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Abstract—In the past decade, many numerical algorithms for the Eikonal equation have been proposed. Recently, the research of
Eikonal equation solver has focused more on developing efficient parallel algorithms in order to leverage the computing power of
parallel systems, such as multi-core CPUs and GPUs (Graphics Processing Units). In this paper, we introduce an efficient parallel
algorithm that extends Jeong et al.’s FIM (Fast Iterative Method, [1]), originally developed for the GPU, for multi-core shared memory
systems. First, we propose a parallel implementation of FIM using a lock-free local queue approach and provide an in-depth analysis of
the parallel performance of the method. Second, we propose a new parallel algorithm, Group-Ordered Fast Iterative Method (GO-FIM),
that exploits causality of grid blocks to reduce redundant computations, which was the main drawback of the original FIM. In addition,
the proposed GO-FIM method employs clustering of blocks based on the updating order where each cluster can be updated in parallel
using multi-core parallel architectures. We discuss the performance of GO-FIM and compare with the state-of-the-art parallel Eikonal
equation solvers.

Index Terms—Eikonal equation, GPU, Parallel Computing
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1 INTRODUCTION

THE Eikonal equation has been widely used in diverse
fields, such as geoscience and geophysics, computer

vision, image processing, computer graphics, etc [2]. It is a
nonlinear boundary value problem defined by a first order
hyperbolic partial differential equation given as follows:

H(x,∇φ) = |∇φ(x)|2 − 1

f2(x)
= 0,∀x ∈ Ω ⊂ Rn

φ(x) = 0, x ∈ Γ ⊂ Ω

(1)

where Ω is the computational domain in Rn (defined as an
uniform rectilinear grid in this paper), Γ is the collection
of seed points (i.e., boundary condition), φ(x) is the travel
time or the distance from the seed region to the grid location
x, and f(x) is a positive speed function defined on x. As
one can infer from this definition, the Eikonal equation
represents the wave propagation from the seed region where
the motion is governed by the speed function, and the
solution of the equation represents the geodesic distance of
the shortest path from the nearest seed point. Therefore, the
Eikonal equation is frequently used in the problems related
with the distances or travel time in space, such as seismic
travel time computation [3] or finding the minimum cost
path for tracing neural fiber tracts in the brain [4].

In order to solve the Eikonal equation, we need to con-
sider two problems; one is how to accurately discretize the
equation on a grid, and the other is how to compute the so-
lution of the nonlinear PDE numerically. For discretization,
a Godunov upwind difference scheme is commonly used
(more details can be found in [1], [5], [6]), and we simply
borrow the same scheme in this paper. On a 3D Cartesian
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grid, the first order Godunov upwind discretization g(x) of
the Hamiltonian H(x,∇φ) can be defined as follows:

g(x) =

[
(U(x)− U(x)xmin)+

hx

]2
+

[
(U(x)− U(x)ymin)+

hy

]2
+

[
(U(x)− U(x)zmin)+

hz

]2
− 1

f(x)2
(2)

where U(x) is the discrete approximation to φ at node
x = (i, j, k), U(x)pmin is the minimum U value among
two adjacent neighbor of U(x) along the axis p ∈ {x, y, z}
directions, hp is the grid spacing along the axis p, f(x) is
the speed function at x, and (n)+ = max(n, 0). Since U(x)
is the only unknown in Eq 2, a closed-form solution of U
can be found by solving a quadratic equation.

Therefore, the main focus of this paper is to introduce
a new parallel algorithm to efficiently solve the Eikonal
equation. Specifically, we introduce two parallel numeri-
cal algorithms that extend the Fast Iterative Method (FIM)
by Jeong et al. [1] for multi-core shared memory systems.
FIM is an iterative algorithm that adaptively updates the
solutions that are currently affected by the wavefront, called
Active List, until they converge. FIM is an inherently parallel
algorithm because all nodes belong to the active list can be
updated concurrently. However, in the original FIM paper,
the authors only introduced the main algorithm and its
extension to SIMD parallel architecture, such as the GPU
(Graphics Processing Unit). Even though the original FIM
algorithm embraces a potential to be applied to any parallel
computing systems other than the GPU, it has not been
fully addressed yet in elsewhere. In addition, because the
main design choice for the FIM algorithm mainly focused
on increasing parallelism rather than algorithmic optimality,
its worst-case performance may vary depending on the
complexity of the input speed function. In this paper, we
address these issues by proposing a new parallel algorithm
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that improves the performance on highly-complicated speed
functions as well as the efficiency on shared memory sys-
tems.

The main contributions of this paper are several-fold.
First, we propose an efficient parallel implementation of
FIM for multicore shared memory systems. Even though the
original FIM algorithm is inherently parallel, a naive par-
allelization does not guarantee sufficient performance ben-
efits. We propose a local queue based parallelization ap-
proach that can avoid expensive lock synchronization while
ensuring good load balancing between threads. Due to the
lock-free nature of the method, the parallelization overhead
is minimized and the proposed method scales well. Second,
we further improve our parallel FIM algorithm by propos-
ing a novel group-based updating scheme where the up-
dating order is determined by the solution on a coarse level
grid, called GO-FIM. This approach can effectively eliminate
the drawback of the original FIM without maintaining an
expensive global ordered data structure, such as Heap,
while providing superior parallel performance by clustering
similar blocks for concurrent update. Last, we show an
in-depth analysis of the performance of both methods on
various test datasets and compare them with state-of-the-
art Eikonal solvers on multi-core CPUs, and finally show
how GO-FIM effectively improves FIM on the GPU.

The rest of the paper proceeds as follows. In Section 2, we
overview the previous work on serial and parallel Eikonal
solvers. In Section 3 we introduce our lock-free implemen-
tation of FIM. In Section 4 we introduce our novel group-
ordered FIM algorithm in detail. Experimental results and
their detailed analysis and discussions will be given in
Section 5. Finally, Section 6 wraps up the discussion and
suggests some future research directions.

2 RELATED WORK

There exists a vast amount of literature for Eikonal equation
solvers. Early work had focused on developing numerical
methods for computing the viscosity solution of Hamilton-
Jacobi equations. Many of them use finite-difference for ap-
proximating differential operators and apply a fixed-point
iteration method over the entire grid [5], [7], [8], [9]. In
such methods, the entire grid points must be updated until
converged, so the worst-case complexity can be as high as
O(N2). In order to improve inefficiency of such iterative
methods, adaptive update schemes have been proposed.
One of them is exploiting the causal relationship of the
solution for the boundary value PDE problems. A popu-
lar method is Fast Marching Method (FMM) proposed by
Sethian [6], [10]. The core idea of this method is using an
ordered data structure, e.g., Heap, to manage the correct
updating order and the narrow list of active points while
using upwind discretization scheme for finite-difference
computation. The algorithm is basically identical to Di-
jkstra’s graph shortest path algorithm, but Hamiltonian-
based numerical distance computation is used. Therefore,
the complexity of the algorithm is O(N logN), which is
worst-case optimal. However, when the speed map is not
extremely complicated, managing Heap can be a significant
overhead. In addition, FMM requires a strict serial updating
order to follow, which hinders parallelization on many-core

parallel systems. Therefore, FMM may not be the fastest
solution when parallel computing is considered.

Another approach to improve efficiency of iterative
methods is employing a pre-defined updating order. For ex-
ample, Fast Sweeping method (FSM) [11] employed Gauss-
Seidel updating with alternating iteration order. Since it
is well-known that Gauss-Seidel update converges faster
than Jacobi update, the proposed method works well on
a certain type of problems, i.e., datasets having straight
characteristic paths. Due to its simplicity, FSM has been
adopted to different Hamiltonian discretization [12] and dis-
tance computation on unstructured grids [13]. Bak et al. [14]
proposed the Locking Sweeping Method (LSM) to improve
the performance of FSM by using boolean flags to skip
unnecessary update. Since FSM does not rely on a global
ordered data structure, several parallel variants have been
proposed. Zhao [15] proposed two parallel implementations
of his original FSM, one for shared memory system and the
other for distributed memory system. In this paper, the au-
thor reported that shared memory version performs better
due to the communication overhead of distributed memory
version. However, shared memory version also has a inher-
ent limitation that only scales up to 2d parallel processors (d
= dimension of data) because the algorithm relies on parallel
Gauss-Seidel update on different iteration orders. Recently,
Detrixhe et al. [16] proposed a parallel sweeping method
that overcomes the limitation of Zhao’s parallel FSM. It uses
the Cuthill-Mckee ordering [17], which clusters grid points
on diagonal lines or planes for sweeping, and therefore
points on such clusters can be updated concurrently. This
approach introduces some overhead of computing non-axis
aligned ordering but increases scalability of the parallel
performance. In fact, a similar idea of parallelizing Gauss-
Seidel sweeping order has been proposed earlier for solving
Eikonal equation on parametric surfaces by Weber et al. [18].

The other type of Eikonal solver is adaptively updating
of active points without following a strict update ordering.
This type of algorithm is rooted from a Label-correcting
algorithm for the Bellman-Ford shortest path problem on
a graph, such as Polymenakos et al. [19], Falcon et al. [20],
[21], and some parallel algorithms by Bertsekas et al. [22],
which is based on a simple First In First Out (FIFO) queue
to store active points only and update points iteratively
until the queue becomes empty. This type of solvers show
O(kN) complexity where k depends on the input data. In
many cases, k could be much smaller than N and there
is no overhead to manage ordered data structure, so this
type of algorithm runs faster than worst-case optimal algo-
rithms. Adopting a label-correcting algorithm for a general
Hamilton-Jacobi equation solver on unstructured grids is
introduced by Bornemann et al. [23]. Later, Jeong et al. [1],
[4] introduced Fast Iterative Method (FIM), a variant of
label-correcting method specifically designed for massively
parallel architecture. FIM manages a list of active points
where insertion and removal of points is determined by the
convergence of the solution, and all the active points in the list
can be updated in parallel. In addition, unlike Bornemann et
al. [23], any active points that are not converged do not leave
the active list. FIM also introduced the BlockFIM algorithm,
where the input grid is split into blocks and each block is
treated as a unit of parallel update, which maps well to
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SIMD parallel architecture such as the Graphics Processing
Unit (GPU). Fu et al. [24] further extends FIM to compute
the geodesic distance on unstructured meshes on the GPU.
Bak et al. [14] introduced the single queue method, which is
similar to Bornemann et al. [23] except that causal ordering
is used to determine the neighbor nodes to be added to the
queue.

Recently, researchers are actively developing hybrid ap-
proaches to overcome the limitation of existing methods.
Bak et al. [14] introduced the two queue method, a variant of
a single queue label-correcting update method, to roughly
prioritize active points based on its value – high and low
– so that the active points having low values are updated
before those having high values. This is an inexpensive
alternative to FMM because it does not use an expensive
ordered data structure but can effectively control the expan-
sion of the active list. Gillberg [25] proposed a similar two-
list method using the average distance value as a threshold
to restrict the propagation of active points. More recently,
Chacon et al. [26] introduced a different hybrid technique
– instead of splitting the active list into two groups based
on distance values, they use two different scales (coarse and
fine) so that the propagation of active list is determined by
the coarse level grid while the solution is computed on the
fine level grid. In this paper, they introduced three different
methods – Fast Marching-Sweeping Method (FMSM), Heap-
Cell Method (HCM), and Fast Heap-Cell Method (FHCM).
FMSM uses Fast Marching for computing ordering on the
coarse grid while modified Fast Sweeping is used to com-
pute solutions on the fine level grid. Since Fast Marching on
the coarse grid does not capture all cell inter-dependencies,
HCM employs an ordered (using Heap) label-correcting
method for coarse level ordering while LSM is used to
speed up the fine level solution computation. FHCM is an
inexact version of HCM to speed up the computation by
sacrificing the accuracy. A parallel version of HCM, the
Parallel Heap-Cell Method, has been recently proposed by
the same authors [27].

As we reviewed in this section, the current research
trend in Eikonal equation solver is mainly in two directions
– one is developing parallel algorithms and the other is
improving efficiency of solvers. In this paper, we tackle two
problems at the same time by proposing a lock-free parallel
implementation of FIM and a group-ordered variant of FIM.

3 LOCK-FREE PARALLEL FIM
3.1 Fast Iterative Method
As shown in Algorithm 1, FIM iteratively updates the solu-
tion of the nodes in the active list L until the list becomes
empty. FIM is an iterative method – meaning that each node
can be updated multiple times. A node can be removed
from the active list only when it is converged (otherwise,
it remains in the list and is updated again in the following
iteration), which is the main difference from conventional
label-correcting algorithms that use a FIFO queue to remove
the top node immediately. A converged node activates its
non-converged adjacent nodes, and any converged node can
be reactivated later even though it is inactivated previously.

In FIM, there is no assumption on the updating order of
nodes, which allows a straightforward parallelization of the

algorithm by splitting the for loop into multiple disjoint sub-
loops (line 8 in Algorithm 1) and processing them concur-
rently using parallel threads, i.e., using OpenMP parallel
for clause. However, some operations in the algorithm may
cause race conditions, such as updating the solution (i.e.,
U(xnb) ← q) and adding xnb to L in if ∼ else block in
line (15) in Algorithm 1, because the grid and the active list
are shared among different threads and multiple threads
may attempt to access them at the same time. A simple
solution to avoid this race condition is using a mutex (e.g.,
lock) to allow only one thread to access shared memory
location and active list at any given time. However, lock
synchronization is an expensive operation, especially for
active list access, and such a naive parallel implementation
using locks causes too much overhead, which will result in
poor scaling performance for a large number of threads.

Algorithm 1: FIM
Input: Grid Ω, Solution U , Active list L
/* Initialization */

1 forall x ∈ Ω do
2 if x is a source node then
3 U(x)← 0
4 add x to L

5 else
6 U(x)←∞

/* Compute new solutions for L */
7 while L is not empty do
8 forall x ∈ L do
9 p← U(x)

10 q ← solution of g(x) = 0
/* If not converged */

11 if p > q then
12 U(x)← q

/* If converged */
13 else

/* Check adjacent neighbor nodes
for reactivation */

14 forall xnb adjacent to x do
15 if U(xnb) > U(x) and xnb /∈ L then
16 p← U(xnb)
17 q ← solution of g(xnb) = 0
18 if p > q then
19 U(xnb)← q
20 add xnb to L

21 remove x from L

3.2 Lock-free Parallel Implementation of FIM

In order to improve the scalability of the method, one
can use a temporary local buffer per thread to store new
active nodes. The main idea is that since there is no race
condition when performing a read access from the active
list, we can use a global active list for parallelization but
manage a local buffer to collect new active nodes for the
next iteration to avoid race condition for a write access
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to the active list. By doing so, lock synchronization for
active list can be effectively reduced, but there still exists an
overhead to combine multiple temporary local buffers into
a global active list per each iteration, which requires lock
synchronization. Therefore, in order to completely remove
lock synchronization in list management, we propose a local
and lock-free parallel implementation of FIM (Algorithm 2).

The proposed lock-free parallel implementation of FIM
is using local active list only. Each thread i owns its local
active list Li, and each list is processed simultaneously with
other lists. Therefore, read and write access to the list can be
performed independently without introducing a race con-
dition and we can completely remove lock synchronization.
However, even though each local active list contains equal
number of active nodes at the beginning, the size of each
list will change over time because each local active list
may propagate differently. Therefore, a load-balancing step
is required in each outer iteration. In order to reduce the
overhead introduced by the load-balancing step, we employ
a simple parallel pairwise load-balancing method – every
two lists are randomly chosen as a pair, and the size of the
lists in each pair is equalized (Algorithm 2 line 14). In our
implementation, we randomly generate an odd number (i.e.,
offset), and add this number to each odd-indexed thread to
access an even-indexed list. Since all odd indices are shifted
by the same offset, there is no two odd-indexed threads
access the same even-indexed lists. In addition, since we
select the offset randomly, all even lists will be roughly
equally paired with odd threads eventually. In addition, this
load-balancing algorithm can be easily parallelized because
each thread can access its pair list independently.

Even though we removed expensive lock synchroniza-
tion by using multiple local active lists, there is a small
chance that the same node is accidentally inserted into
more than one list at the same time. This happens when
a newly activated node is adjacent to multiple converged
active nodes that are stored in different active lists. This
can be avoided by checking whether a node is currently
in any active list (Line (24) and (29) in Algorithm 2). We
can use a flag per each node to check this, but a special care
needs to be taken when implementing this flag-based testing
for multiple threads, especially for writing operations. The
safest way is using a lock so that only one thread can update
or access a flag, but this will violate lock-free implementa-
tion. To resolve this issue, we used a fetch-and-modify atomic
operator (shown in Listing 1) to check the flag in Line (29)
so that a node is inserted to one active list only as shown
below. By doing this, multiple threads can check the flag
but only one of them is allowed to insert a node to its active
list and the other threads will simply pass this code block.
The performance of lock-free FIM implementation is given
in Table 2 (the rows for FIM).

Listing 1. Lock-free code using a fetch-and-modify atomic operator
// idx : node index
// F[idx] : true if idx is in the list, false otherwise

if(__sync_lock_test_and_set(&(F[idx]), 1) == 0)
{

// insert idx into active list
. . . . .

}

Algorithm 2: LOCK-FREE PARALLEL FIM
Input: Grid Ω, Solution U , Active list L
/* Initialization */

1 n← number of threads
2 N = {0, 1, 2, ..., n− 1}
3 Initialize U and L as line 1 to 6 in Algorithm 1
4 Split L into disjoint sublists Li for all i ∈ N so that
L = ∪i∈NLi

5 F = flag array, initialized 0
/* Flag array for node state */

6 foreach i ∈ N do in parallel
7 forall x ∈ Li do
8 F (x)← 1

/* Parallel update of sublists Li */
9 while Li is not empty for some i ∈ N do

/* Load balancing */
10 offset← a randomly selected odd number
11 foreach i ∈ N do in parallel
12 if i is odd number then
13 j ← (i+ offset)%n
14 Make the size of Li and Lj equal by

stealing nodes from the larger list

15 Barrier synchronization
/* Solve for Li */

16 foreach i ∈ N do in parallel
17 forall x ∈ Li do
18 p← U(x)
19 q ← solution of g(x) = 0

/* If not converged */
20 if p > q then
21 U(x)← q

/* If converged */
22 else

/* Check adjacent neighbor */
23 forall xnb adjacent to x do
24 if U(xnb) > U(x) and F (xnb) == 0

then
25 p← U(xnb)
26 q ← solution of g(xnb) = 0
27 if p > q then
28 U(xnb)← q

/* atomic operator */
29 if F (xnb) == 0 then
30 F (xnb)← 1
31 add xnb to Li

32 Remove x from Li

33 F (x)← 0

34 Barrier synchronization
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4 GROUP-ORDERED FIM

The lock-free parallel FIM introduced in the previous section
may reduce the running time of the solver by using multiple
threads, but it does not reduce the actual number of compu-
tations. This is because the previous parallel implementation
focuses only on how to split the task for parallel processing
and does not pay attention to how to reduce the total
computational cost. In this section, we propose a novel
numerical algorithm that reduces the computational cost
that can be parallelized efficiently as well.

The main drawback of the original FIM [1] is that the
propagation of the active list does not conform to the
actual distance to the seed points. This is due to the miss-
ing ordered data structure – for example, Fast Marching
Method (FMM [6]) employs Heap data structure to sort
the active nodes based on the distance (i.e., solution), and
updates them in the correct order to maintain the causality
of the solution, i.e., smaller solutions are computed before
larger ones. However, FIM does not use any ordered data
structure, but allows multiple updates of the node until
it converges completely. In algorithmic point of view, the
former, FMM, can be classified as a Label-Setting method
and the latter, FIM, can be classified as a Label-Correcting
method. Therefore, in FMM, once the label (i.e., solution) is
set, there is no need to re-set the label. However, in FIM,
even though a label has been set once, it can be corrected
with a new label later. In terms of complexity, label-setting
algorithms are worst-case optimal, e.g., O(nlogn) for FMM,
and label-correcting algorithms are not worst-case optimal,
e.g., O(kn) for FIM, but the actual performance highly de-
pends on the input. The main motivation behind the original
FIM is abandoning the ordered data structure that hinders
parallelization with an observation that k is usually small
unless the input speed function is extremely complicated.
Therefore, even though FIM’s total number of computations
could be higher than FMM, the actual running time could
be much shorter due to reducing the significant overhead
of managing the ordered data structure and using multiple
threads for parallel processing. In this section, we propose
a novel variant of FIM algorithm, called Group-Ordered FIM
(GO-FIM), that can handle the datasets with higher k values
as well.

4.1 Main Algorithm

The core idea behind GO-FIM algorithm is that we can
estimate a rough node dependency that guides the updating
sequence without ordered data structures. Specifically, we
compute the distance map on a coarser grid, which is later
used as a causality map between blocks, and we update the
nodes based on this order. For example, assume that the
input grid size is n × n, then we decompose the input grid
into n

m×
n
m grid of blocks where each block is of size m ×m

(Figure 1 (a), if the input grid size is 40 × 40 and the block
size is 8× 8, then the coarse grid size is 5× 5). Once we have
a coarse grid of blocks, we need to assign a speed value on
each coarse grid node by computing the average speed of
the corresponding block on the original grid. There could
be different approaches to assign speed values on coarse
grid nodes, such as using maximum, minimum, or median

(a)

3.252 2.545 2 2.545 3.252

2.545 1.707 1 1.707 2.545

2 1 0 1 2

2.545 1.707 1 1.707 2.545

3.252 2.545 2 2.545 3.252

(b)

6 5 4 5 6

5 3 2 3 5

4 2 1 2 4

5 3 2 3 5

6 5 4 5 6

(c)

Fig. 1. Example of computing the block updating order. (a) Color map of
the distance from the seed point (center) on the initial grid (speed map
is constant) overlaid by the coarse grid blocks, (b) Distance value per
block, and (c) Integer updating order of each block.

speed values, but the average speed worked reasonably well
throughout our experiments.

When the speed value on each node of the coarse grid
is assigned, we run FIM on the coarse grid to compute
the distance. Since the coarse grid size is small, execution
of FIM on the coarse grid can finish very quickly. Once
we finish computing the distance (i.e., solution of Eikonal
equation) on each coarse grid node, then we reassign the
computed distance to the blocks (Figure 1 (b)) and sort them
in ascending order. Once a sorted block list is created, we
can assign the positive integer order number to each node
(Figure 1 (c)) by clustering blocks having a similar distance
value. By doing this, we can group multiple blocks that can
be updated together during iterations. For example, in the
first iteration, all the grid nodes that belong to the block
of order number one will become a valid region to run FIM
(the other regions will be marked as invalid and FIM will not
propagate into that regions). In the second iteration, all the
grid nodes that belong to the block of order number one and
two will become a valid region. We continue this process
until the entire grid becomes a valid region. By doing this,
a group of nodes can be processed along the specific update
order – therefore, we named the algorithm Group-Ordered
FIM. Algorithm 3 shows each step of GO-FIM algorithm in
pseudocode.

4.2 Tight Bound for Active List

As briefly explained above, GO-FIM employs a group up-
date scheme – multiple blocks are grouped based on the
update order index (1 to k), and the corresponding group
is appended to the computational domain per each update
pass, i.e., the domain is progressively expanding when the
algorithm converges on the current domain. In order to do
this, we need to find a proper initial active list for each
update group. Let us define Gv is the group of blocks to be
newly activated at the v-th update pass and G is the union
of groups to be updated together at the v-th update pass,
i.e., G1, G2, ... to Gv . Then we can define the upper bound
(i.e., loose bound) of the initial active list L containing active
nodes for the v-th update pass as follows:

Lupper = {x|x ∈ B ⊂ Gv and ∃ xnb ∈ B′ ⊂ G \Gv} (3)

where x is a grid node, xnb is a neighbor node adjacent to
x, B and B′ are blocks, and \ is the set difference operator.
Based on this definition, Figure 2 shows an example of three
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Algorithm 3: GROUP-ORDERED FIM
Input: Grid Ω, Solution U , Active list L
/* Coarse grid level */

1 Generate and initialize coarse grid Ω̃ from Ω

2 Run FIM on Ω̃ to assign distance per block
3 Cluster blocks in Ω̃ into k groups (G1 to Gk)
/* Fine grid level */

4 Initialize U and L as line 1 to 6 in Algorithm 1
5 G = ∅
6 n← number of threads
7 N = {0, 1, 2, ..., n− 1}
8 for v = 1 to k do
9 G = G ∪Gv

10 if v is 1 then
11 Lupper ← L

12 else
13 Get Lupper from G and Gv (see Equation 3)

14 Split Lupper into disjoint sublists Li for all i ∈ N
15 Barrier Synchronization
16 foreach i ∈ N do in parallel
17 Get tight active list L̃tight from Li (see

Algorithm 4)
18 Li ← L̃tight

19 while Lj is not empty for some j ∈ N do
20 Load balancing as line 10 to 14 in

Algorithm 2
21 Barrier Synchronization
22 Solve for Li

23 Barrier Synchronization

update passes and corresponding initial active list for each
pass (drawn in red color). In the first pass (Figure 2 (a)),
only a single block (marked with number 1) belongs to the
group G and the bottom-left corner node (drawn in red) is
the active node of that group because it is the seed point
(G=G1). In the second pass, two additional blocks (marked
with number 2), which form the group G2, are newly
activated and added to the group G, and the boundary
nodes between the blocks belong to the previous group
and newly added blocks (i.e., boundary between G \ G2

and G2) form an active list (Figure 2 (b) red points). Note
that even though G1 is already processed in the previous
update pass, it must be included in the next update group
G because FIM is a label-correcting method and active nodes
can propagate in any direction. You can consider this as the
computational domain is gradually expanding as iteration
goes. In the same manner, (c) shows the third update pass.
G is the union of G1 , G2 and G3 where G3 is the newly
activated group, and the initial active list is a collection of
boundary nodes in G3 adjacent to blocks in G \ G3, which
is G1 and G2 (in this example, G1 is not adjacent to G3 but
it could be possible in a different setup).

Note that Luppper defined above is simply a collection
of all nodes in Gv adjacent to the group G \ Gv = G1 ∪
G2... ∪ Gv−1. This implies that there might be unnecessary
nodes in Luppper , i.e., nodes that are not true upwind nodes
in the group Gv . Therefore, we can define a more tightly

(a) (b) (c)

Fig. 2. Example of initial active lists for three update groups

(a) (b) (c) (d)

Fig. 3. Example of an initial active list defined using an upper bound
given in Equation 3. Green arrows represent causal dependency be-
tween nodes. Blue points are active nodes updated only once. Yellow
points are active nodes unnecessarily updated multiple times due to a
non-tight bound. Black points are converged nodes.

bounded initial active list L required for the v-th update
step as follows:

Ltight = {x|x ∈ B ⊂ Gv and ∀ its upwind neighbor
nodes xnb belong to G \Gv}

(4)

The main idea behind this tight bound is that Luppper may
have self-dependency – if we build a directed acyclic graph
(DAG) based on the causal relationship between nodes, then
some of nodes in Luppper may depend on the other active
nodes in the list, which is not the true initial active nodes
because those can be activated later by the other true initial
active nodes.

Figure 3 shows an example of an initial active list based
on the upper bound given in Equation 3 on a constant speed
map. Green arrows represents causal dependency between
nodes, blue points are active nodes that are updated only
once, yellow points are active nodes that are updated mul-
tiple times, and black points are converged nodes. In this
example, an upper bound is used to collect initial active
nodes, which are blue points in Figure 3 (a). Since there is
causal dependency between the bottom right node and the
others, yellow points do not converge after single iteration
(only the very bottom node converges after first iteration
but the other nodes stay in the active list marked as yellow).
That means, the top-right corner node requires six iterations
to get the correct solution and first five iterations are extra
computations due to a non-tight bound. On the other hand,
Figure 4 shows an example of tight bound where only the
bottom-right corner node is included in the initial active
list. As the figure shows, there is no redundant computation
(yellow nodes) as shown in Figure 3.

Even though we theoretically defined a tight bound for
the initial active list, it is not easy to derive such a tight
list because we must know causal dependency (i.e., upwind
neighbors) in advance in order to test whether a node
belongs to a tight bound or not, as shown in Equation 4.
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(a) (b) (c) (d)

Fig. 4. Example of an initial active list defined using a tight bound given
in Equation 4. Due to the tightness of the bound, only a single active
node is included in the initial active list. There is no unnecessary update
in this example.

The difficulty arises from the fact that causal dependency
can be resolved only when the solution is already computed,
but we need a tight bound to collect initial active nodes to
compute solutions – a chicken and egg problem.

To solve this problem, we propose a heuristic algorithm
to approximately derive a tight bounded active list L̃tight

(see Algorithm 4). The main idea is that even though we
cannot define a tight bound without true solutions, we
can define a loosely bounded active list using the upper
bound given in Equation 3. Even though this is not a
tightly bounded list, it is still a valid active list. Therefore,
we start from a loosely bounded active list, and extract a
more tightly-bounded active list from it. The algorithm is as
follows: For a given initial active list, we run FIM update
twice using a Jacobi update, and check for convergence. If
a node belongs to a tight bound, it must converge after two
FIM update iterations. Otherwise, the node must stay in the
active list for further computation. Note that this algorithm
does not guarantee the tightest initial active list because we
cannot determine the complete causal dependency without
having the correct solution on the entire domain. However,
this simple algorithm works well in practice and can ef-
fectively reduce unnecessary computations. As shown in
Table 1, there is a significant performance improvement by
using a tightly bounded active list, roughly up to 40% of
computation is reduced.

Algorithm 4: COMPUTE TIGHT BOUND

Input: Lupper , L̃tight

/* Update distance of Lupper using a
Jacobi update */

1 foreach x ∈ Lupper do in parallel
2 p← U(x)
3 q ← solution of g(x) = 0
4 U(x)← q

/* Update distance of Lupper again and
collect converged nodes */

5 foreach x ∈ Lupper do in parallel
6 p← U(x)
7 q ← solution of g(x) = 0
8 if p ≤ q then
9 add x to L̃tight

Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5
Lupper 4.26 4.74 5.33 8.84 8.70
Ltight 2.74 3.09 3.53 7.32 7.36

TABLE 1
Comparison of average number of update per node for different initial

active list generation schemes (tested on GO-FIM8). More details
about the datasets can be found in Section 5.

4.3 Block Clustering

Another problem we need to consider is how to cluster
blocks into disjoint groups. In Figure 1, clustering seems
relatively easy because blocks having the same distance
value are clustered as a single group. However, in real world
examples, distribution of distance is nearly uniform, and the
difference of distance between adjacent blocks may become
small after sorting. Therefore, it might be difficult to draw a
clear cut to separate blocks into disjoint groups.

In addition, the total number of groups also affects the
performance of the solver. The main (outer) iteration of GO-
FIM depends on the grouping strategy because the total
number of iterations is equal to the number of groups (in
each iteration, the computational domain is expanding by
adding the next group to the current domain). If there are
too many groups, then it will increase the loop execution
overhead as well as extra computation of initial active list
for each group. On the other hand, if there are only a small
number of groups, then it may not reflect the causal depen-
dency of the original grid well and eventually degrades the
overall performance.

To address these problems, we employ K-means clus-
tering algorithm [28] to decompose the coarse grid into
disjoint groups by clustering blocks having similar distance
values. There are some automatic methods to determine K
value (i.e., the number of clusters), for example Tibshirani et
al. [29]. This approach is minimizing the variation of values
within each group, i.e., within-cluster dispersion (Figure 5).
As can be seen in this graph, the dispersion value changes
gradually and it is difficult to find the clear cuts to separate
the data into groups. Therefore, we have decided to deter-
mine the best clustering number empirically. More detailed
discussion regarding the clustering is given in Section 5.5.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0  50  100  150  200  250  300  350  400  450  500

N
or

m
al

iz
ed

 w
ith

in
-c

lu
st

er
 d

is
pe

rs
io

n 
W

k

k-clustering number

Ex1
Ex2
Ex3
Ex4
Ex5

Fig. 5. Within-cluster dispersion for different clustering value K.



1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2567397, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

5 RESULTS AND DISCUSSION

In this section we evaluate the performance of parallel FIM
and GO-FIM, and compare them with the most popular
serial and parallel Eikonal solvers, such as FMM [10], Zhao’s
FSM [11] [15], Detrixhe et al.’s parallel FSM (DFSM) [16] and
parallel Heap Cell Method [27]. In cases of GO-FIM and
pHCM, we use two different block size configurations –
GOFIM4 and pHCM4 for 4×4×4 and GOFIM8 and pHCM8
for 8× 8× 8. Running times are measured using single and
multiple threads in order to assess both serial computing
performance and parallel scalability of each method.

All experiments were conducted on a NUMA(Non Uni-
form Memory Access)-based Linux server equipped with
four AMD Opteron 6128 octa-core processors sharing 64 GB
of DDR3 memory. We implemented the experiment code in
C++ and OpenMP with the -O3 level optimization with gcc
4.7.0, and all floating point computations are performed in
64 bit double precision. We used OS default thread affinity,
which is round-robin thread assigning to an idle processor.
For measuring scalability of each method, we tested up to
32 parallel threads except Zhao’s parallel FSM [15] that only
allows one, two, four or eight threads running concurrently
because the algorithm is based on the decomposition of
Gauss-Seidel (G-S) update directions (for example, in 2D
case, there are only four G-S update directions, ascending
and descending directions along x and y axis). To measure
overall performance, we check average wall-clock running
time of each method including all the initialization/prepro-
cessing time except map generation because speed maps do
not depend on the seed/source location.

The speed maps used in our performance evaluation are
as follows:

Example 1.f = 1. Constant speed map.

Example 2. f = 1
4 , 1

2 , 1. Speed map with three layers of
different speed values.

Example 3.f = 6 + 5sin(2πx) ∗ sin(2πy) ∗ sin(2πz) .

Example 4.f = 1 + 0.5sin(20πx) ∗ sin(20πy) ∗ sin(20πz) .

Example 5.f = Spatially coherent random speed map.

where all speed maps are defined in the normalized domain
Ω = [0, 1].

Example 1 is the simplest example that the speed value
is identical on every grid node. On this speed map, waves
propagate as a circular shape from the seed points and the
characteristic paths are straight lines from the seed region.
Example 2 has three levels of speed variation, which mimics
wave propagation through three different materials. In each
layer, characteristic paths are straight lines, but there is a
large characteristic direction change at the boundary of two
adjacent layers. Example 3 and 4 are sinusoidal speed maps
to represent moderate and highly oscillatory isocontours
of the distance maps. Example 5 is a spatially correlated
random speed map so that speed values are locally homoge-
neous but varying globally. This dataset is very challenging
because characteristic paths frequently turn their directions.
These datasets were chosen in order to elaborate the charac-
teristics of each method. In all experiments, we used a 2563

three-dimensional grid, with the single center source point.
Speed maps (input and coarse level) are pre-computed and
stored in each grid points. For clustering, we used 240
groups for GOFIM4 and 150 for GOFIM8. Figure 6 shows
the color plot and iso-contour rendering of the solution (i.e.,
distance) of the Eikonal equation for each speed map.

5.1 Single-threaded result
Although we propose parallel algorithms in this paper, it
is important to conduct experiments using a single thread
because each algorithm’s intrinsic characteristics can be
revealed by analyzing single-thread performance. The run-
ning time of each method on five different datasets are
listed in Table 2 (first multi-row), and their average update
numbers are listed in Table 3. The datasets are chosen so
that different levels of complexity can be tested. Example 1
is the simplest data, and the complexity of data is gradually
increasing from Example 2 to 5.

Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5

1

FMM 23.50 23.98 23.96 25.00 25.92
FSM 11.51 54.29 51.71 102.05 94.02
DFSM 23.41 87.82 86.07 159.57 148.27
FIM 5.62 9.15 44.33 24.95 34.46
pHCM4 9.26 9.86 11.16 17.90 17.13
pHCM8 9.16 9.32 11.97 26.78 22.28
GOFIM4 10.26 10.18 10.85 16.51 16.72
GOFIM8 6.76 7.36 8.34 18.98 20.21

2

FSM 6.84 30.41 37.93 79.12 67.12
DFSM 16.72 68.45 60.82 138.00 109.85
FIM 3.08 4.93 24.67 14.13 17.63
pHCM4 5.73 5.68 6.69 10.21 9.76
pHCM8 4.91 4.99 6.46 13.77 11.83
GOFIM4 5.49 5.97 5.93 8.90 8.31
GOFIM8 3.54 4.16 4.50 9.94 9.84

4

FSM 4.87 19.68 28.59 52.61 46.63
DFSM 9.00 35.47 33.48 63.60 60.80
FIM 1.68 2.79 13.12 7.65 9.87
pHCM4 3.28 3.35 3.83 5.82 5.50
pHCM8 2.64 2.72 3.33 7.16 6.28
GOFIM4 2.93 3.16 3.29 4.68 4.53
GOFIM8 1.85 2.18 2.49 5.17 5.27

8

FSM 4.26 16.23 20.22 36.66 35.54
DFSM 4.65 18.51 18.14 33.15 30.71
FIM 0.77 1.30 6.77 4.04 5.28
pHCM4 1.75 1.82 2.05 3.12 2.93
pHCM8 1.37 1.46 1.76 3.69 3.25
GOFIM4 1.58 1.73 1.82 2.55 2.39
GOFIM8 0.97 1.20 1.39 2.81 2.80

16

FSM - - - - -
DFSM 2.51 9.58 9.16 17.47 17.26
FIM 0.44 0.70 3.52 2.23 2.91
pHCM4 0.97 1.02 1.16 1.74 1.63
pHCM8 0.75 1.81 0.96 1.96 1.73
GOFIM4 0.92 1.03 1.09 1.49 1.36
GOFIM8 0.57 0.74 0.87 1.66 1.64

32

FSM - - - - -
DFSM 1.78 6.10 5.72 11.53 10.35
FIM 0.26 0.40 1.96 1.39 1.73
pHCM4 0.75 0.68 0.92 1.46 1.18
pHCM8 0.46 0.49 0.64 1.15 1.03
GOFIM4 0.65 0.77 0.83 1.05 0.96
GOFIM8 0.43 0.60 0.68 1.13 1.13

TABLE 2
Running time using different number of threads (1 to 32 threads)

measured in second. The fastest time for each dataset is marked in
boldface.

As expected, the performance of FMM did not vary
over different examples because FMM is worst-case optimal
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(a) Example 1 (b) Example 2 (c) Example 3 (d) Example 4 (e) Example 5

Fig. 6. Color-coded distance map with iso-contours of our test datasets. Blue to red color : distance to the seed region on each map. For visualization
purpose, the center slice of each 3D map is shown here.

and less susceptible to speed variation. In contrast, iterative
algorithms, such as FSM and FIM, are affected by the
complexity of the speed maps. Even though they belong
to the same class of algorithm, they behave differently. In
Example 2, FSM and DFSM slow down by a factor of four
to five compared to Example 1, but FIM is only twice slower.
Example 3 and 4 show more interesting results – FSM’s
running time grows about five and nine times respectively
(compared to Example 1), but FIM’s running time did not
follow the similar pattern and Example 3 was much slower
than Example 4. This shows that FIM is more susceptible to
a large (global) speed variation (as in Example 3) than local
variation in Example 4. In our experiments, FIM mostly runs
faster than FSM and DFSM because FIM avoids unnecessary
computation by only updating active nodes. In Example 1,
FIM only requires 2N updates for N nodes because every
node converges after a single iteration. In contrast, FSM
requires at least 9N computations because a single pass of
entire grid update requires eight sweeps per node, one per
each axis, and one more sweep to check convergence. We
also observed that DFSM is always slower than FSM up to
a factor of two for a single thread even though the total
number of update is same as FSM. This might be due to
better cache-coherency of axis-aligned sweeping of FSM.

pHCM and GO-FIM belong to the class of two-level
algorithm, and both perform better than the other methods
on all examples except Example 1 where the overhead of
both methods outweighs FIM. Other than Example 1, both
methods outperform other iterative methods by a large
margin, especially this characteristic becomes clearer on
complicated data like Example 4 and 5. Note that both
pHCM and GO-FIM even outperform FMM on the com-
plicated examples without managing a fine-level priority
queue, which we believe is the right approach to improve
the performance of label-correcting algorithms. It is also
worth noting that performance of GO-FIM is affected by
the choice of block size. For simple maps like Example 1,
original FIM performs best. If maps are reasonably complex,
like Example 2 and 3, then GO-FIM with a larger block
size (i.e., GOFIM8) performs well because there is not much
variation of characteristic path direction that needs to be
covered by fine-grain decomposition of the domain, and
therefore using a larger block size will reduce the overhead
of GO-FIM algorithm. For highly complicated maps, like
Example 4 and 5, a smaller block size works best. More
discussions about the relationship between the block size

and performance will be given in Section 5.5.
Even though GO-FIM and pHCM share a similar idea,

there are also subtle but important differences that make
two methods perform differently. pHCM restricts the com-
putational domain to a single cell per thread, but GO-FIM
expands the computational domain based on the order of
block clusters (this is also different from FMSM that expands
the domain one cell at a time). In addition, pHCM uses a
dynamic cell ordering using a heap while GO-FIM uses a
coarse static ordering based on the clustering. As shown in
Table 3, pHCM4 shows less number of updates than GO-
FIM4, but for a larger block size GO-FIM8 needs fewer
updates than pHCM8. This is because pHCM can find more
accurate causal relationship between blocks, so if the block
size is small then pHCM may need to update less than GO-
FIM. However, if the block size is larger, than it may impair
the accuracy of the causal dependency found by pHCM, so
the number of updates can be larger than GO-FIM. Note that
the affect of block size is smaller in GO-FIM, and sometime
a large block size is even better for GO-FIM (for example,
in Example 3, the number of update is smaller in GO-FIM8,
but that of pHCM8 is higher than pHCM4). It is also worth
noting that pHCM has around 5% of overhead for heap
maintenance (for pHCM4 case, [27]), but GO-FIM shows
smaller overhead (e.g., preprocessing cost) around 4% at
most (Table 4, thread 1). Therefore, even though pHCM8
requires fewer updates than GO-FIM8 for Example 5, GO-
FIM8 is actually faster than pHCM8.

Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5
FMM 2.99 2.99 2.99 2.99 2.99
FSM 9 55 49 86 79

DFSM 9 55 49 86 79
FIM 2.00 3.73 19.40 9.81 12.91

pHCM4 2.96 3.05 3.38 4.88 4.38
pHCM8 3.49 3.61 4.24 8.41 7.29
GOFIM4 3.46 3.64 3.75 5.42 5.08
GOFIM8 2.74 3.10 3.53 7.32 7.36

TABLE 3
Average number of update of Eikonal solvers on different examples.

5.2 Multi-threaded result

Multi-threaded results are demonstrated as raw running
times (Table 2), relative performance over FMM (Fig 7), and
parallel scalability of each solver (Fig 8). A popular parallel
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(b) Example 2
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(c) Example 3
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(d) Example 4
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Fig. 7. Parallel running time result. The horizontal axis is the number of parallel threads, and the vertical axis is the relative speed up of each solver
over the single-threaded FMM
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Fig. 8. Parallel scalability result. The horizontal axis is the number of parallel threads, and the vertical axis is the speed up factor (i.e., scalability) of
each solver.
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GO-FIM4 GO-FIM8
Example 2 Example 5 Example 2 Example 5

1 3.30 4.00 0.45 0.30
2 3.86 4.55 0.58 0.37
4 4.75 5.46 0.81 0.48
8 6.62 7.00 1.34 0.71
16 9.42 9.30 1.86 1.04
32 13.69 13.05 3.13 1.91

TABLE 4
The proportion of the preprocessing time of GO-FIM (measured in the

percentage over the entire running time)

Eikonal solver is Zhao’s parallel FSM [15]. The main idea
of parallelization in this method is running G-S update
concurrently for different sweeping directions. However,
it only allows parallelization using two, four, and eight
threads because there are only two independent sweeping
directions per each axis. This significantly impairs scalability
of the method. As you can see in Figure 8, the observed
maximum speed up for 32 threads over a single thread is
only about a factor of three.

In DFSM [16], the authors proposed a diagonal sweeping
approach in order to improve parallel scalability of the
sweeping algorithm. We observed that DFSM with 32
threads runs around a factor of 13 ∼ 15× faster than a
single-threaded DFSM. However, with a small number of
parallel threads, the running time of DFSM is longer than
that of FSM (see Figure 7 and Table 2) due to the overhead
of non-axis aligned sweeping direction. Therefore, DFSM
favors the systems with many parallel processors.

Compared to the two parallel sweeping methods dis-
cussed above, our lock-free parallel FIM algorithm runs
faster and scales better on multiple threads. We observed
that FIM can achieve the best scalability on Example 1, 2 and
3, almost up to 24× speed up for 32 threads, which results in
about 80× speed up over a single-threaded FMM. However,
FIM did not scale well on complex data like Example 4 and
5, which is the limitation of conventional FIM.

Unlike FIM that directly parallelizes the active list,
pHCM concurrently updates multiple blocks in the coarse-
level grid by letting each thread handles the each block and
updates using the modified LSM method. In our experi-
ments, we observed that pHCM4 and pHCM8 achieved up
to 12 ∼ 16× and 18 ∼ 23× speed up, respectively. Similar
to GO-FIM, pHCM scales much better than FSM and DFSM,
but pHCM’s average computation number increases as the
number of threads increases (reported in Chacon et al. [27]),
which can be a bottleneck for scaling to a large number of
threads.

GO-FIM scales reasonably well compared to other par-
allel solvers except a few cases – FIM outperforms GO-
FIM8 on Example 2 for 13 threads and up (see Figure 7 (b)
pink and orange curves cross near 13 threads), and pHCM8
outperforms GO-FIM8 for 22 or more threads on Example
3 (see Figure 7 (c) orange and gray curves cross near 22
threads). However, GO-FIM is practically the best option
for most cases under 32 threads because it is not common to
have more than 32 cores in a single computing node.

5.3 Parallel efficiency on different grid size
The performance of parallel algorithms is often strongly
affected by the data size, so we measured the parallel
efficiency of each solver on a constant speed map of three
different grid sizes (1283, 2563, and 5123). Figure 9 demon-
strates how the parallel efficiency varies for different grid
sizes and number of threads. DFSM shows better parallel
efficiency for a small number of threads (less than 16), which
may be due to the cache-coherency effect of specialized
sweeping scheme. pHCM was not much affected by the data
size and thread counts. However, pHCM4 shows a steep
drop of the curves for higher thread counts. FIM and GO-
FIM clearly show increasing parallel efficiency as the grid
size grows. Unlike pHCM4, GO-FIM4 shows better parallel
efficiency for the grid size 5123. This is partially because
pHCM’s heap maintenance overhead increases but GO-FIM
effectively hides the preprocessing overhead as the data
size grows. This implies that GO-FIM suits better for large
datasets than the other solvers for higher thread counts.

5.4 GO-FIM on the GPU
The proposed GO-FIM can be thought of as an extension of
BlockFIM [1] because GO-FIM uses rough (i.e., not exact) or-
dering of block update to reduce unnecessary computation
of the original FIM. Table 5 compares BlockFIM and GO-FIM
algorithms on the GPU. We used an NVIDIA Tesla K40c for
comparing two GPU solvers on a 5123 grid using two block
sizes, 43 and 83. As shown in this table, GO-FIM effectively
reduced running time on the complicated maps (Example
2 to 5). GO-FIM was slower than BlockFIM on Example
1 because the update order is identical on coarse and fine
grids so GO-FIM cannot reduce the amount of computation
but there exists extra overhead of preprocessing in GO-FIM.

Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5
BlockFIM4 0.73 1.37 4.51 6.24 6.21
BlockFIM8 0.87 1.34 2.26 3.11 2.87
GO-FIM4 1.15 1.45 1.33 1.50 1.61
GO-FIM8 1.08 1.25 1.28 2.34 2.24

TABLE 5
Running Time comparison of BlockFIM and GO-FIM on an NVIDIA

Tesla K40c GPU.

5.5 Discussion
GO-FIM requires pre-processing that is not necessary in
the original FIM. In order to assign per-block updating
order, GO-FIM must run FIM on the coarse grid to compute
distance per block. In addition, proper clustering of blocks
is another important pre-processing step to improve the
performance. In general, less than one second is spent for
preprocessing for single-threaded GO-FIM8, which is only
a small fraction of the total running time. In addition, all
computations in preprocessing step can be done in parallel
as well, so it does not impact the scalability of the algo-
rithm. One thing we should consider is that preprocessing
time varies depending on the block size and inversely
proportional to the overall performance – meaning that it
is better to have smaller block size to represent underlying
speed map more faithfully, but small block size will increase
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Fig. 9. Parallel scalability test result of Example 1 on different grid size (N3). The horizontal axis shows the number of parallel threads by a log
scale, and the vertical axis shows the parallel efficiency (parallel speed up / num threads).

preprocessing time as well. We found that the block size of
4 or 8 works best for 2563 input data size.

GO-FIM belongs to the class of two-scale hybrid algo-
rithms, such as FMSM proposed by Chacon et al. [26], but
there also exists important differences between FMSM and
GO-FIM. In FMSM, as the authors pointed out, statically
computed cell orders do not perfectly capture the correct
causal relationship due to the large block size, and that is
why the authors later proposed an improved algorithm,
HCM, by employing a dynamic ordering of cells using
Heap. In GO-FIM, we employ a clustering method to group
the subregions based on the static cell ordering, and maxi-
mize the parallelism of FIM algorithm by leveraging a larger
computational domain. Therefore, we are able to achieve the
good performance comparable to that of a dynamic ordering
method without ordered data structure as in pHCM while
increasing parallel performance. In addition, unlike other
hybrid algorithms, it is a natural transition from BlockFIM
to GO-FIM because the algorithm is already using a block-
based updating scheme anyway.

GO-FIM’s performance is affected by the number of
clusters. We observed that too many clusters, for example
each block as a single cluster, causes too much overhead
for iteration due to thread synchronization, while too few
clusters do not represent block orders accurately. We em-
pirically determined the best number of clusters as shown
in Figure 11, which is roughly around 150 clusters for the
coarse grid size of 323 (GO-FIM8) and 240 clusters for coarse
grid size of 643 (GO-FIM4). Figure 11 is the reciprocal of the

raw running time of GO-FIM8 with 16 threads. We noticed
that the best results of Example 1 ∼ 3 are located around 150
clusters. More difficult cases, like Example 4 and 5, favor
small number of clusters, but around 150 clusters is still
close to their best results.

One limitation of GO-FIM is that the performance de-
pends on the structure of the input speed map and the
layout of coarse blocks. To emphasize this effect, we tested
GO-FIM on the maze-like data having permeable barriers
with a low speed value (see Figure 12). Dotted lines show
the boundary of blocks. The speed value of gray regions is
0.01 and that of while region is 1, and the block size and the
thickness of the barrier is 8. We change the location of bar-
riers so that blocks and barriers are overlapping differently.
Figure 12 (a) is the case that block boundary and barriers
align perfectly so that there is no overlapping of blocks over
barriers. In this case, distance on coarse blocks represent the
propagation order correctly (the orange arrow is the wave
propagation direction of coarse blocks in GO-FIM, and the
green arrow is the correct wave propagation direction). Fig-
ure 12 (b) is the case that some blocks overlap with barriers
by half, therefore the average distance on each block is same.
In this setting, four blocks in the bottom-left corner have
same speed value, so the wave propagates as circular shape
(along the orange arrow) while the correct direction should
be the green arrow. Figure 12 (c) is the case where the blocks
on the bottom row largely overlap with the barrier while the
blocks above that row overlap much less with the barrier. In
that case, the speed of bottom row is much smaller than that
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Fig. 10. Parallel scalability test result of Example 4 on different grid size (N3). The horizontal axis shows the number of parallel threads by a log
scale, and the vertical axis shows the parallel efficiency (parallel speed up / num threads).
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Fig. 11. Performance of GO-FIM8 with 16 threads measured using
various cluster sizes.

of the row above, so the wave propagates faster along up
direction, which increases unnecessary computation. One
way to resolve this problem is to make the block size small
enough to represent the underlying speed map structure
better with the coarse grid, but as we discuss above, using
smaller block size will increase the preprocessing time so it
will impair the overall performance. Another solution might
be using adaptive block size to better represent the speed
map, but we leave this for the future work.

(a) (b) (c)

Fig. 12. Example of miss prediction on coarse grid. The speed value on
white region is 1.0, and that of grey region (permeable barrier) is 0.01.
The green arrow represents correct wave propagation direction, and the
orange arrow represents wave propagation direction on the coarse grid
of GO-FIM.

6 CONCLUSION

In this paper, we proposed two parallel Eikonal solvers,
lock-free FIM and Group-Ordered FIM. Lock-free FIM is
an extension of original FIM for efficient parallelization on
shared memory systems, and GO-FIM further improves the
performance of parallel FIM by employing rough ordering
of blocks on a coarse grid and clustering of blocks to re-
duce iteration numbers and to increase the parallelism. The
experiment results show that the proposed method maps
well on a shared memory system and outperforms popular
parallel Eikonal equation solvers in many cases.

In the future, we will conduct a theoretical study of GO-
FIM algorithm, and plan to extend GO-FIM to distributed
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systems. Exploring the real-world applications that benefit
from the proposed fast parallel Eikonal solvers is another
future research direction.
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