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Abstract—In a tree based wireless sensor network, a tree
structure rooted at sink node is usually created for efficient
data collection. Recently, the use of solar harvesting technologies
for rechargeable sensor nodes are evolving. Moreover, in a
tree based rechargeable wireless sensor network, the nodes that
belong to different routes will have different energy dissipation
due to unequal harvested-energy and utilized-energy. Network
sustainability and energy efficiency are important issues in
a tree based rechargeable sensor network. In this paper, a
Markov Decision Process based switching algorithm has been
designed for a sustainable data collection tree while reducing
energy consumption in the network. Further, analysis of energy
consumption has been performed using a real-time sensor traffic
pattern. A prediction model has been adopted to estimate the
harvesting energy (based on solar power) for the rechargeable
sensor nodes. In this work, the state of each node is defined
based on different independent energy levels. The state of each
node may change with time depending on harvested-energy and
utilized-energy. The proposedMarkov Decision Process approach
finds the optimal switching policy for sensor nodes which switch
from one parent to another based on energy levels to preserve
sustainability. A detailed theoretical analysis has been performed
along with simulation results to show the efficacy of the proposed
approach.

Keywords—Rechargeable Wireless Sensor Network; Data collec-
tion tree; Markov Decision Process; Switching; Energy harvesting;

I. I NTRODUCTION

W Ireless Sensor Networks (WSNs) consist of a group
of sensor nodes which are capable of sensing data

(from the environment), such as, temperature, light, humidity,
vehicular movement, noise levels, the presence of certain
kinds of objects, wind direction and speed [1] [2]. Sensor
nodes may have limited energy [1] or energy harvesting [3]
[4] capability. In both type of sensors, energy efficiency is
an important issue that affects the operation of WSN. To
prolong network lifetime, energy harvesting sensor nodes are
preferably used over limited battery-powered nodes depending
on the availability of energy sources [3]. Rechargeable sensor
nodes scavenge energy from surrounding sources, such as,
solar, wind, vibrations, and passive human movements [4]. The
amount of energy harvested by a sensor node depends on the
availability of energy sources (such as sunlight) and also varies

according to weather conditions including seasonal changes
[5]. In a rechargeable WSN, a sensor survives till the next
recharge schedule to protect the network from partitioning.
Further, once a rechargeable sensor node exhaust its energy, it
may join the network again after the next recharge schedule.
In this paper, a solar-poweredRechargeable Wireless Sensor
Network (RWSN) is considered to design a sustainable data
sensing paradigm.

In a rechargeable WSN, the sustainability of the network is
an important issue to improve the overall lifetime of the net-
work. Moreover, in a typical non-rechargeable tree-structured
WSN, sensor nodes forward sensed data to a central sink
using a data collection tree [6]. A data collection tree gets
partitioned once an intermediate node exhaust its energy. The
lifetime of such a network can be improved by balancing the
energy consumption of sensor nodes. In [6], the problem of
lifetime maximization of WSN is presented in the context of
data collection trees. However, for a rechargeable WSN, the
survivability of sensor nodes till the next recharge schedule
is a major concern to prolong the network lifetime. Further,
real-time network traffic-load and different states (in terms
of residual energy levels) of energy harvesting sensors are
not considered in [6] to compute the energy consumptions
of sensor nodes. Therefore, energy efficiency of rechargeable
sensor nodes with varying energy levels need to be analyzed
for designing an adaptive load balancing algorithm to pro-
vide network sustainability. Moreover, during data acquisition,
nodes deplete their energy while performing operations such as
sensing, transmitting and receiving. The sensor nodes should
choose their operations adaptively to prolong network lifetime.
Further, the data collection tree need to be balanced due to
unequal energy dissipation and available harvesting resources.

In this work, a Markov Decision Process(MDP) based
load balancing technique has been designed with varying the
energy levels of sensor nodes while choosing the operation of
sensor nodes adaptively according to residual energy. Using the
proposed algorithm, a node chooses the operations (sensing,
transmitting and receiving) adaptively to sustain till the next
recharge schedule (cycle) in the network. Energy consumptions
have been estimated using real-time network traffic with vari-
ous sensor operations. A prediction algorithm has been adopted
to analyze the amount of harvested energy in a rechargeable
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WSN. The energy levels of sensors are provided as inputs
to the MDP algorithm. The proposed algorithm selects the
optimal policy and takes energy balancing (switching) decision
based on the residual energy of each node. An energy-balanced
network is generated when the energy consumption of sensors
adaptively changes based on harvesting energy sources and
network traffic loads. To the best of our knowledge, this is
the first work which proposes a MDP algorithm to improve
lifetime for a sustainable rechargeable WSN.
The major contributions of this work are as follows:
• Design of an energy model by considering real-time

network traffic with various sensor operations (sensing,
transmitting and receiving) and energy harvested sensor
nodes in a tree based wireless sensor network.

• Design of a Markov Decision Process(MDP) based
switching algorithm to improve lifetime and to achieve
a sustainable data collection tree.

• Simulations results are presented to show the efficacy
of the proposed MDP algorithm withreal-timenetwork
traffic.

II. RELATED WORK AND MOTIVATION

In this section, existing works on lifetime, energy efficiency
and energy harvesting have been discussed. In [7] and [8]
energy consumption models have been proposed including
analysis of lifetime of sensor network.

Energy conservation schemes have been proposed to extend
network lifetime by Anastasiet al. [9]. In [10], a cluster based
duty cycled wireless sensor network has been considered and
network coding based data aggregation strategy has been pro-
posed. A load balancing based randomized switching algorithm
has been proposed for maximizing lifetime in the context of
data collection trees by Imonet al. [6]. A probabilistic model
for estimating the lifetime of wireless sensor network has been
presented in [11]. Routet al. [12] have estimated the lifetime
of WSN using duty cycle and network coding. However, in
our work, we have designed an energy utilization model to
estimate the residual energy of a node in a rechargeable tree
based sensor network.

Tashtarianet al. [13] have proposed a solution to obtain the
trajectory of mobile sink which increases the network lifetime.
To improve the lifetime, a mobile sink based energy efficient
clustering protocol has been proposed by Abo-Zahhadet al.
[14]. In [15], a genetic algorithm based self-clustering method
has been presented to optimize the network lifetime. A network
coding based probabilistic routing for clustered WSN has been
presented by Routet al. [16]. Abd et al. [17] have proposed a
game theoretic energy balance routing protocol to address load
balance problem. An energy-balanced routing method has been
proposed by Zhanget al. [18]. Tuncaet al. [19] have proposed
a distributed energy-efficient mobile sink routing protocol.

To address the lifetime maximization problem in WSN,
Yang et al. [20] have proposed algorithms for complete target
coverages for energy harvesting sensor nodes. Dynamic activa-
tion of sensor nodes to maximize system performance has been
presented by Karet al. [21]. A markovian model has been used
for calculating sensor discharge and recharge periods. Active

time scheduling protocols are proposed for rechargeable sensor
network by Pryymaet al. [22]. Dynamic activation policies
for event capture in rechargeable sensor network have been
proposed by Renet al. [23].

Markov Decision Processhas been adopted to improve the
performance ofWireless Sensor Networksin various applica-
tions [24]. Markov Decision Processbased analysis has been
done for rechargeable nodes by Misraet al. [25]. A MDP
model based censoring policy has been proposed for energy
efficient transmission in harvesting sensor nodes [26]. In [27],
a Markov model has been presented for energy harvesting
nodes. In [28],Markov Decision Processbased policies are
designed for optimal data transmission and battery recharging
for solar powered sensor nodes. In our work, we have designed
a Markov Decision Processbased switching algorithm to
determine the optimal policy which provides the sustainability
of a data collection tree.

In [29], an exponential weighted moving average model has
been proposed to find out the diurnal cycle in solar energy
including seasonal variations. In advanced expectation model
[30], a parameter related to the actual amount of harvested
energy has been introduced and it addresses the temporal
environmental conditions. A weather condition moving av-
erage model has been proposed in [5]. Weather-conditioned
selective moving average model has been proposed by Jiang
et al. [31] using the trend similarity of energy harvesting
and classification of sunny and cloudy days. An additive
decomposition model based solar energy prediction algorithm
has been proposed in [32]. The profile energy prediction model
proposed in [33] estimates the future energy availability for
solar and wind harvesting WSN.

A. Motivation and Problem Formulation
In [6], a randomized switching algorithm has been proposed

for balancing the data collection tree so that all nodes have
uniform load in terms of data forwarding. However, in [6],
limited battery powered sensor nodes are considered. More-
over, in a tree based rechargeable WSN, the nodes that belong
to different routes will have different energy dissipation due
to unequal harvested-energy and utilized-energy. In this paper,
solar powered rechargeable sensor nodes are considered. The
amount of harvested energy depends on the availability of
sunlight. Solar harvesting sensor nodes are having different
energy levels based on the amount of energy harvested by the
nodes. If a node is not having sustainable energy till the next
recharge cycle, it uses stored energy optimally and reduces its
energy consumption by reducing operations (like switch off the
receiver and transmitter). In this case, node’s children switch to
some other parent and forward the data through the new parent.
The focus of this work is to estimate the energy consumption
of energy harvesting nodes in a tree based WSN and to design
a Markov Decision Processbased switching method to achieve
sustainability in rechargeable WSN.

The rest of the paper is organized as follows. In section
III, the energy utilization model has been presented in a tree
based rechargeable WSN. In section IV, aMarkov Decision
Processbased switching algorithm has been presented to pro-
vide network sustainability. Performance evaluation has been
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done through simulation results in section V. The concluding
remarks are given in section VI.

III. E STIMATION OF ENERGY UTILIZATION

In this section, a network model has been introduced. An
energy consumption model has been presented to estimate
energy utilization in the network. Further, an energy harvesting
model has been presented for predicting harvested energy.

A. System Model and Assumptions

G(N,E) be a graph representingn sensor nodes which are
placed randomly, whereN = {v0, v1, ..., vn} denotes a set of
vertices andv0 denotes sink node. The set of communication
links are represented byE. T (NT , ET ) is a data collection
tree which represents an acyclic spanning subgraph ofG with
NT = N andET ⊆ E, wherev0 is the root ofT . The residual
(current) energy budget ofvi is referred to asrei. Total energy
consumption of a node is represented bycei. In eachdata
collection round, sink node collects data from all sensor nodes
[6] [34]. In this paper, data collection round is also denoted as
round. Path energy (pri) of a nodevi is the minimum residual
energy of all nodes along the path fromvi to v0. The path
energy balancing parameterp(r) is defined as the difference
betweenmax{prLi } andmin{prLi }, whereprLi denotes the set
of path energies of all leaf nodes i.e.,prLi = {pri|vi ∈ L}, L
is the set of leaf nodes in data collection tree.

B. Energy Consumption Model

In this section, we analyze energy consumptions for the
proposed network model (as discussed in section III-A). A
binary sensor tree is defined with heighth. The energy
consumptions of the tree is determined level wise by using
the model as described in [7].Esense, Erx and Etx are the
energy consumptions by a sensor node in sensing, receiving
and transmitting data over a distanced, respectively. A path
loss model (with path-loss exponentn̂) has been considered
where signal strength reduces by1

dn̂ . Here,d is the distance of
separation between the sender node and receiver node [7]. The
energy consumptions [7] are given byEsense = α3, Erx =
α12, Etx = α11 + α2d

n̂, where α11: energy consumption
per bit by the transmitter electronics,α2: energy dissipation
in the transmitop-amp,α12: energy consumption per bit by
the receiver electronics andα3 is the energy consumption
for sensing a bit. The energy consumptions are estimated by
considering an event-centric application [35] [10]. Assume,l
is the size of generated data by each sensor node per event.
The average rate at which events occur per unit time isβ
[8]. Therefore, energy consumption for sensing till timet is
represented asα3ltβ.

1) Energy Consumption of a node in a sensor tree:Energy
consumption of a node in sensor tree is analyzed by assuming
that number of children of a nodevi isCi. Energy consumption
of a nodevi for receiving data from its children isα12Ciltβ.
Total energy consumption (cei) of a node (sayvi) is given by

cei = α3ltβ + α12Ciltβ + (Ciltβ + ltβ)(α11 + α2d
n̂)

= ltβ[α3 + α12Ci + (Ci + 1)(α11 + α2d
n̂)] (1)

First term in Equation (1) is the energy consumption for
sensing till timet. Energy consumption for receiving children
data is represented by second term inEquation (1) and last
term signifies the energy consumption for transmitting the total
data (i.e sensed and received data).

2) Energy Consumption of leaf level (Elf ): Energy con-
sumption of a node in leaf level is equal to the sum of the
energy consumptions for sensing data and forwarding the data.
The generated data will be transmitted through multi-hop path
to the sink. So, the energy spent by each leaf level node till
time t is given by[α3ltβ+(α11+α2d

n̂)ltβ]. In the proposed
network model, the number of nodes at leaf level is2h. Hence,
the total energy consumption at leaf level is given by

Elf = 2h[α3ltβ + (α11 + α2d
n̂)ltβ] (2)

First term inEquation (2) is the energy consumption of leaf
level nodes for sensing till timet. Second term inEquation(2)
represents the energy consumption for transmission of sensed
data.

3) Energy Consumption at levelk (Ek): The energy con-
sumption at levelk is sum of energy consumptions for (a)
sensing (b) transmitting its own sensed data and (c) relaying
data received from its children. The energy consumptionEk

is

Ek = 2k[α3ltβ + (α11 + α2d
n̂)ltβ]

+(2h+1 − 2k+1)(α1 + α2d
n̂)ltβ

= ltβ[2k(α3 + α11 + α2d
n̂) + (2h+1 − 2k+1)(α1 + α2d

n̂)] (3)

where,α1 = α11 + α12. The maximum energy consumption
(Ebt) of a binary sensor tree is given by

Ebt =

h∑

k=0

[ltβ[2k(α3+α11+α2d
n̂)+(2h+1−2k+1)(α1+α2d

n̂)]]

(4)
Therefore, maximum energy consumption forn-ary sensor tree
(i.e. every node inn-ary sensor tree is having maximum ofn
children) is given byEnt

Ent =
h∑

k=0

[ltβ[nk(α3+α11+α2d
n̂)+(nh+1−nk+1)(α1+α2d

n̂)]]

(5)

C. Energy Harvesting Model

In our work, solar powered sensor nodes are considered
based on aWeather Conditioned Moving Averagemodel [5].
The model is used for predicting the harvested energy using
solar sensors. Energy prediction is required for making deci-
sions for the future time slots in the proposed switching method
(as discussed in section IV). The future energy available to the
system can be predicted by using past history. However, sudden
changes in weather conditions and seasonal variations also
affect the amount of harvested energy. In our system model,
a day is divided intoq time slots such as{t0, t1,...,tq} and
pe(d, t) represents the predicted harvested energy for a dayd
at time slott. As per model [5], the predicted value is related
to the previous slot value in the same day and the mean value
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of the past days of same slot. The amount of energy harvested
at the next time slot is estimated by using following equation:

pe(d, t+ 1) = α.pe(d, t) +GAPk.(1− α).MD(d, t+ 1) (6)

where,α is a weighting factor andMD(d, t+ 1) is the mean
of the harvesting energies at(t+1) time slots for the previous
D days. The solar conditions in the present day relative to
previous days is measured by usingGAPk factor [5].

The residual energy(ret+1) at next time slot(t + 1) is
estimated by using the following formula:

ret+1 = ret + pe(d, t+ 1)− cet+1 (7)

where,cet+1 is the energy consumption of a node at time slot
(t + 1) and it is determined by usingEquation (1). Nodes
may have different energy levels because of heterogeneity
in harvesting energy sources, which may vary at different
interval of time. In this work, the states of the sensor nodes
are categorized intos different states, such as,S1, S2.....Ss,
according to energy levels.

In the next section, aMarkov Decision Processbased energy
balancing algorithm is proposed. Equation (7) (for estimating
the residual energy) is used in the proposed algorithm for
energy balancing.

IV. M ARKOV DECISION PROCESSBASED SWITCHING
ALGORITHM

In this section, a Markov Decision Process (MDP)
based switching algorithm (Algorithm 1) has been
presented. The proposed MDP based approach have
five major functions, such as,MDP SWITCH(), MDP(),
FIND RES ENERGY(), FIND ENERGYCONSUMP() and
FIND POT PARENTS(). The FIND RES ENERGY() and
FIND ENERGYCONSUMP() functions return the residual
energy of a node and energy consumption of a node,
respectively. TheFIND POT PARENTS()function is used to
select the potential parent for a node which is selected for
switching. FunctionMDP() returns the switching decision of
the Markov Decision Processand MDP SWITCH()switches
the children to respective potential parents.

The data collection tree (T), as discussed in Section
III-A, is the input to the Algorithm 1. The function
FIND RES ENERGY() is called at time slott and it re-
turns the residual energy of a nodevi at time slot (t + 1),
as shown inAlgorithm 2. The termpet (in line 1, Algo-
rithm 2) is the predicted harvested energy (which is esti-
mated usingEquation (7)) of a node at time slott. The
FIND ENERGYCONSUMP(vi, t) function (Algorithm 3) es-
timates the energy consumption(cei) of a nodevi in a given
time slot t usingEquation(1).

In time slot t, a nodevi (Algorithm 1) is initialized with
residual energyreti. A node determines the residual energy in
time slot (t+ 1) usingAlgorithm 2. The energy consumption
of a node at time slot(t + 2) is estimated usingAlgorithm 3
(refer line 3,Algorithm 1).

After each data collection round, the nodes which are not
having sustainable energy for the next time slot are selected
(refer line 5, Algorithm 1). For all selected nodes,MDP()

returns the switching decision, on the basis of the residual
energy as shown inAlgorithm 4. Reward for each policy is
determined (line 4,Algorithm 4) and the optimized policy
is selected (line 6,Algorithm 4) by the nodes. If switching
decision is true (line 7,Algorithm 4), then the function
FIND POT PARENTS()(Algorithm 5), is invoked by all the
children of the selected nodes and it returns the potential
parents. Potential parents are the nodes which are having
connection link with the selected nodes and having sustainable
energy for the next time slot (line 2,Algorithm 5). Among the
potential parents, the maximum residual energy node (vp) is
selected as a new parent (line 13,Algorithm 1). Further, the
node is switched to new parent and the tree is updated (line
14, Algorithm 4). Further, every node will discover its parent
and children using the tree update operation. The proposed
switching operation provides sustainability to the tree-based
rechargeable WSN and the network lifetime will be improved.
In the next section,Algorithm 4is explained with a case study.

Algorithm 1 MDP SWITCH(T)

1: Initialize (reti) for eachvi ∈ V
2: ret+1

i = FIND RES ENERGY(vi, t + 1, reti) for eachvi
∈ V ;// (after each data collection round)

3: cet+2

i = FIND ENERGY CONSUMP(vi, t + 2) for each
vi ∈ V ;

4: for i = 1 to n do
5: if ret+1

i ≥ cet+2

i then go to 4;
6: else
7: if MDP(ret+1

i ) == false then go to 4;
8: else
9: Enqueue(children(vi));

10: while IsEmptyQueue == falsedo
11: vj = Dequeue();
12: W = FIND POT PARENTS(G,vj);
13: ∀vi ∈W find the node vp with

max(ret+1

i );// vp is new parent ofvj
14: Update the tree
15: end while
16: end if
17: end if
18: end for
19: go to 2;

Algorithm 2 FIND RES ENERGY(vi,t,r)

1: Get the value ofpet;
2: ceti = FIND ENERGY CONSUMP(vi, t);
3: calculateret+1

i = r + pet - ceti;
4: return ret+1

i ;

A. Illustrative Case Study

In this section,Algorithm 1 has been illustrated with the
help of a case study as shown in Fig. 1. Fig. 1 shows a
data collection tree, where solid lines indicate the edges in the
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Algorithm 3 FIND ENERGY CONSUMP(vi, t)

1: Find number of childrenCi

2: Set values ofα3, α11, α12, α2, l, t, β;
3: Calculatecei = ltβ[α3 + α12Ci + (Ci + 1)(α11 + α2 dn̂)];
4: return cei;

Algorithm 4 MDP(rei)

1: Find out stateSi of the nodevi by rei
2: for All MDP switching policies find rewarddo
3: Find steady state probabilitiesΠ1, Π2, Π3....Πs where

s is the number of states(probability values will be calcu-
lated by transition probability matrix of each policy)

4: Reward =Π1 R1 + Π2 R2 + Π3 R3 + ....+ Πs Rs

whereR1,R2...Rs are rewards in each state
5: end for
6: Select the optimized policy
7: Check the decision for the state of the node in policy
8: if decision is to switch off the receiverthen return true;

//node’s children switch because receiver is off
9: else

10: return false;
11: end if

current tree and the dotted lines represent potential edges that
can be used to realize a new sustainable tree. For analytical
results, the energy parameters are considered as per MICA
mote sensors [36]. The energy consumption parameters are as
follows: Number of nodes = 7, Initial energy budget = 2500
Joules,α11 = 0.937 × 10−6 Joules/bit,α12 = 0.787 × 10−6

Joules/bit [10],α2 = 10 × 10−12 Joules/bit,α3 = 50 × 10−9

Joules/bit,d = 85 m and path loss component(n̂) is 2 [7].
Data generated by each node per event (i.e.l) is 960 bits [10]
and all the nodes are having different values ofβ. To compute
harvested energy, the day is divided into 24 time slots and each
time slot is of one hour. There is one data collection round at
each hour. Solar energy is available for 12 hours during day
time and it is not available during night time. Here,day 1 is
considered as sunny day andday 2 is considered as cloudy.
The values of solar harvested energy for different time slots of
a day are considered according to existingWCMAmodel [5].

The residual energy of all the nodes is determined at future
time slot by usingEquation (7). The Equation (7) usesret

(i.e. residual energy at time slott), pe(d, t + 1) (i.e. the
predicted harvested energy for time slot(t + 1) is estimated
using Equation (6)) and cet+1 (i.e. the energy consumption

Algorithm 5 FIND POT PARENTS(G,vj)

1: for ∀vk that are neighbors ofvj in G do
2: if (ret+1

k ≥ cet+2

k ) then W = W ∪ {vk};//Initial value
of potential parentW is Null

3: end if
4: end for
5: return W ;

TABLE I: Energy Consumption and Residual Energy of nodes

Nodes β Sensing Receiving Transmitting Total Residual Energy
(Joules) (Joules) (Joules) (Joules) (Joules)

1 500 1.44 47.5978 90.10 139.14 134.55
2 50 0.144 0 2.90 3.05 2448.14
3 300 0.864 0 17.43 18.30 2188.83
4 300 0.864 20.39 43.59 64.86 1397.34
5 250 0.72 0 14.53 15.25 2240.7
6 200 0.576 0 11.62 12.20 2292.56

for (t+ 1) time slot is estimated usingEquation(1)). Table I
shows the energy consumptions and residual energy for each
node after 29 data collection rounds.

1
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Fig. 1: (a) Tree before switching (To conserve energy, node
1 switch off (turn off) its receiver) (b) Tree after switching
(Node 3 and node 4 are switched to node 2).

As shown in Table I, the residual energy (i.e. 134.55 Joules)
for node 1 in the next time slot is less than the required total
energy consumption (139.14 Joules). According to the line 5 of
Algorithm 1, node 1 is selected for running MDP() (Algorithm
4).

1) Markov Decision Process based analysis of policies:In
this section, policies, decisions and actions of the proposed
MDP based approach have been presented. According to
Markov Theory, the future state of a sensor node depends upon
the current state rather than the past state. In this work, five
different energy states are defined and considered based on
energy levels. StateS5 is having maximum energy (level 5) and
stateS1 is having minimum energy (level 1). Let, the set{Y0,
Y1, Y2, ...} represents number of residual energy units a sensor
node has at{0th, 1st, 2nd, ...} time slots.P{Yt+1 = j|Yt = i}
is the probability that a node is havingi units of residual energy
at time t and it will have j units of residual energy at time
interval (t+ 1). Here,{c0, c1, c2,...} are the number of units
of residual energy consumed during{0th, 1st, 2nd, ...} time
slots and so on. Therefore, the random variablect is the units
of residual energy consumed in time intervalt. It is assumed
that ct follows a Poisson distribution with mean (λ) one unit
of residual energy [25]. Thus, the over all scenario can be
represented as a MDP.

f(ct+1 = k) = (λke−λ)/k! (8)

Thus, Yt (for t = 0, 1, 2, ...) is a stochastic process. The
possible states of a node at a given time slot areS5 with a
total residual energy capacity of 5 units,S4 with a residual
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TABLE II: Initial Transition Matrix with pet+1 = 2 units

Pij S5 S4 S3 S2 S1

S5 0.368 0.368 0.184 0.061 0.019
S4 0.368 0.184 0.061 0.019 0.003
S3 0.368 0.368 0.184 0.061 0.019
S2 0 0.368 0.368 0.184 0.061
S1 0 0 0.368 0.368 0.184

energy capacity of 4 units,S3 with a residual energy capacity
of 3 units,S2 with a residual energy capacity of 2 units and
S1 with a residual energy capacity of one unit. The amount of
harvested energy by a sensor node at time (t+ 1) is pet+1 as
per WCMA model [5] and it is converted to residual energy
units. The value ofct+1 is calculated for the transition from
Yt to Yt+1 by the following:

Yt+1 =

{
max{5− ct+1, 1}, if Yt = 5,

max{Yt − ct+1 + pet+1, 1}, if Yt ≤ 4.
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Fig. 2: State Transition Diagram

The probability valuePij for transition fromYt to Yt+1

is calculated by putting this value ofct+1 in Equation (8).
Table II shows initial transition matrix and Fig. 2 shows the
state transition diagram whereS5, S4, S3, S2 andS1 are the
states of the node andPij is the probability of transition from
stateSi to Sj . The maximum amount of harvesting energy is
considered as 2 units.

In the case study(refer Fig. 1), for data collection round
30, the harvested energy is assumed as 0 (zero) and Table III
shows the initial transition matrix for a node withpet+1 = 0.

The energy conservation of the nodes is considered as re-
ward of the MDP policy. Sensor nodes consume energy during
performing operations. If the node is having more energy, it
performs more operations and if it is having less energy, it
reduces operations, like, switch off receiver or transmitter to
conserve energy. Therefore, energy conservation of a node is
inversely proportional to the residual energy of the node as
shown in the following equation.

TABLE III: Initial Transition Matrix for given case study

Pij S5 S4 S3 S2 S1

S5 0.368 0.368 0.184 0.061 0.019
S4 0 0.368 0.368 0.184 0.08
S3 0 0 0.368 0.368 0.264
S2 0 0 0 0.368 0.632
S1 0 0 0 0 1

TABLE IV: Expected energy conservation

State Residual energy(in units) Energy conservation

S5 5 0.2 µ

S4 4 0.25µ

S3 3 0.33µ

S2 2 0.5 µ

S1 1 1 µ

Energy conservation= µ
1

Residual energy
(9)

where,µ is constant. The expected energy conservation is
estimated by using theEquation(9) as shown in Table IV.

Three decisions have been considered for MDP as shown
in Table V. Decision 1is Do nothing, where a node will not
reduce any of its current operations.Decision 2is Receiver off
and transmitter on, where the node stops receiving data and
the data of the sub-tree will be lost. So, switching should take
place and the children of that node should be switched to some
other healthy nodes (in terms of residual energy) to achieve
a sustainable tree. This switching operation protects the tree
from partitioning.Decision 3 is Receiver off and transmitter
off, where the node switches off receiver and transmitter.
Further, switching decision is also take place at this state.

Table VI shows policies and decisions for each state. For
simplicity, we have considered two policies. The first policy
is, Not to receive(i.e. switch off receiver), if the node is in
stateS1, S2, S3 (based on policyRP123 as shown in Table
VI). In table VI, all other states(i.e.S4, S5) the decision isDo
nothing. Table VII shows the transition probability matrix for
policy RP123. Second policy isNot to receive, if the node is
in stateS1, S2 (RP12). In this case, if the node is in stateS1

or S2, then it switches off its receiver. Table VIII shows the
transition probability matrix for policyRP12.

Expected energy conservation is called as reward and is

TABLE V: Decisions and actions

Decision Action

1 Do nothing
2 Receiver off and Transmitter on
3 Receiver off and Transmitter off
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Fig. 3: Residual energy of the nodes (a) without proposed algorithm (b) with proposed algorithm (c) Number of data collection
rounds network is connected in different weather conditions

TABLE VI: Policies

Policy Verbal description D5 D4 D3 D2 D1

RP1 Switch off Receiver 1 1 1 1 2
if state isS1

RP12 Switch off Receiver 1 1 1 2 2
if state isS1,S2

RP123 Switch off Receiver 1 1 2 2 2
if state isS1,S2,S3

RP234 Switch off Receiver 1 2 2 2 1
if state isS2,S3,S4

RTP1 Switch off Receiver and transmitter 1 1 1 1 3
if state isS1

RTP12 Switch off Receiver and transmitter 1 1 1 3 3
if state isS1,S2

TABLE VII: The Transition matrix for policyRP123

Pij S5 S4 S3 S2 S1

S5 0.368 0.368 0.184 0.061 0.019
S4 0 0.368 0.368 0.184 0.08
S3 0 0.216 0.784 0 0
S2 0 0 0.216 0.784 0
S1 0 0 0 0.216 0.784

TABLE VIII: The Transition matrix for policyRP12

Pij S5 S4 S3 S2 S1

S5 0.368 0.368 0.184 0.061 0.019
S4 0 0.368 0.368 0.184 0.08
S3 0 0 0.368 0.368 0.264
S2 0 0 0.216 0.784 0
S1 0 0 0 0.216 0.784

TABLE IX: Policies and rewards

Policy Π1 Π2 Π3 Π4 Π5 Reward

RP123 0.067 0.2212 0.530 0.1812 0 0.3887µ
RP12 0.236 0.568 0.194 0 0 0.584µ

calculated by using the equation as shown below:
s∑

k=1

[ΠkRk] (10)

where,Πk is the steady state probability and it is calculated
using transition probability matrix (Table VII forRP123 and
Table VIII for policy RP12). Rk is the expected energy
conservation (refer Table IV) of a node ands is the number
of states.

Policy RP12 is selected to give maximum reward as shown
in Table IX. In the given case study, according to energy levels,
node 1 is in stateS1. According to policyRP12 as shown
in Table VI, decision for stateS1 (i.e. D1) is 2. Decision
2 is to switch off the receiver, as shown in Table V. If the
node 1 is switching off the receiver, the MDP() function
returns switching decision astrue (line 8, Algorithm 4). Now,
FIND POT PARENT(G,vj) is called to find out the potential
parents for node 3 and node 4. In Fig. 1, the dotted lines shows
that node 2 is a potential parent and also it is having sustainable
energy for the next time slot. Therefore, node 3 and node 4 are
switched to node 2. Fig. 1(b) shows the tree after switching.
If the switching is not there, node 1 depletes all its energy and
can not sustain for next time slot. Hence, data of left sub-tree
will not reach to sink node and the network will be partitioned.
However, using the proposed switching algorithm, node 3 and
node 4 forward data through node 2 to the sink. Thus, the
MDP based switching method provides sustainability to the
network and improves the network lifetime.

Fig. 3(a) shows the residual energy of the nodes without
the proposed switching algorithm. After 29 rounds, node 1
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depletes all its energy and the network is disconnected. Fig.
3(b) shows the residual energy using the proposed algorithm.
Node 1 sustains up-to 36 rounds and the network sustainability
is improved up-to 7 rounds.

B. Analysis of MDP based switching algorithm

In this section, we have analyzed the time complexity of
proposed MDP based switching algorithm. Initialization of
residual energy for all nodes at time slott takesO(n) time
in MDP SWITCH function (line 1,Algorithm 1). Algorithm
3 takesO(ĝmax) time, whereĝmax is maximum number of
children of a node in the tree. Residual energy of a node at
particular timet is computed byAlgorithm 2. The running
time of Algorithm 2 is O(ĝmax). In Algorithm 1, line 2 and
line 3 run usingO(nĝmax) time. The loop on line 4 runs
for all nodes in the network. Line 5 requiresO(1) time. In
line 7, MDP function (Algorithm 4) runs inO(1) time. Line
9 takesO(ĝmax) time. The inner loop on line 10 runs for
O(ĝmax) time. FIND POT PARENTS() function (Algorithm
5) on line 12 takesO(p̂max) time, wherêpmax is the maximum
number of neighbors of a node in the connectivity graphG.
The operationUpdate the treeon line 14 takesO(n) time. The
inner loop (from line 10 to line 15) runs inO(nĝmax) time.
Since ĝmax ≤ p̂max < n, the total time complexity of MDP
based switching algorithm is obtained asO(n2ĝmax).

V. PERFORMANCEEVALUATION

This section presents the evaluation of proposed MDP based
algorithm compared with randomized algorithm [6] in terms
of network connection statistics, such as, number of data
collection rounds in which the network is connected, first node
disconnection round and path energy balancing parameter.
Network simulator-3 [37] has been used for simulation of
proposed algorithm.

A. Experimental Setup

The sensor nodes are placed randomly in the deployment
area and network is created in the form of graph. An initial
data collection tree, rooted at the sink node, is constructed by
using breadth-first-search algorithm. In each data collection
round, a node relays the data (sensed data and received data)
to its parent. Here, the sink is not an energy-constrained node.

Simulation parameters are considered as follows: deploy-
ment area is200× 200 m2, radio transmission range is set to
30m, the minimum distance between any two sensor nodes is
set to 5m and the initial energy of a node is 2500 Joules. The
energy consumption parameters are considered as MICA mote
specifications [36] as follows:α11 = 0.937× 10−6 Joules/bit,
α12 = 0.787 × 10−6 Joules/bit [10],α2 = 10 × 10−12

Joules/bit,α3 = 50 × 10−9 Joules/bit,d = 85 m, n̂ = 2
[7]. The value ofl is considered as 960 bits [10] and the value
of β is considered as 100. The harvested energy consumption
is computed based on the parameters as mentioned in IV-A.

B. Simulation Results

In this section, two scenarios are considered for performance
analysis of the proposed MDP based algorithm. In thefirst
scenario (scenario 1), the proposed approach is evaluated
without considering harvested energy. In thesecond scenario
(scenario 2), harvested energy is considered for evaluating
MDP algorithm. The maximum harvested energy per node is
taken as 200 Joules. Total number of sensor nodes are varied
from 25 to 200 and simulation results are presented for 200
rounds.

Fig. 4(a) and Fig. 4(b) show the number of rounds in
which all the nodes are connected for first scenario and second
scenario respectively. It can be seen from Fig. 4(a) and Fig.
4(b) that network remains connected more number of rounds
using the proposed MDP algorithm in comparison to the
randomized switching algorithm [6]. In randomized algorithm
[6], the sustainability condition (in terms of survival of a
node) for future time slots has not been considered. At each
iteration of randomized switching algorithm only one node
with highest load is selected for balancing. In proposed MDP
based algorithm, all the nodes which are not having sustainable
energy are selected for switching. Switching decision is chosen
by MDP algorithm based on residual energy of the node.
Further, it can be seen from Fig. 4(a) and Fig. 4(b) that as
number of nodes increases, the height of the tree also increases.
Moreover, the nodes near to the sink are overloaded with heavy
traffic and their energy deplete quickly. Hence, the number of
rounds, in which the network is connected, is reduced sharply
as number of nodes increase.

Fig. 5(a) and Fig. 5(b) show the rounds at which the
first node (in the network) deplete all its energy for first
scenario and second scenario, respectively. It is shown that
the first node (in the network) depletes its energy early for
randomized algorithm in comparison to the proposed MDP
algorithm. With harvested energy the proposed MDP algorithm
gives significant sustainability to the network in comparison
to randomized switching algorithm. This is an important result
because disconnection of a node in a tree based sensor network
leads to network partitioning.

Simulation study has been performed (as shown in Fig. 3(c))
to evaluate the performance of protocol under various weather
conditions such as sunny, cloudy and rainy. If the day is sunny,
the nodes harvest more energy and the network is alive for
more number of rounds as compared to cloudy and rainy days.
As the number of nodes increase, the connectivity status of
the network reduces due to more load on the nodes which are
placed near to sink.

Fig. 4(c) and Fig. 5(c) show the performance of proposed
protocol in terms of path energy balancing parameterp(r)
as defined in section III-A. Simulation results are presented
for 200 rounds and 1000 rounds in Fig. 4(c) and Fig. 5(c),
respectively. Number of sensor nodes is considered as 400.
It can be observed from Fig. 4(c) that path energy balancing
parameter is high in initial rounds and the tree is imbalanced.
The proposed MDP algorithm is not invoked in initial rounds
because all nodes are having sustainable energy. Energy hun-
gry nodes (without sustainable energy) invoke the proposed
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Fig. 4: Number of data collection rounds network is connected for (a) scenario 1 (b) scenario 2 (c) Difference of maximum and
minimum path energy for scenario 2 for 200 rounds
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Fig. 5: First node disconnection data collection round for (a) scenario 1 (b) scenario 2 (c) Difference of maximum and minimum
path energy for scenario 2 for 1000 rounds

algorithm for energy balancing in the data collection tree. The
data collection tree is fully balanced(p(r) = 0) at 73rd round
as shown in Fig. 4(c). Further, it can be seen in Fig. 4(c) that
p(r) value fluctuates from 0 to 600 (approximately) Joules.
Further, similar fluctuations inp(r) value are observed from
Fig. 5(c). The fluctuations inp(r) value is due to the variations
in node’s harvesting energy.

VI. CONCLUSIONS ANDFUTURE WORKS

A Markov Decision Processbased algorithm has been
proposed in a rechargeable sensor network. The proposed
algorithm maximizes the sustainable time of data collection
trees in terms of data collection rounds. Further, a switching
decision is taken on the basis of residual energy of the node
to balance the tree. From the simulation results, it has been
observed that the network is connected for more number of
data collection rounds in comparison to an existing randomized
switching approach. Further, it has been observed that the node

sustainability time is improved significantly using the proposed
method. Energy utilization has been studied by varying various
weather conditions. Network connection statistics have been
studied in the presence and absence of harvesting energy. As
a future research challenge, MDP-based switching can also
be applied in other types of network architectures, such as,
clustered network and wireless sensor-actor network. Further,
the authors would like to investigate the performance of the
protocol in a real-field sensor network.
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