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Abstract—This paper introduces a novel approach to automating failure diagnostics in distributed systems by combining fault injection
and data analytics. We use fault injection to populate the database of failures for a target distributed system. When a failure is reported
from production environment, the database is queried to find “matched” failures generated by fault injections. Relying on the
assumption that similar faults generate similar failures, we use information from the matched failures as hints to locate the actual root
cause of the reported failures. In order to implement this approach, we introduce techniques for (i) reconstructing end-to-end execution
flows of distributed software components, (ii) computing the similarity of the reconstructed flows, and (iii) performing precise fault
injection at pre-specified executing points in distributed systems. We have evaluated our approach using an OpenStack cloud platform,
a popular cloud infrastructure management system. Our experimental results showed that this approach is effective in determining the
root causes, e.g., fault types and affected components, for 71-100% of tested failures. Furthermore, it can provide fault locations close
to actual ones and can easily be used to find and fix actual root causes. We have also validated this technique by localizing real bugs

that occurred in OpenStack.

1 INTRODUCTION

OFTWARE errors are one of the major threats to the availability
S of production systems [26], [37]. Even with many advances
in software testing, software bugs in distributed systems continue
to escape and impact critical services. This is mainly due to the
high cost of testing, and the separation of testing and production
environments. In addition, software is hardly a stationary target. A
newly implemented feature could introduce a new error, and even
an error fix could introduce another error [23].

Once a production system is impacted by such an error, it
needs to be quickly remediated, i.e., diagnosed and then fixed
to minimize system unavailability which may lead to serious
financial losses. Diagnosis refers to the identification of a failure’s
root cause (e.g., a software error). This process usually involves
meticulous analysis of execution traces (e.g., from log files) and
inspection of system’s faulty executions (e.g., with the assistance
from debugging tools). This process is laborious and as we show
is well-suited for computer automation. Various approaches have
been studied in the domain of automated software failure diagnosis
for distributed systems. Methods such as static [39] and dy-
namic [34] program slicing analyze the state of only single-process
applications. Spectrum-based techniques [1] deal with only the
internal process events, such as the number of predicate hits [27]
or the number of function call sequence hits [11], [29]. In order
to support failure diagnosis of distributed systems, it is essential
to be able to correlate events generated across components and
perform analysis on the entire event flow.

This paper introduces a novel approach to automating failure
diagnosis of distributed systems. Our approach is based on the
combination of a new fault injection (FI) technique and data
analytics. FI is a well-established technique for assessing the
robustness of software [19]. It involves inserting artificially gener-
ated errors, such as premature process termination, memory data

corruption and/or mutilation of function return values. Our fault
injection technique departs from existing approaches in that we
have a capability to control the injection locations by leveraging
the knowledge of execution flows across distributed components.
In our case, execution flow is the sequence of system calls or
library calls (spanning multiple components) invoked during the
processing of user requests. We have developed a mechanism
to track flows and to inject faults at arbitrary points along the
flows. This mechanism allowed us to systematically cover the fault
spaces during fault injection campaigns.

The outcome of our research is the tool, called Targeted Fault
Injection (TFI). It consists of several functionalities, including
(i) aforementioned mechanism for injecting faults at specified
points in the execution flows, (ii) FI Specification Language that
allows users to designate various configuration parameters of fault
injections during the runtime, (iii) control modules for overseeing
the entire fault injection campaigns, and (iv) components for
storing specifications, fault injection states and the failure profiles
collected from the FI runs into the Failure Profile Database
(FPDB). To diagnose a newly submitted failure, its execution flow
trace is first compared against the execution flow traces stored in
the FPDB using our custom similarity metrics. Then, a ranked list
of candidate faults are composed from the faults that generated
those similar execution traces. From our experiments, we find that
obtained fault information, such as fault type (e.g., process crash
or message corruption) and the fault location (e.g., a location in an
execution trace), is a good indicator for identifying potential root
causes of the given failure.

Comparing execution flows of distributed execution has chal-
lenges since they can branch out to parallel executions or merge
into one, forming complex graph. To quantify the similarity of
two failures, we have developed a method to causally order
events that are recorded across distributed processes into a single
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Fig. 1. An example processing flow consisting of send() and recv() LibC
calls across distributed components. A full processing flow stored in
our database also includes other types of LibC calls, which are ordered
based on the causal relationship of the sending and receiving events.

event sequence, or processing flow. . Once execution flows are
serialized, we define the distance between two ordered event
sequences as the smallest number of events that need to be added
or removed in order to transform one sequence into the other (i.e.
string edit distance).

We have evaluated the proposed failure diagnosis method, TFI,
on OpenStack [31], a widely used distributed cloud management
system. We have verified that our proposed framework could
accurately determine the failure types and the affected components
for 71-100% of tested failure cases. Furthermore, the returned
fault locations were close to the locations of actual faults, and
provided good indication of actual fault-to-failure propagation
paths. We have used examples of real bugs reported in OpenStack
to demonstrate the diagnostic capabilities of our approach.

The rest of the paper is organized as follows. Section 2 de-
scribes the design of our proposed framework and its implementa-
tion requirement. Next, Section 3.3.1 presents the implementation
of the Targeted Fault Injection tool, which is the core technology
of the framework. After that, Section 5 presents our evaluation
with OpenStack. Section 6 reviews relevant literature to our work.
Finally, Section 7 concludes the paper.

2 FRAMEWORK OVERVIEW
2.1 Failure Diagnosis Workflow

Our failure diagnosis workflow is as follows. We first collect traces
from production systems during executions that led to failures.
That task is done by instrumenting production systems with a
distributed tracing tool. Our tracing mechanism is conceptually
similar to vPath [38], Dapper [35], and Magpie [7] for collecting
traces of large-scale production distributed systems. In case the
tracing tool is not available in a target production system, a failure
must be reproduced in a separate testing environment with the
tracing tool enabled to obtain a trace of the failure.

After that, the collected traces are used to reconstruct a
processing flow corresponding to the failure. A processing flow
is a sequence of causally ordered system events (e.g., LibC calls
or API calls) invoked across multiple components during the
processing of a request. A sequence begins at the first event
indicating that an external request (e.g., an HTTP request from
a client) has been received by the system, and ends at the last
event indicating that a response to the request has been returned
or the processing of the request has terminated (e.g., because of
a failure). An example processing flow of a request is given in
Figure 1; the collected events include send() and recv() LibC
function calls invoked across three components.

1. An execution trace, or trace, is a raw record of collected events. A
processing flow, or flow, is an ordered sequence of events that follows their
causal relationships.
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Fig. 2. Overview of the processes in failure diagnosis framework using
Targeted Fault Injection.

A reconstructed processing flow is then used to query against
a preconstructed Failure Profile Database (FPDB) to find faults
that generate the same or similar processing flows. The identified
faults (and their locations in the processing flows) are given to
developers as hints for determining the actual root causes of the
observed failures.

Figure 2 depicts the process in the proposed framework. There
are two phases in the failure diagnosis process: (i) Failure Profile
Database construction and (ii) fault localization. The following
sections describe each phase in more detail.

2.2 Failure Profile Database Construction

FPDB construction is the process of collecting, processing, and
storing failure profiles and relevant data about root causes of
observed failures. In previous studies [12], [15], [28], concepts
similar to that of FPDB was proposed, wherein the data of known
failures are used to construct a database. A major limitation of all
these studies is while the provide a view of past failure, they can-
not predict locations of new failures. We overcome that limitation
by using fault injection to populate an FPDB. In our FPDB, each
fault injection experiment generates a failure profile entry, which
consists of a description of the injected fault and a set of execution
traces collected by repeated injections of the same fault in several
independent runs. We collect multiple execution traces generated
by the same fault to account for variations in the processing flow
of each fault. A variation might be caused by nondeterminisms
in execution, which can only be learned by observing multiple
executions while applying the same perturbation (i.e., fault). The
FPDB is constructed through the following five steps:

Step 1: Profiling. This is a prerequisite for setting up a
fault injection experiment. We employ the technique discussed
in Section 3.1 to reconstruct processing flows from failure-free
executions of request types that are to be included in the FPDB.
The resulting flow information is used in subsequent steps to
define fault injection experiments.

Step 2: Specifying fault injection experiment plan. The
following parameters are used to specify a fault injection plan.

Injection Granularity defines the unit of computation at which
a fault is triggered. An injection granularity directly affects the
accuracy of the fault localization. For example, if the granularity



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2575829, IEEE

Transactions on Parallel and Distributed Systems

is at the level of LibC calls, a fault is injected when there is a
call to a LibC function. Thus, a fault localization using these data
points can only indicate that the problem has occurred around the
area of the given LibC call.

Trigger Location indicates an event (e.g., a LibC call) at
which a fault is triggered. Given an injection granularity, one
can enumerate all possible trigger locations along an end-to-end
processing flow obtained in step 1. In our framework, each trigger
location is described by a sequence of causal events that precedes
the trigger event. An example of a sequence of causal events is:
“after message M is sent from component A to component B, wait
for 10 system call invocations in component B, and then inject a
fault into component B”. We can also specify value ranges as an
event to cover a certain region of a processing flow. For example,
instead of specifying exactly the 10th system call invocation, we
can specify a range from the 10th to 20th system call invocations.

Fault Model defines what type of fault to inject. We choose
three fault models: process crash, deadlock, and message cor-
ruption. They represent two broad classes of failure modes in
distributed systems: contained failures and propagated failures.
A contained failure is a failure that occurs in one process and
does not propagate to others. Process crash and deadlock are
common types of contained failures. Mechanisms for injecting
crashes and deadlocks ensure that no propagation is possible
before a process terminates or stops making further progress.
Conversely, a propagated failure affects the application beyond
process boundaries, often via distribution of corrupted messages.

Injection Target Location defines where to inject a fault after
it is activated. A target can be a computing node (e.g., a virtual
machine), a process, or a thread. Depending on the fault model,
this attribute may include more specific information, such as which
part of a message to corrupt.

Step 3: Conducting targeted fault injection. This step
is responsible for executing the fault injection experiments as
specified in step 2. We design and implement a fault injection tool,
called TFI (Targeted Fault Injection), that dynamically tracks and
correlates events generated by a distributed system at runtime to
deterministically inject faults as instructed by the fault injection
plan. For each injection specified in a plan, the TFI tool (i)
constructs a state machine based on the sequence of causal events
described by Trigger Location information of the specification;
(ii) intercepts the corresponding events at runtime to trigger state
transitions within the state machine; and then (iii) injects the
specified fault to the specified target at the appropriate time.

Step 4: Failure profile collection. This step collects failure
profiles generated by fault injection experiments. As mentioned
above, a failure profile contains a fault specification and a set of
corresponding traces.

Step 5: Processing failure profiles. This step restructures raw
events in each trace into a processing flow to capture the causal
relationships among events. Each processing flow is then con-
verted into a string of characters, which enables the calculation of
the similarity metric between two arbitrary traces. The converted
flows and the specifications of the corresponding injected faults
are finally stored in the FPDB.

2.3 Fault Localization

Fault localization refers to a process of narrowing down potential
failure root causes to a small set of the most likely ones. Our
framework does so by searching an FPDB for the injected faults

Data: Trppg(f): Set of traces stored in FPDB which are
generated by the same fault f
Data: Frppp: Set faults stored in FPDB
func DistanceToFault(,, f,) {
Input: 7,: reference trace; f,: injected fault.
Output: Distance from ¢, to group of traces generated by
fault f;.
Tap = Trrpp(f);
for i< 1..ndo
‘ 6 =EditDistance(ty,tpi);
end
0 = StandardDeviation({6i,..,0,});
for i+ 1..ndo
52
A,’ = €7ﬁ 5
end

n
return Y A;/n;
i=1

}
func TopKNearestFaults(z,, K) {
Input: 7,: reference trace; K: for Top-K.
Output: K faults generated the most similar traces to ¢,.
TopKF =0; /] Top-K nearest faults
TopKD =0; /] Top-K nearest distances
for f € Frppg do
df = DistanceToFault (¢, f);
(dmaxs fmax) < MaxDistance(TopKD,TopKF);
if size(TopKF) < K then
TopKF = TopKF +{f};
‘ TopKD = TopKD +{d};
else
if dy < djpqx then
TopKF = TopKF — {fmax} + {f},
TopKD = TopKD — {dya } +{ds};

end
end

end
return TopKF;

Algorithm 1: Pseudo-code of the Find Top-K Nearest Faults
query. Function DistanceToFault is for computing the
distance from a reference trace (z,) to a group of traces generated
by the same fault f, stored in the FPDB.

that generated the most similar processing flows to the one
associated with the new reported failure. When a failure is reported
(step 1 in the fault localization process depicted in Figure 2),
its trace is collected (step 2) and then processed (step 3). The
trace-processing step (step 3) is the same as step 5 in the FPDB
construction process.

The processing flow of the reported failure is used to query
the FPDB to find potential root causes (step 4). The FPDB
supports the Find Top-K Nearest Faults query by utilizing the
Execution Trace Distance function §(¢1,¢2). ¢t1 and 72 denote
two arbitrary traces. The underlining algorithm to compute an
execution trace distances 6(z1,72) is the edit distance [5], [30]
(a.k.a. the Levenshtein distance) of two strings that represent the
two traces 1 and ¢2. Section 3.2 details the methods to convert
an execution trace to a string representation and compute the edit
distances.

The Find Top-K Nearest Faults query takes a reference trace
t, and an integer value K as input, and then returns K faults in
the FPDB that have the smallest distances to the reference trace ¢,
(see Algorithm 1). For example, if the input ¢, is a trace of a new
failure to be diagnosed, the returned faults provide information
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on the potential locations of the actual, thus unknown, fault that
generated ¢,.

The distance between the trace ¢, and an injected fault f is the
average Gaussian influence [17] between ¢, and all traces #4, in
the failure profile of fault f stored in the FPDB. Recall that each
fault has multiple traces in a failure profile entry. The Gaussian
influence is computed as follows:

_ 8(tragy)?
AGaussian (tra tdb) =e 207

where o is the scaling factor, which is the standard deviation
of the pair-wise distances of all fault f’s traces stored in the FPDB.

The use of Gaussian influences is intended to account for the
variation of traces generated by the same fault. We observe that
some faults tend to generate traces with higher variation (i.e.,
less deterministic) than others. We attribute that behavior to the
nature of each fault. Therefore, when Gaussian influence is used
to compute the distance of a trace to a group of traces generated
by the same fault, the variation in the group of traces is used as
the scaling factor: the computed distance is positively correlated
with the variation in the trace group.

The function DistanceToFault in Algorithm 1 illustrates
how Gaussian influence is used to compute the distance between
a reference trace and a group of traces. The pseudo-code in
Algorithm 1 illustrates the underlining procedure to execute the
Find Top-K Nearest Faults query.

3 ENABLING TECHNIQUES

Three key techniques constitute the core of the proposed diagnosis
framework: (i) processing flow discovery, (ii) processing flow
representation and comparison, and (iii) targeted fault injection.
The following subsections describe each of them in detail.

3.1 Processing Flow Discovery

Successful execution of our method requires a tracing mecha-
nism that can track message flow across distributed components.
A flow of messages contains causal relationships of messages
exchanged across distributed components. For instance, suppose
that a component (e.g., an Apache web server) receive two HTTP
requests, and later, the same component generates one SQL query
to a MySQL database server. Which of those two HTTP requests
is responsible for the generation of the SQL query message?
Answering such questions requires discovery of the causal re-
lationship between messages. One approach is to modify the
application source code (i.e., Apache and MySQL in the example)
so that every message contains a global identifier. Another way is
to perform sophisticated inference on observable information, such
as timing, to infer the causality without modifying applications. In
order to make such an approach practical, our tracing is designed
to be non-intrusive to applications while still producing a precise
trace of processing flows.

The tracing mechanism employed in this work adopts the
principles proposed in vPath [38]. The main goal of tracing
is to track messages between components of a multi-threaded
application. Once a message is received, it is assigned to one of
the threads in the component, and that thread is responsible for
the processing of the message until it generates another outgoing
message. That method implies that, after the message is received,
causality can be tracked by observing thread IDs up to the point
where a thread sends out a new message. These principles can be

4

realized by monitoring system calls related to network activities,
such as send() and recv(). We record the thread ID of the caller
thread and the socket tuple information (local IP address, port) and
(remote IP address, port) upon detecting those system calls. The
thread ID is used to tie events from recv() to send() (i.e., within
components), and the socket information to tie events from send ()
to reve() (i.e., across components).

However, tracking messages across multi-threaded compo-
nents is insufficient. For scalability, many modern applications
employ asynchronous message queues such as AMQP [3]. Since
messages are inserted by one thread and picked up by another at a
later time, the causality within the queue is not carried by threads,
but rather by the messages themselves. In order to enable message
tracking across queues, we need to look at the message contents
to recognize the message identifiers, and correlate incoming and
outgoing messages.

We have implemented those principles within a custom shared
library. It contains a set of predefined library functions that
perform network I/O, such as recv(), recvfrom(), send() or
sendto(), and other system calls. We interpose this custom shared
library in front of the LibC library using the LD_PRELOAD
mechanism [24]. This way, we are able to intercept LibC calls
related to network activities and record appropriate data. The
collected data from all the processes in the target system constitute
the raw trace of an execution.

3.2 Failure Profile Representation and Comparison

After collecting a raw trace, it needs to be transformed into a
format that allows quantification of the similarity between a pair
of traces. Specifically, we transform each collected trace into a
single string, which represents (i) messages exchanged between
components, and (ii) the number of system events (e.g., LibC calls)
that a component invokes for processing an incoming message.

3.2.1 Data Cleanup

Automated diagnosis using FPDBs assumes that request process-
ing is deterministic and events in the causal sequence of request
processing maintain a deterministic ordering (the events may be
concurrent and still deterministic). Thus, collected traces must be
pruned to remove nondeterministic events, such as system noise,
message fragmentation, and out-of-order messages.

System Event Noise. It is common for an application to
use periodic messages, such as timeout or heartbeat messages,
to update the status (e.g., the liveness) of distributed components.
Periodic messages do not belong to any processing flows of user
requests. However, they are captured in our traces, and their order
relative to other messages is nondeterministic.

In order to remove those messages, we developed a heuristic-
based algorithm to detect periodic patterns of messages and times-
tamps in a trace. The algorithm works on a set of events generated
by a component. First, the algorithm searches for the most frequent
group of consecutive messages; then it determines whether the
occurrences of these groups are periodic in time. Specifically, the
first step of the algorithm generates n-gram sequences of a flow
(where, n is the number of messages in each group, and the value
of n is incrementally increased until no more new patterns are
found), and then computes a hash table of the generated sequences.
The second step of the algorithm processes the sequences in the
largest buckets of the hash table. For each sequence in a bucket, the
time interval between the two members of each pair of consecutive
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sequences is computed using the timestamp of the messages. A
bucket of messages is determined to be periodic if the variation in
the time intervals between arrivals of two subsequent messages is
smaller than a certain threshold.

Fragmented Messages. Because of the implementation of
the TCP (Transmission Control Protocol) stack, a message may
be fragmented unpredictably. That fragmentation is also non-
deterministic across runs. We group events to eliminate the
non-determinism caused by fragmented messages. For example,
consecutive send() or recv() events that have identical source
and destination ports are grouped into one event, as the separate
message are a result of fragmentation.

Non-deterministic Message Ordering. Because of network
latencies, distributed data collection often suffers from unordered
messages. We find all events that violate causal orderings and
reorder them. For example, consider a pair of send() and recv()
events, such that the recv() arrives at the centralized logger before
the send(); the order of these event needs to be switched.

3.2.2 Organizing Concurrent Processing

In a distributed system, a task can be split into multiple concurrent
sub-tasks. For example, a main component distributes messages
to multiple worker components in an orderly manner to perform
simultaneous computation. The main component then gathers the
results from messages sent by the workers after they finish their
sub-tasks. The order in which those completion messages are
received depends on the performance of each worker, which is
largely nondeterministic.

To remove that nondeterminism of gathered messages, we
represent the causal relationships of sending and receiving events
in a tree structure, in which:

e amnode is a sending or receiving event,

« the root of a tree is the first event in the trace,

o the parent of a non-root sending event is the preceding
event in the same thread (e.g., determined by Thread IDs),

o the parent of a non-root receiving event is the correspond-
ing sending event, from which the received message was
transmitted.

That tree structure captures the causal relationship among
receiving and sending events rather than their timing information.
Therefore, the order in which messages are received across multi-
ple components does not affect the tree structure.

We need to complete the tree to include information about
the internal execution within each thread. After the previous step,
sending and receiving events form a causal relationship tree, which
provides a skeleton of the entire processing flow. We add details
to the skeleton by inserting other events, e.g., other LibC calls,
between consecutive sending and receiving events in the same
thread. The tree now contains all the events captured during the
execution of a request.

3.2.3 Encoding Failure Profiles

We convert the tree structure obtained from the previous step
into a single string of characters. Each process in the target
distributed system is mapped to a unique character (note that we
can use Unicode, which allows us to represent a large number of
processes). Then, each node in a tree is labeled with the character
that represents the process that triggered the event. Finally, to
obtain a representation for a tree, we traverse the tree in a specific
order (e.g., post-order) and record the sequence of characters in the
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Fig. 3. Overall architecture of the Targeted Fault Injection framework.

labels of the nodes being visited along the traversal. That entire
sequence of characters is stored as a string in the FPDB.

3.2.4 Computing Trace Distances

We use the string edit distance metric [5], [30] to compute the
Execution Trace Distance 6 between two traces, which are rep-
resented as two strings using the method presented above. String
edit distance is defined as the minimum number of insertions,
deletions, and replacements of characters required transforming
one string into another. For example, the strings “hello world” and
“hey world!” have an edit distance of four (replacement of the first
“1” with “y”, deletion of the second “1” and the following “0”, and
insertion of “!”).

The more similar the two traces are, the smaller their distance
0 is. Using that metric, finding the most similar trace to a reference
trace t, is equivalent to finding the trace that has the smallest
distance to #,. Computation of the edit distance metric is used
to compute the Gaussian influence used in the Top-K query
(Section 2.3).

3.3 Targeted Fault Injection (TFI)

The proposed FPDB construction method (see Section 2.2) re-
quires that every fault be activated at a precise predetermined
location, i.e., the trigger location. That capability is key (i) to con-
struct an FPDB that covers all possible locations specified by an
injection granularity, and (ii) to accurately interpret information
on fault locations returned by the FPDB to the user. We developed
a tool called Targeted Fault Injection (TFI) to carry out that task.

3.3.1 Design of TFI

TFI injects a fault immediately preceding the last event in a
causally ordered sequence of events. For example, suppose that
TFlI is instructed to inject a fault f at the end of the event sequence
e] — e (event e is causally ordered before event e;). TFI first sets
a hook to intercept event e;. At run-time, as e; is intercepted, TFI
blocks the execution of e, clears the hook for ey, sets another
hook to intercept e;, and then resumes the execution of e;. That
procedure ensures that as long as event e, happens after event e,
regardless of the number of intermediate events between e; and
ey, TFI will be able to intercept e,, and then inject fault f at the
moment e; is intercepted.

TFI can operate in distributed environments. Figure 3 illus-
trates the architecture of TFI, which includes three parts: a Local
Controller (LC), a Central Controller (CC), and a global state
BookKeeper (BK). Each LC attaches itself to a target component:
(i) to intercept events of interest and (ii) to inject faults into that
component. All LCs update the global BK with the local states
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of target components and receive commands from the CC (also
through the BK). The CC, based on the global state maintained
in the BK and instructions from a fault injection specification file
(a fault injection experiment plan is automatically constructed out
of the specification, and the CC uses the experiment plan for its
input), orchestrates a fault injection via sending of two types of
commands to LCs: events interception and fault injection.

TFI operates in an event-driven mode through a notification
mechanism provided by the BK. That design was chosen to
meet the timing requirements of the event coordination and fault
triggering. Suppose that the CC is waiting for event e; to occur
in a component A, and it requests the BK to deliver a notification
when the state of A is updated. When e; is intercepted in A, the
corresponding LC updates A’s state in the BK. As a result, the
BK immediately notifies the CC about the occurrence of ¢;. Upon
receiving that notification, the CC decides on the next command
to be sent according to the fault injection experiment plan.

332

The main challenges in implementing TFI are (i) minimizing side-
effects of event interception and global state synchronization, and
(i1) supporting large-scale distributed systems. We implemented
the LC as a light-weight wrapper around the LibC library to in-
tercept system-level events (e.g., Libc calls). Also, the LC updates
local state via memory mapping (i.e., using mmap() function
in Linux) to local file systems, an that action is automatically
mirrored to the global state BookKeeper, backed by a ZooKeeper
server [20] for scalability.

Implementation of TFI

BookKeeper: State Synchronization via ZooKeeper. Fig-
ure 4 shows how global states are organized in ZooKeeper.
ZooKeeper [20] is a scalable and highly available coordination
system for distributed applications. It provides an abstraction of
a hierarchical name space, like a virtual file system, to access its
data. In our data model, each target system consists of multiple
target machines; each target machine (virtual or physical) consists
of one or multiple target processes, represented as their process
IDs, pid. Each process has (i) a cmd znode (data entry in
Zookeeper) to carry the current command that the CC sends to
that process; (ii) a sync znode for synchronization back and forth
between the LC attached to that process and the CC (e.g., the LC
updates the content of the sync znode to notify the CC that the
current command has been completed); and (iii) a proc_info
znode to carry the information about the process.

ZooKeeper also provides a notification mechanism that clients
can use to watch for updates or accesses in a Zookeeper znode.
That mechanism is convenient for implementing the event-driven
operation of TFI. When the CC sends a command by updating

events {
; "OsDoneBooting" : {
type: Matchprocount,
stablized time: 20,
count: 8,
timeout: 120,
post_event_script: "ps -ef > proclist.txt"

experiment: [
NetworkingNetw,
fcountNsgched
] b
"NovaBootBegin': {
type: MatchFunctionArg,
function: "recv",

NetworkingNetw: {
at: [

"OsDoneBooting",

argument: 2,

matching: "POST*",

target: "napi",

timeout: 360,

pre_event_script: "./create_vm.sh vmc &"

"NovaBootBegin",
"TaskNetworking"
1, ol
"TaskNetworking" : {
ProcCrash, type: MatchFunctionArg,
function: "write",
argument: 2,
} matching: "*UPDATE* task_state='networking’*",
target: "conductor",
} timeout:600

inject:
to: Scheduler

Fig. 5. Syntax and structure of TFI specification file.

the cmd znode of a target process, it registers to watch the sync
znode of that process. Once the LC attached to that process
completes executing the command, it updates its sync znode so
that the ZooKeeper server can send a notification to the CC. The
CC’s event handler is responsible for executing the subsequent
commands in the experiment plan.

Local Controller: Light-weight Libraries Attached to Target
Processes. The LC is implemented as two libraries, libtracer
and libfi (as shown in Figure 4), which are attached to target
processes. libtracer is a wrapper of the LibC library for inter-
cepting Libc calls invoked by target processes. libfi implements
fault models, e.g., process crash, process deadlock, and message
corruption. /ibfi can be extended to include new fault models.

In order to reduce side-effects to target processes, we avoid
using intensive network and file I/O operations within libtracer.
libtracer writes local states to the local file system via memory-
mapped (i.e., using mmap()) operations. Updated files are mon-
itored by the ZK_FSMirror daemon, which instantly mirrors
accesses back and forth between a specified local directory and
a structure of ZooKeeper znodes. We utilize Linux’s inotify [21]
to monitor of file system events.

Central Controller: TFI Orchestrator. The main responsibil-
ities of the CC are orchestration of causal event tracing and fault
injection at predetermined locations. The CC also keeps track of
the target machines and target nodes’ liveness through monitoring
of updates to ZooKeeper znodes. The CC interprets fault injection
plans given in a fault injection specification file to automate the
FPDB construction. The structure and syntax of a specification file
are described in the next section.

3.3.3 TFl Specification Language

We define a specification language to facilitate the automation of
TFI experiments, and make it easy for users to understand and
interpret the context of a fault location returned by the FPDB.

The process of setting up a fault injection essentially consists
of answering the following three questions: what, when, and
where should the faults be injected?”. The what asks for the
fault model (e.g., process crash or message corruption) to inject.
The when asks for the location in the program execution (e.g.,
after a program state changes to a particular value) at which the
fault should be injected. The where asks for the target (e.g., the
scheduler of the target system).
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The specification language has been designed to mimic the
TFI setup process. We defined three keywords, inject, at,
and to, that users can use to provide answers to the three
what, when, and where questions, respectively. The inject field
is used to specify a fault model. Currently, our TFI supports
three fault models, namely ProcCrash, ProcDeadlock, and
StringCorruption. The at field is a sequence of causally
ordered events. Each event is of one of the predefined event
types: MatchSyscallInvocations,
MatchProcCount, Timer, VMStatus, HostStatus, and
NetworkStatus. For example, a MatchFunctionArg type of
event is triggered when the specified arguments of a function
matches a given value or pattern. The to field is used to specify
a target, e.g., a process, for the fault. The specification uses the
JSON (JavaScript Object Notation) format.

Figure 5 shows an example of a fault injection exper-
iment specification file. At the highest level, there is an
experiment object, which contains two injections. In the figure,
the NetworkingNetw injection is highlighted. That injection
can be interpreted as follows: at the end of the sequence
OsDoneBooting — NovaBootBegin — TaskNetworking,
inject a ProcessCrash to the Scheduler process. The
OsDoneBooting event (type MatchProcCount) triggers when
all of OpenStack’s eight processes have been launched. The
NovaBootBegin event (type MatchFunctionArg) is trig-
gered when the nova-napi process receives an HTTP POST
message (i.e., matching the “POSTx” pattern). Finally, the
TaskNetworking event is triggered when the conductor pro-
cess writes to the database the message matching the following
pattern: “xUPDATE* task_state=‘networking«*’".

MatchFunctionArg,

4 LIMITATIONS AND DISCUSSION

(1) Failures that we cannot diagnose. In general, our technique is
not effective for failures that do not alter the processing flow of
a request as defined in the context of this work. For example, a
bug that only causes performance degradation, e.g., a slowdown in
some part of a processing flow, cannot be successfully diagnosed
by our technique. In order to diagnose performance-related issues,
we need to develop a method to incorporate timing information
into the current processing flow format. Our method also suffers
from difficulties in finding faults that occur toward the end of
a processing flow, because for such faults, most of the faulty
processing flow is similar to normal execution. In order to resolve
that issue, we would need to use finer-grained events, e.g., at
program function call or basic block granularity. Also, if the fault
type in production is not one of the types we used in the fault
injection, our method will not be able to provide accurate root
cause of the problem. To deal with this, new fault type can be
easily incorporated into the fault injection and FPDB construction.

(2) Large number of entries in the database. Various factors
affect the size (i.e., the number of failure profile entries) of the
FPDB. Examples include the various types of requests, the length
of the processing flow for each type of request, and the system
configuration. It might be infeasible to construct an FPDB that
covers all scenarios of a large-scale software. But we envision
that each FPDB is created for a specific production system, with
a stable configuration, to help developers quickly diagnose that
particular deployment.

(3) Our diagnosis method does not eliminate the need for
manual investigation. This is a common limitation of all fault

7

localization techniques: they require developers to select the right
answer based on the ranking (in our case, the trace distance)
provided by the localization method. We further acknowledge that
the locations we present to developers are only indicators of a
context, in which a bug might occur. Similarly, an error message
plays a role as an indicator of the context of a bug. As evaluated,
our method provides a much better bug indicator than OpenStack’s
current error reporting mechanism. Furthermore, as pointed out by
human studies [14], [33] on the effectiveness of fault localization
techniques for bug fixing, developers not only need to know the
location of a bug, they need to understand the surrounding context
that triggers the bug. The more complex the system is, the more
effort it takes to understand the context [14]. Thus, a good bug
context indicator is always useful to developers.

(4) Supporting multiple distributed systems. When applying
this failure diagnosis technology to a number of systems, it is
required to build the FPDB for each distributed system. This
is not a big burden in practice because each deployed system
with its current deployment configuration is carefully maintained
by its administrators in the real world, and an important while
difficult and time-consuming task of the maintenance is the fail-
ure diagnosis. Our technology provides great benefits to failure
diagnosis, and largely facilitates the administrators’ current job.
The administrators can decide the granularity of the injected faults
when applying this technology; a small number of entries in
FPDB, as a result of coarser granularity of fault injection, may
also handle excessive number of failures though the granularity
for helping localize the root cause place is coarser.

(5) Similar traces imply similar faults? Section 5.4.2 studies
our main hypothesis “similar traces imply similar faults”. The
results show that more than 80% of injected similar faults lead to
execution traces with their differences, or variations, less than 4%.
Therefore, the false positives of our failure diagnosis, indicated
as the real root cause is not close to the top 5 returned causes,
is low (lower than 20% in Section 5.5). The high probability
of the hypothesis holding true is because, though concurrency
in distributed applications and their underlying systems tend to
bring non-determinism and different execution traces, many non-
determinisms are actually irrelevant to the application logic and
can be pruned (as shown in Section 3.2.1), and a majority of faults
actually do not interfere with the concurrency of the application
logic itself since most parts of a distributed application are still
its individual components’ sequential executions. Of course, if the
fault type is closely related to the concurrency of the application
logic, e.g. the deadlock fault, the probability of this hypothesis
holding true is reduced (but still quite high - more than 70%
of deadlock faults lead to traces with variations less than 4%
in Figure 9, because usually there are only a small number of
concurrency modes across the fault-related components, i.e. only
a small number of deterministic execution traces).

5 EVALUATION
5.1 Settings and Goals

For evaluation, we use the OpenStack [31], a popular laaS
(Infrastructure-as-a-Service) cloud platform. Openstack is suitable
for our evaluation since it is highly distributed and incorporates
several software paradigms in its design. One instance of standard
deployment involves at least 15 or more distributed components,
and it utilizes multi-threaded architecture, event-based architecture
and asynchronous message queues. Furthermore, a new version of
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Fig. 6. lllustration of the fault distance and trace distance metrics. J is
the function to compute trace distances (Section 3.2.4).

OpenStack is released every six months. Each release introduces
numerous new features and bug fixes.

These are the goals of our evaluation. First, we report on how
effective current Openstack’s error logging system is under crash
failures in Section 5.4.1. Then, we verify the validity of the main
hypothesis of our approach: similar execution traces imply similar
faults (Section 5.4.2). Next, we study the accuracy of failure
diagnosis against Fl-induced failures (Section 5.5). Finally, we
demonstrate how the FPDB helps localize the real-world bugs
(Section 5.6).

From the above description of the technologies, including the
flow construction for distributed applications, failure profile rep-
resentation and profile comparison, and the target fault injection,
one can see that these technologies are all generally applicable
to distributed applications, and none of application specifics are
associated with the technologies. In this paper we choose to give
an in-depth evaluation of our solution in multiple aspects for
the OpenStack application, though the solution can be generally
applied to other distributed applications.

5.2 Evaluation Metrics

We introduce the concept of fault distance and trace distance in
measuring the accuracy of diagnosis results. The fault distance
is defined as the distance between two traces’ segments starting
from the event of incoming request and ending with the trigger
event that triggers the fault injection. The trace distance is the
distance between two given full traces. The distance is computed
using the § function explained in Section 3.2.4. These concepts
are illustrated in Figure 6.

In measuring the fault distance, we discard all the events that
follow after the triggering of the fault, leaving only the segment
called prior-fault trace. For example, in a trace obtained from
the fault injection, the prior-fault trace is the part of the trace
containing events from the beginning of the full trace to the trigger
event used to trigger the fault injection. In a trace from an actual
fault, or bug, the fault trigger location is determined by the event
closest to the first execution of the code region that contains the
fault/bug (this information is derived from the actual code that is
used to fix the bug). The granularity of a code region varies case-
by-case. For example, a buggy code region can be a statement,
a basic block, or an entire function. The description of the case
study 2 in Section 5.6.3 exemplifies such a code region.

It is noteworthy to distinguish between the trace distance and
the fault distance. The trace distance is used by the FPDB to infer
the nearest faults (see Top-K query discussed in Section 2.3). In
our experiment, once nearest faults are returned by the FPDB, we

TABLE 1
Injection Locations for VM provision request (|Faults|: number of faults,
|Traces|: number of collected traces)

Fault Type Location Type |[Faults| | |Traces|
Process Crash || All monitored LibC calls 23,323 | 116,589
Message All read, write, send, 18,221 91,092
Corruption and recv LibC calls
Deadlock All process- and lock- 2,143 10,702

related LibC calls

nova-api | nova-scheduler | RabbitMQ | nova-compute | nova-network

create server

| create server

create server (on the selected node)

create sefver (on the selectdd node)

®
Server [creation request
returng 200 OK response
Status [check of VM still heeded

create network
«—"

create network N

network created

network created

close queue

close queue

Fig. 7. A simplified message flow between OpenStack Nova compo-
nents for a virtual machine provision request. Each arrow represents
a pair of send() and recv() function calls in the source and destination
components, respectively.

use fault distances to quantify their accuracy in terms of how close
the returned faults are to the actual faults.

5.3 Construction of FPDB for OpenStack

We have constructed the FPDB for the Grizzly-1 version of Open-
stack, which was released in Jan 2013, following the procedure
described in Section 2.2. Our FPDB contains fault injection traces
for three types of requests in OpenStack, namely VM provision,
VM resize, and VM migration. The selection of those requests
was based on our analysis of the most frequently reported buggy
requests for this OpenStack release.

To construct the processing flow of each request, we have pro-
filed eight of OpenStack’s distributed components. They include
five Nova (compute services) components, two Glance (storage
service) components, and one Keystone (identity service) com-
ponent. Figure 7 visualizes the profiled flow of a VM provision
request within Nova’s components. For further detailed analysis
of the processing flows, we refer readers to our previous work [8].

Next, we conduct fault injection experiments to obtain the
FPDB data. Specifically, we injected three types of faults in the ex-
periments: process crash, message corruption, and deadlock. They
are selected because they are typical examples of fault categories
with different error propagation and manifestation characteristics.
Process crashes usually have very short error propagation and
have fail-silent behavior. Message corruptions propagate errors
from one process/thread to other processes/threads and potentially
cause other processes/threads to fail. Deadlock is also a type of
fault with error propagating across processes/threads, but it has
special failure manifestation, i.e. process/thread hangs. Process
crash is injected by killing the process at the specified location
and occasion; message corruption is injected by intercepting the
message-involved LibC calls (read, write, send and recv) and
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(b) The lengths (number of LibC calls) of fault-propagation
traces of failures that resulted in at least on error message in
OpenStack log files.

Fig. 8. Evaluation of OpenStack’s logging mechanism against process-
crash injections.

flipping a bit in the message; a deadlock is injected by intercepting
the process- and lock-related LibC calls and an infinite loop is
executed during the interception.

We set the injection granularity to be at the level of LibC
function calls, which resulted in 23,323 potential fault injection
locations along the flow of a VM provision request. Table 1 sum-
marizes how the locations are used to conduct fault injections for
collecting failure profiles. For each fault, we collected five traces.
We filtered out those cases where injections did not complete
properly or the collected data were corrupted. Further investigation
would be required to determine how glitches in our experimental
setup caused the incompletion of those cases.

5.4 Analyze TFl Experiments
5.4.1 Resiliency of Openstack’s Error Logging

OpenStack provides an embedded logging mechanism to aid
developers in troubleshooting. Error messages in log files are
often the first thing a developer or operator looks for when
dealing with a failure. From the fault injections we conducted
on Openstack we were able to learn how robust the Openstack’s
logging mechanisms were on crash failures. For this analysis, we
used the results from the process crash fault injection (see the
“Process Crash” row in Table 1). After the target process is killed,
we collected all the logs from all components and searched for
any error logs. Figure 8(a) shows the percentage of cases that have
generated one or more of error logs to the number of all conducted
injections for five nova components. The ratios are strikingly low
for the nova-scheduler, nova-compute, and nova-api components:
only 1%, 48%, and 64% of the crashes in these three components
are recorded as errors in logs, respectively. Conversely, 99%,
52%, and 36% of the crashes in these components fail silently,
respectively. This observation implies that developers might face
great challenges while debugging a problem. They would need to
delve into a large number of log files across many machines to
figure out where to start diagnosing a failure.

For all failures represented by at least one error message in the
log files, we calculated the length of the fault-propagation traces
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Fig. 9. Execution trace variations of failures caused by the same faults.

(see Figure 6, it is the number of libc function invocations from the
fault injection point to the write() event of the first error message
in the log files). Figure 8(b) shows that the average lengths are on
the order of thousands of libc calls, ranging from 1530 to 3980. We
learn that nova-scheduler does not generate an error log most of
the time, but when it does, it reacts to the fault quicker than other
components. In the following sections, we use these distances as
a baseline to compare with the fault locations from the FPDB.

5.4.2 \Variations of Execution Traces under Fault Injections

In this experiment, we have evaluated the accuracy of our method
in terms of how close the predicted fault locations are to the
actual fault location. We observed that repeated runs of the fault
injections with the same fault (including both fault type and
location) tend to generate similar failures. Specifically, there was
less than 4% variation in their execution traces. We define the
variation of two execution traces originated from the same fault as
the ratio of their trace distance and the length of the shorter trace.
Suppose we have two distinct traces #; and #; (i # j) obtained from
injecting the same fault, the trace variation is:

_ B 8(tist))
variation(t;,t;) = miin(len(s,), len(5,))

Figure 9 shows the largest variation between traces caused by
the same injected faults. To obtain this measure for an injected
fault, we computed the pair-wise variations of all five traces
generated by that fault type, and then selected the largest one.
The result shows that more than 80% of all the injected faults,
across all three fault models, generate less than 4% of the trace
variation. This implies that the similarity of execution flows are
good indicators of the similarities between fault types across
components. The process crash and deadlock faults generate the
least and most trace variations, respectively. We attribute that to
the more nondeterministic behavior of deadlock failures.

5.5 Accuracy of Failure Diagnosis against Fl-induced
Failures

In this section, we describe our analysis on the accuracy of our
method in terms of the correct identification of the fault type, the
affected component and how close the predicted fault locations are
to the actual fault locations. We consider two scenarios: known
faults and unknown faults. A known fault is a fault that has at
least one trace generated by that fault in the FPDB. Conversely,
a unknown fault does not have any trace generated by that fault
stored in the FPDB.
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Fig. 10. The fault model and targeted component prediction accuracy of
nearest-fault queries.

In order to evaluate FPDB queries against the known fault sce-
nario, for each injected fault, we randomly removed one trace (out
of five generated traces) from the original FPDB. The remaining
FPDB contains four traces from each injected fault. The removed
traces then were used to query against the remaining FPDB. For
the unknown fault scenario, we randomly removed a half of all the
injected faults (each holding traces of five repeated runs) stored
in the original FPDB. The remaining FPDB contains no traces
generated from the removed injected faults. For each removed
injected fault, we chose one trace (out of five generated traces)
to use as a query trace against the remaining FPDB. This set-
up allows us to validate how accurate our FPDB-based diagnosis
method can identify failure root-causes (e.g., the correct fault
model, affected component, and the fault location) even when the
FPDB does not contain traces of the exact fault of a query.

Figure 10 presents the accuracy of the nearest-fault queries
(i.e. K =1 in the Top-K query). It plots the accuracy results for the
total of six cases drawn from known/unknown cases and three fault
models — ‘process crash’, ‘message corruption’ and ‘deadlock’.
For each of the six cases, we show the accuracies in identifying
the true fault model, true affected component, and both. In deter-
mining the true fault type and the affected component, we issue
queries using the query sets for the known and unknown cases.
The query returns from the FPDB the trace that is the closest to
the query trace and we compare the fault type and the component
of the returned trace to those of the query trace. According to our
results, the accuracy lies in the range of 93-100% for the ‘process
crash’ and ‘deadlock’ failures. However, the accuracy for the
‘message corruption’ failures achieved lower performance, 72.4%
and 71.6%, for the known and unknown cases. That may reflect
the longer fault-to-failure propagation paths caused by message
corruption faults. Comparing the accuracy performance in terms
of known and unknown cases, the accuracy of the unknown case
tends to be slightly lower. However, this small difference between
the known and unknown cases suggests that our TFI approach is
robust in finding the root cause of the cases that had not been
seen during the training. It is our future plan to conduct further
detailed study on this, but this result suggests that the similarity
of traces is high for the same type of faults that has the same
root cause. Overall, with average accuracy rate of 88%, our TFI
technique demonstrates the efficacy of identifying the fault type
and the component.

For all the cases where the targeted components were cor-
rectly determined, we computed the fault distances which are the
distances between the actual location of the injected fault and the
fault location determined by TFI. If the fault location from TFI is
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Fig. 11. Fault distance results of Top-K nearest fault queries with (a)
known and (b) unknown faults.

close to the actual fault location, it would help developers quickly
narrow down to the location along the request flows to look for
the root cause of the fault. Figure 11 shows the results of the
Top-K nearest fault queries with different K values (the number
of returned faults nearest to the reference failure profile). For the
known cases, about 50% of the Top-5 query results contained the
exact fault locations.When K is 10 and 20, the accuracy increases
to 74% and 77%, respectively. When we consider approximate
fault locations (i.e., we do not require that exact fault locations be
returned), about 67%, 81%, 82%, and 86% of the Top-1, Top-5,
Top-10, and Top-20 queries, respectively, returned locations that
are within 20 LibC calls from the actual faults. For the unknown
cases, although the database could not pinpoint the exact fault
locations, the accuracy of the provided fault locations was only
slightly lower than for the known cases. That accuracy is two
orders of magnitude better than that of OpenStack’s existing error
message mechanism, as shown in Figure 8(b).

5.6 Accuracy of Failure Diagnosis against Real Bugs
5.6.1 Methodology

We evaluate the FPDB-based failure diagnosis method against real
bugs reported by OpenStack’s users. We have collected several real
bugs from the list of bug fixes published in the release note of the
OpenStack Grizzly 2013.1 version (the major OpenStack release
right after Grizzly-1 — the version that was used to construct
the FPDB in Section 5.3). Because we could not conduct an
experiment in a production system with the tracing tool enabled,
we had to manually reproduce each bug and then capture its traces
in our testing environment. In order to reproduce each bug, we
have set up an experimental Openstack environment running the
Grizzly-1 release, and installed the flow tracing tool sets.
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LibvirtBridgeDriver crashes when spawning an instance with
NoopFirewallDriver

Bug #1050433 reported by on 2012-09-13

Bug Description

(I am trying the LibvirtHybridOVSBridgeDriver, with the uptodate A

Required system configuration

\devsatck and the vlan manager. )

N
I've created one network for the demo project :

nova-manage network create net2 --fixed_range_v4=172.16.2.0/24 --

num_networks=1 --network size=256 --vlan=1001

I boot an instance : How to reproduce the bug

nova boot --flavor 1 --image 000f2e5b-eldl-4bc0-a9d1-3e07d527£7f1 vm_1
- J

the instance can't be launched du to the following error :

e A
2012-09-13 15:14:06 ERROR nova.compute.manager [req-al0f2d0d-4992-4b50-
a297-b7b188ab98al demo demo] [instance: b6fab81d-d700-4ada-
bb3f-88422e3bc40f] Instance failed to spawn

OpenStack error messages
N S

Fig. 12. An example of a typical bug report of OpenStack. A report
usually provides information on how to reproduce the bug (e.g., system
configuration and a sequence of commands) and a description of the
system’s behavior when the bug was observed (e.g., error messages).
The first case described in Section 5.6.3 shows how this bug can be
diagnosed using the FPDB approach.

For each bug, we relied on users’ bug reports® to figure out
how to reproduce the bug. Figure 12 shows an example of a
typical bug report we studied. A typical bug report follows certain
formats that has descriptions about what the required system
configurations are, how to reproduce the bug and what the error
message looks like. To determine the location of the bug, we
manually inspected the developer’s patching code for the bug. We
used those bug locations as the ground truth to compare against
the locations returned from querying our FPDB.

We chose bugs for the case study based on the following
criteria. First, the bug had to be in the category of high or critical
importance (as rated by OpenStack developers). Out of 766 bug
fixes in total, we selected 208 bugs in that category, and ignored
less critical bugs. Second, the requests to reproduce the bug had to
be one of the three request types (i.e., VM provision, VM deletion,
and VM migration) that we used to construct the FPDB. And
finally, the reported OpenStack configuration to reproduce the bug
had to match the configuration (e.g., we used the KVM hypervisor
and MySQL database) that we used to generate the FPDB. For
example, a reported bug that required PostgreSQL database had to
be filtered out. Overall, 14 bugs out of 766 matched our criteria
(i.e., they had the potential to affect our target system) and were
manually reproduced in our experimental system.

In order to quantify the effectiveness of the FPDB, we used
the Top-10 query to find injections that generated the closest
traces to each reproduced trace of the selected bugs. We then
computed the fault distances (in terms of the number of LibC
function invocations) between each returned injection location and
the locations where the code was fixed for each bug. We obtained
the locations of the fixed code in the execution flow of a request
by: (i) manually inspecting the commits that fixed the bug and
then (ii) manually annotating the OpenStack source code to mark
(i.e., print out a special message) at the beginning of the bug fixed
area during OpenStack execution.

2. When users of the OpenStack originally encountered failures, they
reported them to developers through the bug reporting system at
https://bugs.launchpad.net.
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5.6.2 Query Results

Table 2 summarizes the fault distance between the actual location
and the location determined by our FPDB. In total, we have
reproduced six VM provision bugs, four VM resize bugs, and four
VM migration bugs. Eight out of 14 queries returned at least one
trace that had fault distance within 100 LibC invocations. More
importantly, the returned fault-propagation paths provided useful
indicators for locating and fixing the actual bugs. The next section
describes four cases in detail as to how our technique helps find
the root cause of the bugs.

5.6.3 Examples of Localizing Real Bugs

This section describes the manual root-cause identification
process of four reported bugs based on the results from querying
the FPDB. For each bug, the manual process starts from inspecting
the FPDB querying results. We used Top-10 query, each result
consists of 10 injected fault locations, described in the TFI
specification language. We then looked closer at the fault types
and the OpenStack source code corresponding to these injected
locations. If the returned injected fault locations are close to the
location of the actual bug, the source code inspection tends to
quickly lead to the discovery of the root-cause of the actual bug
as we describe below.

Since most OpenStack components are written in Python

programming language and executed directed on Python runtime
interpreter, we customized our 1ibfi to print out the stack call
at fault injection points. Recall that 1ibfi is a dynamic library
attached to target processes at runtime to inject faults (see Fig 3
and Fig 4). The output stack calls, also stored in the FPDB, help us
quickly map the injected fault locations to the affected OpenStack
source code.
e Case 1: This bug is about LibvirtBridgeDriver
crashing when trying to spawning a VM instance with
NoopFirewallDriver>. Figure 12 shows the main content of
the actual bug report. The following error message is printed if a
user attempts to issue the request.

libvirtError: Network filter not found: Could not
find filter ’'nova—instance —instance —XXX—XXX'’
Instance failed to spawn.

How our technique was useful: In the FPDB, the closest failure
profile to that bug was generated by injecting a message corruption
fault to one of the write () LibC function call invoked by a
nova-compute process. This write () call is the one used by
the nova—-compute to send a network filter configuration to the
socket of 1ibvirtd, the component that directly executs the VM
provision task. During our targeted fault injection, the name of the
network filter was corrupted as shown below:

Original value:

nova—compute 7fad40b08700 6208 write (15, AF_FILE
=>/var/run/libvirt/libvirt —sock) = 74: <filter
name="nova—instance —instance —-ID-MACADDRESS’
chain="root’>

New value (the 33rd character is
nova—compute 7fad40b08700 6208 write (15, AF_FILE
=>/var/run/libvirt/libvirt —sock) = 74: <filter
name="nova—instance —instbnce—ID-MACADDRESS’

chain="root’>

corrupted):

3. Bug report: https://bugs.launchpad.net/bugs/1050433

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.




This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2575829, IEEE

Transactions on Parallel and Distributed Systems

12

TABLE 2
Evaluation results with real OpenStack bugs: Smallest fault distances of top-10 queries

Request type VM Provision VM Resize VM Migration
Smallest fault distance (in LibC calls) || 2 | 14 | 18 | 221 | 236 | 565 | 14 | 56 | 84 | 245 | 34 | 45 | 342 | 442
Described case number (Case #) 1 4 2 3

By tracing back the data flow of that message content in the ex-
ecution of nova—-compute, we were able to immediately discover
that the function that generated the VM network configuration was
directly involved in constructing the message.

It turned out that this function generated a configuration for a
network filter regardless of whether the NoopFirewallDriver
option was selected or not. However, the NoopFirewall driver
was not implemented to recognize such network filter configura-
tion. Thus it raised an exception and aborted the VM provision
request. The solution was that the network configuration function
needed to be fixed to validate the NoopFirewallDriver option
before generating a network filter configuration.

e Case 2: This case is about the VM deletion failure when VM
instance is in RESIZED state*. No error messages are generated.

How our technique was useful: In the result of the FPDB query
against the reproduced trace of this bug, there were two faults
indicating that the nova-compute process crashed during the
delete action: one fault before and one fault after the VM status
was checked for RESIZED. Based on these hints, we focused our
inspection to the code that verified the RESIZED VM status. Our
inspection confirmed that this is indeed the offending code that
was causing the failure.

if instance[ ‘vm_state ’] == vm_states .RESIZED:
# If in the middle of a resize, use confirm_resize
# to ensure the original instance is cleaned up
# too
migration_ref =
self.db. migration_get_by_instance_and_status (
context, instance|[ ‘uuid’], ‘finished ’)

Specifically, if the check for the RESIZED returned

true, the delete API had to wait for the VM to reach
a safe state, e.g., to finish resizing (because a VM could
not be deleted while it was resizing). While waiting, func-
tion migration_get_by_instance_and_status periodi-
cally made queries to the MySQL database to determine the
VM’s state. However, those database queries required higher
context privileges (given by the context parameter) than the
privilege at which the delete API was executing. Thus, the query
failed. This bug can be fixed by elevating the context privilege
of the current call (e.g., changing the context parameter to
context.elevated()).
e Case 3: This bug is the case in which the VM migration fails
when multiple requests are issued at the same time>. When three
migration requests are issued concurrently, one of them might fail,
and OpenStack periodically prints the following error message.

[instance:
Setting

xxx] ‘old_instance_type_memory_mb ’.
instance vm_state to ERROR

How our technique was useful: Our FPDB query showed that
the reproduced trace of this bug was similar to several traces

4. Bug report: https://bugs.launchpad.net/nova/+bug/1056601
5. Bug report: https://bugs.launchpad.net/nova/+bug/1160489

generated by the faults injected during the VM resize request.
We focused our inspection to the code area that was close to
these fault-injected locations returned from the FPDB. In this case
the code region was the logic that handled the VM migration.
We learned through the inspection that majority of the codes that
handled the VM migration request was being shared with that of
the VM resize request. Typically, a check is used to differentiate
between those two request types when needed. In this reported
bug, the request type check was omitted, thus leading to the wrong
execution of the VM resize code path, which was determined
correctly by our query.

o Case 4: This bug is caused by an invalid availability_zone
parameter for the nova boot. If an invalid availability_zone
is specified, instead of printing a normal error message to notify
users that the parameter is invalid, OpenStack continues to process
the request until it could not find a valid host machine for the VM.
Finally, OpenStack would print a NoValidHost error message to
notify the user that it could not provision the VM. However, this
error message is not very helpful because this error message is
produced from many other root causes as well.

How our technique was useful: According to our FPDB query
results, there was one failure profile similar to this bug generated
by injecting a message corruption fault to a send () LibC function
invocation in the nova-schedule process. We looked at the
code of this send () and learned the followings. This send ()
call is used to send a request to MySQL to query a list of
available hosts based on the user input filter, which includes the
availability_zone parameter. If one of the filter criteria is
modified to an invalid value, the database returns an empty list,
which is the same behavior exhibited by the bug.

Our FPDB result directly led us to the code that needed to
be fixed. All parameters should have been sanitized to disallow
invalid parameters before the execution had sent a message to the
database that would return the same value as a corrupted message.
We examined the input sanitization code and found that the
availability_zone parameter was not correctly validated.

6 RELATED WORK

Distributed Tracing: Aguilera et al. proposed methods for in-
ferring the causality of messages using logs and demonstrated
how the method can be used for performance debugging [2].
Anandkumar et al. model the message traces using semi-Markov
process and match them probabilistically [4]. However, for tar-
geted fault injection, we require knowledge of precise traces
so that we can plan the fault injection experiments. Further,
we can classify techniques that provide precise tracing results,
but requires instrumentation. Examples of instrumentation-based
techniques are Magpie [6], Google Dapper [35] and X-trace [13].
We have employed the principles of vPath [38] in our targeted
fault injection technique, it is one example of technique that does
not require any application instrumentation.

Fault Injection: Fault injections are widely applied to evaluate
resilience of distributed systems (including cloud platforms), and
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a number of fault injection tools have been developed for that
purpose. For example, NFTAPE [36] enables specification of fault
injection, conducts injection experiments, and collects experimen-
tal results. Chaos Monkey [10] randomly injects faults into VM
instances of cloud platforms. Failure-as-a-service [16] performs
large-scale online failure injections in actual deployments of cloud
services, and provides the fault injection as a cloud service.
Those tools either conduct random fault injections, or perform
fault injections at certain breakpoints determined by local-state
information. Thus, they are not suited to our purpose.

There are also tools that inject faults in distributed systems
based on global-state information. The authors of [9] present
a global-state-triggered fault injector, and the authors of [18]
designed a language-driven tool for injecting faults into distributed
systems. In [9], the handling of global state, which bears high-level
application semantics, is instrumented in target distributed systems
for fault injection (an in-depth understanding of target systems is
required). In [18], conditions associated with message flows or
low-level stack contexts cannot be specified in the language. We
aim to provide a general methodology and apply fault injection
with targeted scenarios specified at a low-level message flow
granularity. The above existing fault injection tools based on
global states do not apply.

In our case study, we injected faults into OpenStack. A
recent paper, [22], also discusses fault injection into OpenStack.
However, the objective of that paper is to study the system’s
resilience, and high-level operations like REST (Representational
State Transfer) APIs are instrumented manually to reconstruct the
system execution graph so that faults are injected at certain points.
Failure Diagnosis Techniques: A large body of research fo-
cused on fault localization techniques [1], [34], [39], [40]. These
techniques aim at determining the likelihood of each executable
program unit (e.g., a program statement) containing a bug. Two
main approaches have been proposed: program slicing [39] and
spectrum-based [1]. Many variations of them have been developed
to improve practicality. However, because of the intrusiveness and
large amount of output data, those techniques are not amenable
to direct application to large programs [32]. For a more compre-
hensive review of fault localization techniques, we refer readers to
[40], which surveys the state-of-the-art research in this area.

The other approaches to failure diagnosis can be categorized
as failure grouping [12], [15], [25], [28]. The common principle
of these techniques is to classify failures into groups of similar
symptoms, assuming that a common root cause is likely to gener-
ate similar symptoms across runs. Failure grouping reduces cost of
diagnosis by either identifying recurrent or known failures [25], or
directing resources to resolve higher impact failures, e.g., failures
reported by a larger number of users [12], [15], [28]. However,
these techniques cannot diagnose unknown failures. We combine
the idea of failure grouping with fault injection to deal with
unknown failures.

7 CONCLUSION

We have proposed and developed a method to assist failure
diagnosis in distributed systems. The method is a novel use of
fault injection to populate a database of processing flows of a
target system executing under failures. The database is then used
to help identify root causes of failures observed in the field by
providing injected faults that generated similar processing flows.
We showed how the method can help identifying real bugs in
OpenStack.
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