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Constrained Markov Bayesian Polynomial for
Efficient Dialogue State Tracking
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Abstract—Dialogue state tracking (DST) is a process to esti-
mate the distribution of the dialogue states at each dialogue turn
given the interaction history. Although data-driven statistical
approaches are of most interest, there have been attempts of using
rule-based methods for DST, due to their simplicity, efficiency
and portability. However, the performance of these methods are
usually not competitive to data-driven tracking approaches and
it is not possible to improve the DST performance when training
data are available. In this paper, a novel hybrid framework,
constrained Markov Bayesian polynomial (CMBP), is proposed to
formulate rule-based DST in a general way and allow data-driven
rule generation. Here, a DST rule is defined as a polynomial
function of a set of probabilities satisfying certain linear con-
straints. Prior knowledge is encoded in these constraints. Under
reasonable assumptions, CMBP optimization can be converted to
a constrained integer linear programming problem. The integer
coefficient CMBP model is further extended to CMBP with real
coefficients by applying grid search. CMBP was evaluated on
the data corpora of the first, the second, and the third Dialog
State Tracking Challenge (DSTC-1/2/3). Experiments showed that
CMBP has good generalization ability and can significantly out-
perform both traditional rule-based approaches and data-driven
statistical approaches with similar feature set. Compared with
the state-of-the-art statistical DST approaches with much richer
features, CMBP is also competitive.

Index Terms—Data-driven rule, dialogue state tracking (DST),
rule-based model, statistical dialogue management.

I. INTRODUCTION

A TASK-ORIENTED spoken dialogue system (SDS) usu-
ally consists of three modules: input, output and control,

as shown in Fig. 1. The input module mainly consists of au-
tomatic speech recognition (ASR) and spoken language under-
standing (SLU), with which semantic-level user dialogue acts
are extracted from acoustic speech signals. With the input user
dialogue acts, the control module, also called dialogue manage-
ment accomplishes two functions. One is to maintain its internal

Manuscript received February 12, 2015; revised July 17, 2015; accepted Au-
gust 12, 2015. Date of publication August 20, 2015; date of current version
September 04, 2015. This work was supported by the Program for Professor
of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher
Learning and the China NSFC project No. 61222208. The associate editor co-
ordinating the review of this manuscript and approving it for publication was
Prof. Tatsuya Kawahara.
K. Yu, L. Chen, and S. Zhu are with the Computer Science and Engineering

Department, Shanghai Jiao Tong University, Shanghai 200240, China (e-mail:
kai.yu@sjtu.edu.cn; chenluhust@gmail.com; zhusu.china@gmail.com).
K. Sun is with the Department of Computer Science, Cornell University,

Ithaca, NY 14853 USA (e-mail: ks985@cornell.edu).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TASLP.2015.2470597

Fig. 1. Diagram of a spoken dialogue system (SDS).

state, an encoding of themachine’s understanding about the con-
versation. As information is received from the input module, the
state is updated, which is called dialogue state tracking (DST).
Another is to choose a machine action, also at semantic-level, to
direct the dialogue given the information of the dialogue state,
referred to as dialogue decision making. The output consists of
natural language generation (NLG) and text-to-speech (TTS)
synthesis, with which machine dialogue acts are converted to
audio.
Dialogue management is the core of a dialogue system. Tra-

ditionally, most commercial spoken dialogue systems assume
observable dialogue states and employ hand-crafted rules for
dialogue management, such as dialogue flow-chart. Since the
current dialogue state can be observed, dialogue state tracking
is trivial and there is no need to estimate the state distribu-
tion. Dialogue decision is simply a set of mapping rules from
state to machine action. This is referred to as rule-based dia-
logue management. However, unpredictable user behavior, in-
evitable automatic speech recognition and spoken language un-
derstanding errors make it difficult to maintain the true dia-
logue state and make decision [1]. Hence, in recent years, there
is a research trend towards statistical dialogue management. A
well-founded theory for this is the partially observable Markov
decision process (POMDP) framework [1], [2], [3], [4]. In most
studies of POMDP, both dialogue state tracking and decision
making are modelled using data-driven statistical approaches.
Recently, to advance the research of statistical dialoguemanage-
ment, researchers start to formulate dialogue state tracking as an
independent problem so that a bunch of machine learning algo-
rithms can be investigated. The dialog state tracking challenge
(DSTC) provides the first common testbed in a standard format,
along with a suite of evaluation metrics for this purpose [5].
Since the DST problem is raised out of the statistical dialogue

management framework, data-driven statistical approaches
have been the natural focus. Most early works of POMDP
concentrate on generative Bayesian models [4]. Fundamental
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weaknesses of generative model are revealed by the results
of [6]. In contrast, discriminative state tracking models have
been successfully used for spoken dialogue systems [7]. The
results of the DSTC [5] further demonstrate the power of dis-
criminative statistical models, such as Maximum Entropy [8],
Conditional Random Field [9], Deep Neural Network (DNN)
[10], and Recurrent Neural Network (RNN) [11]. However,
data-driven statistical approaches have also shown large vari-
ation in performance and poor generalization ability due to
the lack of data [6]. There also has been an attempt to employ
rule-based methods for DST due to its simplicity, efficiency,
portability and interpretability. For example, the baseline of
DSTC just employs a simple rule of selecting the SLU result
with the highest confidence score so far and discarding alterna-
tives [5], [12]. More complex rules can also compute scores for
multiple hypotheses [13], [14], [15]. These rule-based methods
have shown amazingly good performance and generalization
ability, even beating most data-driven statistical approaches
with complex model structure and features. Since these rule
based models directly incorporate prior knowledge or intuition
into DST, they are easy to understand and interpret. Neverthe-
less, existing rule-based methods are usually not competitive
to the best statistical approaches. Moreover, there is no general
way to design rule based models with prior knowledge and it is
not possible to improve their performance when training data
are available.
In this paper, a novel hybrid framework, referred to as con-

strained Markov Bayesian polynomial (CMBP), is proposed to
formulate rule-based DST in a general way and allow data-
driven rule generation. It bridges the gap between rule-based
and data-driven approaches. In the CMBP framework, a DST
rule is defined as an integer-coefficient polynomial function of
a set of probabilities, satisfying certain linear constraints. Prior
knowledge is encoded into the constraints. Under reasonable as-
sumptions, valid rule-based model candidates can be generated
using integer linear programming. The valid model candidates,
i.e. the generated polynomial functions, are then evaluated on
training data to select the optimal one. As it is easy to generate
multiple CMBPs and model combination is usually effective
[8], [10], [11], [12], [16], score averaging based combination
can also be easily implemented for CMBP. Furthermore, CMBP
is extended to real-coefficient polynomial in this paper, where
the real coefficients can be estimated by optimizing the DST
performance on training data using grid search. This extension
bridges rule-based methods and data-driven approaches.
The rest of the paper is organized as follows. Section II for-

mulates the DST problem. The Constrained Markov Bayesian
Polynomial framework and its optimization is discussed
in Section III, followed by experiments in Section IV.
Section V concludes the paper. Details of CMBP constraints
and search space complexity are included in the Appendix.

II. DIALOGUE STATE TRACKING
In statistical dialogue management, there are two key stages:

dialogue state tracking (DST) and decision making. DST esti-
mates the distribution over all possible dialogue states at a par-
ticular dialogue turn given the interaction history. The state dis-
tribution is usually referred to as belief state and can be regarded
as sufficient statistics summarizing the initial belief state ,

all previously taken machine actions and received observa-
tions , i.e.

(1)

where the “ observation” here is defined as the acoustic signal
input to the SDS for the convenience of derivation.

A. Dialogue State Definition and Approximation
The state in SDS is usually factorized into three distinct

components [4]: the user’s goal , the user’s action and the
dialogue history , i.e.

(2)

Here, and can both be represented in the form of dialogue
act [17]

(3)

where denotes a dialogue act, is the type of the act such as
inform, deny, etc., denotes a semantic slot and is the value
of the slot. Although it is possible to have multiple slot-value
pairs for one dialogue act, there is a preference to split it into
several dialogue acts with the canonical form (3) [6]. The dia-
logue history component is a discrete grounding state to de-
note the status of the slot-value pairs mentioned by the user and
the system in various contexts. For example, the dialogue his-
tory state can be user-inform, system-query, user-deny etc.
Although the dialogue state factorization can reduce com-

plexity, the real world SDS state space is still huge and
intractable. Therefore, belief state approximation is necessary
for real world SDS systems. The hidden information state
(HIS) framework uses an N-best approximation, whereby the
probabilities of all states are ranked and pruned to retain only
the N most likely state partitions [4]. The Bayesian Update of
Dialogue State (BUDS) framework further factorizes the state
distribution by introducing slot independence assumptions,
resulting in a Bayesian network representation for dialogue
states [2]. The exact form of dialogue state approximation
highly depends on tasks and naturally affects DST approaches.

B. Dialog State Tracking Challenge
In early works of statistical DM research, dialogue state

tracking and policy optimization are usually studied together.
Although various DST approaches have been proposed, they
cannot be directly compared due to task difference. To address
this issue, Dialog State Tracking Challenge (DSTC) is orga-
nized to provide shared tasks for comparing DST algorithms
[5]. Three DSTCs have been organized so far, all of which
employed slot-filling tasks and static dialogue corpora. In
these tasks, the dialogue state of interest is only the “user’s
goal” in equation (2), which is represented by a canonical
dialogue act with a fixed type “ ”. Hence, the target of
DST here is to find the slot-value pairs which the user intend
to pursue, from the dialogue interaction. Given the output of
a state tracker in the form of joint distribution of the goals, a
number of metrics have been developed for evaluation [5]. In
DSTC-2 and DSTC-3, additional dialogue states of method and
requested slot are also employed [18]. In this paper, for clarity,
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only user’s goal is considered and the extension to method and
requested slot is straightforward.
The “history state” in the DSTC tasks is usually simplified

as the grounding status of the received slot information. For a
specific slot, , where “0” denotes receiving neu-
tral or no information, “ ” denotes receiving negative infor-
mation (i.e. the user denies or the system negates a slot-value
pair) and “1” denotes receiving positive information (i.e. the
user informs or the system affirms a slot-value). With this “his-
tory state” definition, more flexible treatment of the observed
information can be achieved.
In the DSTC tasks, multiple ASR and SLU hypotheses with

normalized confidence scores are provided for each user turn.
Hence, the direct input to a dialogue state tracker can be re-
garded as the distribution of the user act . This input
information is widely used in most DST approaches and also
adopted in this paper. It is worth noting that the use of ASR hy-
potheses has been proved to be useful to improve the quality of

and the DST performance [10], [11].

C. Generative Model for DST
In early work of POMDP, the belief state tracking is achieved

by applying Bayesian rules as well as reasonable independence
assumptions of the state components [4]:

(4)

In the above equation, there are only two pieces of external
input information: which is usually approx-
imated by the estimated distribution (usually normalized
confidence score) of the semantic hypotheses and

of turn . The rest are all model param-
eters: is a constant independent of ,

is the user goal model, is
the user action model and is the
dialogue history model.
The dialogue history model is usually deterministic and

simply measures the consistency between the updated dialogue
state and the original dialogue state (e.g. if a goal is denied,
is set as ). Parameters of the other two models need to

be estimated using training data separately on static corpora
or optimized jointly together with dialogue policy using re-
inforcement learning. Hence the generative Bayesian belief
estimator is regarded as a data-driven statistical DST model. It
has also been applied to DSTC by concentrating only on the
goal component [19], but did not yield competitive result due
to inaccurate estimation of the parameters.

D. Discriminative Model for DST
Since the DST problem is inherently a classification task, var-

ious discriminative models have been proposed. They directly
aim at optimizing the classification accuracy and can employ
rich input features in addition to and ,
which lead to the state-of-the-art performance. According to
different statistical independence assumptions, there are four
categories.

In binary classifier, all slots are assumed to be independent
of each other, leading to an efficient goal state factorization:

(5)

where is the dialogue state for slot 1. With this assumption,
to get the joint goal, we just need to calculate the belief
for each slot and candidate value . This can be converted into
a binary classification problem of determining whether
is true or false. To reduce the number of required binary classi-
fiers, value can be encoded into input features, resulting in one
binary classifier per slot. Various models have been used within
this framework, such as MaxEnt [8], [10] and DNN [10], [20].
When binary classifiers are used, the relationship between

values is not modelled. To address this issue, a multi-classifier
is used to track the belief of all values simultaneously. Since it
is usually not possible to get sufficient data samples for every
candidate value, approximations must be used in multi-classi-
fier. Recurrent Neural Networks (RNN) [11], [21] has been used
within this framework.
Both of the abovemodels hold the slot independence assump-

tion (5). Structured classifiers are proposed to capture the rela-
tionship between slots at a particular turn. A typical example
is conditional random field (CRF) with manually designed fac-
tored graph [9]. When the relational constrains are very com-
plex, the design of the slot relationship structure is time-con-
suming and error-prone. In order to tackle this problem, deci-
sion forest model, which can automatically build conjunctions
of raw features, has been used [12].
Though structured classifiers utilize the relational constrains

between different slots, they only focus on information of a
single turn. It is considered useful to also capture the relation-
ship between multiple turns. Sequence labelling model is pro-
posed for this purpose.Within this framework, linear-chain CRF
has been investigated to model the temporal relationship be-
tween slots [22].
Discriminative models have defined the state-of-the-art per-

formance in the DSTCs. However, feature design is ad-hoc and
it is hard to incorporate prior knowledge of dialogue interaction.
Furthermore, the performance is highly dependent on the avail-
able training data. In DSTC-3, where the task is to adapt a state
tracker to a new domain using only 10 sample dialogues, many
discriminative models performed worse than rule based models.

E. Rule-based Model for DST
The above generative Bayesian and discriminative belief es-

timators are all data-driven statistical approaches. As an alter-
native to the data-driven framework, there have been attempts
to employ rule-based methods for dialogue state tracking. For
example, the baseline of DSTC just employs a simple rule of
selecting the SLU hypothesis with the highest confidence score
so far and discarding the rest [5], [12]. In DSTC-1, the simple
rule-based system outperformed many discriminative models
and was ranked the 5th in the joint goal tracking task on Test3.
More complex rules have also been proposed to enhance the
power of rule-based models. In rule-based models, slot indepen-
dence is usually assumed. In the below discussions, for clarity,

1In the rest of the paper, in case of no confusion, the index is omitted.
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will be used to denote the probability of a specific goal
slot taking value at the th turn, i.e.

In [14], is set as the overall probability of the goal being
positively stated from the first turn up to the current turn. To cal-
culate this, probability operation of random events is used. The
occurrence of positive (user informs or system affirms) or nega-
tive (user negates or system denies) “slot-value pair”, denoted as

and
respectively, are regarded as random events and assumed to be
independent across turns. Then, the goal belief can be updated
as below [14]

(6)

From the above formula, state tracking is very efficient as it is
only linear combination of the observations (the probabilities)
and the belief of the previous turn. This improved rule-based
model has outperformed most trackers in DSTC-1 (ranked the
5th/2nd/2nd/6th on Test1-4 respectively) and has been used as
a strong baseline for DSTC-2 and DSTC-3.
Other rule-based models have also been proposed. In [13],

the generative Bayesian DST model is employed but the pa-
rameters are set according to rules. In [23], system act is further
introduced as a condition to determine rules under the Bayesian
probability operation framework. These refined rule-based
models have achieved very good tracking performance. How-
ever, most of them are still not competitive to data-driven
statistical models. What’s more, once the rule is set, they are
not able to improve when more training data become available,
hence lack the ability of evolution.

III. CONSTRAINED MARKOV BAYESIAN POLYNOMIAL

Rule-based models [13], [14], and Bayesian generative
models [4] are all based on Bayes’ theorem. Since Bayes’
theorem is essentially summation and multiplication of proba-
bilities, they can be rewritten in a general polynomial form. The
polynomial still describes the relationship between the belief
state and relevant probabilities, hence it is an analogy of Bayes’
theorem. The difference is that the polynomial coefficients may
not be strictly derived from Bayes’ theorem. To simplify the
DST process,Markov assumption is also introduced. The belief
state is assumed to be only dependent on the observations of
the current turn and the belief state of the previous turn, rather
than the entire history of observations and belief states. Hence,
the general form is referred to as Markov Bayesian Polynomial
(MBP):

(7)

where is the belief state of at the th turn,
is the estimated confidence distribution of the user act

and is a multivariate polynomial function

(8)

where , is the number of input variables,
, is the order of the polynomial. The scalar coefficient

is the parameter of MBP. In general, they can be viewed as a
function of the interaction history.
It is noted that, the Bayesian generative model, equation (4),

is a special case of MBP. Here, the input information is the
semantic hypothesis distribution (the approximation of

) and a set of goal/history belief states .
The total dimension of the input is then , where

and are the numbers of all possible values of goal and
history respectively.
Let be the index for a goal-history pair, , equa-

tion (4) can be rewritten as

(9)

where the MBP parameters, , correspond to the
combination of various models described in Section II-C:

(10)

It can be seen that the rewritten form, equation (9), is a second
order MBP ( ) with input variables and
the polynomial coefficients are defined by the Bayesian genera-
tive model parameters. Since these parameters can be estimated
from data2, the generative Bayesian belief estimator is regarded
as a data-driven statistical DST model. It is worth noting that it
is usually hard to get sufficient annotated data to estimate the pa-
rameters, hence, heuristics are usually used to directly optimize
dialogue state tracking performance or the parameter update is
performed together with the dialogue policy update within rein-
forcement learning framework [4].
Assuming that all slots are independent and only goal

tracking is of interest, for a specific slot, rule-based models,
e.g. equation (6), can also be written in a similar form of MBP

(11)

In contrast to the generative Bayesian model, all coefficients in
(11) are manually set to be integers. Therefore, rule-basedmodel
can be viewed as an MBP with features of
and prior knowledge (i.e. rule) is incorporated by manually set-
ting the integral polynomial coefficients.

A. Generalized Rule-based Model: Constrained MBP
MBP is a hybrid framework of rule-based and data-driven

models. However, it does not provide a roadmap to bridge the
two types of models. The key issue is how to use data-driven
method to modify the coefficients of a rule-based model without
losing the ability to incorporate prior knowledge. Here, a novel
framework, constrained Markov Bayesian polynomial (CMBP)
is proposed to address issue. The basic idea is to construct a con-
strained optimization problem for DST model training, where

2Except that the dialogue history model is usually manually set.
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the model takes the form of MBP and the constraints encode all
necessary probabilistic conditions as well as prior knowledge
or intuition. In this paper, CMBP is derived as an extension of
the rule-based model (6), hence slot and value independence are
also assumed, though CMBP is not limited to the assumptions.
To enhance the power of rule-based model, more probabilistic
features are introduced into CMBP as below
• : sum of scores of SLU hypotheses informing or
affirming value at turn

• : sum of scores of SLU hypotheses denying or
negating value at turn

•
•
• : probability of the value being ‘ ’ (the value not
mentioned) at turn

• : belief of “the value being at turn ”
With the above probabilistic features, a Constrained Markov

Bayesian Polynomial (CMBP) model is defined as

(12)

The constraints in equation (12) can be classified into three
categories.
• Probabilistic constraints enforce the probabilistic re-
quirement by definition. These constraints can be directly
written as a set of linear equality or inequalities, e.g.

(13)

• Intuition constraints encode intuitive prior knowledge
(i.e. rules). For example, the rule “goal belief should be
unchanged or positively correlated with the positive scores
from SLU” can be represented by

(14)
• Regularization constraints attempt to regularize the so-
lution to prevent overfitting in the data-driven coefficient
generation in Section III-B. For example, the coefficients
of may be limited to be in .

Although constraints can be represented in mathematics
forms, to construct a feasible constrained optimization problem,
it is necessary to further approximate the constraints using
linear equalities or inequalities. For example, inequality (14)
can be approximated by the below linear constraint

(15)

where and are the 6-dimensional input vectors of
equation (12), denotes all possible input vectors and

denotes quantized interval of
. Details of CMBP constraints and their corresponding

linear approximations can be found in the appendix.

B. Data-driven Coefficient Optimization for CMBP

Once a rule-based model is formulated as CMBP, intuitive
knowledge becomes soft constraints and there usually exist mul-
tiple feasible solutions. It is then possible to employ data-driven
method to optimize CMBP. In CMBP, polynomial order , as
shown in equation (8), determines model complexity as well as
the size of search space during optimization. Model complexity
affects themodelling power and generalization ability of CMBP,
while search space affects the computation time of optimization.
Order or is too small to model complex situations,
while is too large to efficiently optimize. Hence, in this
paper, polynomial order is used to construct a suitable
search space.3 By using the overall goal tracking accuracy on
the training data as the optimization criterion, the data-driven
CMBP can be written as the below optimization problem

(16)

where and are the CMBP
parameters, is the total number of turns of the training data,

is the goal state tracking accuracy evaluation function.
CMBP can then be optimized as below:
1) Generate a superset of all feasible CMBP solutions satis-

fying the approximated linear constraints.
This generation can be regarded as a special kind of integer
linear programming problem whose objective function is
dummy. Existing integer linear programming solver can
be used for this purpose. In this paper, SCIP [24] is used.
By setting additional constraints or adding sparsity penalty
term to the criterion, the size of this superset can be con-
trolled so that it is neither too small, nor too large.

2) is exhaustively calculated for each feasible solution
from step 1.
During the optimization, due to relaxation of constraints, it
is possible to get some or out of . To get legal
track output, out-of-range is always clipped to be 0
or 1 and is re-calculated accordingly.

3) Find the optimal CMBP solution by selecting the one with
highest accuracy. Additional regularization term, such as
sparsity regularization, can also apply here.

With the above optimization, the best integer coefficient
CMBP can be found and this optimal solution can be refined
when more training data is available.
Although CMBP was originally motivated from Bayesian

probability operation which leads to the natural use of integer
polynomial coefficient , CMBP can also be viewed
as a data-driven model. Hence, the CMBP framework, equa-
tion (16), can be extended to real coefficient polynomials. The
optimization of real-coefficient CMBP is done by first getting
an integer solution and then performing hill climbing search
as shown in algorithm 1. Note that the choice of hill climbing
search here is just an initial simple solution, and alternative

3Basic analysis of the trivial search space of MBP with different orders can
be found in Appendix C.
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optimization approaches such as Nelder-Mead simplex search
[25] can also be used here.

Algorithm 1: Hill climbing algorithm for real coefficient
CMBP solution

Let be an integer coefficient
solution set for equation (16);

Let ;
Let ;
Let , ;
Let be the maximum number of iterations4;
while and is false do

;
;

foreach index in do
foreach step in do

Let ;
Let ;
if then

, ;
end

end
end

end

The above hybrid CMBP framework effectively bridges rule-
based approaches and data-driven approaches. The constraints
reflect intuitive prior knowledge and can be set manually, while
the general Bayesian polynomial representation allows data-
driven optimization of model parameters. An additional advan-
tage of the integer-programming based optimization approach is
that it is straightforward to find multiple feasible solutions sat-
isfying constraints. It is then possible to perform system combi-
nation on multiple solutions of equation (16) with similar per-
formance to obtain a more robust CMBP system. In this paper,
belief score averaging is investigated as a simple system com-
bination approach.

IV. EXPERIMENT

As introduced in Section II-B, the DSTCs have provided the
first common testbed in a standard format, along with a suite of
evaluation metrics for dialogue state tracking [5]. In this paper,
DSTC-1, DSTC-2 and DSTC-3 tasks are used to evaluate the
proposed approach. All tasks provide training dialogues with
turn-levelASRhypotheses andSLUhypotheseswith confidence
scores, as well as human-annotated user goal labels for training.
DSTC-1 is a bus timetables domain task [5] and DSTC-2 is
a restaurant domain task [16]. Both tasks provide sufficient
training and development dialogues [5], [16].While in DSTC-3,
a tourist domain task, only 10 in-domain training dialogues are
provided. The DSTC-3 task is to adapt the tracker trained on
DSTC-2 data to the new domain with the 10 seed dialogues.

4In all our experiments, is set to 1000. In practice, most of our experiments
take several or several dozen iterations. In all our experiments, the number of
iterations does not reach .

TABLE I
SUMMARY OF DATA CORPORA OF DSTC-1/2/3. ( IS THE

UNLABELED TRAINING DATA IN DSTC-1 WHILE IS LABELED

Table I is a summary of the data usage in this paper. In
particular, stands for the combination of all the
labeled training data, i.e. Train1a, Train2, Train3;
stands for the combination of all the unlabeled training data,
i.e. Train1b, Train1c; stands for the combination
of all the test data, i.e. Test1-4 [5]. Note that, for DSTC-2,

and were combined, i.e. 2118 dialogues,
to increase the amount of training data for CMBP training.
Here, a single CMBP is used for all slots. This makes CMBP
domain independent. Therefore, to show the generalization
ability of CMBP, for DSTC-3 the 10 seed dialogues were not
used at all and the CMBP trained on DSTC-2 was directly used
in this paper.
In this section, only joint goal tracking is of interest. The DST

evaluation criteria are the joint goal accuracy and the L2 [16],
[26]. Accuracy is defined as the fraction of turns in which the
tracker’s 1-best joint goal hypothesis is correct, the larger the
better. L2 is the L2 norm between the distribution of all hy-
potheses output by the tracker and the correct goal distribution
(a delta function), the smaller the better. Moreover, schedule 2
and labelling scheme A defined in [18] are used in both tasks.
Specifically, schedule 2 only counts the turns where new infor-
mation about some slots either in a system confirmation action
or in the SLU list is observed. Labelling scheme A is that the
labelled state is accumulated forwards through the whole dia-
logue. For example, the goal for slot is “ ” until it is in-
formed as by the user, from then on, it is labelled as
until it is again informed otherwise.
Since the features of CMBP are all probability features, the

performance of CMBP is strongly correlated to the quality of
confidence scores from SLU. It has been shown that the orga-
nizer-provided live SLU confidence was not good enough in
DSTC-2/3 tasks [10], [27]. Hence, most of the state-of-the-art
results from DSTC-2 and DSTC-3 used refined SLU (either ex-
plicitly rebuild a SLU component or implicitly refine it by in-
puting the ASR hypotheses into the trackers [10], [11], [12],
[21], [23], [28]). In accordance to this, except for the results
directly taken from other papers (shown in Table VIII and IX),
all experiments of DSTC-2/3 tasks in this paper used the output
from a refined semantic parser [10], [27], instead of the live SLU
provided by the organizer.

A. Investigation on CMBP Configurations

This section describes the experiments comparing different
configurations of CMBP. All experiments were performed
on the DSTC-2 tasks. As indicated in Section III-B, multiple
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TABLE II
PERFORMANCE OF CMBP WITH DIFFERENT CONSTRAINT SETS ON (

TABLE III
THE NUMBER OF ALIGNED NON-ZERO COEFFICIENTS BETWEEN EACH PAIR
OF THE TOP 5 CMBP SOLUTIONS. BOLD NUMBERS ARE THE NUMBERS OF

NON-ZERO COEFFICIENTS OF THE TOP 5 CMBP SOLUTIONS

TABLE IV
PERFORMANCE OF THE TOP 5 CMBPS ON

feasible solutions can be generated using integer program-
ming, and the feasible solution space is controlled by the
number of constraints so that it is neither too big nor too
small. Table II compares the integer CMBP performance with
different constraint sets5. For each constraint set, the detailed
description can be found in the appendix. The number of
feasible solutions is shown in column #Solutions, and the best
integer CMBP is obtained by exhaustively checking the overall
joint goal accuracy on the training data set. The performance
of the best CMBP is then evaluated on ( , shown in
columns Acc and L2.
It can be seen that larger solution space does not necessarily

yield significantly better results. By applying more constraints,
the feasible CMBP space can be effectively controlled without
losing much performance of the best CMBP contained in the
space. In the following experiment, the constraint set is fixed to
be {(31), (40)-(51)}.
Since multiple CMBP solutions can be generated, it is in-

teresting to investigate how consistent are the non-zero coef-
ficients across the -best list of solutions. It can be seen from
Table III that the non-zero coefficients of 5-best CMBP solu-
tions are consistent in general. It is also interesting to inves-
tigate the performance of multiple feasible CMBP solutions.
Table IV shows that the top 5 integer coefficient CMBP models
have similar performance. This demonstrates the robustness of
CMBP and implies that system combination is likely to be safe.
The top-5 solutions in Table IV were obtained by purely

optimizing the overall goal accuracy of the training data
( ). They usually have large complexity
(i.e. the number of non-zero integer coefficients), for ex-
ample, the 1-best solution has 12 parameters. As indicated in

5The solution set is calculated by SCIP version 3.1.0 with 8 byte precision.
Due to the limited numerical precision, the calculated solution may not be ex-
actly the same as the real solution set.

Fig. 2. Joint goal accuracy of real-coefficient CMBPs compared with the in-
teger-coefficient CMBPs with different complexity on . The solid
line shows the average performance of the top 5 integer-coefficient CMBPs in
Table IV. The dotted line shows the average performance of the real-coefficient
CMBPs optimized from the top-5 solutions in Table IV.

Section III-B, sparsity penalty can be imposed on CMBP to
control complexity and avoid over-fitting. To investigate the
effect of sparsity penalty, 12 CMBP models with different
number of non-zero integer coefficients were randomly selected
(there may be multiple solutions with the same complexity)
from the feasible solution space. The results are shown in
Fig. 2. Furthermore, the hill climbing algorithm is applied to
each of them to generate corresponding optimal real-coefficient
CMBPs.
From Fig. 2, the CMBPs with small complexity have sim-

ilar performance compared with the top 5 integer CMBPs in
Table IV. This shows that by enforcing sparsity, the model size
can be effectively reduced without hurting the performance. In
addition, most of the real-coefficient CMBPs outperform the
corresponding integer coefficient CMBPs, demonstrating the
importance of extending integer coefficients to real numbers.
Another observation is that there is no obvious correlation be-
tween the performance of the optimized real-coefficient CMBPs
and the corresponding integer-coefficient CMBPs. In practice,
the time algorithm 1 takes is positively correlated to the com-
plexity of CMBP. Therefore, to efficiently optimize real-co-
efficient CMBPs, in the following experiments, for the 1-best
CMBP, we only run algorithm 1 on integer-coefficient CMBPs
with the smallest number of non-zero coefficients.
It can be seen from Fig. 2 that although the real-coefficient

CMBPs have better performance in general, sometimes they do
not outperform the corresponding integer-coefficient CMBPs.
System combination is then used to make the performance of
the real-coefficient CMBPs stable. The combined model, which
applies belief score averaging on the CMBP solutions with less
than 8 non-zero parameters, achieved an accuracy of 0.762 on
( . Though not the best possible result, it is compet-
itive and believed to be stable. This system combination setup
is also used in the following experiments.
To investigate how much data is needed to reliably train the

tracker, the joint goal accuracies of CMBPs trained on different
amount of data are compared. It can be seen from Fig. 3 that the
performance is generally positively correlated with the amount
of data. For the DSTC-2 (in-domain) task, the performance
consistently improves with the increase of the training data
amount (except for an outlier when the training data is very
limited). While for the DSTC-3 (extended domain) task, a
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Fig. 3. Performance comparison of CMBPs trained on different amount of data
(0%, 10%, 20%, 50%, 100%).

TABLE V
PERFORMANCE COMPARISON BETWEEN HILL CLIMBING

SEARCH AND NELDER-MEAD METHOD

relatively small amount of the DSTC-2 training data (around
20%) is sufficient to yield satisfactory performance and more
data may not yield further significant improvements.
Besides hill climbing search, for comparison, Nelder-Mead

method was also applied to optimize real-coefficient CMBP.
Here, the initial points of Nelder-Mead method were set as
randomly selected integer-coefficient CMBP solutions. It can
be seen from Table V that hill climbing performs better than
Nelder-Mead method.

B. Comparison with Other DST Approaches
The previous section investigates how to get the best integer-

coefficient CMBP and the optimized real-coefficient CMBP. In
this section, the performance of CMBP is compared to both
rule-based and data-driven statistical approaches. As indicated
before, CMBP is a hybrid approach, which incorporates data-
driven update with the probability features defined in III-A, to
make fair comparison, all data-driven statistical models in this
section also use similar feature set. Altogether, 1 rule-based
trackers and 2 statistical trackers were built for performance
comparison:
• MaxConf is a rule-based model commonly used in
spoken dialogue systems which always selects the value
with the highest confidence score from the 1st turn to the
current turn. It was used as one of the primary baselines in
DSTC-1, DSTC-2 and DSTC-3.

• HWU is a rule-based model based on equation (6), pro-
posed by [14], [15]. It is regarded as a simple, yet compet-
itive baseline of DSTC-2 and DSTC-3.

• DNN is a data-driven statistical model with probability
features similar as CMBP. Since CMBP at turn uses the
belief of the previous turn , to fairly take this into
account, the DNN feature set at the th turn is defined as

where is the highest confidence score from the 1st
turn to the th turn. The DNN has 3 hidden layers with 64
nodes per layer.

TABLE VI
PERFORMANCE COMPARISON BETWEEN CMBPS, RULE-BASED
AND STATISTICAL APPROACHES WITH A SIMILAR FEATURE

SET ON ( ) AND ( )

TABLE VII
PERFORMANCE COMPARISON BETWEEN CMBP AND BEST TRACKERS OF
DSTC-1 ON . BASELINE* IS THE BEST RESULTS FROM THE
2 ORGANIZER-PROVIDED BASELINE IN DSTC-1. PBM REFERS TO THE

PARTITION-BASED MODEL DESCRIBED IN [29]

• MaxEnt is another data-driven statistical model using
Maximum Entropy with the same input feature as DNN.

The 1-best integer-coefficient and the optimized real-coef-
ficient CMBPs as well as the CMBP system combination are
compared with the above DST approaches and the results are
shown in Table VI.
It can be observed that, with a similar feature set, CMBPs,

especial real-coefficient CMBP, can outperform both rule-based
and data-driven statistical approaches in terms of joint goal ac-
curacy. Statistical significance tests were performed assuming
a binomial distribution for each turn. CMBP with system com-
bination was shown to significantly outperform both rule-based
and data-driven statistical approaches at 95% confidence level.
For L2, CMBP system combination is competitive to both rule-
based and data-driven statistical approaches. As indicated be-
fore, for DSTC-3, the CMBP model trained for DSTC-2 was
directly used without modification.6 From Table VI, the CMBP
with system combination performance is stably good: slightly
worse than the real-coefficient CMBP on , but better
on . This demonstrates that the CMBP with system
combination has good generalization ability.

C. Comparison with the State-of-the-art DST Trackers
In the DSTCs, the state-of-the-art trackers mostly employed

data-driven statistical approaches. Usually, a richer feature
set and more complicated model structures than the statistical
models in Section IV-B are used. In this section, the proposed
CMBP approach is compared to the best submitted trackers
in DSTC-1/2/3, regardless of fairness of feature selection and
the SLU refinement approach. The real-coefficient CMBP with
system combination is compared and the results are shown in
Table VII, VIII and IX.
From Table VII, it can be seen that CMBP ranks second to the

best tracker in accuracy and L2. It is worth mentioning that the
best tracker in DSTC-1 consists of three discriminative models
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TABLE VIII
PERFORMANCE COMPARISON BETWEEN CMBP AND BEST TRACKERS OF
DSTC-2 ON . BASELINE* IS THE BEST RESULTS FROM THE 4

ORGANIZER-PROVIDED BASELINES IN DSTC-2

TABLE IX
PERFORMANCE COMPARISON BETWEEN CMBP AND BEST TRACKERS OF
DSTC-3 ON . BASELINE* IS THE BEST RESULTS FROM THE 4

ORGANIZER-PROVIDED BASELINES IN DSTC-3

and one generative model [8] which is fairly complex, CMBP
achieves competitive performance with much smaller model
complexity.
Note that, in DSTC-2, the Williams’s system [12] employed

batch ASR hypothesis information (i.e. off-line ASR re-de-
coded results) and cannot be used in the normal on-line mode
in practice. Hence, the practically best tracker is Henderson
et al. [11]. It can be observed from Table VIII, CMBP ranks
only second to the best practical tracker in accuracy, although
the L2 performance is slightly worse. The difference between
CMBP and Henderson’s system is not statistically significant.
Since accuracy is the most important criterion, considering that
CMBP used much simpler feature set and can operate very
efficiently, it is still competitive.
It can be seen from Table IX, CMBP trained on DSTC-2

can achieve state-of-the-art performance on DSTC-3 without
modification6. This demonstrates that CMBP successfully in-
herits the advantage of good generalization ability of rule-based
model. Actually, the third best tracker in DSTC-3 is an integer
coefficient CMBP with system combination. Real-coefficient
CMBP can obtain further gains and become the most compet-
itive rule-based model so far. It is also worth noting that the
second best tracker in DSTC-3 also used rule-based approach
whose original formulation [23] is quoted as follows7:

(17)
where is the goal belief state at time which corresponds
to , is the semantic hypothesis confidence which
corresponds to in this paper. It can be seen that the above
equation is similar as equation (9), the MBP rewritten form of
Bayesian generative model. Compared with the general CMBP
formulation defined by equation (12), the above equation
models multiple slots simultaneously and more importantly, the
Bayesian polynomial coefficients are dependent on the system

6The parser is refined for DSTC-3 [27]
7We made slight modification on the original notation so that the comparison

is easy to understand.

action via the dialogue model . Specifi-
cally, the dialogue model is a piece-wise function [23], which
has different values when is CantHelp, Select, or neither of
them. Hence, equation (17) can be regarded as a piece-wise
polynomial extension of CMBP, equation (12), but without slot
independence assumption. Since the CMBP framework is easy
to extend, future work will investigate piece-wise polynomials
and richer features.

V. CONCLUSION

This paper proposes a novel hybrid framework, referred
to as constrained Markov Bayesian polynomial (CMBP), to
bridge the rule-based model and statistical, or data-driven,
approaches. It uses a polynomial function of SLU probabil-
ities and previously estimated belief states as the estimator
and employs constraints to incorporate prior knowledge. By
approximating descriptive constraints using linear constraints,
the CMBP training is formulated as a standard problem of
optimization with linear constraints. Furthermore, the integer
coefficient CMBP is extended to real-coefficient CMBP.
With the ability of incorporating prior knowledge and being
data-driven, CMBP, as a hybrid model, has the advantages of
both rule-based and data-driven approaches. Experiments on
three dialog state tracking challenge (DSTC) tasks showed that
the proposed approach not only is more stable than many major
statistical approaches, but also has competitive performance,
outperforming many state-of-the-art trackers. There are two
limitations of the current CMBP approaches. First, it employs
a non-differentiable criterion for training and hence is not
easy to optimize. Second, it still assumes slot independence
due to computational cost. The second issue is also applicable
to many existing statistical DST approaches as described in
Section II-D. Future work will address these two issues to ob-
tain further improvements. Moreover, the hill climbing search
used in this paper is just a straightforward and preliminary
choice, future work will also investigate better optimization
approaches.

APPENDIX
CMBP CONSTRAINTS FORMULATION

In order to be consistent with Section III-B and introduce
the constraints clearly, the constraints formulation of order-3
CMBP is the focus in the following content. The constraints
formulation of CMBP of other order can be obtained with just
slight modifications of the constraints formulation of order-3
CMBP. As definition (8), the coefficients of CMBP of order 3
is denoted by :

(18)

where , and .

A. Constraints Formulation

The probabilistic constraints, intuition constraints, and reg-
ularization constrains investigated in this paper are described
below respectively.
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Probabilistic constraints:

(19)
(20)
(21)

Intuition constraints:
• If neither positive nor negative information is collected, the
belief should not change.

(22)

where here “ “ and “ “ are used to denote logical con-
junction and material implication respectively.

• If both ASR and SLU is perfectly correct, that is, 1 is as-
signed to all correct values and 0 to all incorrect values,
then the model should always give the correct result. Con-
sidering the special case that there is only one value which
is not “ ”, the following 3 constraints can be obtained.

(23)
(24)
(25)

• The belief should be unchanged or positively correlated
with the positive scores from SLU.

(26)

• The belief should be unchanged or negatively correlated
with the negative scores from SLU.

(27)

• The belief should be unchanged or negatively correlated
with the sum of the positive scores of the other values.

(28)

• The belief should be unchanged or positively correlated
with the sum of the negative scores of the other values.

(29)

• The belief of the current turn should be unchanged or pos-
itively correlated with the belief of the previous turn.

(30)

Regularization constraints:
• The coefficients of is limited to be in . This
constraint comes from the observation that all coefficients
of rule-based model (6) are in .

(31)

• The sum of the coefficients of is limited to be 0. This
constraint comes from the observation that the sum of the
coefficients of rule-based model (6) is 0.

(32)

B. Constraints Approximation
To simplify the presentation, the set consisting of all possible

input vectors ( ) is de-
noted by . By definition, the following relations and (19), (20),
(21) are true:

(33)
(34)
(35)
(36)
(37)
(38)

Therefore,

(39)

The conversion from the exact constraints to the relaxed
linear constraints is discussed in detail as below. For approx-
imation purpose, two quantized interval of , and ,
need to be defined first:

A number of theorems are then proved for the constraints
approximation.
Theorem 1: If a rule satisfies constraints (19), (20), (21), then

the rule satisfies the following sets of linear constraints:

(40)

(41)

Proof: The set of linear constraints (40) can be obtained
by constraint (19). By combining constraint (20) and (21), it
can be proved that . Thus the set of linear
constraints (41) can be obtained by considering the special case
that there are at least 2 values which are not “ ”.
Theorem 2: A rule satisfies constraint (22) if and only if

(42)
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and

(43)

Proof: Suppose constraints (42) and (43) hold. Under the
condition ,
then for all , by the definition of

, , , and constraints (33), (34).
Thus by definition (12) and equation (18)

Therefore, constraint (22) holds. Reversely suppose constraint
(22) holds, it is easy to check that under the condition that

, if
at least one of constraint (42) or (43) does not hold, the equality
“ ” does not hold.
Theorem 3: If a rule satisfies constraints (23), (24), (25), then

the rule satisfies the following set of linear constraints:

(44)

(45)

(46)

Proof: The set of linear constraints (44) can be obtained
by simply combining constraint (23) and definition (12). The
derivations for the sets of linear constraints (45) and (46) are
similar.
Theorem 4: If a rule satisfies constraints (26), (27), (28),

(29), (30), then the rule satisfies the following sets of linear
constraints:

(47)

(48)

(49)

(50)

(51)

Proof: The rule satisfies the set of linear constraints (47)
is because constraint (26) indicates is
monotonically increasing with respect to . The derivations for
the other sets of linear constraints are similar.
By theorem 1, 2, 3 and 4, it can be seen that the linear con-

straints (40)–(51) relax the constraints (19)–(21), (22)–(30).

C. Estimation of Trivial Search Space
Theorem 5: The trivial search space of integer-coefficient

CMBP of order with constraint (31) only is

(52)

TABLE X
THE TRIVIAL SEARCH SPACE OF INTEGER-COEFFICIENT

CMBP OF ORDER 2, 3, 4

Proof: The number of different monomials in CMBP of
order is the number of multisubset of size from the set

which can
be calculated by

(53)

Because constraint (31) limits the coefficients of eachmonomial
to be in , the coefficient of each monomial in the integer-
coefficient CMBP can only be in

(54)

Formula (52) can be obtained by simply combining (53) and
(54).
The trivial search space of integer-coefficient CMBP of order

2, 3, 4 calculated by theorem 5 is shown in Table X.
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