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Abstract—Data collection is a common operation of Wireless Sensor Networks (WSNs), of which the performance can be measured

by its achievable network capacity. Most existing works studying the network capacity issue are based on the unpractical model called

deterministic network model. In this paper, a more reasonable model, probabilistic network model, is considered. For snapshot data

collection, we propose a novel Cell-based Path Scheduling (CPS) algorithm that achieves capacity of �ð1=5! lnn �WÞ in the sense of

the worst case and order-optimal capacity in the sense of expectation, where n is the number of sensor nodes, ! is a constant, and W

is the data transmitting rate. For continuous data collection, we propose a Zone-based Pipeline Scheduling (ZPS) algorithm. ZPS

significantly speeds up the continuous data collection process by forming a data transmission pipeline, and achieves a capacity gain of

N
ffiffiffi
n
p

=
ffiffiffiffiffiffiffiffiffiffi
logn
p

lnn or n= logn lnn times better than the optimal capacity of the snapshot data collection scenario in order in the sense of

the worst case, where N is the number of snapshots in a continuous data collection task. The simulation results also validate that the

proposed algorithms significantly improve network capacity compared with the existing works.

Index Terms—Probabilistic wireless sensor networks, data collection, probabilistic network model, lossy links

Ç

1 INTRODUCTION

WIRELESS Sensor Networks (WSNs) are mainly used for
gathering data from the physical world [1], [2], [3],

[4]. Generally, data gathering can be categorized as data
aggregation [5], [6], [7], [8], which obtains aggregated values,
for example, the maximum, minimum, or average values of
all the data, and data collection [10], [37], [43], [47], which
gathers all the data from the network without any data
aggregation. For data collection, the union of all the values
from all the nodes at a particular time instant is called a
snapshot [10]. The problem of collecting one snapshot is
called snapshot data collection (SDC). On the other hand, the
problem of collecting multiple continuous snapshots is
called Continuous Data Collection (CDC). To evaluate net-
work performance, network capacity, which can reflect the
achievable data transmission/collection rate, is usually
used [29], [21], [10], [28], [43], [11], [19], [13]. Particularly,
for unicast, multicast, and broadcast, we use unicast capacity,
multicast capacity, and broadcast capacity to denote the
network capacity, respectively. For data collection, we use
the data receiving rate at the sink, referred to as data

collection capacity, to measure its achievable network
capacity, i.e., data collection capacity reflects how fast data
have been collected at the sink.1

After the seminal work [36], many works emerged to
study the network capacity issue under the Protocol
Interference Model (PrIM) [10], [43]2 or the Physical Inter-
ference Model (PhIM) [30]3 for a variety of network
scenarios, for example, multicast capacity [11], unicast
capacity [32], broadcast capacity [35], and SDC capacity
[10], [37]. All of the above-mentioned works are based on
the deterministic network model, where any pair of nodes in
a network is either connected or disconnected. If two nodes
are connected, i.e., there is a deterministic link between
them, then a successful data transmission can be guaran-
teed as long as there is no collision. For the wireless
networks considered under the deterministic network
model, we call them deterministic wireless networks. How-
ever, in real applications, this deterministic network model
assumption is not practical due to the “transitional region
phenomenon” [55], [56] (beyond the always connected
region, there is a transitional region where wireless links
are opportunistically connected). With the transitional
region phenomenon, a large number of network links
(more than 90 percent [55]) become unreliable links,
named lossy links [55]. Even without collisions, data
transmission over a lossy link is successfully conducted
with a certain probability, rather than being completely
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1. Without confusion, we use data collection capacity and network
capacity interchangeably in the following of this paper.

2. Under the PrIM, only local wireless interference is considered, and a
data transmission can be successfully conducted only if the receiver is
within the transmission range of the transmitter and meanwhile out of the
interference range of any other ongoing transmitter.

3. Under the PhIM, the aggregated wireless interference from the entire
network is considered, and a data transmission can be successfully
conducted only if the SINR at the receiver associated with the transmitter
is no less than a predefined threshold value.
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guaranteed. Therefore, a more practical network model for
wireless networks is the probabilistic network model [55], in
which data communication over a link is successful with a
certain probability rather than always being successful or
failed. For convenience, the wireless networks considered
under the probabilistic network model are called probabil-
istic wireless networks.

Recently, many efforts have been spent on the data
collection issue. In [9], [10], [43], [44], [45], [46], some tree-
based data collection algorithms are proposed under the
deterministic network model. The authors of [9] designed a
family of path scheduling algorithms for SDC. Later on, the
authors in [10], [43], [44] improved the path scheduling
algorithms in [9] and implemented order-optimal data
collection methods with higher achievable capacity. Unlike
[9], [10], [43], [44], the authors in [45], [46] studied the
distributed data collection issue and designed an order-
optimal distributed data collection algorithm. In [14], [15],
[16], [17], [27], some data collection schemes are designed
based on the cell-partition idea. Furthermore, by exploiting
the geometrical properties of network distribution, the
achievable data collection capacity are also analyzed in [14],
[15], [16], [17], [27]. In [37], taking the advantage of the
compressive data gathering (CDG) technique, the authors in
[37] designed a tree-based data collection algorithm. By
analysis, they showed that the designed algorithm is order-
optimal under both the PrIM and the PhIM. Unfortunately,
for the data collection capacity issue, all the above-
mentioned existing works are based on the ideal determi-
nistic network model rather than the more realistic
probabilistic network model. Actually, lossy links may
degrade the achievable network capacity of data collection
because retransmissions may happen when transmit data,
and thus more interference and congestion may be induced,
followed by lower data transmission concurrency and
efficiency. On the other hand, how these lossy links and
retransmissions affect the snapshot and continuous data
collection capacities is still an open problem. This motivates
us to investigate the achievable network capacity of WSNs
under the probabilistic network model.

Specifically, in this paper, we study the achievable SDC
and CDC capacity for probabilistic WSNs. Inspired by
existing network partition methods [41], [42], we first
investigate how to partition a probabilistic WSN into cells
and zones to improve the concurrency of the data collection
process. Subsequently, we propose two data collection
schemes, the Cell-based Path Scheduling (CPS) algorithm and
the Zone-based Pipeline Scheduling (ZPS) algorithm for SDC
and CDC, respectively. This work is dedicated to the data
collection capacity issue for probabilistic WSNs and the
main contributions are as follows:

. For a probabilistic WSN deployed in a square area,
we first partition the network into small cells. Then,
we abstract each cell to a super node in the data
collection tree built for data collection. Based on the
data collection tree, we design a novel CPS algo-
rithm for SDC. Theoretical analysis shows that the
achievable network capacity of CPS is �ð 1

5! lnn �W Þ in
the sense of the worst case, and �ðpo2! �WÞ in the
sense of expectation, where po is the promising

transmission threshold probability defined in Section 2,
! is a constant defined in Section 3, and W is the data
transmitting rate over a wireless channel, i.e., the
channel bandwidth. Since the upper bound of the
SDC capacity is shown to be W [10], [43], CPS
successfully achieves the order-optimal network
capacity in the sense of expectation.

. For the CDC problem in a probabilistic WSN, an
intuitive idea is to employ a SDC method in a
pipeline manner. However, this idea can only
improve network capacity within a constant factor
even in a deterministic WSN [43]. Therefore, by
combining the CDG technique (a data gathering
technique by exploiting the compressive sampling
theory) [37] (see details in Section 5.2) and the
pipeline technique, we propose a novel ZPS algo-
rithm for CDC in probabilistic WSNs. Taking the
benefits brought by CDG and pipeline, ZPS im-
proves the achievable network capacity significantly.
For collecting N continuous snapshots, we theoreti-
cally prove that the asymptotic achievable network
capacity of ZPS is 1)

�
N

ffiffiffi
n
p

10!M
ffiffiffiffiffiffiffiffiffiffi
logn
p

lnn
�W

� �

if N ¼ Oð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n= logn

p
Þ or �ð n

20!2M logn lnn �WÞ if N ¼
�
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n= logn
p �

in the sense of the worst case; and 2)

�
poN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n= logn

p
4!M

�W
 !

if N ¼ Oð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n= logn

p
Þ or �ð pon

8!2M logn � WÞ if N ¼
�ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n= logn

p
Þ in the sense of expectation, where n

is the number of nodes in a WSN and M is a

parameter used in CDG and usually M � n in large-

scale WSNs. Considering that the upper bound

capacity is also W for CDC, this implies that the

achievable network capacity of ZPS is

N
ffiffiffi
n
pffiffiffiffiffiffiffiffiffiffi

logn
p

lnn

or n
logn lnn times better than the optimal capacity of

the snapshot data collection scenario in order in the
sense of the worst case, and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n= logn

p
or n= logn

times better than the optimal capacity of the snap-
shot data collection scenario in order in the sense of
expectation, which are significant improvements.

. The simulation results also indicate that the pro-
posed algorithms significantly improve the network
capacity compared with the existing works for
probabilistic and deterministic WSNs.

The rest of this paper is organized as follows: Sections 2
and 3 introduce the probabilistic network model and the
network partition strategy, respectively. The CPS algorithm
for SDC is proposed and analyzed in Section 4. Section 5
presents a novel ZPS scheme for CDC and its achievable
asymptotic network capacity is shown. We conclude this
paper in Section 6. Related works and the simulation results
validating the proposed algorithms are presented in a
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supplemental file, which can be found on the Computer

Society Digital Library at http://doi.ieeecomputersociety.

org/10.1109/TMC.2013.30.

2 NETWORK MODEL

In this section, we describe the network model and

assumptions. For the frequently used notations, we list

them in Table 1 for convenience of referencing.
In this paper, we consider a WSN consisting of n nodes,

denoted by s1; s2; . . . ; sn, respectively, and one sink (base

station) deployed in a square plane with area A ¼ cn (i.e.,

the node density of the network is 1=c), where c is a

constant. Furthermore, we assume the distribution of all the

nodes is independent and identically distributed (i.i.d.) and

without loss of generality, the sink is located at the top-right

corner of the square.4 At each time interval, every node

generates a data packet with size B bits, and transmits its

data to the sink via a multihop way over a common wireless

channel with bandwidth W bits/second, i.e., the data

transmitting rate of the common channel is W . We further

assume the time is slotted into time slots with each of length

to ¼ B=W seconds.
During the data collection process, all the nodes in

the network transmit data with an identical power P .

Therefore, when node si transmits a packet to node sj, the

signal-to-interference-and-noise-ratio (SINR) associated

with si at sj is defined as

�ðsi; sjÞ ¼
P � ksi � sjk��

N0 þ
P

sk2S;sk 6¼si P � sk � sj
�� ���� ; ð1Þ

where si � sj
�� �� is the euclidean distance between si and sj,

� is the path-loss exponent and usually � 2 ð2; 4Þ, N0 > 0 is

a constant representing the background noise, and S is the

set of all the transmitters that transmit data simultaneously

with si. Traditionally, in a deterministic network model, people

assumed that if the SINR value at a node is greater than or

equal to a threshold value, the packet can be received

successfully. However, in real-application environments,

due to the existence of plenty of lossy links, this determinis-

tic network model is too ideal. To be more practical and

realistic, instead of taking the deterministic network model,

we define a probabilistic network model, where each link is

associated with a success probability that indicates the

probability that a successful data transmission is conducted

over this link. Based on the empirical literatures [56], we

define the success probability associated with si and sj as

Prðsi; sjÞ ¼
�
1� �1 � e��2��ðsi;sjÞ

��3 ; ð2Þ

where �1, �2, and �3 > 1 are positive constants. Clearly, when

si transmits a data packet to sj, until a successful transmis-

sion (i.e., sj successfully received the whole data packet), the

number of transmissions satisfies the geometric distribution

with parameter Prðsi; sjÞ. Therefore, the expected transmis-

sion times from si to sj is 1=Prðsi; sjÞ, i.e., this transmission

will cost 1=Prðsi; sjÞ time slots on average.
Actually, we do not want the success probability to be

too low, which implies too many transmission times, too

much energy consumption and induced interference, as

well as low transmission concurrency. Therefore, we

introduce a promising transmission threshold probability po
here. For any promising transmission, we require its success

probability is no less than the promising transmission

threshold probability po, i.e., for any node pair si and sj, the

transmission between si and sj can be conducted only if

Prðsi; sjÞ � po. Now, for any qualified communication pair

to transmit one data packet, the expected transmission time

is no more than to=po. For convenience, in the sense of

expectation, we define a modified time slot tm ¼ to=po.
Furthermore, we have Lemma 1 as follows, which indicates

the upper bound of consumed time slots by any qualified

communication to successfully transmit a data packet.

Lemma 1. In an interference-free communication environment,

it is almost sure that the number of consumed time slots of

any qualified communication pair is upper bounded by

�h ¼ arg min1<z<1=ð1�poÞ2�
z
1 lnnþ �z2 ¼ OðlnnÞ,

5 where �z1 ¼
� 1

ln zð1�poÞ and �z2 ¼ � logzð1�poÞ
po

ð1�poÞðz�1Þ are some adjustable

constant values depending on z.

Proof. Please refer to the online supplemental material. tu
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4. Note that it is same with the situation when the sink is located at
somewhere of the network, and we divide the network into four parts by a
vertical line and a horizontal line, and consider each part individually.

5. Here, n is a notation that represents a large number. We exploit n to
represent the upper bound of consumed time slots is mainly for the
convenience of following derivations.

TABLE 1
Notations in This Paper



Similarly, in the sense of the worst case, we define another
modified time slot tw ¼ �h � to according to Lemma 1. In this
paper, we analyze the achievable snapshot and continuous
data collection capacities in the sense of expectation and the
worst case, respectively.

We further formally define the achievable data collection
capacity as the ratio between the amount of data successfully
collected by the sink and the time � used to collect these
data. For instance, in our probabilistic WSN model, to
collect N continuous snapshots, the achievable data collec-
tion capacity is defined as NnB=�, which is actually the
data receiving rate at the sink. Particularly, when N ¼ 1,
nB=� is the SDC capacity.

3 NETWORK PARTITION

In this section, we explain the network partition method,
which is essential for our following data collection
algorithm.

3.1 Cell-Based Network Partition

In the previous section, we assume the network is

distributed over a square with area size A ¼ cn. Now, we

partition the network into small square cells with edge

length l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c logn
p

by a group of horizontal and vertical

lines. The resulting network is shown in Fig. 1. For

convenience, we use m ¼
ffiffiffiffiffi
cn
p

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c logn
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=4 logn

p
to

denote the number of cells in each column/row and further

define m0 ¼ m� 1. For each cell shown in Fig. 1, we assign

each cell a pair of integer coordinates ði; jÞð1 � i; j � mÞ,
and a cell with coordinates ði; jÞ is denoted by �i;j. Clearly,

the sink is located at the cell �m;m. Based on the network

partition method, and considering that the sink is located at

the top-right corner cell, we decide the possible commu-

nication modes for each cell (actually, for the nodes in each

cell)6 are upward transmission, rightward transmission, and up-

rightward transmission. Take cell �i;j as an example, when �i;j

works on the upward (respectively, rightward, up-right-

ward) transmission mode, it transmits its data to cell �i;jþ1

(respectively, �iþ1;j, �iþ1;jþ1). For cell �i;jð1 � i; j � mÞ, let

the random variable �i;j denote the number of nodes within

it. Then, based on the above network partition, the following

three lemmas can be derived.

Lemma 2. The expected number of nodes E½�i;j�, i.e., the average
number of nodes, in �i;jð1 � i; j � mÞ is 4 logn.

Proof. Please refer to the online supplemental material. tu
Lemma 3. It is almost surely that no cell is empty, i.e., it is

almost surely that Pr (there exists at least one cell with no
nodes) ffi 0 for large n.

Proof. Please refer to the online supplemental material. tu
Lemma 4. It is almost surely that no cell contains more than

10 logn nodes.

Proof. Please refer to the online supplemental material. tu

From Lemma 2, we know that the expected number of
nodes within a cell is 4 logn. Lemma 3 implies that for large
WSN, i.e., large n, every cell will have some nodes within it.
Furthermore, from Lemma 4, the probability that a cell
contains more than 10 logn is zero when n!1. Hence, in
the following discussion, we assume a cell contains 4 logn
nodes in the sense of expectation and 10 logn nodes in the sense
of the worst case.

3.2 Zone-Based Network Partition

After partitioning the network into cells, we want to find

which cells can carry out transmissions concurrently.

Further, for these cells that can conduct transmissions

concurrently, we define them as a Compatible Transmission

Cell Set (CTCS), denoted by SS. Formally, we define SS ¼
f�i1;j1; �i2;j2; . . . ; �ig;jgj 1) 1 � ik; jk � m for 1 � k � g;

2) �ik;jkð1 � k � gÞ can conduct transmissions concurrently;

3) For �ik;jkð1 � k � gÞ, suppose �0ik;jk is its destination, i.e.,

�ik;jk transmits data to �0ik;jk, then when �ik;jkð1 � k � gÞ
conduct transmissions simultaneously, min1�k�g Prð�ik;jk;
�0ik;jkÞ ¼ min1�k�gfminfPrðsu; s0uÞjsu is a node in �ik;jk, and s0u
is a node/sink in �0ik;jkg � pog. Clearly, the CTCS is an

equivalence relation defined on the cells (i.e., CTCS is reflexive,

symmetric, and transitive). Hence, a CTCS can be viewed as

an equivalence class.

To partition the cells of a WSN into equivalence classes,

i.e., CTCSs, we assign each cell �i;jð1 � i; j � mÞ a vector

representation ~�i;j ¼ ðði� 1Þ � l; ðj� 1Þ � lÞ ¼ �i;j. We further

introduce two vectors ~X ¼ ðR; 0Þ and ~Y ¼ ð0; RÞ, where

R ¼ ! � l, ! 2 ZZ. Then, for any cell �i;jð1 � i; j � mÞ, we

define the equivalence class, i.e., the CTCS, containing �i;j
as the set SSi;j ¼ f ~�i;j þ a � ~X þ b � ~Y j a, b 2 ZZg, i.e., SSi;j ¼
f�iþa�!;jþb�! j a; b 2 ZZ; 1 � iþ a � !; jþ b � ! � mg (Here, we

suppose SSi;j is a CTCS. Later, we will show how to choose R

to make it actually a CTCS.). Taking the WSN shown in

Fig. 1 as an example, if we set ! ¼ 3, i.e., R ¼ 3l, then the

network can be partitioned into 9 equivalence classes, i.e.,

CTCSs, SSi;jð1 � i; j � 3Þ as shown in Fig. 2. In Fig. 2, the

CTCS containing �1;1 is SS1;1 ¼ f�1;1; �4;1; �7;1; �1;4; �4;4; �7;4;

�1;7; �4;7; �7;7g. Now, we start from the bottom-left corner of
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6. Without confusion, we use cell and the nodes within this cell
interchangeably.

Fig. 1. Network partition.



the WSN and partition the network into square zones,

named compatible zones, with edge length R ¼ ! � l as shown

in Fig. 2 (where ! ¼ 3). Similar to denote a cell, for each

compatible zone, we use oi;jð1 � i; j � dm=!eÞ to denote it,

and the bottom-left zone with the smallest i and j, i.e., o1;1.

Clearly, oi;j ¼ f�i0;j0 j ði� 1Þ � !þ 1 � i0 � i � !; ðj� 1Þ � ! þ
1 � j0 � j � !g, i.e., within a compatible zone, none of the

cells belong to the same equivalence class. Furthermore, all

the cells with the same relative position in different

compatible zones belong to the same equivalence, i.e., the

same CTCS.
Now, to make any ~X; ~Y -based cell set SSi;j actually a

CTCS, we need to decide the value of R. For large WSNs,

the value of R is determined by the following Theorem 1.

Theorem 1. LetR ¼ ! � l, ! ¼ �ðrþoð1Þl Þ, r ¼ 2
ffiffiffi
2
p

l,7 ~X ¼ ðR; 0Þ,
~Y ¼ ð0; RÞ, then the set SSi;j ¼ f ~�i;j þ a � ~X þ b � ~Y j a; b 2
ZZg ¼ f�iþa�!;jþb�! j a; b 2 ZZ; 1 � iþ a � !; jþ b � ! � mg i s

a CTCS.

Before proving Theorem 1, we prove Lemma 5 and

Lemma 6 first. In the following proof, assume all the cells in

a CTCS SSi;j conduct transmissions concurrently, and all

other cells keep quiet or receive data from some cells in SSi;j.

Lemma 5. For each SSi;j, 8�i;j 2 SSi;j, suppose �0i;j is the destination

cell of �i;j, then �ð�i;j; �0i;jÞ ¼ minf�ðsu; svÞ j 1 � u; v � n;
su 2 �i;j; sv 2 �0i;jg � P �r��

N0þP ���R�� , where r ¼ 2
ffiffiffi
2
p

l and � is a

positive constant.

Proof. Please refer to the online supplemental material. tu
Lemma 6. SSi;j is a CTCS when R � ðc9 � r�� þ c10Þ�1=�, where
c9 ¼ �2

��ln �1ð1��3
ffiffiffiffi
po
p Þ�1 and c10 ¼ � N0

P �� .

Proof. Please refer to the online supplemental material. tu
Now, we are ready to prove Theorem 1.

Proof of Theorem 1. From Lemma 6, we know that when
R � ðc9 � r�� þ c10Þ�1=�, SSi;j is a CTCS. Since large jSSi;jj
implies more concurrent data transmissions, we prefer
small R. Thus, let R ¼ ðc9 � r�� þ c10Þ�1=�. Define ! ¼
dR=le. For large n, i.e., large-scale WSNs, R 	 �ðr þ
oð1ÞÞ, which implies ! ¼ �ðrþoð1Þl Þ. Thus, the conclusion
of Theorem 1 holds. tu

From Theorem 1, we know that if we set R ¼ ! � l, then,
all the CTCSs can conduct data transmissions simulta-
neously in an interference-free manner. Based on the
conclusion of Theorem 1, the following corollary can be
obtained.

Corollary 1. By ~X and ~Y , the cells �i;jð1 � i; j � mÞ can be
partitioned into at most !2 CTCSs (equivalence classes).

Proof. Please refer to the online supplemental material. tu

4 SNAPSHOT DATA COLLECTION

In this section, we study the achievable network capacity of
SDC. First, we propose a novel CPS algorithm for SDC.
Subsequently, we analyze the achievable network capacity
of CPS. Finally, we make some further discussion about the
extension from SDC to CDC.

4.1 Cell-Based Path Scheduling

Before giving the CPS algorithm, we construct a data

collection tree, which serves as the routing structure, for

the data collection process. For each cell �i;jð1 � i; j � mÞ,
we abstract it to a super node, denoted by sui;j.

8 Following

the discussion in Section 3.1, a cell contains 4 logn nodes in

the sense of expectation and 10 logn nodes in the sense of

the worst case. Thus, we abstract the data packets of nodes

within a cell as a super data packet, whose size is 4 logn �B
bits in the sense of expectation and 10 logn �B bits in the

sense of the worst case. Accordingly, to send out a super

data packet, we define a super time slot ts as 4 logn � tm ¼
4to logn=po in the sense of expectation and 10 logn � tw ¼
10�h logn � to in the sense of the worst case. Afterwards,

considering the communication modes defined in Sec-

tion 3.1, we construct a data collection tree, denoted by TT,

rooted at the sink to connect all the super nodes according

to the following rules: 1) For super nodes sui;jð1 � i; j � m0Þ
(note that m0 ¼ m� 1), sui;j transmits its data to suiþ1;jþ1,

i.e., create a link from sui;j to suiþ1;jþ1. 2) For super nodes

sum;jð1 � j � m0Þ, sum;j transmits its data to sum;jþ1, i.e., create a

link from sum;j to sum;jþ1. 3) For super nodes sui;mð1� i � m0Þ,
sui;m transmits its data to suiþ1;m, i.e., create a link from sui;m to

suiþ1;m. After applying the above rules to all the super nodes

except for sum;m, the data collection tree is built. Taking the

WSN shown in Fig. 1 as an example, the obtained data

collection tree is shown in Fig. 3. For a data transmission

route from a leaf super node to the root in TT, we call it a

path. The path starting from sui;1ð1 � i � mÞ is denoted by Pi
and the path from su1;jð2 � j � mÞ is denoted by P 0j , as

shown in Fig. 3.
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Fig. 2. Equivalence classes (CTCS) and zones.

7. r is a parameter in the derivation, which can be viewed as the
maximum transmission range of a node. 8. Without confusion, we use cell and super node exchangeably.



According to Corollary 1, all the cells of a WSN can be
partitioned into !2 CTCSs (equivalence classes). For each
CTCS SSi;jð1 � i; j � !Þ, we map it to an integer ði� 1Þ � !þ j.
In Fig. 3, the number next to each super node indicates the
CTCS it belongs to. For convenience, we also use SSði�1Þ�!þj to
represent the CTCS SSi;jð1 � i; j � !Þ.

Based on the abstracted data collection tree TT, we
propose a novel CPS algorithm, which has two phases. In
Phase I of CPS, we schedule the !2 CTCSs one by one, until
all the data packets of cells �i;jð1 � i; j � m0Þ have been
collected to the cells on path Pm, path P 0m, or the sink. In
Phase II of CPS, we schedule the cells of Pm and P 0m until all
the data packets have been collected to the sink. We use the
example shown in Fig. 3 to present the main idea of CPS as
follows: The formal description of CPS is shown in
Algorithm 1.9

Phase I: Inner-Tree Scheduling. Since the cells within a
CTCS can be scheduled to transmit data concurrently,
schedule CTCSs SS1; SS1; . . . ; SS!2 orderly, each for a super
time slot. Repeat Phase I until there is no packet remaining
at the super node sui;jð1 � i; j � m0Þ, i.e., all the data packets
at sui;jð1 � i; j � m0Þ have been collected to the sink or
sui;jði ¼ m or j ¼ mÞ. For the specific nodes within a cell,
schedule them sequentially according to any order at the

available super time slots for this cell.10 Taking the data
collection tree TT shown in Fig. 3 as an example, the cells in
TT can be partitioned into nine CTCSs. For the nine CTCSs
SS1; SS1; . . . ; SS9, we schedule them orderly each for one super
time slot. At the end of Phase I, all the data packets of
sui;jð1 � i; j � 7Þ have been collected to the sink, or the cells
on path P8 and P 08.

Phase II: Scheduling of Pm and P 0m. For the super nodes
sui;jði ¼ m or j ¼ mÞ which have data packets waiting for
collection, partition them into � CTCSs (Actually, � �
2!� 1 which is proven in Lemma 10.). Then, schedule these
� CTCSs sequentially each for one super time slot. Repeat
Phase II until all the packets have been collected to the sink.
Taking P8 and P 08 shown in Fig. 3 as an example, the cells on
P8 and P 08 can be partitioned into five CTCSs. Then, we
schedule these five CTCSs sequentially until all the data
packets been collected to the sink.

From the description of CPS, we know it can collect all
the data packets to the sink after Phase I and Phase II. In the
following section, we will analyze the achievable network
capacity of CPS.

4.2 Capacity Analysis of CPS

In this section, we investigate the achievable network
capacity of CPS. The upper bound of SDC is W even under
the deterministic network model [10], [43].11 Therefore, the
upper bound of SDC under the probabilistic network model
is W too. Consequently, we focus on the lower bound of
CPS in the following analysis.

For convenience, we introduce the concept of scheduling
round. A scheduling round for Phase I (respectively, Phase II)
of CPS is the time used to run Phase I (respectively, Phase II)
once. For the data collection tree TT shown in Fig. 3, a
scheduling round is 9ts (respectively, 5ts) in Phase I
(respectively, Phase II), since there are nine (respectively,
five) CTCSs need to schedule in each running of Phase I
(respectively, Phase II). Now, we can obtain the number of
super time slots used in Phase I of CPS as shown in Lemma 7.

Lemma 7. For SDC, it takes CPS !2m0 super time slots to finish
Phase I.

Proof. According to the scheduling in Phase I, every CTCS
is scheduled once in a scheduling round. This implies
every super node in the network is scheduled once in
every scheduling round. Therefore, for each super node
sui;jð1 � i; j � m0Þ, it can receive one super data packet at
most from its child and send out one super data packet at
most to its parent during every scheduling round. Thus,
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Fig. 3. Data collection tree.

9. Note that, although the two phases are not shown explicitly in
Algorithm 1, the data collection process can be viewed consisting of two
phases as discussed.

10. Suppose the parent node of super node sui;j is sui0 ;j0 , i.e., all the nodes in
cell �i;j will transmit their data to the nodes in cell �i0 ;j0 . Then, when a node
su in cell �i;j is scheduled to transmit data to some node in cell �i0 ;j0 , su will
transmit its data to the node sv in cell �i0 ;j0 , where sv satisfies the condition
that the success probability of the link from su to sv is the highest among the
links from su to all the nodes in cell �i0 ;j0 .

Now, assume the success probability of the link from su to sv is 0.5. Then,
when su transmits a data packet to sv, sv successfully receives this data
packet with probability 0.5. If this data transmission fails, su will retransmit
that data packet until the packet is successfully received by sv. Evidently,
the expected transmission times of that packet is 2 in this case.

In this paper, without specification, for any node su, it determines its
next hop and transmits data in terms of the aforementioned manner.

11. This is because the sink node can receive at most one data packet
during a time slot. Consequently, based on the definition of data collection
capacity (which is defined as the average data receiving rate of the sink
during a data collection process), W is a trivial upper bound of any data
collection algorithm in both deterministic WSNs and probabilistic WSNs.



for each path of Pið1 � i � m0Þ and P 0jð2 � j � m0Þ, its
length will decrease by one after each scheduling round
(if we assume the node without any data for transmis-
sion will be deleted from the path). It follows that the
data packets of sui;jð1 � i; j � m0Þ will be collected to the
sink or sui;jði ¼ m or j ¼ mÞ in m0 scheduling round, i.e.,
!2m0 super time slots, since the length of the longest path
of Pið1 � i � m0Þ and P 0jð2 � j � m0Þ is m0. tu

Now, we study the time slots used in Phase II of CPS.
First, we derive the number super data packets remaining at
each of the super nodes sui;jði ¼ m or j ¼ mÞ waiting for
transmission at the beginning of Phase II. Subsequently, we
obtain the upper bound of the number of super time slots
used in Phase II, and followed by the lower bound of the
achievable network capacity of CPS. In the following
analysis, we use 	i;jð1 � i; j � mÞ to denote the number of
super data packets transmitted/forwarded by sui;j through
the entire SDC process. Further, we use ’i;jð1 � i; j � mÞ to
denote the number of super data packets at sui;j waiting for
transmission at the beginning of Phase II. Clearly, ’i;j ¼
0ð1 � i; j � m0Þ after Phase I.

Lemma 8. For 1 � i � m0, 	m;i ¼ iðiþ1Þ
2 .

Proof. Based on the constructed data collection tree in the
previous section, for sum;ið2 � i � m0Þ, it has two children
sum�1;i�1 and sum;i�1. Hence, during the entire data collec-
tion process, the number of super data packets trans-
mitted/forwarded by sum;ið2 � i � m0Þ is the sum of the
number of super data packets transmitted/forwarded by
sum�1;i�1 and sum;i�1 plus 1 (1 means the super data packet of
sum;i itself), i.e., 	m;i ¼ 	m�1;i�1 þ 	m;i�1 þ 1. Considering
	m�1;i�1, it has only one child 	m�2;i�2. Thus, 	m�1;i�1 ¼
	m�2;i�2 þ 1. In a sum, we have

	m;1 ¼ 1; 	m�iþ1;1 ¼ 1
	m�1;i�1 ¼ 	m�2;i�2 þ 1
	m;i ¼ 	m�1;i�1 þ 	m;i�1 þ 1:

8<
: ð3Þ

Then, it is straightforward for us to obtain the generating

functions of 	m�1;i�1, which is 	m�1;i�1 ¼ i� 1, and

	m;ið1 � i � m0Þ, which is 	m;i ¼ iðiþ1Þ
2 . tu

From the proof of Lemma 8 and by symmetry, we have
the following corollary.

Corollary 2. For 1 � i � m0, 	i;m ¼ iðiþ1Þ
2 .

Based on Lemma 8, we obtain the number of super data
packets at sum;i waiting for transmission at the beginning of
Phase II as shown in Lemma 9.

Lemma 9. Let 
 ¼ d
ffiffiffiffiffiffiffiffiffiffi
1þ8m0
p

�1
2 e, then

’m;i ¼
0; 1 � i < 


	m;i �m0 ¼
iðiþ 1Þ

2
�m0 � i; i ¼ 


i; 
 < i � m0:

8><
>: ð4Þ

Proof. We prove this lemma by cases.

Case 1. 1 � i < 
. From Lemma 8, sum;i transmits/

forwards 	m;i ¼ iðiþ1Þ
2 super data packets to its parent

through the entire SDC process. In Phase I, we schedule

every CTCS for m0 times by the proof of Lemma 7, which

implies sum;i has been scheduled for m0 times. It follows
that sum;i can transmit/forward m0 super data packets to

its parent during its available super time slots in Phase I.

Considering that 1 � i < 
, we have 	m;i ¼ iðiþ1Þ
2 � 1

2 ð
2 þ

Þ ¼ 1

2 � 2m0 ¼ m0. Thus, we conclude that sum;ið1 � i < 
Þ
has already finished its data transmission task in Phase I,

i.e., ’m;ið1 � i < 
Þ ¼ 0 at the beginning of Phase II.

Case 2. i ¼ 
. According to the proof of the previous

case and the scheduling of Phase I, for super node sum;
,
its two children sum;i�1 and sum�1;i�1 have no data packet

waiting for transmission at the beginning of Phase II.

Furthermore, as explained in the previous case, sum;
 has

been scheduled for m0 times in Phase I, which implies

that sum;i transmitted m0 super data packets to its parent.

It follows that the number of data packets waiting at sum;

for transmission is ’m;i ¼ 	m;i �m0 ¼ iðiþ1Þ

2 �m0 � i at

the beginning of Phase II.
Case 3. 
 < i � m0. For the child sum�1;i�1 of sum;i, it

transmitted i� 1 super data packets to sum;i in Phase I

by the proof of Lemma 8. For another child sum;i�1 of sum;i,

it transmitted m0 super data packets to sum;i in Phase I by

the proof of Lemma 7. Furthermore, sum;i also transmitted

m0 super data packets to its parent sum;iþ1 by the proof of

Lemma 7. This implies the number of super data packets

waiting at sum;ið
 < i � m0Þ for transmission at the
beginning of Phase II is ’m;i ¼ ði� 1Þ þ 1 ¼ i. tu
According to Corollary 2 and Lemma 9, it is straightfor-

ward to obtain the following corollary.

Corollary 3.

’i;m ¼
0; 1 � i < 


	m;i �m0 ¼
iðiþ 1Þ

2
�m0 � i; i ¼ 


i; 
 < i � m0:

8><
>: ð5Þ

Lemma 10. For super nodes sum;ið
 � i � m0Þ and suj;mð
 �
j � m0Þ, they can be partitioned into at most 2!� 1 CTCSs,

i.e., � � 2!� 1, where � is the one in Phase II of CPS.

Proof. According to the vector-based CTCS partition method

in Section 3.2, the super nodes sum;ið
 � i � mÞ can be

partitioned into at most ! CTCSs. Similarly, suj;mð
 � j �
mÞ can be partitioned into at most ! CTCSs too.

Furthermore, sum;m lies in the same CTCS no matter how

to partition these cells, which implies sum;ið
 � i � m0Þ
and suj;mð
 � j � m0Þ can be partitioned into at most

2!� 1 CTCSs. tu
Lemma 11. In Phase II of the CPS algorithm, it costs at most

1
2 ð2!� 1Þðm0 þ 
Þðm0 � 
þ 1Þ super time slots to transmit

all the data packets to the sink.

Proof. During each schedule round of Phase II, every super

node of sum;ið
 � i � m0Þ and suj;mð
 � j � m0Þ is sched-

uled once to transmit a super data packet to its parent.

Hence, the sink will receive two super data packets

during every scheduling round. From Lemma 9 and

Corollary 3, we know that the total number of super data

packets waiting at sum;ið
 � i � m0Þ and suj;mð
 � j � m0Þ
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for transmission at the beginning of Phase II is at most

2
Pm0

i¼
 ¼ ðm0 þ 
Þðm0 � 
þ 1Þ. It turns out that the sink

can collect all the super data packets at sum;i and suj;m
within 1

2 ð2!� 1Þðm0 þ 
Þðm0 � 
þ 1Þ. tu
Now, we are ready to derive the achievable network

capacity of CPS in the sense of the worst case and in the
sense of expectation as shown in Theorem 2.

Theorem 2. For the achievable data collection capacity of CPS for
SDC, it is �ð 1

5! lnn �WÞ in sense of the worst case, which is a
degradation of OðlnnÞ of the optimum capacity, and �ðpo2! �WÞ
in the sense of expectation, which is order-optimal.

Proof. From Lemma 7 and Lemma 11, the total number of
super time slots used by CPS is at most

!2m0 þ 1

2
ð2!� 1Þðm0 þ 
Þðm0 � 
þ 1Þ ð6Þ

� !2mþ 1

2
� 2!ðmþ 
Þðm� 
Þ ð7Þ

� !2mþ !m2 ð8Þ

¼ !2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n

2 logn

r
þ !n

2 logn
ð9Þ

� O !n

2 logn

� �
: ð10Þ

The total amount of data received by the sink is n � b.
Thus, in the sense of the worst case, the achievable
network capacity of CPS is

n �B
O
�

!n
2 logn

	
� ts
¼ n �B
O
�

!n
2 logn

	
� 10 logn � tw

ð11Þ

¼ n �B
O
�

!n
2 logn

	
� 10 logn � �hto

ð12Þ

¼ �
� 1

5!�h
�W
	

ð13Þ

¼ �
� 1

5! lnn
�W
	
: ð14Þ

Similarly, in the sense of expectation, the achievable
network capacity of CPS is

n � B
O
�

!n
2 logn

	
� ts
¼ n �B
O
�

!n
2 logn

	
� 4 logn � topo

ð15Þ

¼ �
� po

2!
�W
	
: ð16Þ

Since the upper bound of SDC is W under determinis-
tic/probabilistic network model, and po; ! are con-
stants, the achievable network capacity of CPS in the
sense of expectation is order-optimal. However, the
data collection capacity of CPS has a degradation of
OðlnnÞ in the sense of the worst case. tu

When addressing the CDC problem, an intuitive idea is
to combine the existing SDC methods with the pipeline
technique. Nevertheless, such an idea cannot induce a
significant improvement on the network capacity. Taking
the CPS as an example, it has already achieved the order-
optimal data collection capacity. By pipelining the CPS
algorithm, data transmissions at the nodes far from the sink
can definitely be accelerated. However, the fact that the sink
can receive at most one packet during each time slot makes
the data accumulated at the nodes near the sink. As a result,
the network capacity still cannot be improved even with
pipeline [43].

5 CONTINUOUS DATA COLLECTION

Intuitively, CDC has much more traffic load than SDC.
Therefore, it is easier for the data to accumulate at the nodes
near the sink, which makes the data transmission schedule
very complicated and inefficient. Consequently, new
elegant techniques are required to address this situation.
On the other hand, the combination of a SDC method and
the pipeline technique cannot improve network capacity
effectively. Therefore, we propose a novel ZPS algorithm
based on the technology used in CDG [37] in this section.
Theoretical analysis shows that ZPS can improve data
collection capacity significantly.

5.1 Pipelining

In computing, a pipeline is a set of data processing elements
connected in series, so that the output of one element is the
input of the next one and the elements of a pipeline are often
executed in parallel. For instance, Fig. 4 shows a pipeline
system consisting of four functional elementS1,S2,S3, andS4

to address four tasks T1, T2, T3, and T4. To finish four tasks by
this pipeline, we can input these tasks sequentially for
processing. As shown in Fig. 4, we first input task T1 (at
time 0) to the functional element S1 for processing. After T1 is
processed by S1 (at time t1), S1 outputs the result to S2 for
processing, and meanwhile,T2 will be input toS1 (also at time
t1) for processing. Then, at some time slot, it can be achieved
that multiple tasks are processed simultaneously at different
elements of the pipeline system. For instance, all the four
tasks are processed by the pipeline system during time slot
ðt3; t4Þ in Fig. 4. Evidently, by exploiting the pipeline
technique, the efficiency of the entire functional system can
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Fig. 4. A pipeline system.



be improved, and thus, the time consumption to process
multiple tasks can be decreased. Consequently, to improve
the efficiency and reduce the induced delay of the data
collection process of CDC, we will partition the network into
different functional elements to form an efficient data
collection pipeline.

5.2 Compressive Data Gathering

CDG is first proposed in [37] for distributing the SDC load
uniformly to all the nodes in the entire network. Suppose P
is a data collection path consisting of d nodes s1; s2; . . . ; sd,
where s1 is the leaf node, sd is the sink (destination), and the
data (packet) produced at sið1 � i � d� 1Þ is Di. We use the
data collection process on P to show the basic idea of CDG.
In the traditional data collection way, for node sið1 � i �
d� 1Þ on P , it transmits i data packets to its parent (1 is for
itself and i� 1 is for the packets it received), which is
unbalanced, i.e., the nodes near the sink transmit more data
than the ones far from the sink. By contrast, to collect
Dið1 � i � d� 1Þ to the sink, every node transmits M
packets to its parent in the CDG way, i.e., s1 multiplies its
data with M random coefficients  i1ð1 � i �MÞ, respec-
tively, and sends the M new data (packets)  i1D1ð1 � i �
MÞ to its parent s2; after s2 receives these M data (packets)
from s1, s2 first multiplies its data with M random
coefficients  i2ð1 � i �MÞ, respectively, adds  i2D2 with
 i1D1, respectively, and subsequently sends M new results
 i1D1 þ  i2D2ð1 � i �MÞ to its parent s3; for the subse-
quent nodes sið3 � i � d� 1Þ, it does the similar multi-
plication-addition operations as s2, and sends the M new
results

Pi
j¼1  1jDj;

Pi
j¼1  2jDj; . . . ;

Pi
j¼1  MjDj to its parent

siþ1. Finally, after sd receives all the M packets
Pd�1

j¼1  1jDj;Pd�1
j¼1  2jDj; . . . ;

Pd�1
j¼1  MjDj for sd�1, it can restore the

original Dið1 � i � d� 1Þ based on the compressive sam-
pling theory [37]. For the used parameter M in CDG,
usually M � n for large-scale WSNs.

5.3 Zone-Based Pipeline Scheduling

Considering the benefit brought by CDG, we combine it
with the pipeline technique to design an efficient CDC
algorithm, named the ZPS algorithm. Before giving the
detailed design of ZPS, we further partition the data
collection tree TT constructed in Section 4.1 into levels and
segments, which are sets of cells (super nodes) and
compatible zones, respectively. As shown in Section 3.2, a
WSN can be partitioned into ðdm=!eÞ2 compatible zones.
For these zones, we define the set foj;i; oi;j j i � j �
dm=!egð1 � i � dm=!eÞ as a segment, denoted by Sið1 �
i � dm=!eÞ. Within segment Sið1 � i � dm=!eÞ, we define
the set fsuy;x; sux;y j x ¼ ði� 1Þ � !þ j; x � y � mgð1 � j � !Þ
as a level, denoted by Lijð1 � j � !Þ. Taking the TT shown in
Fig. 3 as an example, it can be partitioned into three
segments as shown in Fig. 5, where S1 ¼ fo1;1; o2;1; o3;1; o1;2;
o1;3g, S2 ¼ fo2;2; o3;2; o2;3g, and S3 ¼ fo3;3g. Within a seg-
ment, the super nodes can be partitioned into ! levels, for
example, in Fig. 5, within S2, the super nodes can be
partitioned into levels L2

1 ¼ fsu4;4; su5;4; su6;4; su7;4; su8;4; su4;5; su4;6;
su4;7; s

u
4;8g, L2

2 ¼ fsu5;5; su6;5; su7;5; su8;5; su5;6; su5;7; su5;8g, and L2
3 ¼

fsu6;6; su7;6; su8;6; su6;7; su6;8g.
Based on the definitions of segment, level and CTCS, we

observe that 1) for levels Lijð1 � i � dm=!eÞ, all their super

nodes (cells), i.e.,
S m=!d e
i¼1 Lij, come from CTCSs SSj;k

S
SSj;kðj � k � !Þ, i.e., the super nodes in

S m=!d e
i¼1 Lij can be

partitioned into at most 2!� 1 CTCSs; and 2) on the other
hand, for every super node (cell) in SSj;k

S
SSj;kðj � k � !Þ, it

is located at level Lij for some 1 � i � dm=!e. According to
the observations, we design a ZPS algorithm for CDC,
which consists of intersegment pipeline scheduling and
intrasegment scheduling as follows.

Intersegment Pipeline Scheduling. Since the super nodes in
levels Lijð1 � i � dm=!eÞ can be partitioned into 2!� 1
CTCSs, we can take each level as an unit and schedule the
jthð1 � j � !Þ level of all the segments Sið1 � i � dm=!eÞ
simultaneously. In other words, we can schedule all the
segments concurrently as long as we schedule the same
j-thð1 � j � !Þ level within each segment. Therefore, when
we collect N continuous snapshots, we can pipeline the
data transmission on the segments, i.e., for each segment
Sið1 � i � dm=!eÞ, Si starts to transmit the data packets of
the ðkþ 1Þth ðk > 0Þ snapshot immediately after it trans-
mits all the data of the kth snapshot to segment Siþ1.
Suppose tðSiÞð1 � i � dm=!eÞ is the number of super time
slots used by segment Si to transmit all the data packets of
a snapshot to the subsequent segment (or the sink) and let
tp ¼ maxftðSiÞ j 1 � i � dm=!eg. Then, a segment data
transmission pipeline on all the segments is formed with
each segment works with tp super time slots for every
snapshot (Now, a snapshot is equivalent to an individual
task in a traditional pipeline operation). By this data
transmission pipeline, the sink can receive the data of a
snapshot in every tp super time slots after it receives the
data of the first snapshot.

Intrasegment Scheduling. The intersegment pipeline sche-
duling provides a scheme to form a data transmission
pipeline over all the segments. Clearly, the efficiency of the
formed pipeline highly depends on tp, which is determined
by the intrasegment scheduling. Within segment Sið1 � i �
dm=!eÞ to transmit the kth snapshot, we schedule the super
nodes level by level, i.e., schedule Li1; L

i
2; . . . ; Li! sequentially

to transmit the kth snapshot. Finally, the data packets of
the kth snapshot are transmitted to the next segment by the
super nodes in level Li!. When schedule Lijð1 � j � !Þ for the
kth snapshot, we first partition the super nodes in Lij into at
most 2!� 1 CTCSs according to the observations. Subse-
quently, we schedule these 2!� 1 CTCSs sequentially.
When schedule a particular CTCS, we let all the super
nodes within this CTCS transmit their data in the CDG way,
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i.e., for every super node in this CTCS, it first does the similar
multiplication-addition operations as in CDG, and then
transmits the M new obtained results to its parent in the
subsequent level. Thus, to schedule a CTCS in the CDG way
takesM super time slots instead of one. However, this way is
more suitable for the pipeline operation by avoiding the data
accumulation at nodes near the sink.

In summary, for CDC, ZPS pipeline the data transmission
of dm=!e continuous snapshots over dm=!e segments with
each segment transmits a snapshot, respectively, and
concurrently. For a particular snapshot transmission within
a segment, it is transmitted level by level by the CDG way.
Finally, the sink can receive the data of a snapshot in every tp
super time slots after it receives the data of the first snapshot.

5.4 Capacity Analysis of ZPS

In this section, we analyze the achievable data collection
capacity of ZPS to collect N continuous snapshots. First, we
investigate the consumed time slots to collect the first
snapshot, which is the foundation of the formed data
collection pipeline. Subsequently, we derive the achievable
CDC capacity of ZPS in different cases.

Lemma 12. 1) For the tp in the intersegment pipeline scheduling
of ZPS, tp � !ð2!� 1ÞM; 2) The number of super time slots
used to collect the first snapshot is at most dm!e!ð2!� 1ÞM.

Proof. 1. According to the intrasegment scheduling, the
super nodes in each level of a segment can be partitioned
into at most 2!� 1 CTCSs. Moreover, for the super
nodes within each CTCS, they transmit their data in the
CDG way, i.e., each CTCS can be scheduled within M

super time slots. Further, each segment contains at most
! levels, which implies for a single snapshot, a segment
can be scheduled within !ð2!� 1ÞM super time slots,
i.e., tp � !ð2!� 1ÞM.

2. Based on step 1, the number of super time slots used
to collect the first snapshot is at most dm!e!ð2!� 1ÞM, since
a WSN can be partitioned into at most dm!e segments. tu

Based on Lemma 12, we can derive the achievable CDC
capacity of ZPS in different cases as shown in Theorem 3.

Theorem 3. To collect N continuous snapshots, the achievable
network capacity of ZPS is

�
N

ffiffiffi
n
p

6
ffiffiffi
2
p

!M
ffiffiffiffiffiffiffiffiffiffi
logn
p

lnn
�W

� �
; if N ¼ Oð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n= logn

p
Þ;

�
n

12!2M logn lnn
�W

� �
; if N ¼ �ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n= logn

p
Þ;

8>><
>>:
in the sense of the worst case, and

�
poN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n= logn

p
2
ffiffiffi
2
p

!M
�W

 !
; if N ¼ Oð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n= logn

p
Þ;

�
pon

4!2M logn
�W

� �
; if N ¼ �ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n= logn

p
Þ;

8>>><
>>>:

in the sense of expectation.

Proof. To collect N continuous snapshots, the data
transmission process can be pipelined according to
ZPS, which implies the sink can receive the data of a

snapshot every tp super time slots after it receives the
first snapshot. Therefore, by Lemma 12, the number of
super time slots used to collect N continuous snapshots
is at most dm!e!ð2!� 1ÞM þ ðN � 1Þ!ð2!� 1ÞM � ðm! þ
1Þ � 2!2M þ 2!2ðN � 1ÞM ¼ Oð2!mM þ 2!2NMÞ. tu

Thus, in the sense of the worst case, the achievable
network capacity of ZPS is at least

NnB

Oð2!mM þ 2!2NMÞ � 10 logn � tw
ð17Þ

¼ NnW

Oð20!mM�h lognþ 20!2�hNM lognÞ ð18Þ

¼ NnW

Oð10!M�h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n logn
p

þ 20!2�hNM lognÞ
ð19Þ

¼
�

N
ffiffiffi
n
p

10!M
ffiffiffiffiffiffiffiffiffiffi
logn
p

lnn
�W

� �
; if N ¼ Oð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n= logn

p
Þ;

�
n

20!2M logn lnn
�W

� �
; if N ¼ �ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n= logn

p
Þ:

8>><
>>: ð20Þ

Similarly, in the sense of expectation, the achievable
network capacity of ZPS is at least

NnB

Oð2!mM þ 2!2NMÞ � 4 logn � tm
ð21Þ

¼ poNnW

Oð8!mM lognþ 8!2NM lognÞ ð22Þ

¼ poNnW

Oð4!M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n logn
p

þ 8!2NM lognÞ
ð23Þ

¼
�

poN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n= logn

p
4!M

�W
 !

; if N ¼ O
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n= logn
p �

;

�
pon

8!2M logn
�W

� �
; if N ¼ �

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n= logn

p �
:

8>>><
>>>:

ð24Þ

From Theorem 3, we know that 1) the achievable

network capacity of ZPS is N
ffiffi
n
pffiffiffiffiffi

logn
p

lnn
or n

logn lnn times better

than the optimal capacity of the snapshot data collection

scenario in order in the sense of the worst case, and
ffiffiffiffiffi
n

logn

p
or

n
logn times better than the optimal capacity of the snapshot

data collection scenario in order in the sense of expectation,

which are very significant improvements. By examining

ZPS carefully, we find that two main reasons are

responsible for this improvement. The primary reason is

the use of the CDG technique, which distributes the traffic

load evenly over the entire WSN, and then the data

accumulation at the nodes near the sink is avoided.

Another reason is the pipeline scheduling. According to

ZPS, the time overlap of the data collection of multiple

continuous snapshots in the transmission pipeline con-

serves a lot of time, which accelerates the network capacity

directly and significantly; 2) ZPS will be more effective for

large-scale WSNs, since large scale WSNs incur large data

collection trees, which are more suitable for pipeline; and

JI ET AL.: SNAPSHOT AND CONTINUOUS DATA COLLECTION IN PROBABILISTIC WIRELESS SENSOR NETWORKS 635



3) ZPS is also more effective for long-term CDC. The longer

the CDC process is, the closer for ZPS to its theoretical

achievable network capacity.

6 CONCLUSION

For most existing works studying the network capacity

issue, their designs and analysis are based on the

deterministic network model. However, in real applica-

tions, this deterministic network model assumption is not

practical due to the “transitional region phenomenon.”

Actually, a more practical network model for WSNs is the

probabilistic network model, where a transmission over a

link is conducted successfully with a probability instead of

being determined. Unfortunately, few of the existing works

study the data collection capacity issue for WSNs under the

probabilistic network model, i.e., for probabilistic WSNs,

until now. To fill in this gap, we investigate the achievable

snapshot and CDC capacities for probabilistic WSNs in this

paper. For SDC, we propose a novel CPS algorithm, which

schedules multiple super nodes on multiple paths concur-

rently. Theoretical analysis of CPS shows that its achievable

network capacity is order-optimal in the sense of expecta-

tion and has OðlnnÞ of degradation in the sense of the worst

case. For CDC, we propose a ZPS algorithm. ZPS

significantly speeds up the CDC process by forming a data

transmission pipeline, and achieves a surprising network

capacity. The simulation results also validate that the

proposed algorithms significantly improve network capa-

city compared with the existing works.
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