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Fig. 11. Exemplary results from 22nd January 2008, showing the correlation between actual and predicted energy consumption patterns at different
levels of Seer Grid. (a) Actual and predicted energy consumption patterns for one of the SMs, (b) Correlation between actual and predicted energy
consumption patterns for the same SM, (c) Actual and predicted energy consumption patterns for CH, (d) Correlation between actual and predicted
energy consumption patterns for CH.

TABLE 2
Squared correlation coefficient (R2) between predicted and actual energy consumption patterns for each SM and CH,

and the standard deviations of the 3 test days.

Season SM1 SM2 SM3 SM4 SM5 CH

Winter
R2: Actual vs Predicted 0.5715 0.5529 0.7793 0.6421 0.5772 0.9098
Three Test Days Standard Deviation 0.1240 0.0618 0.1470 0.0901 0.0187 0.0118

Spring
R2: Actual vs Predicted 0.5107 0.5627 0.8009 0.6687 0.5799 0.9115
Three Test Days Standard Deviation 0.0728 0.1236 0.1588 0.0459 0.1868 0.0095

Summer
R2: Actual vs Predicted 0.5888 0.5341 0.6322 0.6439 0.6528 0.8985
Three Test Days Standard Deviation 0.1775 0.1366 0.0922 0.0479 0.1855 0.01725

Fall
R2: Actual vs Predicted 0.6195 0.6025 0.6477 0.6450 0.6072 0.9041
Three Test Days Standard Deviation 0.0572 0.1412 0.0284 0.0808 0.1074 0.0102

Fig. 12. Maximum percent error (MPE) and average percent error (APE)
in cluster level load prediction for Jain and Satish, and Seer Grid. Results
are averages of the five test SMs.

versus frameworks based on homomorphic cryptography.
Seer Grid’s household level prediction through multilayer
perceptron has a time complexity of O(x2) [42], while
Paillier cryptography has time complexity of O(y3) [41].
Therefore, time complexity of homomorphic cryptography
based SM privacy frameworks is O(y3t) while Seer Grid’s
time complexity is O(x2t), where x and y are the size of
input in Seer Grid and homomorphic (Paillier) cryptosystem
[41], respectively, with x � y, and t is the number of
daily samples in both schemes. In other words, Seer Grid’s
asymptotic time complexity is lower than similar aggrega-
tion frameworks based on homomorphic cryptography.

6.2 Implications
The Importance of Two Level Prediction: One may think
that only a single level of prediction may achieve the same
results as two-levels, but a single level of prediction has
some inherent drawbacks. If the prediction is done only
at the CH level (where households report their actual con-
sumption to CH), we lose privacy at the SM level. Whereas,
if prediction is done only at the SM level, the cluster-wide
difference between actual and predicted consumption data
will be larger, resulting in data utility loss.

Training Parameters: In our experiments, we took a
heuristic approach for determining the training parameters
(epochs, iterations, learning rule, etc.) for the ANN used
by SMs. The parameters were chosen in such a way that
it satisfies our goal of optimizing both privacy and utility
of SM data. From the experimental results we observe that
the correlation between actual and predicted energy con-
sumption pattern varies moderately across households and
seasons. This is primarily because of different characteristics
of the training data (actual energy consumption for last 21
days) leading to differently converged prediction model in
each SM. In future, we plan to develop a unified prediction
framework for the SMs which will analyze characteristics of
the training data, and accordingly govern learning rate such
that prediction accuracy remains below a privacy preserving
threshold with high likelihood. Unlike this work, where
all SMs use the same prediction parameters, the unified
framework will adapt to the characteristics of local training
data of individual SMs. As a result, the convergence in
learning will be more uniform across SMs and seasons, thus
offer a more stable privacy guarantee.

Privacy due to Uncertainty: Uncertainty in next day’s
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energy consumption provides user privacy in Seer Grid,
which is similar to how uncertainty in location data pro-
vides spatio-temporal privacy [43]. The naturally occurring
irregularities in consumers’ day-to-day schedule results in
smoother household prediction patterns (that hides load
signatures), which also means that the predicted energy
pattern cannot be used to determine temporary house un-
occupancies with complete confidence.

Larger Cluster: We consider a very small scale clus-
ter in our experiments, and yet achieve considerably high
prediction accuracy at the cluster level. As evident from
previous cluster level prediction schemes [44], accuracy
tends to dramatically improve with increasing cluster size.
Thus, we think our results are highly encouraging for large
scale implementation.

6.3 Dishonest and Malfunctioning Smart Meters
SMs are often the target of bad data injection attacks,
primarily due to monetary incentives [45] [46]. However,
it is critical for ECs to prevent such attacks, not only to
avoid financial losses, but also to ensure proper distribution
of electricity. Previous efforts in this direction suggested
the use of embedded sensors for ‘Trusted Metering’ [47],
having a centralized or dedicated detection system, or a
hybrid system of embedded sensors and centralized detec-
tion [46]. In Seer Grid, as the CH collects predicted energy
consumption data of individual smart meters in advance,
existing anomaly detection mechanisms can be effectively
applied on the predicted energy consumption data reported
by individual smart meters.

In real deployment, SMs and/or communication links
can also experience failures, due to which they may be
unable to report the predicted energy consumption infor-
mation. Similar challenge is also faced by existing SMs
(and many proposed aggregation schemes), and can be a
non-trivial issue to address. If a negligible number of SMs
(belonging to the same energy company) are unresponsive,
the effects most likely will be unnoticeable. However, if a
large number of SMs are unresponsive, the effects can be
significant. In Seer Grid, such cases of malfunctioning SMs
can perhaps be handled more efficiently than other aggre-
gation schemes, due to the readily available past prediction
data. For example, if the next day’s predicted energy con-
sumption data is not reported by a SM, the cluster head can
simply substitute it with the same week-day’s prediction of
that SM from last week. The intuition behind this exemplary
approach is that households generally have similar usage
pattern for each day of the week [48].

6.4 Deployment Barriers
Smart meter deployment presents EC with many logistical,
technical and commercial challenges. The primary incentive
for ECs to deploy SMs is efficiency and thus savings over
time. Conventional SMs, already deployed in many places,
perfectly serve this commercial benefit. However, these SMs
were not designed to provide privacy for consumers. As a
result, any new framework designed to enable consumer
privacy will require modification or re-deployment by the
EC, which will require additional investment from ECs.
Because this new investment does not add any additional

efficiency improvements, ECs might be reluctant in deploy-
ing any privacy preserving add-ons to existing SMs. This
is a major limitation faced by many novel privacy preserv-
ing frameworks proposed for smart grids [49]. Cavoukian
and Dix [49] pointed out that privacy by design is the
best approach. Therefore, deployment of Seer Grid can be
easier in new localities (without existing smart metering
infrastructure), than to implement in localities where smart
metering is already in place. Given that Seer Grid will
require additional hardware and software to function, below
are the few directions we think can aid deployment:

• Add-On Service: ECs can offer SMs with Seer Grid’s
prediction framework as an add-on service. That is,
privacy-aware consumers can opt in for the privacy
preserving framework, by paying an one time fee,
which would cover the cost of additional hardware
and software installation.

• Off-Loading Computation: Instead of adding a comput-
ing unit (for performing the prediction operations)
built inside the SMs, it may be beneficial to off-load
the operations to a household computer. For exam-
ple, the prediction operations can be undertaken by a
paired (using low energy communication protocols,
such as Bluetooth) smartphone or PC, once per day.
The prediction results can be communicated back to
the SM for reporting to EC. Also, future upgrades
may be easier for consumers, as smartphones and
PCs are more frequently upgraded [50].

Alternatively, privacy issues can result in poor SM adop-
tion in privacy-aware communities [51]. By addressing pri-
vacy issues in a way that does not hamper utility too much,
ECs can increase SM adoption. This can be an incentive for
ECs to participate in implementing frameworks like Seer
Grid.

CONCLUSION

We propose Seer Grid, an alternate SGN architecture aimed
to reduce the privacy-utility trade-off faced by SMs. As
a result of two-level energy load prediction in Seer Grid,
there exists high correlation between predicted and actual
energy consumption patterns at cluster level, which indi-
cates excellent utility preservation. However, the correlation
between predicted and actual energy consumption patterns
of individual SM is weak, which indicates good privacy
preservation for households. Evaluation results strongly
support our proposition of Seer Grid.

FUTURE WORK

The goal of this paper is to demonstrate the benefits of using
two-level prediction in SGN, using exemplary models. In
future, we plan to generalize and formulate the minimiza-
tion of privacy-utility trade-off in Seer Grid. Also, we plan
to quantitatively evaluate Seer Grid against non-intrusive
load monitoring attacks, using publicly available data sets,
such as thst REDD dataset [52] or the Residential Energy
Consumption Survey dataset [53].
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