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Abstract—Compressive data gathering (CDG) has emerged
as a useful method for collecting sensory data in large scale
sensor networks; this technique is able to reduce global scale
communication cost without introducing intensive computation,
and is capable of extending the lifetime of the entire sensor
network by balancing the aggregation and forwarding load
across the network. With CDG, multiple forwarding trees are
constructed, each for aggregating a coded or compressed mea-
surement, and these measurements are collected at the sink for
recovering the uncoded transmissions from the sensors. This
paper studies the problem of constructing forwarding trees for
collecting and aggregating sensed data in the network under the
realistic physical interference model. The problem of gathering
tree construction and link scheduling is addressed jointly, through
a mathematical formulation, and its complexity is underlined.
Our objective is to collect data at the sink with both minimal
latency and fewer transmissions. We show the joint problem is
NP-hard and owing to its complexity, we present a decentralized
method for solving the tree construction and the link scheduling
sub-problems. Our link scheduling sub-problem relies on defining
an interference neighbourhood for each link and coordinating
transmissions among network links to control the interference.
We prove the correctness of our algorithmic method and analyse
its performance. Numerical results are presented to compare the
performance of the decentralized solution with the joint model
as well as prior work from the literature.

Index Terms—Wireless Sensor Network, Compressive Data
Gathering, Routing, SINR, Link Scheduling, Energy, Latency.

I. INTRODUCTION

Wireless sensor networks (WSNs) have received significant
attention due to their versatility and have been deployed widely
in applications ranging from health monitoring to the moni-
toring of environment, traffic, underground water pipes, struc-
tural and critical infrastructure, among others. Many of these
applications require sensors to periodically sense and send
sensory data to a remote central unit (e.g., sink) for processing,
often through multi-hop paths. These energy limited sensors,
once deployed, may receive little or no maintenance, and
therefore gathering data in the most energy efficient manner
becomes critical for the longevity of wireless sensor networks.
Compressive Data Gathering (CDG), based on compressive
sensing (CS) theory, is one of the most efficient methods for
gathering sensed data en-route to the sink [1] and has recently
been receiving focal attention owing to its ability to reduce
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the global communication cost without incurring intensive
computation or transmission overhead. With compressive data
gathering, rather than receiving all readings, e.g., from n
sensors, the sink will only receive few weighted (encoded)
sums (e.g., m, m� n) of all the readings, from which the sink
will be able to recover (decode) the original data, as long as
the readings can be transformed or compressed in some sparse
orthonormal transform domain [1,2]; here, m = O(klogn)
and k represents the sparsity representation of the data in the
transform domain. CDG has attracted researchers’ attention
only recently; this technique has shown to yield substantial
energy savings, therefore extending the network lifetime, and
achieve load balancing by dispersing the communication costs
to all sensors along a given route [1].

In our work, we suppose the original data is compressible
in some transform domain, and it is recovered at the sink
by receiving m sparse projections [3], where each projection
corresponds to an aggregation of data from sensors according
to the theory of compressive sensing. Here, projections are
gathered by establishing forwarding trees, one tree for each
projection which gathers coded (compressed) data from nodes
involved in the projection. Projections may be either collected
by projection nodes (selected sensors), which subsequently
send their collected coded measurements to the sink (e.g.,
through shortest paths) to recover the original data, or at
the sink itself. Upon collecting all projections, the sink then
attempts to recover the original data by solving a convex
optimization problem [4]. In our work we suppose the sink
directly collects compressed measurements, and therefore, our
gathering problem reduces to constructing forwarding trees,
each rooted at the sink, for efficiently collecting measurements.

In this paper, we consider the interaction between forward-
ing tree construction and link scheduling under the physical
interference model. Namely, once the gathering trees are con-
structed, links on the constructed trees need to be scheduled
for transmissions such that adjacent transmissions do not
cause harmful interference on one another (thus corrupting
the compressed measurements) while maintaining a maximum
spatial reuse of the wireless spectrum. Further, unlike previ-
ous work (e.g. [5]), to reduce the number of transmissions
along the forwarding trees, parent nodes should only transmit
their measurements upon receiving measurements from their
children; once downstream coded/compressed measurements
are received, such measurements are combined with local
measurements for uplink transmission. Therefore, finding for-
warding trees to collect measurements at the sink in the
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most energy efficient manner under the physical interference
model becomes a complex problem of combinatorial nature.
We mathematically model this problem and underline its
complexity. It should be noted here that link scheduling in
wireless networks under the physical interference model is
shown to be NP-complete [6,7]; we further show that the
problem of scheduling links belonging to the forwarding trees
is NP-hard. Owing to the complexity of the joint problem,
we also present a decentralized method for solving the tree
construction and the link scheduling sub-problems. Our link
scheduling sub-problem relies on defining a local interference
neighbourhood for each link and coordinating transmissions,
through message exchange, among network links to control
the level of interference in the neighbourhood of each link.
Our routing subproblem consists of solving a tree construction
subproblem in a decentralized way and adding refinements to
help achieve better scheduling performance. More specifically,
the main contributions of our paper are summarized as follows:
• We define the problem of forwarding tree construction

and link scheduling (FTCS) and we mathematically for-
mulate the problem as a mixed integer linear program
(MILP) through which we may obtain optimal solutions
for small size networks.

• We analyze the complexity of FTCS.
• To overcome the computational complexity, we propose a

distributed method that can solve for large scale networks.
• We prove the correctness of our algorithmic method and

analyze its performance.
• We validate through simulations the efficiency and per-

formance of our distributed FTCS method.
To the best of our knowledge, our work is the first to resolve

the problem of compressive data gathering under physical
interference constraints in a decentralized manner without
requiring to partition the unit square area into cells. Our
method can be used to efficiently operate large wireless sensor
networks which periodically gather sensory data in the most
energy efficient manner and with gathering latency constraints.
Our work is compared against a state of the art technique
from the recent literature. The rest of the paper is organized
as follows. Section II presents system model and problem
description. A mathematical model is given in Section III.
Section IV proposes the algorithmic method, followed by its
performance analysis and numerical results in Section V and
VI respectively. We summarize the related work in Section
VII and conclude in section VIII.

II. SYSTEM MODEL AND PROBLEM DEFINITION

A. System Model

We model a wireless sensor network as a connected graph
G = (V,E), where V is the set of n nodes deployed randomly
in a region and E is the set of links between any two
sensor nodes which reside within each other’s communication
radius. The density of the network can be adjusted by varying
the transmission power of the nodes. However, varying the
transmit power yields a system model that is much harder to
solve. For simplicity, we assume a fixed transmit power P
for all sensor nodes and we assign the power P such that

the resulting graph is connected without a single disconnected
node. We assume each sensor at each round (period) has a
data reading xi (for example, speed, density or temperature)
which it intends to send to the sink that may be located
at a certain location in the network. Consequently, at each
round, the sink needs to gather, in total, a data vector of
size n (X = [x1, x2, ...., xn]T ) from all the nodes in the
network. Since not all the nodes may have a direct link
with the sink, sensors will send their readings over multi
hop routes. We consider a Time Division Multiple Access
(TDMA) based MAC access where time is divided into slots
of equal length; we define the set of links which can be active
concurrently in the same time slot as a configuration. Here,
a configuration consists of links/transmissions from multiple
forwarding trees which may be active simultaneously, such
that no one parent (in one tree) is scheduled for transmission
before it receives transmissions from its children. Let dij be
the Euclidean distance between two nodes i and j and let Gij
be the channel gain from a transmitter node i to a receiver
node j, (e.g., Gij = d−αij , α is the path lost exponent). Now,
under the physical interference model [8], in the presence of
concurrent transmissions, a receiver j can successfully receive
the transmission from node i if the signal to interference plus
noise ratio (SINR) at j is above a certain threshold β, which
is formulated as:

SINR(i,j) =
P Gij

η +
∑
∀(h,k)∈E:h6=i P Ghj

≥ β ∀(i, j) ∈ E

(1)

where η is the background noise. In general, we refer to
the number of time slots needed to schedule the links in
all forwarding trees (to collect all compressed measurements)
as a round. The size of a round determines the latency for
collecting the measurements. We further assume all packets
(each carrying a compressed measurement) are of equal size.

B. Compressive Data Gathering
Compressive Data Gathering (CDG) promises to efficiently

recover n sensors’ readings at the sink with far fewer sample
measurements, as long as the original readings could be trans-
formed or compressed in some sparse orthonormal transform
domain. Suppose the original data X = [x1, x2, ...., xn]T has
a k-sparse representation under a proper matrix Ψ, where Ψ
is a Fourier transform matrix of size n×n. That is X = ΨŜ,
where Ŝ is a k-sparse column vector representation of X and
only k coefficients of Ŝ are non-zero and k � n. According
to the Restricted Isometry Property (RIP) of the CS theory [2],
the sink may receive m = O(k log n) measurements instead of
n readings, where m� n; that is Z = ΦΨŜ = ΦX , where Z
is a column vector of sample measurements of size m×1 and
Φ is a random sample measurement matrix of size m×n (the
column vectors of Φ are chosen at random with i.i.d entries
from a normal distribution, or more generally they follow any
Gaussian distribution). In other words, the sink can perfectly
recover the original data X by receiving Z = [z1, z2, ...., zm]T ,
where zt =

∑n
j=1 φtjxj , t = 1, 2, ...,m and φtj is a coeffi-

cient in matrix Φ at row t and column j. Each zt represents
a weighted sum of measurements from nodes in the network
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with non-zero coefficients in a row of the matrix Φ. We refer
to these nodes as interest nodes and the data aggregated from
those interest nodes as one projection. The matrix Φ has m
rows, one row for each weighted sum (projection), and n
columns, one column for each sensor node.

Now, from m measurements (Z), using the random sample
matrix Φ and the Fourier transform matrix Ψ, the sink recovers
the sparse representation of the data S̃ (not the original data)
by solving the convex optimization problem of (2).

min
S̃
‖S̃‖1 subject to Z = ΦΨS̃ = AS̃ (2)

After recovering the sparse vector S̃, the original data (X)
is obtained by letting X = ΨS̃. For data recovery, the matrix
A = ΦΨ has to satisfy the RIP. A matrix A obeys the RIP
with high probability if the entries are chosen according to
a Gaussian, Bernoulli, or more generally, any sub-gaussian
distribution [2]. Note that the matrix Ψ is only required at
the sink for decoding (recovering) and it is not required for
encoding at the nodes. Matrix Φ is fixed and can be considered
as a priori knowledge for the entire network [1] or, each
random vector (corresponding to one sensor node) can be
generated locally at each node using a predetermined seed
for a pseudo random generator. Seeds may be distributed by
the sink to the nodes in the networks. For more details on CS,
the reader is referred to [2,4].

In [3], the authors have shown that there is a trade-off
between the sparsity of the projections (number of nonzero
coefficients in each row of the matrix Φ) and the number
of projections needed (number of rows in matrix Φ). In this
paper, to distribute the non-zero coefficients more evenly in
the matrix Φ and make each projection as sparse as possible,
as in [9], the number of non-zero coefficients in each row of
the matrix Φ is chosen as d nme such that none of the columns
in Φ has all-zero entries. Since the sparsity and number of
projections (m) depend on the k-sparsity Fourier transform
representation of sensors’ readings (as we mentioned earlier),
the random sample matrix Φ presented here satisfies all the
conditions required to fully recover the original data readings
at the sink using the compressive sensing technique.

C. Problem Description

We are interested in gathering, in each round, measurements
at the sink from all the sensors. We assume sensors have finite
battery lifetime. We also assume transmissions in the network
can interfere with one another and therefore an access scheme
should be in place to coordinate the transmissions.

Problem Definition 1 (Forwarding tree construction in
PCDG): Given a connected graph G of n sensor nodes, a
sink, and a sparse matrix Φ, the problem of finding tree
construction in projection based compressive data gathering
(PCDG) consists of finding m forwarding trees, each tree to
collect coded measurements from a subset of nodes (nodes
with non-zero coefficients in a corresponding row of matrix
Φ, where such nodes are referred to as interest nodes) en-
route to the sink in the most energy efficient manner.

Here, each tree t (1 ≤ t ≤ m) corresponds to one projection
which gathers one weighted sum zt from a set of interest

nodes at the sink. Our objective is to construct these trees
such that the total number of transmissions in the network is
minimized.The gathering on each routing tree is performed
as follows; each interest node (j, j ∈ It, where It is the set
of interest nodes of tree t) upon collecting its measurement,
multiplies its reading xj with its random coefficient φtj and
combines the data φtjxj with those received from its descen-
dants (if any) and sends the obtained weighted (coded) sum
in one packet to the parent node. The sink which is the root
of all trees will receive one weighted sum zt =

∑n
j=1 φtjxj

from each set of interest nodes (i.e., tree). Without compressive
data gathering, nodes closer to the sink will perform more
forwarding than nodes farther away from the sink. Thus, with
CDG, the transmission load is dispersed across all sensors in
the network, and the energy consumption is balanced, yielding
an extended network lifetime. It should be noted that this
problem differs from plain compressive data gathering [1]
in that it uses sparse random projections, and differs from
distributed sparse random projections [3] since we allow in-
network data gathering en-route to the sink.

Problem Definition 2 (Scheduling): Given a set of
forwarding trees, the scheduling problem consists of finding
maximal size sets (where a set is a configuration1 of active
links in one time slot) and allocating time slots for them such
that the resulting schedule length is minimized. Such problem
guarantees the delivery of compressed measurements to the
sink with minimal latency.

Problem Definition 3 (FTCS): The joint problem of
forwarding tree construction and scheduling (FTCS) is the
combination of problems 1 and 2.

We illustrate the operation of FTCS on the sample network
shown in Fig. 1; namely, we illustrate the interaction between
the tree construction and link scheduling and highlight the
impact on the data gathering latency (or the schedule length).
We compare a joint FTCS method with one that constructs
trees and schedule them separately. The results are depicted
in Fig. 1(a)-1(b). The example shows how to gather data at the
sink from all sensors using three projections. As the figures
show, both methods require the same number of transmissions
(links) to gather the data, however, Fig. 1(a) shows that the
trees in the joint FTCS can be scheduled in only 8 time slots,
whereas, the disjoint method, as Fig. 1(b) shows, requires 9
time slots to collect the measurements. This is due to the
fact that trees are constructed without considering the require-
ments for achieving shorter schedule length. Such insights
will be exploited as we develop our decentralized method
in subsequent sections. Fig. 1(c) shows a tree construction
using a distributed (algorithmic) method, where the scheduling
length of this method depends on the radius of the interference
neighbourhood of each link. Our distributed method as well
as the interference neighbourhood will be properly introduced
and explained in Section VI.

III. PROBLEM FORMULATION

In this section, we formulate FTCS as an optimization
problem whose objective is to obtain a set of forwarding

1A configuration is formally defined in Section II-A.
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(c) Algorithmic tree construction

Fig. 1. FTCS, m = 3 (m = 20%n). In the network, the black square S is the sink which intends to gather data from all nodes. Same colour arcs represents
aggregation tree for one projection. Each set of interest nodes is illustrated with same colour. The numbers on the arcs represent the time slot when the tree
links are active.

TABLE I
NOTATIONS USED IN PROBLEM FORMULATION

Parameters
V The set of nodes in the network.
E The set of edges in the network.
n Total number of nodes.
m Total number of projections (trees).
|It| Total number of interest nodes in set It.
P Node power transmission.
Gij Channel gain from transmitter i to receiver j.
β SINR threshold.
η Background noise.
S The set of a large number of time slots sufficient for one

round of data gathering (for all transmissions).
T The set of m trees required for compressive data gathering.
ω Weight of each term in the objective function. (0 ≤ ω < 1)

Variables
f t
ij ∈ N The amount of traffic flow (data traffic load) on link

(i, j) in tree t.
xtij ∈ {0, 1} Indicating whether link (i, j) is in tree t.
at,sij ∈ {0, 1} Indicating whether link (i, j) in tree t is active in

time slot s.
λs ∈ {0, 1} Indicating if at least one link is active at time slot s.

trees which can be scheduled to deliver measurements to
the sink in the shortest schedule period to achieve a balance
between lower latency delivery and energy efficient gathering.
We mathematically formulate the problem as a mixed integer
linear program (MILP).

The notations used throughout this section are listed in Table
I. The objective of our design is to construct trees which
achieve a balance between the number of links needed to
gather the measurements (and thus energy expended for data
gathering) and the required number of time slots needed to
schedule the constructed trees (i.e., gathering latency):

Minimize ω
∑
t∈T

∑
(i,j)∈E

xtij + (1− ω)
∑
s∈S

λs, (3)

subject to: (4) - (13), where these constraints will be derived
in Sections III-A to III-J.

The first sum in the objective function corresponds to
the total number of links in the constructed trees and the
second one depicts the scheduling length. The parameter ω
(0 ≤ ω < 1) indicates the weight of each term in the objective.
Depending on the task, if one of the terms (whether energy
efficiency or time efficiency) is more important than the other,

we give more weight for that particular term. Otherwise, we
assign equal weight to both terms (ω = 0.5). The following
are the constraints for our problem:

A. Traffic Flow conservation constraints
These constraints assert that the total incoming traffic flow

(data traffic load) plus the traffic flow originating at a particular
node is equal to the total outgoing traffic flow. Let f tij ∈ N
being the data traffic load (number of packets) imposed by
certain routing on edge (i, j) or between nodes i and j in
tree t. The following constraints, for each tree t, force the
set of interest nodes (vector set It) which belong to one tree
(projection) to have one data flow from each interest node to
the sink:∑
j:(i,j)∈E

f tij −
∑

j:(j,i)∈E

f tji =

 −|It|, i = sink;
1, ∀i ∈ It;
0, otherwise.

∀t ∈ T

(4)

B. Tree link creation constraints
These constraints create forwarding links for a tree. Let

xtij ∈ {0, 1} indicate whether there is a link between nodes i
and j in tree t. xtij = 1, if there is a positive traffic flow from i
to j, and zero otherwise. This implies that f tij = 0⇔ xtij = 0
and f tij > 0 ⇔ xtij = 1 which is achieved by the following
inequalities: (note that n (number of nodes) is always greater
than any f tij){

f tij − xtij ≥ 0

xtij −
ft
ij

n ≥ 0
∀(i, j) ∈ E, t ∈ T. (5)

C. Outgoing link constraints
These constraints assert that each node can have a maximum

of one outgoing transmission (link) in each tree to avoid loops.
Otherwise, data is not aggregated to a root (sink).∑

j:(i,j)∈E

xtij ≤ 1 ∀i ∈ V, t ∈ T. (6)

D. Half duplex constraints
The half duplex constraints ensure that a node may not

transmit and receive in the same time slot.∑
t∈T

at,sij +
∑
t∈T

at,sjk ≤ 1 ∀(i, j) ∈ E, (j, k) ∈ E, s ∈ S.

(7)
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E. Transmitting constraints

These constraints ensure that a transmitter cannot simulta-
neously transmit to multiple receivers in the same time slot.∑

t∈T

∑
j:(i,j)∈E

at,sij ≤ 1 ∀i ∈ V, s ∈ S. (8)

F. Receiving constraints

These constraints ensure that a receiver cannot simultane-
ously receive from multiple senders in the same time slot.∑

t∈T

∑
i:(i,j)∈E

at,sij ≤ 1 ∀j ∈ V, s ∈ S. (9)

G. Link scheduling constraints

These constraints are required to force a link in a tree to be
scheduled only once in a time slot.∑

s∈S
at,sij = xtij ∀(i, j) ∈ E, t ∈ T. (10)

H. Transmission order constraints

These constraints are required to ensure that a node in a tree
cannot transmit unless it receives all packets from its children.
That is, a link (i, k) in a tree t at time slot s can be scheduled,
if all links to its children have been scheduled prior to time
slot s (i.e., in time slots between 1 and s−1). In other words,
at,sik = 1, if

∑s−1
s=1

∑
j:(j,i)∈E a

t,s
ji ≥

∑
j:(j,i)∈E x

t
ji.

In LP format, the above condition is written as follows:
s−1∑
s=1

∑
j:(j,i)∈E

at,sji +B(1− at,sik ) ≥
∑

j:(j,i)∈E

xtji

∀(i, k) ∈ E, s ∈ S, t ∈ T.
(11)

B is a big constant, which is bigger than the total number of
links in any combination of m trees. When at,sik = 0, inequality
(11) is always satisfied. But, when at,sik = 1, (11) reduces to∑s−1
s=1

∑
j:(j,i)∈E a

t,s
ji ≥

∑
j:(j,i)∈E x

t
ji which implies that the

summation of all links coming to node i had to be activated
at time slots between 1 and s − 1, otherwise, node i can not
transmit (or, link (i, k) can not be active, i.e., at,sik 6= 1) at the
current time slot s.

I. SINR constraints

The following constraints make sure that the SINR for each
active link is above the thresholdβ.

P.Gij +Bt,sij (1− at,sij ) ≥ β(η +
∑
t∈T

∑
(k,h)∈E;k 6=i

P.Gkj .a
t,s
kh

∀(i, j) ∈ E, s ∈ S, t ∈ T.
(12)

where Bt,sij is a constant and satisfies the following:
Bt,sij ≥ η +

∑
t∈T

∑
(k,h)∈E;k 6=i P Gkj a

t,s
kh

In (12), if link (i, j) in tree t is active in time slot s (i.e.,
at.sij = 1), then (12) reduces to expression (1).

J. Finding occupied time slots in a schedule

The following constraints check whether a time slot s has
at least one active link or not.

λs ≥ at,sij ∀s ∈ S , t ∈ T , (i, j) ∈ E. (13)

Note, after solving the above problem, the time slots which
have no active links are removed from the schedule and the
remaining time slots form the corresponding solution.

K. NP-hardness

The authors of [5] have shown that the data gathering in
WSN under SINR is NP-hard through a reduction from the
max-connections problem [7]. The max connection problem is
to select a maximal set or configuration size under the physical
interference model. Our problem however is different from [5]
in that we construct multiple forwarding trees (rather than only
one) to collect the coded measurements; we also differ in that
a node waits for its children’s measurements to compress them
(with its own) into one packet for upward transmission. This
makes the scheduling problem more difficult. The following
theorem establishes the hardness of the FTCS problem.

Theorem 1. The joint problem of forwarding tree construction
and scheduling is NP-hard.

Proof. The FTCS problem has two combined objective terms
(constructing m aggregation trees with minimum links, and
scheduling these links based on SINR constraint in a shortest
time length). Now, according to the weight given to each term,
the problem gives different results and hence a different way
to prove the NP-hardness.

Stage 1 (giving highest weight to scheduling): Without
loss of generality, let us first assume the trees are given. We
may prove the minimum link scheduling problem is NP-hard
by reducing from the One-Shot Scheduling problem which has
been shown to be NP-hard in [6]. The One-Shot Scheduling
problem is to pick a subset of weighted links such that the
total weight is maximized and the SINR at the receiver of
each link is above the threshold β. In other words, attempting
to use one slot to its full capacity. Formally, let each link li is
assigned a weight wi and ri indicates the receiver of link li.
A set L ⊆ E is a solution to One-Shot Scheduling problem if
the following conditions hold:

L = max
Ĺ⊆E

∑
li∈Ĺ

wi, SINR(ri) ≥ β,∀li ∈ L. (14)

It should be noted that in our problem links have equal
weights. Therefore, we give a weight of one to each link
and the problem of one-shot scheduling becomes of picking
a maximum number of links in one slot that satisfies the
SINR constraint (wi=1). The problem of finding the minimum
scheduling length among all m data aggregation trees can be
decomposed into a series of one-shot scheduling subproblems.
In each one-shot scheduling subproblem, an auxiliary graph
is constructed (in polynomial time) from a set of links in
m aggregation trees that do not have child links for data
aggregation. In other words, an edge is added to the auxiliary
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graph if the corresponding link on any aggregation tree is con-
nected to a leaf node. After resolving the one-shot scheduling
subproblem on the auxiliary graph, the scheduled links are
removed from the aggregation trees. This step is repeated until
no links remain in any tree. Then, the number of iterations is
the total number of time slots required for trees scheduling.
Therefore, scheduling the problem of finding the minimum
scheduling length is NP-hard.

Stage 2 (giving highest weight to tree construction):
If we give the highest weight to minimizing the total links
in constructing the m aggregation trees, we may prove the
problem of constructing each aggregation tree is NP-hard by
reducing from the minimum Steiner tree problem which is
known to be NP-hard problem [10]. The minimum Steiner
tree problem is to connect a set of interest nodes I ⊆ V
such that the connected spanning tree has a minimum total
distance on its edges. Now, from the minimum Steiner tree
problem, if we let one of the nodes in the tree act as a root,
the minimum Steiner tree is converted to one tree construction
of our problem. Selecting a root (which is the sink node)
can clearly be done in polynomial time. We require m such
trees for our compressive data gathering. Therefore, the tree
construction is also NP-hard. �

IV. ALGORITHMIC SOLUTION

To overcome the computational complexity of the FTCS
problem, we decompose it into two subproblems, namely the
forwarding tree construction and the link scheduling subprob-
lems and present decentralized methods for solving them.

A. Distributed Tree Construction

Our objective is to construct forwarding trees in a decen-
tralized manner. Each forwarding tree will carry a compressed
measurement from the network to the sink; our objective is to
obtain energy efficient trees which deliver data to the sink with
minimal latency.

The compressive data gathering tree construction consists
of three phases: 1) disseminating discovery messages; 2) route
discovery; 3) search for more efficient routes, to leverage them
in the scheduling subproblem. Initially (Phase 1), the sink
starts by sending a discovery message to its neighbours. Each
node, upon receiving the message, will broadcast it to allow
other nodes, not close to the sink, to receive the discovery
message. This procedure is similar to traversing the network
using a breadth-first search (BFS) algorithm [11]. Hence, each
node v will learn its shortest path (Pvs) to the sink as well as
the hop-count (htv) along the path. Further, node v discovers its
neighbour set N(v). Node v, upon checking matrix Φ, which
is stored in its memory, determines whether node u ∈ N(v)
(∀u) belongs to the set of interest nodes (It) of tree t or not.
The time complexity for Phase 1 (similar to BFS) is O(n).

In Phase 2, each node v for each tree t (if it is an interest
node), after running Algorithm 1, decides its parent on the
uplink path to the sink. For each interest node, we assign
an attribute to designate its parent interest node (πtv) (note,
a parent interest node could be a neighbour of v or can be
reached through other relay nodes) and a decision flag (flagtv)
to indicate whether the parent interest node of v is fixed.

Algorithm 1: Route discovery at node v (Phase 2)

1 if root ∈ N(v) then
2 πtv = s; Set and broadcast flagtv = 1;
3 else if b ∈ N(v) AND b ∈ It AND flagtb = 1 then
4 πtv = b; Set and broadcast flagtv = 1;
5 else if b ∈ N(v) AND b ∈ It AND htb < htv then
6 πtv = b; Set flagtv = 0;
7 else if b ∈ N(v) AND b ∈ It AND htb = htv AND

successive parents of b reach a node with smaller
hop-count or flag = 1 or non-parent and do not reach v
then

8 πtv = b; Set flagtv = 0;
9 else

10 Run BFS from v in a radius equals to htv − 1.
11 if interest node(s) in this radius found then
12 Connect v to nearest interest node through

shortest path.
13 Set flagtv = 0;

14 else
15 Connect node v through shortest path to the root.

Lines (1-2) show that every interest node which is a neighbour
of the root selects the root as its parent node and sets and
distributes its decision flag flagtv = 1. Now, if interest node
v (Lines (3-4)) is not a neighbour of the root, but has an
interest node neighbour b with flagtb = 1, then v selects b as
its parent interest node and commits its decision (flagtv = 1).
In the case where none of the neighbouring interest nodes
(b) of v has its decision flag set (i.e., flagtb = 0), v will
select the neighbouring interest node with the smaller hop-
count to the sink as its parent interest node (Lines 5-6).
Now, when only interest node neighbours with equal hop-
count to the sink as v can be found (Lines 7-8), v selects
the one (b) whose successive parents reach an interest node
with smaller hop-count or decision flag flag = 1 or no
parent node, and does not reach node v (to avoid loops). If
none of the above conditions is satisfied, v runs a BFS to
explore its neighbourhood of radius htv − 1 in search for an
interest node b with smaller hop-count to the sink; otherwise,
it searches for an interest node whose decision flag flagtb = 1
(Lines 10-13). Node v avoids selecting interest nodes b whose
πtb = v to avoid loops. Finally, if no interest node is found, v
connects itself directly through a shortest path to the sink (this
path is known from the discovery phase). Node v will repeat
the route discovery (Algorithm 1) if it receives a notification
message from its neighbours indicating that there is a change
in the network, e.g., change in a decision flag, or following a
node or link failure due to mobility or channel impairments
occurring in the network triggering route maintenance. The
time complexity for Phase 2 is O(1) in the best case (when
a node chooses a neighbour node) and O(γ) in the worst
case (when node does not have a neighbour interest node),
where γ is the number of nodes around node v and within
a radius htv − 1. Note that nodes in the distributed approach
simultaneously execute the algorithm.
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Fig. 2. An example of balancing the node degree and minimizing the height
of a tree. In the network, black nodes are interest nodes. The directed arcs
denote the links on the data aggregation tree. The active time slot for each
arc is shown next to it.

Tree Construction Refinement:
We motivate our refinement phase through an illustrative
example shown in Fig. 2(a)-2(b). The intuition for refining
the tree selection is that the forwarding trees should have
fewer links for energy efficiency and should be scheduled
in a shorter time period for latency efficiency. For instance,
node 9 may select either node 4 or node 5 as its parent
node. Either selection will result in a forwarding tree with
same number of links, however, the trees corresponding to
the two selections will differ in their data collection latency,
obtained from the scheduling subproblem (going through node
5 requires a total of 5 times slots, and through node 4 only
4 time slots). Clearly, if a parent in a tree has a higher
node degree, with multiple incoming transmissions, then those
transmissions will be scheduled sequentially, and therefore
this should be avoided. Clearly, this suggests a thinner but
a larger tree height. The larger tree height however may
in turn suggest longer schedule period; this is because a
parent node along a path towards the sink will have to wait
until all downstream measurements are collected before it
forwards its own measurement. Recall, measurements have to
be compressed, to reduce the number of transmissions in the
network. This is depicted in Fig. 2(c)-2(d), where selecting
a subtree with larger height increases the scheduling period,
and thus collection latency. Motivated by these observations,
our tree construction should be refined to yield more efficient
forwarding trees, and this is elaborated in Phase 3.

In Phase 3, each node v checks whether it is among the
interest nodes in set It. If yes, node v runs Algorithm 2 search-
ing for a more efficient route or a parent that potentially can
reduce the scheduling length as discussed above. Algorithm 2
removes all the successive tree links from node v to a node
that is either an interest node or has more than one child (an
example is illustrated in Fig. 3(a); for node 5, the path shown
by arrows with ‘x’ from node 5 to node 2 is removed (note that
node 2 has two children)). Let b represent the node that has
more than one child. Let R be the total number of removed

3
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(a) Before
Phase3

3
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1

6

2

4

(b) After
Phase3

Fig. 3. An example of removing successive links in a tree. The arcs with X
sign denote the removed tree links.

Algorithm 2: Tree refinement at node v (Phase 3)

1 Remove all the successive tree links from node v to first
interest node or node that has more than one child in tree
t. Let b be the found node.

2 R← Total number of removed links.
3 Bestcandidate ← b.
4 Run BFS algorithm from v in a radius equals to R.
5 if node(s) other than b on disconnected main tree t is

found in this radius then
6 Candidates← put the nearest candidate nodes into

the list.
7 Bestweight = Infinity.
8 for each node g in the Candidates list do
9 Hg ← Hop-count from g to the sink.

10 Dg ← Degree of node g.
11 if (Dg +Hg) < Bestweight then
12 Bestweight = Dg +Hg .
13 Bestcandidate ← g.

14 Connect node v to Bestcandidate in shortest-path.

links. In this step, an interest node v and its descendants are
disconnected from the main tree t (e.g., node 5 in Fig. 3(a)
which has been disconnected from the tree). Next, to discover
an alternative path to connect v to the main tree t, v searches
in a radius equals to R, using Breath-First-Search (BFS), for a
node(s) in tree t (if any) that can improve the schedule length
and reduce the number of transmissions (e.g., in Fig. 3(b),
node 5, which has been disconnected, can connect to the tree
through node 4; hence, the overall number of transmissions
decreases from 5 to 4). To find a better path, the algorithm
adds the nearest candidate nodes found on tree t in a radius
R into a Candidates list. Furthermore, for each node g in
Candidates list, it retrieves the nodal degree Dg and its hop-
distance to the sink Hg . This information can be obtained
from each node where they have been obtained from Phase 2.
As discussed earlier, the candidate that minimizes the nodal
degree and the height of the subtree will be selected as the
new parent (refer to lines 8-13 in Algorithm 2).

Let δ to be the number of nodes within a radius R, it takes
O(δ) to traverse all nodes in radius R using BFS algorithm.
Finding best candidate among nodes in the Candidates list
takes O(ρ), where ρ is the size of the Candidates list.
Therefore, Algorithm 2 takes O(δ + ρ), where δ is bigger
than ρ, since ρ is a subset of δ. Thus, the time complexity for
the algorithm is O(δ).
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B. Distributed Link Scheduling Algorithm

We consider a Time Division Multiple Access (TDMA)-
based access method, and assume time is divided into slots
of equal length; we assume each time slot is divided into a
scheduling period and a transmission period. A schedule is
constructed during the scheduling period where a configura-
tion of links (a configuration is defined earlier) which may
be scheduled concurrently is determined. During the trans-
mission period, links in the selected configuration transmit
their packets, one packet each, containing their compressed
measurements. In this section, we present our decentralized
scheduling algorithm, where the objective is for each link to
locally schedule its transmission while not violating 1) the
order of transmissions and 2) the interference constraints for
transmissions to be successful. To achieve this objective, we
define for each link an interference neighbourhood, which is
centered around the receiver of the link. We shall determine
(and control) the cumulative interference caused by active
sensors falling in the interference neighbourhood of a link.
Further, all links whose transmitters are inside the interference
neighbourhood of a link l will be able to exchange information
with the transmitter of l for scheduling purposes.

For each link l of length dl (e.g., a transmission between
a transmitter\child i and a receiver\parent j), an interference
neighbourhood with a radius Kl × dl around the receiver of
link l, and using the interference localization method presented
in [12], is constructed. The neighbourhood for each link is
constructed such that interference beyond this neighbourhood
only has negligible impacts on its received signal [12]. For
a transmission to be successful on a link l, the maximum
interference that can be tolerated at the receiver of link l is:

Imaxl ,
Pd−αl
β

(15)

where P is the transmit power, α is a power loss exponent
and β is a predetermined SINR threshold required for an
acceptable bit error rate. The authors of [12] showed that
given a constant ε, where 0 < ε < 1, for a link l to be
feasible, the upper bound on the interference coming from
the transmitters of active links located outside the interference
neighbourhood of link l should not exceed εImaxl and the total
interference coming from transmissions inside the interference
neighbourhood cannot exceed (1− ε)Imaxl . The radius of the
interference neighbourhood (Kl × dl) certainly depends on
the value of ε. The smaller the value of ε, the larger the
interference neighbourhood, and thus the higher the scheduling
overhead. The value of ε can be used to control the scheduling
overhead. In addition, the receiver of each link can estimate
the interference power created by the transmitter of each link
in the interference neighbourhood using the Radio Interference
Detection (RID2.) [13]. For more details about the interference

2The RID protocol is only used to let the receiver estimates the interference
caused by any transmitter. The basic idea of RID is that a transmitter
broadcasts a High Power Detection (HD) packet, and immediately follows
it with a Normal Power Detection (ND) packet. The HD packet contains
the transmitters ID, from which the receiver knows from which transmitter
the following ND packet comes. The receiver estimates possible interference
caused by the transmitter by sensing the power level of the transmitters ND
packet. For more details we refer the reader to [13]

Algorithm 3: Distributed Scheduling Algorithm at link l

1 Transmitter of link l broadcasts SchReq to all links in
∆l.

2 Receiver of Links k ∈ L
⋂

∆l calculate the interference
Itemk after adding link l temporary to L.

3 if any receiver of link k has Itemk > (1− ε)Imaxk then
4 Link k sends an NotAcc message to link l.

5 if link l receives at least one NotAcc message then
6 Link l does not add itself to schedule L.
7 Link l broadcasts RemSch message.
8 All links k upon receiving RemSch message remove

link l from current schedule L.
9 else if Link l receives no NotAcc messages then

10 Link l is added to the current schedule L.
11 Link l broadcasts AccSch message.
12 All links k upon receiving AccSch message update

their schedule L by adding link l to L.

localization and RID methods, we refer the reader to [12]
and [13] respectively. It should be noted that other approaches
(e.g., FlashLinQ [14] and ITLinQ [15]) have been shown to
perform very well in terms of interference management and
can be used for our link scheduling subproblem.

We now propose our distributed scheduling algorithm. Let
∆l be the set of all links k such that the transmitter of link l is
in their interference neighbourhood. Let L be the set of links
for the current schedule; at the beginning of each time slot, L
is empty. At a high level, links to leaf nodes or links whose
children do not have data to transmit will go into a ready state
(since they do not have to wait for any downstream data);
transmitters of such links broadcast their priority information
to all nodes in their interference neighbourhood ∆l. The
priority of each node is estimated based on two criteria: (1)
its parent nodal degree and (2) its hop-count to the root (this
information is obtained from the tree construction phase). For
instance, the priority of a node can be quantified by combining
(1) and (2). A node with bigger parent nodal degree and larger
hop-count to the sink assigns itself a higher priority. The tie
can be broken by the transmitter’s node ID (node with bigger
ID has higher priority). The priority information of a link l is
disseminated to all links (transmitters) within the interference
neighbourhood of l. Now, each link l in ready state which
has the highest priority among all links (in ready state) in its
interference neighbourhood, if its cumulative interference Il is
not exceeding (1−ε)Imaxl and its receiver has not already been
scheduled for any other link, can simultaneously run Alg. 3
to add itself to the current schedule L. This process continues
until no more ready state links can be added to the current
schedule L. For the next time slot, new links will be added to
the ready state if their predecessor links have been scheduled
in the previous time slots. Accordingly, the above procedure
will be repeated until no more links are left unscheduled.

V. PERFORMANCE ANALYSIS

In this section, we prove the correctness of our algorithmic
method and analyze its efficiency by giving the approximation



1536-1276 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2015.2512272, IEEE
Transactions on Wireless Communications

9

ratio of the algorithmic tree construction to the optimal one
and analyze the performance bounds of the link scheduling
algorithm with respect to the aggregation latency.

A. Correctness

Our distributed method, as discussed above, consists of two
(tree construction and link scheduling) parts, where the former
part has three phases. We prove the correctness of each part
or/and phase using the following lemmas.

Lemma 2. (Correctness of phase 1). The sink disseminates the
discovery message, and all the nodes in the network receive
it and hence update their information.

Proof. Sensor nodes in the network are connected and thus
there is at least one path from each node to the sink. If
nodes upon receiving the discovery message, broadcast it,
this guarantees that all the nodes will receive this discovery
message, and by updating the hop-counter, nodes learn their
distances to the sink, as well as the number of neighbors,
since they receive one message from each neighbor. It should
be noted that nodes do not re-broadcast the discovery message
with equal or higher hop-count, and this proves the termination
of the discovery message phase. �

Lemma 3. (Correctness of Phase 2). In Algorithm 1, each
interest node v that belongs to tree t finds its route to nearest
interest node parent.

Proof. In Algorithm 1, a node has to choose an interest node
parent with smaller hop-count (nearer to the sink) or a parent
with a decision flag equals one (i.e.; flagtparent = 1). When
the node chooses a parent with flagtparent = 1, this guarantees
that the route will reach the sink (a node can set its decision
flag equal one if its ancestors reach the sink); otherwise, the
node will select the parent with smaller hop-count to the sink.
The selected parent will repeat the same procedure until the
route to the sink is discovered. �

Lemma 4. (Correctness of Phase 3). A node in Algorithm 2
can enhance the forwarding tree by finding a more efficient
route, if any.

Proof. After removing the successive tree links from node v
and disconnecting it from the forwarding tree t, Algorithm 2
examines all the paths to nearest node(s) in tree t and finally
chooses the best one and connects node v to the tree. Hence,
reconnecting the disconnected node to the tree ensures the
termination of the algorithm. �

Lemma 5. (Correctness of Link scheduling). The distributed
link scheduling algorithm in Section IV-B can correctly sched-
ule the links in all the m trees under the interference model.

Proof. Algorithm 3 guarantees that each link in the ready state
which has the highest priority among others and its cumulative
interference does not exceed the maximum interference which
can be tolerated, will be added to current scheduling list and
removed from the ready state, and hence will be scheduled
once. At the end of each round, the ready state will be updated
and links that have not been assigned a time slot remain

for future rounds. Finally, all the links will be added to the
schedule list and the algorithm terminates. �

B. Worst Case performance of the tree construction algorithm

In this section, we show that the worst case cost-ratio of
our tree construction algorithm to optimal solution will never
exceed 2 (i.e.; 2-approximation). The approximation bound
of our algorithm follows the results obtained in [16] for
the approximation solution of the Steiner tree problem. The
Steiner tree problem spans a subset of nodes in a graph (i.e.;
I ⊆ V ) such that the spanning tree obtained from connected
interest nodes set I has a minimum cost.

Lemma 6. [16] For an undirected graph G(V,E) and interest
nodes set I , the cost-ratio of minimum Steiner tree algorithm
to optimal solution is 2(1 − 1

l ) ≤ 2(1 − 1
I ), where l is the

number of leaves in the optimal tree.

Lemma 7. Our tree construction algorithm is a polynomial
time 2-approximation algorithm.

Proof. We start by noting that our problem for constructing
each aggregation tree is similar to the Steiner tree problem
in that we connect all interest nodes set I ⊆ V and the
sink together such that the constructed spanning tree has a
minimum cost on its edges. Based on Theorem 6, the worst
case performance ratio of our tree construction algorithm to
optimal solution will not be worse than 2(1− 1

l ). It should be
noted that the sink is not considered as a leaf node in a tree
and hence the cost-ratio will not be worse than 2(1− 1

I ). Recall
that from Section II-B, the total number of interest nodes for
each projection is d nme. Therefore, the performance ratio of
our tree construction method in the worst case is 2(1− 1

d n
m e

).
For example, if n = 100 and m = 20, the upper bound
performance of our algorithmic method is 2(1 − 1

5 ), which
is 8

5 -approximation, and when n = 100 and m = 10, our
method is 9

5 -approximation. In compressive data gathering,
since the number of projections m is always less than the
total number of nodes n and m ≥ log n, the fraction ratio of
the approximation solution will always be less than 2. Hence,
the performance of our tree construction algorithm is better
than 2-approximation algorithm depending on d nme. �

C. Performance bounds of the link scheduling algorithm

In this section, we discuss the theoretical lower and upper
bounds on the latency for data aggregation on the constructed
m forwarding trees.

Lemma 8. Given a set of m trees T for compressive data
gathering, the lower bound on the required time slots to
schedule all the links in T is

max(m,Dt
i +Ht

i )(∀i ∈ V, t ∈ T ) (16)

Dt
i and Ht

i are respectively the nodal degree and hop-count
to the sink for node i and tree t.

Proof. In any tree, a parent node (doing data aggregation) has
to wait until it receives data from all of its children and then
forward the aggregated data to its upper node (if it is not a sink
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node). Therefore, the minimum number of time slots required
for a node i in tree t is Dt

i (i.e., the number of neighbors of
node i in tree t). This Dt

i includes the time slot to transmit data
from node i to its parent, since its parent has been counted as
one of its neighbors in Dt

i .
Now, the minimum time required to send data from a node

to the sink is equal to the hop-distance of a node to the sink,
which is represented by Ht

i . Therefore, in total a minimum of
Dt
i +Ht

i time slots is needed for node i in tree t to send its
aggregated data to the sink. If all the transmissions occur in a
way that the SINR constraint is satisfied at each receiver, then
the possible lower bound on the required number of time slots
is max(Dt

i+H
t
i )(∀i ∈ V, t ∈ T ). We should note here that the

sink can receive only one transmission in each time slot, hence
for m trees a minimum of m time slots is required for the sink
to receive all the aggregated data from m trees. Therefore, the
final lower bound on time slot for CDG is (16). �

It should be noted that at each time slot, the maximum
number of links from m trees which are at the ready state and
their SINR is below the threshold β, are going to be scheduled
and removed from the trees to let the remaining links to
be scheduled in the next rounds. It is possible that in the
worst case (because of lack of fulfilling the SINR constraint,
common node transmission or receiver among ready state
links), no more than one link could be scheduled at each
time slot. Intuitively, at least one link can be scheduled at
each time slot and thus, the worst case performance of the
link scheduling algorithm for m trees under the physical
interference model is bounded by the total number of links
in all m trees.

VI. PERFORMANCE EVALUATION

We study the performance of the joint design method under
optimal formulation and compare it with the decentralized
solution we proposed. We also study the performance of
FTCS under optimal tree construction and optimal scheduling,
separately. Finally, we compare the performance of our FTCS
with LLHC-MWF [5], which does data gathering but not
compressive data gathering. Our metrics for comparisons are
the number of transmissions and schedule length required
to gather data under various network sizes, topologies, and
number of projections (for compressive data gathering). For
numerical results, we generate arbitrary networks with n
nodes where nodes are randomly distributed over a region
of 700 × 700 unit distance, such that the resulting graph is
connected. The density (average nodal degree) of the network
is tuned by increasing or decreasing the communication range
of a node. Further, we randomly assign each node in the
network to m sets of interest-nodes where each set contains
d nme nodes. Note that based on the number of n nodes and
m sets, a node might be included in more than one set. We
assume all nodes use the same normalized transmit power
P = 1. Moreover, we assume a path loss exponent α = 3 and
the SINR threshold for successful transmission β = 2; we
assume the background noise is negligible; we also assume
a single transmit rate and hence only one threshold β. We
further assume ω = 0.5, giving equal weights to both terms
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Fig. 4. Link scheduling solution.

in the objective (i.e., energy efficiency and time efficiency are
equally important). We use CPLEX to solve our optimization
model and JAVA to simulate the operation of our distributed
algorithms. We run our program on CPU with Intel Core
i7 processor, 3.6 GHz speed, 8 GB memory ram and 64-bit
windows operating system.

A. Evaluation on a small network

We start by examining the results obtained by solving the
FTCS jointly using the MILP model and compare it with our
decentralized solution, using the 15-node network shown in
Fig. 1(a). Clearly, both methods construct forwarding trees
with same number of links (and thus same number of trans-
missions to gather the sensory data), however both methods
differ in their link scheduling performance as depicted in Fig
4. First, the MILP solution yields an optimal link scheduling
(schedule length = 8 time slots), however its solution is
centralized. The decentralized solution (see Fig. 1(c)) varies
according to the value of ε; a smaller ε indicates a larger
interference neighbourhood and thus larger area to coordinate
transmissions and as a result obtain better solutions than larger
values of ε. However, this better performance comes at the
expense of larger scheduling overhead [12]. When ε = 0.3, a
schedule length of 11 time slots is obtained which is around
27% far from the optimal solution. The MILP however, being
a centralized method, exhibits a much higher computational
complexity.

B. Centralized Vs. Distributed

Now, we compare the performance of the decentralized
solution of FTCS (D-FTCS) with two other disjoint methods,
namely, methods that solve the problems of tree construction
and scheduling separately using either the centralized optimal
model or distributed algorithmic method. The first one is cen-
tralized and solves the two subproblems optimally (OTC-OLS)
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TABLE II
FTCS PERFORMANCE (NUMBER OF TIME SLOTS, m = 20%n)

#Nodes Avg. nod. deg. #Trans. D-FTCS DTC-OLS OTC-OLS
n=10 2.9 10.8 6 5.6 5.6
n=15 3.12 20.6 9.6 9.6 9.4
n=20 3.14 31.4 14.6 12 11.4
n=25 3.46 44.8 19 15.4 15.4
n=30 3.55 63.4 22.4 17.8 18.4
n=35 3.33 82.2 30.6 25.2 26
n=40 5.22 76.6 29.4 21.4 22.4

and the second one solves only the (centralized) scheduling
subproblem optimally (DTC-OLS). It should be noted that
the link scheduling under interference model is an NP-hard
problem, as shown before. The results, averaged over five runs,
are shown in Table II. We should recall that the schedule
length highlights the gathering latency in the network. It is
observed that OTC-OLS and DTC-OLS, being able to provide
optimal solutions to the link scheduling subproblem, resulted
in shortest schedule length and thus faster collection time for
the measurements. It is interesting to note that DTC-OLS for
larger network instances resulted in slightly shorter schedules
and this is due to the tree construction refinement phase of
the distributed algorithm. In OTC-OLS, however, trees are
constructed to contain minimum number of edges without
any refinement. D-FTCS on the other hand achieved notably
a good performance with worst case gap to other solutions
not exceeding 27%. In terms of computation complexity,
our decentralized algorithm obtained solutions in less than 2
seconds (for a 40 nodes network) whereas OTC-OLS obtained
a solution for a 40 nodes network after a day; namely, the tree
construction took only few seconds and the link scheduling
took 1.5 days. For smaller networks (e.g., 20 nodes), the
decentralized method returned the solution in less than one
second and OTC-OLS took in the order of minutes. These
results confirm that the link scheduling under interference
constraints is indeed very complex to solve in a centralized
setting. Finally, we should note that all three methods con-
structed trees with same number of edges, consuming the
same number of transmissions. We will further examine and
compare the performance of D-FTCS in terms of schedule
length and number of transmissions with other method in the
literature in subsectionVI-D.

C. Exploring more forwarding trees

At this stage, it should be clear that the scheduling per-
formance depends entirely on the structure of the forwarding
trees. In a general graph, more than one forwarding tree
with minimum edges may be constructed to gather data from
a set of interest nodes to the sink. Therefore, to obtain
a more efficient (shorter) schedule, one may first construct
all the possible minimum forwarding trees and then solve
the scheduling subproblem for all tree combinations, each
for a multi-set of interest nodes (or projection), and then
choose a combination that gives the best schedule length
among others. Let I1, I2, ..., Im represent interest nodes sets
for projections 1, 2, ...,m respectively. For each set (It), we

Algorithm 4: Steps to get all minimum forwarding trees

1 Construct the optimal forwarding tree. (e.g., (3)-(6)
without second sum of (3).

1.1 Add the tree into MinimumTreesSet.
1.2 Let NLinks = number of links in the tree.

2 Remove links one by one from the optimal tree.
2.1 Construct tree without that removed link.
2.2 If the number of links in the obtained tree is

equal to NLink, and the obtained tree is not
in MinimumTreesSet :

2.2.1 Put the obtained tree into MinimumTreesSet.
2.2.2 Put the obtained tree into CheckTreesSet.

3 While CheckTreesSet is not empty;
3.1 Remove one tree from the CheckTreesSet.
3.2 Repeat step 2 for this tree.

may have different minimum trees (i.e,; τt = {t1, t2, ...}). To
find the best scheduling, we have to solve for τ1×τ2× ...×τm
combination of trees. Algorithm 4 shows the steps to find all
the minimum forwarding trees.

Recall that a primary objective in a WSN is to minimize
the total number of transmissions (links in the forwarding
trees) for energy efficiency, and later schedule those trees to
obtain a shortest schedule for efficient data gathering latency.
If the primary objective is latency, then more trees may be
enumerated (step 2.2 in Algorithm 4 can be updated to accept
trees with larger size (we add µ to NLinks, where, µ indicates
the number of edges that is acceptable if the obtained tree
has links more than optimal tree)). It might be possible that
trees with larger size yield a better schedule length. If we
let the value of µ to be large enough (i.e. µ ≥ number of
edges in the network), the algorithm will find all possible
forwarding trees without a cycle. Let τi = {t1, t2, ...} be
the set of all forwarding trees for each set It, the scheduling
length is obtained by solving the scheduling subproblem for
all τ1× τ2× ...× τm combinations. Let S∗ = {τ∗1 , τ∗2 , ..., τ∗m}
indicate the optimal tree combinations yielding optimal sched-
ule, τ∗t for interest nodes set t (obtained through MILP or
exhaustive), and let Sτ and Sτ be the best scheduling found
for τ and τ respectively. Then, S∗ ≤ Sτ ≤ Sτ . Table III shows
the results (number of time slots, time complexity and number
of constructed forwarding trees combination) for the same
instances used in Table II. In this table, the scheduling problem
for each trees-combination is solved using the two methods
(optimal model and distributed algorithm). The results show
that constructing multiple trees for each projection improves
the performance of the disjoint methods. However, it signif-
icantly increases by computational complexity. For instance,
the multiple trees construction with optimal scheduling method
(for 20-node network) performed 12% better than OTC-OLS,
but obtained the solution after days (res. near an hour) when
taking all forwarding tree combinations (res. minimum tree
combinations). On the other hand, when solving the schedul-
ing subproblem with distributed algorithm, the multiple trees
construction method solved the 20-node network in minutes
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TABLE III
FTCS PERFORMANCE USING MULTIPLE FORWARDING TREES COMBINATIONS (m = 20%n, TIME IS SHOWN BY H:M:S)

Optimal Scheduling Subproblem Algorithmic Sheduling SubproblemOptimal (MILP) All-Trees Min-Trees All-Trees Min-Trees#Nodes
#Slots Time #Slots Time #Slots Time #Tran. #Slots Time #Tran. # Slots Time

5.6 0:00:59 5.6 0:00:24 10.8 5.6 0:00:27 10.8 5.6 0:00:14n=10 5.6 0:00:23 44.80 tree comb. 16.00 tree comb. 44.80 tree comb. 16.00 tree comb.
7.8 0:29:35 7.8 0:03:16 21.2 9 0:01:13 20.6 9.4 0:00:38n=15 7.8 13:50:37 427.40 tree comb. 74.2 tree comb. 427.40 tree comb. 74.20 tree comb.
10 61:40:26 10 0:40:01 31.4 12.6 0:03:07 31 13 0:00:51n=20 Exp.

10
Out of

Memory 3468.40 tree comb. 53.00 tree comb. 3,468.40 tree comb. 53.00 tree comb.
44.8 16 0:15:08 44.4 16.4 0:02:21n=25 29,425.60 tree comb. 2,034.00 tree comb.

62.8 20.8 0:05:14n=30 239,831.20 tree comb. 5,301.00 tree comb.

(much faster than when solving the scheduling subproblem
optimally), whereas D-FTCS took less than a second with a
worst gap scheduling performance not exceeding 12% (but,
equal number of transmissions in case of Min-Trees). It should
be noted that the computational complexity of all the multiple
trees construction methods grow exponentially with the size
of the network, whereas D-FTCS is scalable for very large
networks due to the fact that each node in a network can do
the tree construction and scheduling locally.

D. Our distributed method Vs. [5]

Next, we examine and compare the performance of our
distributed solution for FTCS (D-FTCS) with the centralized
data gathering algorithm (LLHC-MWF) presented in [5] in
terms of schedule length and number of transmissions required
to complete one round of data gathering. It should be noted
however that LLHC-MWF algorithm does not use compressive
data gathering; it constructs only one tree for data gathering,
where each node in the network chooses a parent node that
minimizes the maximum subtree size and introduces a new
link that is compatible with most links in the constructed tree.
Figs. 5(a,b,d,e) depict the results of comparison between D-
FTCS (with ε=0.0, ε=0.25, ε=0.5) and LLHC-MWF under
different network topologies (sparse and dense) and varying
number of sensor nodes (100 to 500) with communication
radius ranges from 45 to 100 units for sparse and 75 to 150
units for dense networks, and different number of projections
(m=10%n and m=20%n) with an average of ten runs. As
shown in the figures, our D-FTCS (with any value of ε)
outperforms LLHC-MWF and achieves much shorter schedule
lengths (thus lower collection latency). For instance, when
n = 500 and ε = 0.5, D-FTCS in the sparse network
performs 25% and in the dense network performs 21% better
than LLHC-MWF. It should be noted here that such gains
are attributed to compressive data gathering, a feature lack-
ing in the LLHC-MWF method. LLHC-MWF on the other
hand constructs only one tree and is oblivious to the order
of transmissions when performing link scheduling; in other
words, in LLHC-MWF, a parent node does not need to wait
for its children’s measurements since it is not performing any
compression, thus its scheduling is more flexible. Nonetheless,
our D-FTCS outperformed LLHC-MWF. It is also notable that

D-FTCS performs much better than LLHC-MWF when the
number of projections is smaller (around 15% to 25% when
m = 20%n, and 41% to 52% when m = 10%n for different
network sizes). With fewer projections, fewer forwarding trees
are constructed, and when constructed efficiently, they result
in much shorter schedule. Moreover, the curves in the figures
show that the performance of D-FTCS over LLHC-MWF
in sparse networks increases steeper than dense networks,
specially in large networks. The reason goes for the advantage
of compressive data gathering, where in the sparse networks,
because of deficiency of interference, more links can be
scheduled in fewer time slots. In addition, the figures confirm
that the results of D-FTCS vary according to the value of ε as
explained in Section VI-A, where a smaller ε achieves shorter
schedule length.

Finally, we consider a network of 200 nodes and we
compare the performance of D-FTCS with LLHC-MWF [5]
as we vary the number of projections (m) used for FTCS.
The results (schedule length and number of transmissions) are
shown in Fig. 5(c). The number of transmissions and time slots
for different number of projections (m) in LLHC-MWF are
both uniform, since this method does not rely on compressive
data gathering technique and thus is not affected by different
number of projection. The figure shows that when the number
of projections is small, D-FTCS substantially outperforms
LLHC-MWF both in terms of number of transmissions and
schedule length. For instance, when m=5%n and 10%n, with
D-FTCS, few trees are constructed to collect the data from
the network (respectively 10 and 20 trees), and owing to com-
pressive data gathering, much fewer transmissions are needed
to collect the data (resp. 58% and 45% less transmissions),
where such transmissions can be scheduled effectively in a
very short period of time (resp. performs 67% and 50% better).
The schedule length is either smaller than half or close to half
that of LLHC-MWF. However, as the number of projections
increases, then more forwarding trees are constructed and
hence more transmissions will be needed. Accordingly, the
length of schedule as well as number of transmissions start
to increase. As Fig. 5(c) shows, when m=40%n or bigger,
our algorithm performs slightly worse than LLHC-MWF.
Alternatively, if the number of projections is kept smaller,
then D-FTCS outperforms substantially the performance of
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(a) # slots in sparse network, m=10%n
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(b) # slots in sparse network, m=20%n
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(d) # slots in dense network, m = 10%n
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Fig. 5. FTCS vs. LLHC-MWF [5]

LLHC-MWF, as depicted in Fig. 5(f), for varying network
sizes. For example, when m=20%n, FTCS achieves gains that
vary between 29% and 44% over LLHC-MWF.

VII. RELATED WORK

In our previous works [9,17,18], we have studied the
problem of sparse random projections for compressive data
gathering, however, we did not emphasize on link scheduling.
A number of studies in the literature considered the scheduling
problem in conjunction with data gathering in wireless sensor
networks. Among them, [19] proposed asynchronous dis-
tributed data collection using CSMA-based MAC mechanism.
The authors in [20] mathematically formulated the problem
of joint long-lifetime and minimum latency data collection
and aggregation scheduling and proposed an approximation
algorithm. The trade-off between energy consumption and
time latency was studied in [21]. In [22], the authors presented
a distributed implementation for data collection to let each
node calculate its duty-cycle locally by giving priority to
sub-trees that have bigger size (they assumed the tree is
given). The distributed data aggregation scheduling presented
in [23] considers interference only from one-hop node. A novel
cluster-based TDMA-based MAC protocol for energy-efficient
data transmission has been proposed by [24]. In their protocol,
for each cluster, a node with higher remaining energy level acts
as a cluster head and assigns time slots to all nodes in its cell
based on their needs. The authors in [25] and [26] studied
the aggregation rate under interference constraint, where [25]
tried to maximize the aggregated information at the sink under
deadline constraint and [26] tried to minimize the sum delay
of sensed data. In [27], the authors investigated the capacity
and delay analysis for compressive data gathering under the
protocol interference model.

Link scheduling under physical interference model has re-
ceived increased attention due to its realistic abstraction (e.g.;
[28]–[31]). The problem of link scheduling in WSN under the

physical interference model was proved to be NP-hard in [6].
In all of these works [28]–[31] the network is partitioned into
equal cells and the cells are assigned with colors for concurrent
scheduling. In [28] and [29] the aggregation scheduling is
done in levels; first aggregate data from nodes in each small
area, and then further aggregate data in a larger area by
collecting from those small ones. This process is repeated
until the entire network as the largest area is covered. [28]
constructs the tree and then does the data scheduling in uplink
manner, whereas, [29] features joint tree construction and
link scheduling by assigning a nearest node to the sink as
a cell head. The data collection/aggregation scheme in [30]
and [31] is scheduled in two phases, where in each phase the
data collection/aggregation is done in one direction (whether
horizontally or vertically to next cell). The authors of [31]
combined the CDG technique with pipeline technology and
came up with more efficient network capacity. In [12], the
authors proposed a novel technique under interference local-
ization that allowed them to do scheduling in a decentralized
manner. To the best of our knowledge, no other work studied
the problem of compressive data gathering under physical
interference constraints in a decentralized manner.

VIII. CONCLUSION

In this paper, we considered the problem of compressive
data gathering (CDG) and scheduling in wireless sensor net-
works under the physical interference model. We formulated
the problem of joint forwarding tree construction and link
scheduling mathematically with the objective of achieving
energy efficient data gathering with minimal collection la-
tency. We highlighted the complexity of the problem, and
then we presented our decentralized algorithm for solving
it. Our decentralized approach decouples the problem into
two subproblems; namely, the tree construction subproblem
and the link scheduling subproblem. Our decentralized tree
construction is amended with refinements to help the link
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scheduling achieve better scheduling and thus collection la-
tency. Our scheduling subproblem is resolved in a distributed
fashion, through interference localization and coordination
among links to control the level of interference. Our distributed
method showcased the benefits of compressive data gathering
in collecting measurements and has been shown to be scalable
with outstanding performance in terms of energy efficiency
(number of transmissions) and gathering latency (time to
gather data from sensors).

REFERENCES

[1] C. Luo, F. Wu, J. Sun, and C. W. Chen, “Compressive data gathering
for large-scale wireless sensor networks,” in Proceedings of the 15th
annual international conference on Mobile computing and networking.
ACM, 2009, pp. 145–156.

[2] D. L. Donoho, “Compressed sensing,” Information Theory, IEEE Trans-
actions on, vol. 52, no. 4, pp. 1289–1306, 2006.

[3] W. Wang, M. Garofalakis, and K. Ramchandran, “Distributed sparse
random projections for refinable approximation,” in Proceedings of
the 6th international conference on Information processing in sensor
networks. ACM, 2007, pp. 331–339.

[4] E. J. Candès and M. B. Wakin, “An introduction to compressive
sampling,” IEEE Signal Processing Magazine, 2008.

[5] D. Gong and Y. Yang, “Low-latency SINR-based data gathering in
wireless sensor networks,” in INFOCOM. IEEE, 2013.

[6] O. Goussevskaia, Y. A. Oswald, and R. Wattenhofer, “Complexity
in geometric SINR,” in Proceedings of the 8th ACM international
symposium on Mobile ad hoc networking and computing. ACM, 2007,
pp. 100–109.

[7] M. Andrews and M. Dinitz, “Maximizing capacity in arbitrary wireless
networks in the SINR model: Complexity and game theory,” in INFO-
COM 2009, IEEE. IEEE, 2009, pp. 1332–1340.

[8] P. Gupta and P. R. Kumar, “The capacity of wireless networks,”
Information Theory, IEEE Transactions on, vol. 46, 2000.

[9] D. Ebrahimi and C. Assi, “Compressive data gathering using random
projection for energy efficient wireless sensor networks,” Ad Hoc Net-
works, vol. 16, pp. 105–119, 2014.

[10] F. K. Hwang, D. S. Richards, and P. Winter, The Steiner tree problem.
Elsevier, 1992.

[11] T. H. Cormen, Introduction to algorithms. MIT press, 2009.
[12] L. B. Le, E. Modiano, C. Joo, and N. B. Shroff, “Longest-queue-

first scheduling under SINR interference model,” in Proceedings of the
eleventh ACM international symposium on Mobile ad hoc networking
and computing. ACM, 2010.

[13] G. Zhou, T. He, J. A. Stankovic, and T. Abdelzaher, “RID: radio inter-
ference detection in wireless sensor networks,” in INFOCOM 2005. 24th
Annual Joint Conference of the IEEE Computer and Communications
Societies. IEEE, 2005.

[14] X. Wu, S. Tavildar, S. Shakkottai, T. Richardson, J. Li, R. Laroia, and
A. Jovicic, “FlashLinQ: A synchronous distributed scheduler for peer-to-
peer ad hoc networks,” IEEE/ACM Transactions on Networking (TON),
vol. 21, no. 4, 2013.

[15] N. Naderializadeh and A. S. Avestimehr, “ITLinQ: A new approach for
spectrum sharing in device-to-device communication systems,” Selected
Areas in Communications, IEEE Journal on, vol. 32, no. 6, pp. 1139–
1151, 2014.

[16] L. Kou, G. Markowsky, and L. Berman, “A fast algorithm for steiner
trees,” Acta informatica, vol. 15, no. 2, 1981.

[17] D. Ebrahimi and C. Assi, “Optimal and efficient algorithms for
projection-based compressive data gathering,” Communications Letters,
IEEE, vol. 17, no. 8, pp. 1572–1575, 2013.

[18] ——, “A distributed method for compressive data gathering in wireless
sensor networks,” Communications Letters, IEEE, vol. 18, no. 4, pp.
624–627, 2014.

[19] S. Ji and Z. Cai, “Distributed data collection in large-scale asynchronous
wireless sensor networks under the generalized physical interference
model,” IEEE/ACM Transactions on Networking (ToN), vol. 21, no. 4,
pp. 1270–1283, 2013.

[20] Z. Chen, G. Yang, L. Chen, and J. Wang, “An algorithm for data aggre-
gation scheduling with long-lifetime and low-latency in wireless sensor
networks,” International Journal of Future Generation Communication
and Networking, vol. 5, 2012.

[21] Y. Yu, B. Krishnamachari, and V. Prasanna, “Energy-latency tradeoffs for
data gathering in wireless sensor networks,” in INFOCOM 2004.Twenty-
third AnnualJoint Conference of the IEEE Computer and Communica-
tions Societies. IEEE,2004.

[22] W.-Z. Song, F. Yuan, R. LaHusen, and B. Shirazi, “Time-optimum
packet scheduling for many-to-one routing in wireless sensor networks,”
The International Journal of Parallel, Emergent and Distributed Systems,
vol. 22, no. 5, 2007.

[23] B. Yu, J. Li, and Y. Li, “Distributed data aggregation scheduling in
wireless sensor networks,” in IEEE INFOCOM, 2009.

[24] T.-H. Hsu and P.-Y. Yen, “Adaptive time division multiple access-
based medium access control protocol for energy conserving and data
transmission in wireless sensor networks,” Communications, IET, vol. 5,
no. 18, 2011.

[25] S. Hariharan and N. B. Shroff, “Maximizing aggregated information in
sensor networks under deadline constraints,” Automatic Control, IEEE
Transactions on, vol. 56, no. 10, pp. 2369–2380, 2011.

[26] C. Joo, J.-G. Choi, and N. B. Shroff, “Delay performance of scheduling
with data aggregation in wireless sensor networks,” in INFOCOM, 2010
Proceedings IEEE. IEEE, 2010, pp. 1–9.

[27] H. Zheng, S. Xiao, X. Wang, X. Tian, and M. Guizani, “Capacity and
delay analysis for data gathering with compressive sensing in wireless
sensor networks,” Wireless Communications, IEEE Transactions on,
vol. 12, no. 2, pp. 917–927, 2013.

[28] X. Xu, X.-Y. Li, and M. Song, “Efficient aggregation scheduling in
multihop wireless sensor networks with SINR constraints,” Mobile
Computing, IEEE Transactions on, vol. 12, no. 12, pp. 2518–2528, 2013.

[29] H. Li, Q. S. Hua, C. Wu, and F. C. M. Lau, “Minimum-latency aggrega-
tion scheduling in wireless sensor networks under physical interference
model,” in Proceedings of the 13th ACM international conference on
Modeling, analysis, and simulation of wireless and mobile systems.
ACM, 2010, pp. 360–367.

[30] S. Chen and Y. Wang, “Data collection capacity of random-deployed
wireless sensor networks under physical models,” Tsinghua Science and
Technology, vol. 17, no. 5, pp. 487–498, 2012.

[31] S. Ji, R. Beyah, and Z. Cai, “Snapshot and continuous data collection
in probabilistic wireless sensor networks,” Mobile Computing, IEEE
Transactions on, vol. 13, no. 3, pp. 626–637, 2014.

Dariush Ebrahimi received his B.Sc. from Banga-
lore University in Computer Science, his Master’s
in Computer Engineering from Kuwait University
and he is currently a Ph.D. Candidate in the Depart-
ment of Computer Science at Concordia University,
Montreal, Canada. His research interests are in the
area of wireless networks, geographical information
system, database, internet of things, optimization and
algorithms.

Chadi Assi received his B.Eng. degree from the
Lebanese University, Beirut, Lebanon, in 1997 and
his Ph.D. degree from the City University of New
York (CUNY) in April 2003. He is currently a
full professor with the Concordia Institute for Infor-
mation Systems Engineering, Concordia University.
Before joining Concordia University in August 2003
as an assistant professor, he was a visiting researcher
with Nokia Research Center. He received the presti-
gious Mina Rees Dissertation Award from CUNY in
August 2002 for his research on wavelength-division

multiplexing optical networks. He is on the Editorial Board of IEEE Commu-
nications Surveys and Tutorials, IEEE Transactions on Communications, and
IEEE Transactions on Vehicular Technologies. His current research interests
are in the areas of network design and optimization, network modelling and
network reliability.


