix Aij has dimensions
ai × bj∀i, j.

This definition of partitioning is easily extended to the case
of vectors too. A vector x is said to be partitioned according to
Pa if it can be written as vert[xi]i∈{1,...,n} where xi is a real
vector of size ai for all i ∈ {1, . . . , n}.

For example, according to the above definitions, the follow-
ing matrix:

A =

⎡
⎢⎢⎣
1 0 1 0 0 0

3 1 0 0 0 0
0 2 1 0 0 0

0 3 0 2 1 2

⎤
⎥⎥⎦

is structured according to a binary matrix J =

⎡
⎣ 1 1 0
1 1 0
0 1 1

⎤
⎦

and partitioned according to (Pa,Pb) where Pa = (1, 2, 1) and
Pb = (1, 2, 3). Note that blocks in A corresponding to 0’s in J
must be identically zero, while blocks in A corresponding to 1’s
in J can have zeros.

The following two lemmas are used in the later part of this
paper to describe properties of state-space and input-output
representations of interconnected systems.

Lemma 1: Let J be an n× n binary matrix and Pa, Pb, Pc,
Pd be n-tuples. If matrices E,F,G are partitioned according to
(Pa,Pb), (Pb,Pc) and (Pc,Pd), respectively, andE,G are block
diagonal while F is structured according to J ; then EFG is
structured according to J and partitioned according to (Pa,Pd).

Proof: From the hypothesis, we see that E=[Eij ]i,j , F =

[Fij ]i,j and G = [Gij ]i,j where Eij and Gij are zero matrices
when i �= j while Fij = 0 when Jij = 0. From the properties
of block matrices and matrix multiplication, it is easy to see
that EFG is a block matrix which is partitioned according to
(Pa,Pd). Thus, we can write EFG = [Hij ]i,j in terms of some

sub-matrices Hij which have dimensions Pa
i × Pd

j . Thus

Hij=

n∑
k=1

n∑
m=1

EikFkmGmj=

n∑
m=1

EiiFimGmj=EiiFijGjj

(4)

since Eik = 0∀i �= k and Gmj = 0∀m �= j. From (4), we see
that Hij= 0 whenever Jij= 0 since Fij= 0 whenever Jij= 0.
Thus, EFG is structured according to J and partitioned accord-
ing to (Pa,Pd). �

Lemma 2: Given a directed graph G = (V, E) with an adja-
cency matrix A(G), let {Ak}k be a sequence of block matrices
that are structured according to A(G). Then Bm =

∏m
k=1 Ak is

structured according to Am(G) for all m.

Proof: From the definition of Am(G) in (2), we can see
that A1(G) = A(G). Thus from hypothesis, we know that B1 =
A1 is structured according to A(G).

Now, assume that Bm =
∏m

k=1 Ak is structured according to
Am(G) for some m = p. Using the matrix multiplication results
for block matrices, we have [Bm+1]ij=

∑n
k=1[Am+1]ik[Bm]kj .

If there is no walk from node j to node i of length m+ 1,
then, for any k ∈ V , either there is no walk from node j to
node k, in m steps or there is no directed edge from node k to
node i. Thus, either [Bm]kj or [Am+1]ik are zero-matrices for
all k when [Am+1(G)]ij = 0. Thus, [Bm+1]ij is a zero matrix
when [Am+1(G)]ij = 0, which implies that Bm+1 is structured
according to Am+1(G). Thus, the given statement is true by
mathematical induction. �

C. Structured Systems

In this paper, we consider (causal) Finite Dimensional Lin-
ear Time Invariant Discrete-Time (FDLTI-DT) systems. An
FDLTI-DT system P with p inputs and q outputs can repre-
sented by a state-space model, P = (A,Bu, Cy, Dyu) where
A,Bu, Cy, Dyu are matrices of compatible dimensions. P can
also be represented as an input-output operator by its q × p im-
pulse response sequence, P = {h(k)}∞0 where h(k) ∈ R

q×p,
or more conveniently by its transfer function matrix P (z) =∑∞

k=0 h(k)z
−k, the Z-transform of the impulse response, well-

defined in the appropriate Region of Convergence. We use a
function tf(P ) to represent the unique transfer function matrix
corresponding to any system P represented by its state-space
equations or differential equations

P (z) = Dyu +

∞∑
k=0

CyA
kBuz

−k−1. (5)

Let Rp denote the set of real-rational proper transfer function
matrices, Rsp denote the set of real-rational strictly-proper
transfer function matrices and RH∞ denote the set of real-
rational proper stable transfer function matrices.

The inverse problem of finding a (minimal) set of difference
equations or a state-space realization for a given transfer func-
tion matrix P (z), is called realization problem [21]. While this
problem is solved for general FDLTI systems, it is less under-
stood when the realization must consist of dynamic difference
equations distributed over several nodes interconnected over a
network, as we will see later.

We next introduce FDLTI-DT systems that have structures in
their state-space or input-output representations consistent with
the sparsity structure induced by a graph defined earlier. These
structures are amenable to be efficiently searched and, as we will
see in the next section, capture the representations of systems
over networks. However, a key question for us would be to find
a networked system corresponding to a given structured system.

Definition 2: Given a graph G = (V, E) and the partitions
Px, Pu and Py , let S(G,Px,Pu,Py) denote the set of state-
space realizations (A,Bu, Cy, Dyu) where A, Cy are structured
according to the adjacency matrix A(G) given by (1), while
Bu, Dyu are block-diagonal and the state-space matrices are
partitioned as follows A− (Px,Px), Bu − (Px,Pu), Cy −
(Py,Px), Dyu − (Py,Pu).
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Definition 3: Given a graph G and the input and output
partitions, Pu and Py , let T(G,Pu,Py) denote the set of trans-
fer function matrices P (z) = [Pij(z)]i,j that are partitioned
according to (Py,Pu) where Pij(z) is of the form

Pij(z) =

{
z−l(j,i)Hij(z) if l(j, i) < ∞
0 otherwise

(6)

where l(j, i) is given by (3) extended to 0 and ∞ and Hij(z) ∈
Rp for all i, j.

It is not surprising that Definition 2 and Definition 3 are
consistent, in other words:

Lemma 3: If P (z) denotes the input-output mapping from
input vector u(k) to output vector y(k) corresponding to a
system P with a state-space representation (A,Bu, Cy, Dyu) ∈
S(G,Px,Pu,Py), then P (z) ∈ T(G,Pu,Py).

Proof: P (z) is given by (5). From the partitions of state-
space matrices, we see that P (z) is partitioned according to
(Py,Pu). Let P (z) = [Pij(z)]i,j , where Pij(z) is the trans-
fer function matrix from input vector uj(k) to output vector
yi(k). Note that u(k) = vert[ui(k)]i and y(k) = vert[yi(k)]i
are partitioned according to Pu and Py , respectively. From
Lemma 2 and the fact the B is block diagonal, it follows that
[CAkB]ijz

−(k+1) is zero if 0 ≤ k < l(j, i)− 1, for l(j, i) ≥ 1.
Thus, the transfer function matrix Pij(z) is of the form (6). �

Remark 1: In the lack of further analysis, presented later,
the reader should think of these structured representations as
centralized systems, i.e., not necessarily representing a set of
physically separated dynamical subsystems interconnected over
the network. For example, consider the following system which
is a discrete time version of the example proposed in [22]:

P (z) =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
1

z−2
1

z−2 0 0
1

z−2
1

z−2 0 0

⎤
⎥⎥⎦ (7)

P (z) has both sparsity and delay constraints consistent with the
graph G={1 → 3, 1 → 4, 2 → 3, 2 → 4}, thus, P (z)∈T(G,
Pu,Py) with Py = Pu = [1, 1, 1, 1]. A minimal realization of
the above transfer function matrix is first order and given by

A = [2], B = [1, 1, 0, 0], C = [0, 0, 1, 1]′, D = 0.

However this processing is not consistent with G. The state
cannot be at node 1 since there is no path from node 2 to obtain
u2. Similarly, the state cannot be at node 3, since there is no
path from it to node 4 to send y2. Same argument applies to
node 2 and 4.

Another example is given by the following transfer function
matrix:

P (z) =

⎡
⎣

z−4
z2−7z+13 − z−3

z2−7z+13
1

z2−7z+13
1

z2−7z+13
z−4

z2−7z+13 − z−3
z2−7z+13

− z−3
z2−7z+13

1
z2−7z+13

z−4
z2−7z+13

⎤
⎦ (8)

which is in T(G,Pu,Py) with Py = Pu = [1, 1, 1], and G =
{3 → 2 → 1 → 3}. It is easy to verify using Matlab, that the
minimal state-space realization for the given transfer function
is second order, with two complex conjugate eigenvalues at

Fig. 1. A simple example of an interconnected system made of 3 different
sub-systems and the underlying directed pseudograph representing the commu-
nication network. (a) An interconnected system. (b) Underlying pseudograph.
(c) Interconnected system as an LFT of sub-systems and network.

−3.5± i(
√
3/2). A minimal state-space realization is the fol-

lowing one with D = 0:

A =

[
3.5

√
3
2

−
√
3
2 3.5

]
, B =

[
− 1√

3
−

√
3−1
2
√
3

√
3+1
2
√
3

− 1√
3

√
3+1
2
√
3

−
√
3−1
2
√
3

]

C =

⎡
⎣−

√
3−1
2 −

√
3+1
2

−1 1√
3+1
2

√
3−1
2

⎤
⎦.

This realization is consistent with a fusion center, which
is in charge of the state evolution, it gathers the inputs, and
determines the outputs.

In the next section, we introduce a large class of networked
systems whose state-space and input-output representations
belong to S(G,Px,Pu,Py) and T(G,Pu,Py), respectively.

III. NETWORKED SYSTEMS

In this section, we describe systems built over communi-
cation networks that we consider in this paper, and discuss
some of the properties of their state-space and input-output
descriptions.

A. Definition

A group of plants or sub-systems interacting over a commu-
nication network is termed as a networked or interconnected
system (see Fig. 1). A networked system is characterized by 1)
topology of the network; 2) local dynamics of the sub-systems;
3) properties of the interaction.

The topology of the network is described by a graph G =
(V, E) with n nodes. Given a graph G = (V, E) with n nodes,
we associate a sub-system {Pi}i∈{1,...,n} to each node. The
subsystems interact over communication links corresponding to
the edges of the graph.
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Each sub-system Pi is a FDLTI-DT system with local inputs
ui(k), local outputs yi(k), network inputs νi(k) and network
outputs ηi(k). For the time being, each Pi has the following
state-space description assumed to be minimal (to be further
specified):

Pi :

⎡
⎣xi(k + 1)

yi(k)
ηi(k)

⎤
⎦ =

⎡
⎣ Ai Bu

i Bν
i

Cy
i Dyu

i Dyν
i

Cη
i Dηu

i Dην
i

⎤
⎦
⎡
⎣xi(k)
ui(k)
νi(k)

⎤
⎦ (9)

where xi(k) is the local state, and the following input-output
description:

Pi(z) :

[
Yi(z)
ηi(z)

]
=

[
P yu
i (z) P yν

i (z)
P ηu
i (z) P ην

i (z)

] [
Ui(z)
νi(z)

]
. (10)

The vectors ηi(k) and νi(k) are the stacking of the corre-
sponding vectors indexed according to the out-neighbors and
in-neighbors of node i, namely, ηi(k) = vert[ηji(k)]j∈N+

i
\{i}

and νi(k) = vert[νij(k)]j∈N−
i
\{i} ∀ i. They correspond to the

overall set of messages transmitted and received by Pi, where
ηji(k) is the message vector transmitted from plant Pi to Pj at
the time instant k and νij(k) is the message received by Pi from
Pj at time instant k.

We have the following assumption that holds throughout the
paper.

Assumption 1: In this paper, we consider all the communi-
cation links of the network to be noiseless and delay-free.

Under the Assumption 1, the network interconnection equa-
tions can be written as

νij(k) = ηij(k) ∀j ∈ N−
i \ {i}, ∀, i ∈ V. (11)

1) Strictly Causal Interaction: While the graph’s edges rep-
resent the physical communication links between sub-systems
and thus describe the topology of the network, they do not
completely describe the nature of interaction over the network.
In particular, the setup so far allows the nodes to act in the
network as instantaneous relays of their local inputs.

For example, in a strongly connected graph, this allows the
possibility for any input ui(k) to instantaneously affect any
other node even though there is no directed communication
link from node i to node j. Similarly, each node would be
able to receive the local measurements of any other node
instantaneously. Thus, any strongly connected graph topology
will effectively result in a all-to all communication topology.
More generally, the graph and the communication topology will
not coincide if instantaneous relays are allowed.1

We require instead the graph topology to reflect the commu-
nication topology even though the links are perfect. One way
to obtain this is to not allow the nodes on the network to be
instantaneous relays.

We complete the description of the networked systems con-
sidered in this paper with the following definition.

Definition 4: A networked system P is said to be a strictly
causal interaction of sub-systems over a given network if the
network outputs ηi of each sub-system Pi are only functions
of their local state information, xi (Dηu

= 0, Dην
= 0) or

equivalently P ηu
i and P ην

i are strictly proper.

1We believe that this discrepancy has been a source of confusion in the
literature.

Remark 2: Definition 5 induces a notion of spatial causality
relative to the underlying graph. Each node’s dynamics at time
k + 1 only depend on the in-neighbors’ state variables at time k,
and cannot depend on the two-step or farther neighbors’ state
variables at time k. Thus, the topology of the graph now has
a stronger impact on the problem as it dictates the nature of
interactions between the neighboring nodes, and coincides with
the communication topology.

All the networked systems in this paper are obtained from
strictly causal interactions of sub-systems over a given noiseless
and delay-free network. This is the main difference between the
system models considered in this paper and other works like
[11], [17] where the nodes can act like instantaneous relays.
The dynamic coupled systems used in [15], [16] can be viewed
as a strictly causal interaction of sub-systems.

With abuse of terminology, we will often refer to strictly
causal interactions of sub-systems over a delay-free and noise-
less network simply as interconnected or networked systems.

Next, we consider the feedback representation for such
systems.

B. Feedback Representation of Networked Systems

Remark 3: The representation (9) (10) and (11) is parsimo-
nious as it involves the signals that are actually exchanged over
the network. If a node i has no in-neighbors or out-neighbors,
there are no input or output network signals associated with
it. Thus, νi or ηi are not defined like the corresponding input
columns or output rows in (9) and (10). To get a more compact
representation of the networked system, it is convenient and
without loss of generality to make the missing signals explicit
and equal to zero. This is easily done by setting νi(k) =
νi0(k) = 0 and ηi(k) = η0i(k) = 0 and by padding (9) and (10)
with a zero input column and zero output row when node i has
no in-neighbors and out-neighbors, respectively. Whenever is
convenient, like in this section, we assume that this padding has
been done without changing the notation.

Based on Definition 4, define P̂ = diag[Pi]i as a system
with a state-space representation given by⎡

⎣x(k + 1)
y(k)
η(k)

⎤
⎦ =

⎡
⎣ Â B̂u B̂ν

Ĉy D̂yu D̂yν

Ĉη 0 0

⎤
⎦
⎡
⎣x(k)
u(k)
ν(k)

⎤
⎦ (12)

where Â = diag[Ai]i, B̂u = diag[Bu
i ]i, B̂ν = diag[Bν

i ]i,
Ĉy=diag[Cy

i ]i, D̂yu=diag[Dyu
i ]i, D̂yν=diag[Dyν

i ]i, Ĉη =
diag[Cη

i ]i.
The state, input and output vectors are given by x(k) =

vert[xi(k)]i, u(k)=vert[ui(k)]i, y(k)=vert[yi(k)]i, η(k)=
vert[ηi(k)]i and ν(k) = vert[νi(k)]i. Let the corresponding
partitions of x(k), u(k), y(k), η(k), ν(k) be Px, Pu, Py , Pη

and Pν , respectively. Based on these partitions, we can see that
the matrices in (12) are partitioned as follows Â−(Px,Px),
B̂u − (Px,Pu), B̂ν − (Px,Pν), Ĉy − (Py,Px), Ĉη − (Pη,

Px), D̂yu − (Py,Pu), D̂yν − (Py,Pν).
An equivalent formulation for P̂ can be given using transfer

function matrices

P̂ (z) =

[
P̂yu(z) P̂yν(z)

P̂ηu(z) P̂ην(z)

]
(13)
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Fig. 2. A networked system expressed as a feedback interconnection of the
sub-systems and the network interconnection matrix.

where P̂yu(z) = diag[P yu
i (z)]i, P̂yν(z) = diag[P yν

i (z)]i,
P̂ηu(z) = diag[P ηu

i (z)]i and P̂ην(z) = diag[P ην
i (z)]i, with

P̂ηu(z) and P̂ην(z) strictly proper.
It follows from (11) that

ν(k) = Nη(k) (14)

for some matrix N , which is structured according to Ã(G) and
partitioned according to (Pν ,Pη). We refer to N as network
interconnection matrix. Note that the network interconnection
matrix is a static gain matrix that can be obtained from the
graph G and the dimensions of the message vectors νij(k).
An example of a system consistent with Fig. 1 is described in
Section VII-A.

From the above notation, a networked system P is obtained
by the feedback interconnection of P̂ in (12) with N , as shown
in Fig. 2, or P = Fl(P̂ , N), where Fl stands for lower Linear
Fractional Transformation (LFT)2 as defined in [24].

Definition 5: For given G and Pu,Py , we denote by N (G,
Pu,Py) the set of networked systems P = Fl(P̂ , N) obtained
by the strictly causal network interconnection of P̂ defined
in (12) and a network interconnection matrix N structured
according to Ã(G) for appropriate Px,Pη,Pν .

We next analyze the resulting state-space and input-output
structure of the networked systems in N (G,Pu,Py).

C. State-Space and Input-Output Descriptions of
Networked Systems

We can write the state-space representation of a networked
system P based on (12) and (14) given by

P =Fl(P̂ , N)

=

[
Â+ B̂νNĈη B̂u

Ĉy + D̂yνNĈη D̂yu

]
:=

[
A Bu

Cy Dyu

]
. (15)

Lemma 4: Any networked system, P , that is a causal inter-
action over a delay-free and noiseless network G has a state-
space representation that belongs to the set S(G,Px,Pu,Py),
for some state partition Px, and has a transfer function matrix
P (z) that belongs to T(G,Pu,Py).

Proof: Using the fact that N is structured according to
Ã(G), partitioned according to (Pν ,Pη) and following the
partitions of the state-space matrices in (15), Lemma 1 can be
used to show that A, Cy are structured according to A(G) while
Bu, Dyu are block-diagonal and the state-space matrices have
consistent dimension and partitions.

2Note that having Dηu
i = 0, and Dην

i = 0 ∀i ensures that the feedback

interconnection of P̂ and N is well-posed.

From Lemma 3, it follows that transfer function matrix
corresponding to any interconnected system that is a strictly
causal interaction over a delay-free and noiseless network G
belongs to T(G,Pu,Py). �

IV. IMPLEMENTING AND REALIZING SYSTEMS

OVER THE GIVEN NETWORK

In the previous section, we looked at some of the prop-
erties of the state-space and input-output descriptions of in-
terconnected systems that are strictly causal interactions of
sub-systems over a given delay-free and noiseless network. It
was shown that any such networked system has a state-space
representation in S(G,Px,Pu,Py) and an input-output repre-
sentation in T(G,Pu,Py).

In this section, we address the reverse problem of expressing
elements of S(G,Px,Pu,Py) and T(G,Pu,Py) as strictly
causal interactions of sub-systems over a given noiseless and
delay-free network G with some extra requirement. Note that
our definition allows for networked systems that are non-
minimal. At the same time, from a practical implementation
viewpoint, we are interested in networked systems that do
not have hidden unstable modes. To address the problem,
we introduce the notions of implementability and realizability
of a system over a given network. These properties play an
important role in the synthesis phase, since it is necessary to
know if a designed system with a structure in S(G,Px,Pu,Py)
or T(G,Pu,Py) can be implemented as networked system
over G.

Definition 6: We call a system P ∈ S(G,Px,Pu,Py) which
is detectable and stabilizable and such that P ∈ N (G,Pu,Py),
network implementable and denote the set of all such systems
by N I(G,Pu,Py).

In other words, a system P ∈ S(G,Px,Pu,Py) is said to
be implementable over a given network G if it is stabilizable,
detectable and can be expressed as a strictly causal interaction
of some sub-systems over the given network. Definition 6
excludes non stabilizable and/or non detectable systems from
those we consider implementable over the network. This exclu-
sion is important but natural since an interconnected system that
is not stabilizable or detectable has hidden unstable modes not
visible from the input-output map. These modes will make the
networked system useless in practice as noise or uncertainty,
always present in the network interconnections, will excite
them and manifest the “internal” instability. Thus, although we
assume ideal network interconnections in this paper, we do not
want our results to be fragile to this assumption.

For example, the following third-order state-space realiza-
tion is in S(G,Px,Pu,Py), with G = {1 → 3 → 2 → 1} and
Px = Py = Pu = [1, 1, 1]

C=

⎡
⎣ 1 −1 0

0 1 −1
−1 0 1

⎤
⎦ , A=

⎡
⎣ 3 −1 0

0 3 −1
−1 0 3

⎤
⎦ , B=I, D=0.

(16)

The eigenvalues of A are at −3.5± i(
√
3/2) and at 2. This last

unstable mode is not observable. Because of the lack of de-
tectability, this system is not network implementable according
to Definition 6, and is of little practical use.

Definition 7: A system P with transfer function matrix
P (z) ∈ T(G,Pu,Py) is said to be realizable over G if there
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exists a system P̃ with partitions Pu, Py network imple-
mentable over G (for some Px), i.e., P̃ ∈ N I(G,Pu,Py), such
that P (z) = tf(P̃ ) according to (5).

Note that the definition of network realizability does not
impose a condition for the state-space realization of a transfer
function to be minimal. Instead, the state-space realization
needs to be stabilizable and detectable in order to be realizable
over the network.

Given a transfer function matrix in T(G,Pu,Py), we are
interested to know if the system is network realizable and, if
it is, we want to know how to realize it.

We observe that not all transfer function matrices in T(G,
Pu,Py) are network realizable, [22]. We leave it to the reader
to verify that P (z) in (7) is not, since any realization in
S(G,Px,Pu,Py) will require one to repeat the unstable mode
at 2, based on the argument in Remark 1. This mode, invisible in
the impulse response, makes the system not stabilizable and/or
detectable. However, checking the network realizability of a
system is not easy in general.

Note also that following the definition by searching for
structured A,B,C,D to match the impulse response is not
practical, although it can be insightful in special cases. For
example, consider P (z) in (8). When, we search for a third-
order structured system P̃ (P̃ ∈ S(G,Px,Pu,Py) with Px =

[1, 1, 1]) so that P (z) = tf(P̃ ), we obtain (16), which is not a
network realization of (8) as it is non detectable. In fact, this
structured realization is unique, modulo scaling of the diagonal
elements of B and correspondingly of the columns of C. Thus,
the transfer function (8) is not network realizable as a third
order system. However, this does not exclude the possibility of
the system being network realizable for a different Px.

A. Network Implementability

From the previous development, we know that if P ∈ N I(G,
Pu,Py) then P = Fl(P̂ , N) ∈ S(G,Px,Pu,Py), for some Px

and some P̂ , and it is detectable and stabilizable. The main
contribution of this section is to show that every stabilizable
and detectable element of the set S(G,Px,Pu,Py) is imple-
mentable over the given network G. This result allows us to
characterize all the implementable systems on a given network
in terms of their state-space description.

Lemma 5: Any stabilizable and detectable system Q ∈
S(G,Px,Pu,Py) is network implementable (cf. Def. 6) over
G, i.e., Q ∈ N I(G,Pu,Py).

Proof: By hypothesis, Q is stabilizable and detectable.
To prove the lemma, we need to find n sub-systems {Qi}i
with state-space representation of the form (9) which result
in the given Q by interconnecting them over the delay-free
and noiseless network G while maintaining stabilizability and
detectability.

Let G = (V, E). By definition, Q has a state-space realization
(A,Bu, Cy, Dyu), where A, Cy are structured according to
A(G) while Bu, Dyu are block-diagonal and the state-space
matrices have consistent dimensions and partitions.

xi(k + 1) =
∑
j∈N−

i

Aijxj(k) +Bu
i ui(k)

yi(k) =
∑
j∈N−

i

Cy
ijxj(k) +Dyu

i ui(k) ∀ i ∈ V. (17)

Define n sub-systems {Qi}i given by

Qi :

⎡
⎣xi(k + 1)

yi(k)
ηi(k)

⎤
⎦ =

⎡
⎣ Ai Bu

i Bν
i

Cy
i Dyu

i Dyν
i

Cη
i 0 0

⎤
⎦
⎡
⎣xi(k)
ui(k)
νi(k)

⎤
⎦ ∀ i ∈ V

where

Ai =Aii, C
y
i = Cy

ii, B
ν
i = hor[Aij ]j∈N−

i
\{i}

Dyν
i =hor[Cij ]j∈N−

i
\{i}, C

η
i = vert[I]j∈N+

i
\{i} ∀ i ∈ V.

(18)

Note that (18) leads to ηji(k) = xi(k) for all j ∈ N+
i \ {i} and

i ∈ V , which implies that

ηi(k)=vert [ηji(k)]j∈N+
i
\{i}=vert [xi(k)]j∈N+

i
\{i}. (19)

Now, define Q̂ = diag[Qi]i according to (12) and let the
network interconnection equations νij(k) = ηij(k) for all j ∈
N−

i \ {i}, i ∈ V be expressed by (14) using a network inter-
connection matrix N . Following (18) and applying the zero
padding of Remark 3, it is easy to show that Fl(Q̂,N) is the
same as the given system Q. Also note that N is a static gain
matrix and the number of states in Q̂ are the same as the number
of states in Q. So, no hidden unstable modes are introduced and
thus the stabilizability and detectability properties are preserved
during the implementation of Q as strictly causal interactions of
sub-systems over the given network G.

Thus, every stabilizable and detectableQ∈S(G,Px,Pu,Py)
is implementable over the network G. �

Remark 4: The reader should note that the constructive proof
works also without stabilizability and detectability assump-
tion. Thus, any element in S(G,Px,Pu,Py) corresponds to
a networked system composed of strictly causal interactions
of sub-systems over a given delay-free and noiseless network.
However, we are only interested in those that are stabilizable
and detectable, because they can be physically built over the
network (i.e., without internal instabilities).

Definition 8: Given a network G, the set of all the systems
that are strictly causal interactions of sub-systems over the
noiseless and delay-free network G with input and output par-
titions Pu and Py , respectively, is denoted by S(G,Pu,Py) =⋃

Px∈Nn S(G,Px,Pu,Py).
Since any implementable system on the network G, with

input and output partitions as Pu and Py , is a stabilizable
and detectable element of S(G,Px,Pu,Py) for some state
partition Px, and any stabilizable and detectable element of
S(G,Px,Pu,Py) is implementable over G for any Px, we
can say that the set of stabilizable and detectable elements
in S(G,Pu,Py) represents the set of all discrete-time, causal
FDLTI systems that are implementable over a noiseless and
delay-free network G. For future reference, we denote the set of
all stable systems in S(G,Pu,Py) by Ss(G,Pu,Py). Note that
all the elements of Ss(G,Pu,Py) are implementable over G.

B. Network Realizability

We now turn our attention to network realizability, which is
more stringent than network implementability by definition. In
general, we do not yet know simple conditions for checking
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whether a given P (z) ∈ T(G,Pu,Py) is network realizable, or
general realization procedures in case the system is known to be
network realizable. However, in this section, we show that any
stable system in T(G,Pu,Py) is realizable over the network G
by providing a realization method. The network realizability of
stable systems plays an important role in the parametrization
of all stabilizing network realizable controllers for networked
plants.

Theorem 1: Given a network represented by a directed pseu-
dograph G = (V, E) and the input and output partitions, Pu and
Py , any bounded-input bounded-output (BIBO) stable system
Q(z) ∈ T(G,Pu,Py) is realizable over the given network.

Proof: The reader should refer to the Appendix for the
proof and a numerical example. �

Remark 5: When applied to unstable systems, the construc-
tive procedure in the proof of Theorem 1, which is based on
repeating poles, produces non-minimal realizations in S(G,
Px,Pu,Py), which are not stabilizable and/or detectable, and
thus not network implementable over G by Definition 6. There-
fore, when applied to unstable systems, the procedure cannot
be used to draw conclusions regarding the network realizability
of the system.

The underlying focus of the rest of the paper is to find
conditions and other procedures to obtain a network imple-
mentable realization even for unstable systems (controllers) in
T(G,Pu,Py).

For future reference, we denote the set of all stable real-
rational proper transfer function matrices in T(G,Pu,Py) by
Ts(G,Pu,Py). Note that, if Q(z) = [Qij(z)]i,j ∈Ts(G,Pu,

Py), then Qij(z) ∈ RH∞ for all i, j.

V. FEEDBACK INTERCONNECTION OF NETWORKED PLANT

AND NETWORK REALIZABLE CONTROLLER

So far, we have introduced a class of networked systems, an-
alyzed their structures and properties, and posed and addressed
the question of network implementability and realizability for
given systems. In this section, we naturally extend the net-
worked systems to include exogenous and control inputs as well
as regulated and measured outputs, and consider the problem
of feedback stabilization of a networked system by a network
implementable controller.

A. Networked Plant Model

A networked plant P is defined as in (12), but with each sub-
system now including local exogenous inputs wi(k) and local
regulated outputs zi(k). Thus, the state-space description of the
sub-system Pi is written as

Pi :

⎡
⎢⎣
xi(k + 1)
zi(k)
yi(k)
ηi(k)

⎤
⎥⎦=

⎡
⎢⎣
Ai Bw

i Bu
i Bν

i

Cz
i Dzw

i Dzu
i Dzν

i

Cy
i Dyw

i Dyu
i Dyν

i

Cη
i 0 0 0

⎤
⎥⎦
⎡
⎢⎣
xi(k)
wi(k)
ui(k)
νi(k)

⎤
⎥⎦ (20)

where Bw
i , Cz

i , Dzw
i , Dyw

i , Dzu
i and Dzν

i have dimensions
compatible with the local exogenous inputs wi(k), local reg-
ulated outputs zi(k), local control inputs ui(k), the local mea-
surement outputs yi(k), the local network outputs ηi(k) and the
local network inputs νi(k).

Fig. 3. An example of an interconnected plant and controller pair that are
realizable over the network given in Fig. 1(b).

Fig. 4. Feedback interconnection of a plant and a controller.

A state-space representation for the networked plant P =

Fl(P̂ , N) is given by the following expression:

P =

⎡
⎢⎢⎣

Â+ B̂νNĈη B̂w B̂u

Ĉz + D̂zνNĈη D̂zw D̂zu

Ĉy + D̂yνNĈη D̂yw D̂yu

⎤
⎥⎥⎦

:=

⎡
⎣ A Bw Bu

Cz Dzw Dzu

Cy Dyw Dyu

⎤
⎦ . (21)

Note thatA :=[Aij ]i,j , Cz :=[Cz
ij ]i,j , Cy :=[Cy

ij ]i,j are struc-

tured according to A(G), while Bw = diag[Bw
i ]i, Bu =

diag[Bu
i ]i, Dzw= diag[Dzw

i ]i, Dzu = diag[Dzu
i ]i,Dyw =

diag[Dyw
i ]i, Dyu=diag[Dyu

i ]i have a block diagonal structure.
One can view the system P as shown in Fig. 4 while the

actual plant or process is in fact P22, which is the map from
u(k) to y(k). Note that, P22 = (A,Bu, Cy, Dyu) ∈ S(G,Px,
Pu,Py) where Px, Pu and Py are the partitions of x(k), u(k)
and y(k), respectively, while A and Cy are structured according
to A(G) and Bu and Dyu are block-diagonal.

B. Feedback Interconnection of Networked Plant and a
Stabilizing Networked Controller

Next we look at the feedback interconnection of a networked
plant P in (21), assumed to be detectable from y and sta-
bilizable from u, and a stabilizing networked controller K ∈
S(G,PK

x ,Py,Pu) (for some partition PK
x ) as shown in Fig. 3

and compactly in Fig. 4.
The state-space equations corresponding to the sub-systems

of P are given by (21). For any controller K = (AK , BK , CK ,
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DK)∈S(G,PK
x ,Py,Pu), the state-space equations are given by

K :

[
xK(k + 1)

u(k)

]
=

[
AK BK

CK DK

] [
xK(k)
y(k)

]
(22)

where the matrices AK and CK are structured according to
A(G), while BK and DK are block diagonal.

Let the closed-loop system formed by the feedback inter-
connection of P and K be denoted by Tzw = Fl(P,K). Then
combining (21) and (22) leads to the following state-space
representation for the closed-loop system Tzw := (AC , BC ,
CC , DC) = (23), as shown at the bottom of the page, where
M := (I −DKDyu)

−1 and M̂ := (I +DyuMDK), which
are assumed to exist (well-posed feedback interconnection),
are block-diagonal and partitioned according to (Pu,Pu) and
(Py,Py), respectively. From the structure of (23), we can see
that the matrices in AC and CC are structured according to
A(G) while those in BC and DC are block-diagonal. Using a
simple rearrangement of the states of Tzw, we can show that
there exists an equivalent state-space representation, to that of
(23), in S(G,Px + PK

x ,Pw,Pz).
Definition 9: K=(AK , BK , CK , DK)∈S(G,PK

x ,Py,Pu)
is a stabilizing controller of P in (21), if AC in (23) has all its
eigenvalues strictly inside the unit disc, i.e., if Tzw in (23) is
stable.

IfK is a stabilizing controller, it is detectable from its outputu
and stabilizable from its input y. From Lemma 5, it can
be seen that K is network implementable over G. Note that
the standard notion of closed-loop stability of Definition 9
and the result of Lemma 5 imply the BIBO stability of the
closed loop networked system from any input, including those
entering the communication links, to any output including the
network signal, (details omitted for brevity). Moreover, if K is
stabilizing, Tzw has a state-space representation in Ss(G,Px +
PK
x ,Pw,Pz). Following Lemma 5, it can be seen that the

feedback interconnection of the considered P and K is also a
strictly causal interaction of sub-systems over the given delay-
free and noiseless network.

VI. ALL STABILIZING NETWORK

IMPLEMENTABLE CONTROLLERS

In this section, we show that if a given networked plant
satisfies a certain condition, we can parametrize the set of
all stabilizing networked controllers implementable over the
associated network.

Theorem 2: Given networked plant P over a noiseless and
delay-free network G detectable from y and stabilizable from u.
If there exist matrices F and L such that A+BuF and
A+ LCy are stable, where F is structured according to A(G)
partitioned according to (Pu,Px) and L block-diagonal par-
titioned according to (Px,Py). Then the set of all stabilizing

FDLTI-DT controllers for P that are implementable over G is
parametrized by

K = Fl(J,Q) (24)

where

J =

⎡
⎣A+BuF+LCy + LDyuF −L (Bu + LDyu)

F 0 I
−(Cy +DyuF ) I −Dyu

⎤
⎦

:=

⎡
⎣AJ −L BJ

F 0 I
CJ I DJ

⎤
⎦ (25)

is implementable over the network G, Q is any FDLTI-DT
system, stable and implementable over the network G, and
I +Q(∞)Dyu is nonsingular.

Before providing the proof, we would like to clarify its main
point. For a general plant, the set of all stabilizing controllers is
constructed from a model based controller and any free stable
system Q. In our case, the plant P22 is networked and imple-
mentable. The model based controller is thus also networked,
i.e., is implementable over the network, provided that suitable
F and L can be found. The set of stabilizing controllers for P22

would then be obtained by selecting stable systems Q, but in
principle without any network structure. Theorem 2 shows that
Q can be restricted to stable networked realizable systems.

Proof: We use the formulation given in [24] to obtain all
stabilizing controllers implementable over the network G. It is
well-known that all stabilizing discrete-time causal and FDLTI
controllers are given by K = Fl(J,Q), where J is given by
(25) and Q is FDLTI, causal and stable. We include the property
of network implementability to the above mentioned properties
and prove the theorem in two steps.

First, assume that Q is stable and implementable over G,
i.e., Q ∈ Ss(G,PQ

x ,Py,Pu) for some state partition PQ
x . Let

Q = (AQ, BQ, CQ, DQ) where AQ and CQ are structured
according to A(G) while BQ and DQ are block diagonal
and all matrices are partitioned accordingly. Note that AQ

has its eigenvalues strictly inside the unit disc. Let MK =

(I −DQDJ )
−1 and M̂K = (I +DJMKDQ). Using the state-

space star product formula for calculating the LFT of J and Q,
we obtain the state-space matrices for K as (26), as shown at
the bottom of the next page. Since A, Cy , F , AQ and CQ are
structured according to A(G) while Bu, L, BQ, and DQ are
block-diagonal, each of the four blocks of AK and the two
blocks of CK are structured according to A(G). Also the two
blocks of BK and DK are block diagonal. It is not difficult
to verify that K ∈ S(G,Px + PQ

x ,Py,Pu), by regrouping the

states of K as vert

[
xJ
i (k)

xQ
i (k)

]
i

, where xJ(k) = vert[xJ
i (k)]i

is partitioned according to Px and xQ(k) = vert[xQ
i (k)]i is

partitioned according to PQ
x . We leave the details to the reader.

⎡
⎣ A+BuMDKCy BuMCK Bw +BuMDKDyw

BKM̂Cy AK +BKDyuMCK BKM̂Dyw

Cz +DzuMDKCy DzuMCK Dzw +DzuMDKDyw

⎤
⎦ (23)
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From the theory of Youla parameterization, we know that K
given by (26) is a stabilizing controller for the given P . Thus,
K is also stabilizable and detectable. Using Lemma 5, we say
that K is implementable over the network G.

Next, we prove that if K is implementable over G then Q is
also implementable over G. Note that K is stabilizing, FDLTI
and causal, while Q is stable, FDLTI and causal. From standard
results on LFT, we know that Q = Fl(Ĵ ,K) where

Ĵ =

⎡
⎣ A −L Bu

−F 0 I
Cy I Dyu

⎤
⎦ (27)

and (I −DKDyu) is invertible. Following a similar procedure
as before, we can see that Q ∈ S(G,Py,Pu) and in particular
Q ∈ Ss(G,Py,Pu). Since Q is stable, it is stabilizable and
detectable. Thus Q is implementable over G if K is imple-
mentable over G. �

Remark 6: For the large class of networked systems con-
sidered in this paper, which are strictly causal interactions of
sub-systems over a given network, Theorem 2 together with
Theorem 1 provide a constructive procedure to obtain stabiliz-
ing networked controllers in terms of sub-controllers interacting
over a the same network as the plant.

A. Sufficiency Conditions for Constructing F and L

Theorem 2 requires a matrix F structured according to A(G)
and partitioned according to (Pu,Px) such that A+BuF
is Schur-stable. Similarly, it also requires a block-diagonal
matrix L partitioned according to (Px,Py) such that A+ LCy

is Schur-stable. The theorem provides a characterization of all-
stabilizing controllers implementable over the given network
based on the matrices F and L satisfying the above mentioned
constraints. In this section, we provide constructive algorithms
to obtain such matrices F and L. Note that for stable systems,
F and L can always be chosen to be zero matrices.

The stability test for discrete-time systems is given by a
discrete-time Lyapunov equation. In [25], the stability test
has been expressed as a feasibility problem as shown in the
following lemma.

Lemma 6: A matrix A is Schur-stable if, and only if, there
exist a symmetric matrix M = M ′ and a general matrix G such
that the LMI [

M AG
G′A′ G+G′ −M

]
� 0 (28)

is feasible.
We extend Lemma 6 to construct matrices F and L with the

previously mentioned properties by solving a convex feasibility
problem.

Lemma 7: Given matrices A and Bu that are partitioned
according to (Px,Px) and (Px,Pu), respectively, there exists

a matrix F that is structured according to A(G) and partitioned
according to (Pu,Px) such that A+BuF is Schur-stable if
there exist a symmetric matrix M = M ′ and a matrix G block-
diagonal and partitioned according to (Px,Px) and a matrix R
structured according to A(G) and partitioned according to
(Pu,Px) such that the following LMI:[

M AG+BuR
(AG+BuR)′ G+G′ −M

]
� 0 (29)

is feasible. Moreover F = RG−1.
Proof: If (29) has a solution, then G+G′ � M � 0

which implies that G is non-singular and thus G−1 exists.
Combining (29) with Lemma 6, we note that A+BuRG−1

is Schur-stable. Due to the structure of R and G, it is easy to
see that F = RG−1 is a matrix that is structured according to
A(G) and partitioned according to (Pu,Px) and A+BuF is
Schur-stable. �

Lemma 8: Given matrices A and Cy that are partitioned
according to (Px,Px) and (Py,Px), respectively, there exists
a block-diagonal matrix L that is partitioned according to
(Px,Py) such that A+ LCy is Schur-stable if there exist a
symmetric matrix M = M ′, a matrix G block-diagonal parti-
tioned according to (Px,Px) and a block-diagonal matrix R
partitioned according to (Py,Px) such that the following LMI:[

M A′G+ C ′
yR

G′A+R′Cy G+G′ −M

]
� 0 (30)

is feasible. Moreover L = (RG−1)
′.

Proof: The proof is similar to that of Lemma 7. �
The above conditions appear to be new. Their conservatism

may be reduced by allowing G to have appropriate structure
compatible with A, we leave this extension to further investiga-
tions. For an alternative approach to finding F and L see [26].
We leave other ways of deriving network implementable central
controller J to future investigations.

VII. OPTIMAL SOLUTION FOR THE

DISTRIBUTED H2 PROBLEM

We are now able to present the final contribution of this
paper. In this section, under the assumptions of Theorem 2,
we provide an optimal network implementable controller for
the distributed H2 control problem. Fig. 3 depicts such a plant-
controller pair when both are constrained to be interconnected
systems over the same network G.

As we now know, a distributed controller implementable over
the network G can be seen as a stabilizable and detectable sys-
tem in S(G,Py,Pu).3 Thus, given a plant P in (21) stabilizable
from u and detectable from y implementable over a network G

3Note that the input and output partitions of the controller have to match the
output and input partitions of the interconnected plant, while the state partition
is not fixed.

⎡
⎣AJ +BJMKDQCJ BJMKCQ −L+BJMKDQ

BQM̂KCJ AQ +BQDJMKCQ BQM̂K

F +MKDQCJ MKCQ MKDQ

⎤
⎦ :=

[
AK BK

CK DK

]
(26)
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and the assumptions of Theorem 2 hold, the network distributed
H2 control problem can be written as

min ‖Tzw‖2
subject to K ∈ S(G,Py,Pu)

K stabilizing (31)

where Tzw = Fl(P,K) denotes the closed-loop mapping from
w(k) to z(k). Then, from Theorem 2

Tzw = Fl (P, Fl(J,Q))

where J is given by (25) and Q ∈ Ss(G,Py,Pu). If there
exists matrices F and L with the properties described in the
hypothesis of Theorem 2, the set of all closed-loop transfer
matrices from w(k) to z(k) by an internally stabilizing proper
controller implementable over the network G can be obtained
using Theorem 2 and the results from [24] as

Tzw = Fl(T,Q) = {T11 + T12QT21 : Q ∈ Ss(G,Py,Pu),

I +Q(∞)Dyu invertible} (32)

where T is given by

T =

[
T11 T12

T21 T22

]

=

⎡
⎢⎢⎣

A+BuF −BuF Bw Bu

0 A+LCy Bw+LDyw 0

Cz+DzuF −DzuF Dzw Dzu

0 Cy Dyw 0

⎤
⎥⎥⎦. (33)

Since the closed-loop transfer matrix is simply an affine func-
tion of the controller parameter matrixQ, we can rewrite the dis-
tributed H2 problem in (31) as a convex optimization problem

min ‖T11 + T12QT21‖2
subject to Q ∈ Ss(G,Py,Pu) (34)

It is convenient to solve the above problem in the frequency do-
main. This is possible since Q ∈ Ss(G,Py,Pu) is equivalent to
Q(z) ∈ Ts(G,Py,Pu). We can maintain the implementability
of the controller from the results of Theorem 1, which guar-
antees the realizability of Q(z) with a state-space realization
Q̃∈Ss(G,Py,Pu) implementable over the networkG. Thus, the
optimization problem in (34) can equivalently be expressed as

min ‖T11(z) + T12(z)Q(z)T21(z)‖2
subject to Q(z) ∈ Ts(G,Py,Pu). (35)

The problem is now reduced to a standard convex optimization
form, where Q(z) is structured ([9], [12]). However, once
the optimal Q(z) is found, in terms of the impulse response
or a state-space realization, we would not obtain the opti-
mal controller as K = Fl(J,Q(z)). K would have the right
input-output structure, i.e., K ∈ T(G,Py,Pu), but its state-
space structure will be destroyed i.e., K �∈ S(G,Py,Pu). Thus,
the solutions have the right input-output structure, they can
be implemented in a centralized way (cf. Section II-C), but
their networked realization is generally not known. Instead we
obtain a network implementable state-space realization Q̃ ∈
Ss(G,Py,Pu) for Q(z) using Theorem 1, and then a network
implementable state-space realization for the optimal K from
Theorem 2, even if K is unstable.

The optimization problems like (35) to be computationally
solved are transformed into vector problems [27]. Namely,
by rewriting T11(z) + T12(z)Q(z)T21(z) as h(z)−A(z)q(z)
where h(z) and q(z) are transfer function vectors of appropriate
dimensions. Here we adapt the technique used in [12] to our
notation to rewrite the optimization problem in (35) as an equiv-
alent unconstrained problem. To represent the vectorization of
a transfer function matrix, we make a slight change of notation
for representing the matrices. Instead of treating Qij(z) as a
sub-matrix of Q(z), we consider Qij(z) to be the element of
the matrix Q(z) in the ith row and jth column.

Let vec(Ts(G,Py,Pu))={vec(Q(z))|Q(z)∈Ts(G,Py,Pu)}
denote the set of vectorized elements of Ts(G,Py,Pu). If
Pu = {P1

u, . . . ,Pn
u } denotes the output partition, then denote

nu =
∑

i Pi
u to represent the total number of outputs. Similarly,

denote ny to represent the total number of inputs. It can
be seen that vec(Ts(G,Py,Pu)) ∈ RHnuny×1

∞ is a sub-space
due to the delay and sparsity constraints imposed by the set
Ts(G,Py,Pu). Let a denote the total number of elements of
Q ∈ Ts(G,Py,Pu) that are not constrained to be zero. Then

Q(z) ∈ Ts(G,Py,Pu) ⇐⇒ vec(Q(z)) = H(z)S(z)

for some S(z) ∈ RHa×1
∞ , where H(z) contains the delay and

sparsity constraints imposed by the set Ts(G,Py,Pu). Using
the results of vectorization, we get that

‖T11(z) + T12(z)Q(z)T21(z)‖2
= ‖vec (T11(z) + T12(z)Q(z)T21(z))‖2
=

∥∥vec (T11(z)) +
(
T21(z)

t ⊗ T12(z)
)
vec (Q(z))

∥∥
2

=
∥∥vec (T11(z)) +

(
T21(z)

t ⊗ T12(z)
)
H(z)S(z)

∥∥
2
.

Consider the following example where all the subsystems are
SISO for simplicity:

Φ(z) =

[
h1 h2

h3 h4

]
−
[
u1 u2

u3 u4

] [
q1 q2
q3 q4

] [
v1 0
v3 v4

]

with the constraints q2 = 0 and q3 = z−1s3, q1 = s1, q4 = s4.
Then

vec (Φ(z)) =

⎡
⎢⎣
h1

h3

h2

h4

⎤
⎥⎦−

⎡
⎢⎣
u1v1 u2v1z

−1 u2v3
u3v1 u4v1z

−1 u4v3
0 0 u2v4
0 0 u4v4

⎤
⎥⎦
⎡
⎣ s1
s3
s4

⎤
⎦ .

Thus, we can pose the problem (35) as an unconstrained H2

problem

min
∥∥vec (T11(z))+

(
T21(z)

t ⊗ T12(z)
)
H(z)S(z)

∥∥
2

subject to S(z) ∈ RHa×1
∞ (36)

which can be solved using standard techniques. Let S�(z)
denote the solution of the optimization problem (36). Then
the corresponding optimal Q�(z) is given by Q�(z) =
vec−1(H(z)S�(z)). Since Q�(z) ∈ Ts(G,Py,Pu), we can
obtain a realization Q̃ = (ÃQ, B̃Q, C̃Q, D̃Q) ∈ Ss(G,Py,Pu)

using Theorem 1 such that Q�(z) = tf(Q̃) and ÃQ is
Schur-stable. The corresponding controller is given by K� =
Fl(J, Q̃), where J is given by (25). From Theorem 2, we can
see that K� thus designed is the optimal stabilizing controller
implementable over the network G for the given plant P .
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A. Example

In this section, we present a simple example to explain the
various concepts and algorithms discussed in this paper. The
example is chosen to show the many features of our modeling
set-up and approach. Among them: 1) the dynamics of the
nodes are heterogeneous. 2) The network is generic although
small. It is not strongly connected, thus both sparsity and
delay constraints are present in the plant input-output structure.
3) The optimal controller is unstable and reasonably complex,
so we can use the full power of our approach to obtain a
networked realization of it. We consider a strictly causal inter-
action of 3 sub-systems over a directed communication network
represented by a directed pseudograph G given in Fig. 1. Let the
3 sub-systems {Pi}i∈{1,2,3} be expressed in their state-space
representation as given below

P1 :

⎡
⎢⎢⎢⎣
x+
1

z+1
y1
η21

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣
1.5 1 1 −2

−1 0 0 2

−1 0 0 2

1 0 0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣
x1

w1

u1

ν12

⎤
⎥⎥⎦

P2 :

⎡
⎢⎢⎢⎢⎣
x+
2

z2
y2
η12
η32

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
4 1 1 −1

1 0 0 1

1 0 0 1

1 0 0 0

1 0 0 0

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎢⎣
x2

w2

u2

ν21

⎤
⎥⎥⎦

P3 :

⎡
⎢⎢⎣
x+
3

z3
y3
η03

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1.5 1 1 1

−1 0 0 −1

−1 0 0 −1

0 0 0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣
x3

w3

u3

ν32

⎤
⎥⎥⎦

The network interconnection matrix, is as follows:

N :

⎡
⎣ ν12
ν21
ν32

⎤
⎦ =

⎡
⎣ 0 1 0 0

1 0 0 0

0 0 1 0

⎤
⎦
⎡
⎢⎢⎣
η21
η12
η32
η03

⎤
⎥⎥⎦

which is structured according to Ã(G) =

⎡
⎣ 0 1 0
1 0 0
0 1 0

⎤
⎦.

By interconnecting the three sub-systems over the network,
we get the interconnected system P with following state-space
matrices:

[
x+

z
y

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.5 −2 0 1 0 0 1 0 0
−1 4 0 0 1 0 0 1 0
0 1 1.5 0 0 1 0 0 1

−1 2 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
0 −1 −1 0 0 0 0 0 0

−1 2 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
0 −1 −1 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
x
w
u

]
.

Note that A has eigenvalues outside the unit disc. For compari-
son purpose, the optimal centralized controller is just a gain

Kc =

⎡
⎣ 1.1667 −0.3333 0
−1.6667 −0.6667 0
0.1667 0.1667 1.5000

⎤
⎦ .

The optimal centralized cost equals 3. Following Lemma 7 and
Lemma 8, we obtain following matrices F and L so that A+
BuF and A+ LCy are Schur stable:

F =

⎡
⎣−1.0351 2.0702 0

1.9185 −3.8371 0
0 −1.1356 −1.1356

⎤
⎦

L = Diag [ 1.0140 −4.1139 1.0027 ].
Note that F is structured according to A(G) while L is

block-diagonal. We can construct the following observer-based
network realizable controller:

Knom =

[
A+BuF + LCy −L

F 0

]
(37)

using the matrices F and L. Note that Knom is a stabilizing con-
troller implementable over G. In this example, this sub-optimal
distributed controller is unstable and gives a performance cost
|Fl(P,Knom)|2 = 63.803.

Then, following the formulation given in Section VII, we
obtain the optimal distributed controller that is implementable
over the given network. The performance cost |Tzw|2 for this
optimal controller is 8.8822. The order of the optimal dis-
tributed controller is 13 where the sub-systems K1, K2, and K3

have order 4, 5 and 4, respectively. K1 maps [xK′
1 , y′1, ν

K′
12 ]

′ →
[xK′

1 , u′
1, η

K′
21 ]

′
,K2 maps [xK′

2 , y′2, ν
K′
21 ]

′→ [xK′
2 , u′

2, η
K′
12 , η

K′
32 ]

′
,

and K3 maps [xK′
3 , y′3, ν

K′
23 ]

′ → [xK′
3 , u′

3, η
K′
03 ]

′
, see equation at

the bottom of the next page.
The distributed controller uses controller order to compen-

sate for the lack of full communication. However, the order of
the resulting optimal controller can be quite large in general.
Thus, the optimal cost provided by our optimal distributed
controller can be used as a bound in designing sub-optimal
reduced-order controllers realizable over the network.

Second, the optimal distributed controller is non-minimal but
is stabilizable and detectable such that the closed-loop system
is internally stable.

Last but not least, we note that the optimal distributed
controller is unstable with two unstable poles at −1.1157±
1.3488i. Realizing controllers like these, over a network, based
only on their transfer functions is a problem in general.

In essence, this paper provides an optimal stabilizing network
implementable controller and also provides a methodology to
implement it over the given network even when the controller
is unstable.

VIII. CONCLUSION

In this paper, we first gave a characterization of intercon-
nected systems which are causal interactions of sub-systems
over a delay-free and noiseless network in terms of the con-
straints followed by their state-space and input-output descrip-
tions. Then, we introduced the notion of implementability and
realizability of systems over delay-free and noiseless networks.
We discussed the importance of the property of network imple-
mentability and made it a design requirement in the synthesis
of distributed controllers. We provided constructive proofs to
obtain network realizations for stable networked systems rep-
resented by structured transfer function matrices. We looked
at the properties of interconnected systems that are network
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implementable and used these properties to parametrize the
set of all-stabilizing network implementable controllers, under
additional conditions. We then proposed a solution to the H2

optimal networked control problem for networked plants on the
same network, and provided the optimal distributed controller
implementable over the given network.

The results of this paper point to several directions for future
research. In particular, more efficient network implementation
and realization methods, the characterization of minimal net-
worked realizations and the networked model-reduction for
obtaining distributed controllers with lower order while main-
taining network implementability property. As the results of
the paper are rooted in the rich field of modern and robust
control, we hope that they will lead to several extensions and
new developments for networked systems.

APPENDIX

A. Proof of Theorem 1
Proof: The main idea of the proof is to show that if a

stable Q(z) satisfies the delay and sparsity constraints corre-
sponding to T(G,Pu,Py), then the transfer function matrix can
be realized over the delay-free and noiseless network G without
introducing any hidden unstable modes that are not present in

the stable transfer function Q(z). There are obviously many
more ways to get a network realization of Q(z), but we present
the following procedure to keep the proof simple. Since Q(z) ∈
T(G,Pu,Py), Q(z) is partitioned according to (Py,Pu). Let
{Qij(z)}i,j be the partitions which are essentially the transfer
function matrices mapping Uj(z) to Yi(z). First, we separate
these matrices into two categories following (6).

1) Qij(z) is of the form z−l(j,i)Hij(z) where Hij(z) ∈ Rp

and l(j, i) is the length of a shortest path from node j to
node i, i.e., the input of node j can affect the output of

node i after l(j, i) time steps. Recall that l(i, i)
Δ
= 0∀ i∈V .

2) Qij(z) = 0, i.e., there exists no path from node j to
node i on G.

We do nothing about the zero transfer function matrices, while
we further refine the classification in 1) based on the connectiv-
ity of the nodes.

In particular, we consider three cases: l(j, i) = 0, l(j, i) = 1,
and l(j, i) > 1 For each case, we consider minimal realizations
and define states corresponding to the mentioned nodes.

• When l(j, i) = 0, j = i, define states xjj(k) at node j

Qjj(z) :
xjj(k + 1) = Ajjxjj(k) +Bjjuj(k)
yjj(k) = Cjjxj(k) +Djuj(k)

. (38)

K1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.3153 0.3761 0.0162 0.0003 0.8504
−8.776 −0.5699 −0.1741 −0.0029 −8.776 04,1, I4,4
0.5454 2.0099 0.5923 0.0106 0.5454
0.0097 −0.4995 0.9859 −0.0224 0.0097

0.8292 0.3761 0.0162 0.0003 1.8643 1, 01,4

3.2751 0.6224 −0.0089 −0.0003 0
−1.8388 0.6224 −0.0089 −0.0003 0
−8.7927 0 0 0 0 06,1, 06,4
0.0658 0 0 0 0
0.0103 0 0 0 0

0 0.0741 −0.0076 0.0009 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

K2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2.5944 1.0699 −0.0249 −0.0118 0 2.7573
−8.7927 −0.6650 −0.2102 −0.1303 0 8.7927
0.0658 1.9547 0.0814 0.0802 0 −0.0658 05,1, I5,5
0.0103 0.5032 1.0182 0.5836 0 −0.0103

0 0 0 0 0 0

−2.4806 1.0699 −0.0249 −0.0118 0 −1.3565 1, 01,5

−1.6585 0.6675 0.0302 0.0207 0 0
−1.6306 0.6675 0.0302 0.0207 0 0
17.5520 0 0 0 0 0 05,1, 05,5
−0.0194 0 0 0 0 0
−1.091 0 0 0 0 0

0.2219 −0.0909 −0.0714 0.0129 −1 0
0.2192 −0.0909 −0.0714 0.0129 −1 0 03,1, 03,5
−8.6785 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

K3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.7192 0.0689 0.0018 −0.0366 0.3548 0 1 0
−8.6785 −0.6965 0.3506 −0.0258 −8.6785 0 0 1

0 −1.4659 0.7539 −0.0579 0 0 0 0
0 0 0.2499 −0.0575 0 0 0 0

0.2219 0.0689 0.0018 −0.0366 1.3575 1 0 0

0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
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• When l(j, i) = 1, j ∈ N−
i \ {i} or i ∈ N+

j \ {j}, define
states xij(k) at node j

Qij(z) :
xij(k + 1) = Aijxij(k) +Bijuj(k)
yij(k) = Cijxij(k)

. (39)

• When l(j, i) ≥ 2, let a shortest path be given by p(j, i) =

m0
ijm

1
ij . . .m

l(j,i)
ij , where m0

ij = j and m
l(j,i)
ij = i, i.e.,

the path starts at node j and terminates at node i and mr
ij

for r = 1, . . . , l(j, i)− 1 are intermediate nodes. In this
case, we define states at each node on the path as follows:

z−1Hij(z) :
x0
ij(k + 1) = Aijx

0
ij(k) +Bijuj(k)

y0ij(k) = Cijx
0
ij(k)

. (40)

Note that states x0
ij(k) are defined at node j and the out-

puts y0ij(k) are passed to node m1
ij , i.e., the first node in

the path from j to i. At nodes mr
ij , r = 1, . . . , l(j, i)− 1,

we define states xr
ij(k) corresponding to one-step delay

systems

z−1 :
xr
ij(k + 1) = yr−1

ij (k)
yrij(k) = xr

ij(k).
(41)

We denote the state vector corresponding to each node i to
be xi(k), which is formed by appending the states xji(k) ∀ j ∈
N+

i , xr
ab(k) whenever mr

ab = i, i.e., when node i is an interme-
diate node of a shortest path from some node b to some other
node a. Similarly, the network output vector ηi(k) is formed by
appending yji(k) ∀ j ∈ N+

i \ {i} and yrab(k) (when mr
ab = i),

while the network input vector νi(k) is formed by appending
yij(k) ∀ j ∈ N−

i \ {i} and yr−1
ab (k) (when mr

ab = i). Note that
the network inputs defined at node i do not instantaneously
affect the network outputs at node i.

At node i, the output yi(k) is given by

yi(k) = yii(k)+
∑

j∈N−
i
\{i}

yij(k)+
∑

j:l(j,i)≥2

y
l(j,i)−1
ij (k). (42)

Thus, we can define n sub-systems, {Q̃i}i, each with local
states xi(k), local inputs ui(k), local outputs yi(k), network
inputs νi(k) and network outputs ηi(k). Following the state-
space equations (38)–(41), concerning these states, inputs and
outputs at each node, we can see that xi(k + 1) and yi(k)
are linear functions of xi(k), ui(k) and νi(k) while ηi(k)

is only a function of xi(k). Thus, the n sub-systems {Q̃i}i
satisfy the structure given in (9) with Dηu

i = 0 and Dην
i = 0

while the network inputs and network outputs satisfy (14). Thus
{Q̃i}i interacting over the zero-delay network G represents the
network realization of the given Q(z).

We show that the network realization thus obtained is also
asymptotically stable and does not contain any internal unstable
modes due to the introduction of additional states in the realiza-
tion. To check the system stability, we consider the zero-input
system by assuming ui(k) = 0 ∀ i, k.

First, we shall separate the states defined earlier into two cat-
egories. The first category consists of the states corresponding
to the transfer function matrices Qij(z), ∀ i ∈ V, j ∈ N−

i . This
set of states can be written as X1(k) = vert[xij(k)]i∈V,j∈N−

i
.

From the state-space equations corresponding to these states,
we get

X1(k + 1) = diag[Aij ]i∈V,j∈N−
i
X1(k) (43)

when ui(k) = 0 for all i, k
The second category consists of the states corresponding to all

the Qij(z) when l(j, i) ≥ 2. For example, assume that a short-
est path from node j to node i has length greater than 1. Then

p(j, i) = m0
ijm

1
ij . . .m

l(j,i)
ij

where l(j, i) ≥ 2, m0
ij = j and m

l(j,i)
ij = i. Corresponding to

this path, the states earlier defined are x0
ij(k), x

1
ij(k), . . . ,

x
l(j,i)−1
ij (k). Let us define

Xij(k) = vert
[
xr
ij(k)

]
r∈{0,...,l(j,i)−1}

corresponding to the path p(j, i). From the state-space equa-
tions corresponding to these states, we can see that

Xij(k + 1) =

⎡
⎢⎢⎢⎢⎣
Aij

Cij 0
I 0

I 0
. . .

⎤
⎥⎥⎥⎥⎦Xij(k). (44)

Define X2(k) = vert[Xij(k)]{i,j:2≤l(j,i)<n} as the set of
states corresponding to Qij(z) when l(j, i) ≥ 2. Note that
X1(k) and X2(k) constitute all the states defined corresponding
to the n sub-systems {Q̃i}i. From (43) and (44), we can see

that the A- matrix corresponding to the dynamics of

[
X1(k)
X2(k)

]
is block lower triangular with {Aij}i,j on the diagonal and the
rest of the diagonal terms being zero.

By hypothesis, Q(z) is BIBO stable which implies that
{Qij(z)}i,j are all BIBO stable, which in turn implies that
{Hij(z)}i,j are all BIBO stable. Note that, we assumed min-
imal realizations of Hij(z) in (38)–(40) which implies that the
matrices {Aij}i,j are all Schur-stable. Thus, we can see that
the A-matrix of the network realization also has its eigenvalues
strictly inside the unit disc. This implies that the network real-
ization corresponding to the n sub-systems {Q̃i}i interacting
over the network G is stabilizable and detectable even after
introducing more states than required to minimally realize the
transfer function matrix Q(z). �

B. Example for Realizing a Stable Transfer Function Matrix
Over a Given Network

In this example, we consider realizing a given transfer func-
tion as a strictly causal interaction of three sub-systems over
a delay-free and noiseless network shown in Fig. 1(b). So,
G = (V, E) where V = {1, 2, 3} and E = {(1, 1), (1, 2), (2, 1),
(2, 2), (2, 3), (3, 3)}. Let the transfer function of a stable inter-
connected system be given by

Q(z) =

⎡
⎣

z+1
z−0.5

0.5
z−0.8 0

−0.1
z−0.5

z+0.1
z−0.1 0

1
(z−0.1)(z−0.8)

0.3
z−0.8

z−0.2
z−0.5

⎤
⎦ . (45)
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Note that (45) satisfies the delay and sparsity constraints
corresponding to the causal network G. Following the notation
from Theorem 1, we write the minimal state-space realizations:

Q11(z)=
z + 1

z − 0.5
→

[
x+
11

y11

]
=

[
0.5 1

1.5 1

] [
x11

u1

]

Q12(z)=
0.5

z − 0.8
→

[
x+
12

y12

]
=

[
0.8 1

0.5 0

] [
x12

u2

]

Q21(z)=
−0.1

z − 0.5
→

[
x+
21

y21

]
=

[
0.5 0.25

−0.4 0

][
x21

u1

]

Q22(z)=
z + 0.1

z − 0.1
→

[
x+
22

y22

]
=

[
0.1 0.5

0.4 1

] [
x22

u2

]

z−1H31(z)=zQ31(z) =
z

(z − 0.1)(z − 0.8)

→
[
x0+
31

y031

]
=

⎡
⎣ 0.9 −0.32 1
0.25 0 0

1 0 0

⎤
⎦[

x0
31

u1

]

z−1 →
[
x1+
31

y131

]
=

[
0 1

1 0

] [
x1
31

y031

]

Q32(z)=
0.3

z − 0.8
→

[
x+
32

y32

]
=

[
0.8 0.5

0.6 0

] [
x32

u2

]

Q33(z)=
z − 0.2

z − 0.5
→

[
x+
33

y33

]
=

[
0.5 0.5

0.6 1

] [
x33

u3

]
.

In the graph G, the shortest path (with length 2) from node 1
to node 3 is given by 1 → 2 → 3 and the corresponding states
are defined by x0

31(k) and x1
31(k). Following the proof of

Theorem 1, we define state vectors corresponding to each node
to be:

x1 =

⎡
⎣x11

x21

x0
31

⎤
⎦ , x2 =

⎡
⎢⎣
x12

x22

x32

x1
31

⎤
⎥⎦ , x3 = x33.

The outgoing messages at each node are given by

η1 = η21 =

[
y21
y031

]
, η2 =

[
η12
η32

]
=

⎡
⎣ y12
y32
y131

⎤
⎦ , η3 = η03

and the outputs at each node for each k are given by

y1 = y11 + y12

y2 = y21 + y22

y3 = y131 + y32 + y33.

Since the network G is delay-free and noiseless, the incoming
message vectors at each node are given by

ν1 = ν12 = η12, ν2 = ν21 = η21, ν3 = ν32 = η32

which implies that the network interconnection matrix N is
given by

⎡
⎣ ν1
ν2
ν3

⎤
⎦ =

⎡
⎢⎢⎢⎢⎣
0 0 1 0 0 0

1 0 0 0 0 0
0 1 0 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎦
⎡
⎣ η1
η2
η3

⎤
⎦ . (46)

Note that N is a static gain matrix which is structured according

to

⎡
⎣ 0 1 0
1 0 0
0 1 0

⎤
⎦ and partitioned according to (Pν ,Pη) where

Pν = (1, 2, 2) and Pη = (2, 3, 1).
Using the state-space matrices of Qij(z), the dynamics at

each node i are defined as a sub-system Q̃i given by equation
at the bottom of the page. Note that the procedure presented
in the proof of Theorem 1 can lead to extra repeated stable
eigenvalues. A minimal realization should be performed at each
node, afterward. We leave the development of more efficient
procedures to future research.

Q̃1 :

⎡
⎢⎢⎢⎢⎣
x+
11

x+
21

x0+
31

y1
η21

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5 0 0 0 1 0
0 0.5 0 0 0.25 0
0 0 0.9 −0.32 1 0
0 0 0.25 0 0 0

1.5 0 0 0 1 1

0 −0.4 0 0 0 0
0 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
x11

x21

x0
31

u1

ν12

⎤
⎥⎥⎥⎥⎦

Q̃2 :

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x+
12

x+
22

x+
32

x1+
31

y2
η12
η32

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.8 0 0 0 1 0 0
0 0.1 0 0 0.5 0 0
0 0 0.8 0 0.5 0 0
0 0 0 0 0 0 1

0 0.4 0 0 1 1 0

0.5 0 0 0 0 0 0

0 0 0.6 0 0 0 0
0 0 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

x12

x22

x32

x1
31

u2

ν21

⎤
⎥⎥⎥⎥⎥⎥⎦

Q̃3 :

⎡
⎣x+

33

y3
η03

⎤
⎦ =

⎡
⎣ 0.5 0.5 0 0

0.6 1 1 1

0 0 0 0

⎤
⎦
⎡
⎣x33

u3

ν32

⎤
⎦
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