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Sentiment Embeddings with Applications to
Sentiment Analysis

Duyu Tang, Furu Wei, Bing Qin, Nan Yang, Ting Liu, Ming Zhou

Abstract—We propose learning sentiment-specific word embeddings dubbed sentiment embeddings in this paper. Existing word
embedding learning algorithms typically only use the contexts of words but ignore the sentiment of texts. It is problematic for sentiment
analysis because the words with similar contexts but opposite sentiment polarity, such as good and bad, are mapped to neighboring
word vectors. We address this issue by encoding sentiment information of texts (e.g. sentences and words) together with contexts of
words in sentiment embeddings. By combining context and sentiment level evidences, the nearest neighbors in sentiment embedding
space are semantically similar and it favors words with the same sentiment polarity. In order to learn sentiment embeddings effectively,
we develop a number of neural networks with tailoring loss functions, and collect massive texts automatically with sentiment signals like
emoticons as the training data. Sentiment embeddings can be naturally used as word features for a variety of sentiment analysis tasks
without feature engineering. We apply sentiment embeddings to word-level sentiment analysis, sentence level sentiment classification
and building sentiment lexicons. Experimental results show that sentiment embeddings consistently outperform context-based
embeddings on several benchmark datasets of these tasks. This work provides insights on the design of neural networks for learning
task-specific word embeddings in other natural language processing tasks.

Index Terms—Natural Language Processing, Word Embeddings, Sentiment Analysis, Neural Networks

F

1 INTRODUCTION

WORD representation attempts to represent aspects of
word meanings. For example, the representation of

“cellphone” may capture the facts that cellphones are elec-
tronic products, that they include battery and screen, that
they can be used to chat with others, and so on. Word
representation is a critical component of many natural lan-
guage processing systems [4], [5] as word is usually the basic
computational unit of texts.

A straight forward way is to represent each word as a
one-hot vector, whose length is vocabulary size and only
one dimension is 1, with all others being 0. However, one-
hot word representation only encodes the indices of words
in a vocabulary, but fails to capture rich relational structure
of the lexicon. To solve this problem, many studies repre-
sent each word as a continuous, low-dimensional and real-
valued vector, also known as word embeddings [6], [7], [8].
Existing embedding learning approaches are mostly on the
basis of distributional hypothesis [9], which states that the
representations of words are reflected by their contexts. As a
result, words with similar grammatical usages and semantic
meanings, such as “hotel” and “motel”, are mapped into
neighboring vectors in the embedding space. Since word
embeddings capture semantic similarities between words,
they have been leveraged as inputs or extra word features
for a variety of natural language processing tasks, including
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machine translation [10], syntactic parsing [11], question
answering [12], discourse parsing [13], etc al.

Despite the success of the context-based word embed-
dings in many NLP tasks [14], we argue that they are not
effective enough if directly applied to sentiment analysis
[15], [16], [17], which is the research area targeting at ex-
tracting, analyzing and organizing the sentiment/opinion
(e.g. thumbs up or thumbs down) of texts. The most serious
problem of context-based embedding learning algorithms
is that they only model the contexts of words but ignore
the sentiment information of text. As a result, words with
opposite polarity, such as good and bad, are mapped into
close vectors in the embedding space. This is meaningful
for some tasks such as pos-tagging [18] because the two
words have similar usages and grammatical roles. However,
it becomes a disaster for sentiment analysis as they have
opposite sentiment polarity labels.

In this paper, we propose learning sentiment-specific
word embeddings dubbed sentiment embeddings for sen-
timent analysis. We retain the effectiveness of word contexts
and exploit sentiment of texts for learning more powerful
continuous word representations. By capturing both context
and sentiment level evidences, the nearest neighbors in the
embedding space are not only semantically similar but also
favor to have the same sentiment polarity, so that it is able
to separate good and bad to opposite ends of the spectrum. In
order to learn sentiment embeddings effectively, we develop
a number of neural networks to capture sentiment of texts
(e.g. sentences and words) as well as contexts of words with
dedicated loss functions. We learn sentiment embeddings
from tweets1, leveraging positive and negative emoticons
as pseudo sentiment labels of sentences without manual

1. https://twitter.com
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bored      -0.99
damn      -1.00

Fig. 1. An illustration of sentiment embeddings with applications to sen-
timent analysis tasks, including word level sentiment analysis, sentence
level sentiment classification and building sentiment lexicon.

annotations. We obtain lexical level sentiment supervision
from Urban Dictionary2 based on a small list of sentiment
seeds with minor manual annotation.

We evaluate the effectiveness of sentiment embeddings
empirically by applying them to three sentiment analysis
tasks. Word level sentiment analysis on benchmark senti-
ment lexicons [19], [20] can help us see whether sentimen-
t embeddings are useful to discover similarities between
sentiment words. Sentence level sentiment classification
on tweets [21], [22] and reviews [23] help us understand
whether sentiment embeddings are helpful in capturing
discriminative features for predict the sentiment of text.
Building sentiment lexicon [24] is useful for measuring the
extent to which sentiment embeddings improve lexical level
tasks that need to find similarities between words. Experi-
mental results show that sentiment embeddings consistently
outperform context-based word embeddings, and yields
state-of-the-art performances on several benchmark datasets
of these tasks.

The major contributions of the work presented in this
paper are as follows.

• We propose learning sentiment embeddings that en-
code sentiment of texts in continuous word represen-
tation.

• We develop a number of neural networks with tailor-
ing loss functions to learn sentiment embeddings. We
learn sentiment embeddings from tweets with pos-
itive and negative emoticons as distant-supervised
corpora without any manual annotations.

• We verify the effectiveness of sentiment embeddings
by applying them to three sentiment analysis tasks.
Empirical experimental results show that sentiment
embeddings outperform context-based embeddings
on several benchmark datasets of these tasks.

This article is organized as follows. We introduce the
background of word embeddings in Section 2. We then
present the methodology for learning sentiment embed-
dings in Section 3. The use of sentiment embeddings in three
applications are given in Section 4 (word level sentiment
analysis), Section 5 (sentence level sentiment classification)

2. http://www.urbandictionary.com/

and Section 6 (building sentiment lexicon). We conclude this
paper in Section 7.

2 BACKGROUND

In this section, we describe the background on learning
continuous word representation.

Word representation aims to represent aspects of word
meaning. A straight-forward way is to encode a word wi
as a one-hot vector, whose length is vocabulary size with 1
in the wthi position and zeros everywhere else. However,
such one-hot word representation only encodes the indices
of words in a vocabulary, without capturing rich relational
structure of the lexicon. One common approach to discover
the similarities between words is to learn a clustering of
words [25], [26]. Each word is associated with a discrete
class, and words in the same class are similar in some
respects. This leads to a one-hot representation over a smaller
vocabulary size. Instead of characterizing the similarity with
a discrete variable based on clustering results which corre-
sponds to a soft or hard partition of the set of words, many
researchers target at learning a continuous and real-valued
vector for each word, also known as word embeddings.
Existing embedding learning algorithms are mostly based
on the distributional hypothesis [9], which states that words
in similar contexts have similar meanings. Many matrix
factorization methods can be viewed as modeling word rep-
resentations. For example, Latent Semantic Indexing (LSI)
[27] can be regarded as learning a linear embedding with
a reconstruction objective, which uses a matrix of “term-
document” co-occurrence statistics, e.g. each row stands for
a word or term and each column corresponds to an individ-
ual document in the corpus. Hyperspace Analogue to Lan-
guage [28] utilizes a matrix of “term-term” co-occurrence s-
tatistics, where both rows and columns correspond to words
and the entries stand for the number of times a given word
occurs in the context of another word. Hellinger PCA [29]
is also investigated to learn word embeddings over “term-
term” co-occurrence statistics.

With the revival of interest in deep learning and neural
network [30], [31], [32], a surge of studies learn word em-
beddings with neural network. A pioneered work in this
field is given by Bengio et al. [6]. They introduce a neural
probabilistic language model that learns simultaneously a
continuous representation for words and the probability
function for word sequences based on these word represen-
tations. Given a word wi and its preceding context words,
the algorithm first maps each context word to its continuous
vector with a shared lookup table. Afterwards, context
word vectors are fed to a feed-forward neural network
with softmax as output layer to predict the conditional
probability of next word wi. The parameters of neural
network and lookup table are jointly learned with back
propagation. Following Bengio et al. [6]’s work, a lot of ap-
proaches are proposed to speed-up the training processing
or capturing richer semantic information. Bengio et al. [33]
introduce a neural architecture by concatenating the vectors
of context words and current word, and use importance
sampling to effectively optimize the model with observed
“positive sample” and sampled “negative samples”. Morin
and Bengio [34] develops hierarchical softmax to decompose
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the conditional probability with a hierarchical binary tree.
Mnih and Hinton [35] introduce a log-bilinear language
model. Collobert and Weston [36] train word embeddings
with a ranking-type hinge loss function [37] by replacing
the middle word within a window with a randomly selected
one. Mikolov et al. [7], [38] introduce Continuous Bag-of-
Words (CBOW) and Continuous Skip-gram, and release the
popular word2vec3 toolkit. CBOW model predicts the current
word based on the embeddings of its context words, and
Skip-gram model predicts surrounding words given the
embeddings of current word. Mnih et al. [39] accelerate
the embedding learning procedure with Noise Contrastive
Estimation [40]. There are also many algorithms developed
for capturing richer semantic information, including global
document information [41], Chinese character radical [42],
dependency based contexts [43], multi sense information
[44] and semantic lexical information [45].

Some studies in recent years attempt to learn sentiment-
tailored word embeddings by encoding the sentiment po-
larity of texts. Maas et al. [46] introduce a probabilistic topic
model by inferring the polarity of a sentence based on the
embeddings of each word it contains. Labutov and Lip-
son [47] re-embed existing word embeddings with logistic
regression by regarding sentiment supervision of sentences
as a regularization item.

3 METHODOLOGY

We present the methods for learning sentiment embeddings
in this section. We first describe standard context-based
neural network methods for learning word embeddings.
Afterwards, we introduce our extension for capturing senti-
ment polarity of sentences before presenting hybrid models
which encode both sentiment and context level information.
We then describe the integration of word level information
for embedding learning.

3.1 Notation
We notate the meaning of variables used in this paper.
In particular, wi means a word whose index is i in a
sentence, hi is context words of wi in one sentence, ei is
the embedding vector of wi. In this work, we implement
the neural network approaches with some basic neural
layers, including lookup, hTanh, linear and softmax. For
each neural layer, Olayer means the output vector. The
implementations of these layers can be found at: http:
//ir.hit.edu.cn/∼dytang.

3.2 Modeling Contexts of Words
Dominating word embedding learning algorithms are on
the basis of distributional hypothesis [9], which states that
the representations of words can be reflected by their con-
texts. In this subsection, we describe a prediction model
(Section 3.2.1) and a ranking model (Section 3.2.2) to encode
contexts of words for learning word embeddings. These
context-based models will be naturally incorporated with
sentiment-specific models (Section 3.3) for learning senti-
ment embeddings.

3. https://code.google.com/p/word2vec/

3.2.1 Prediction Model
An effective way to encode contexts of words into word
representation is “context prediction” [7], [39], [48]. Giv-
en a target word wi and its context words hi, “context
prediction” aims to predict wi based on hi, which can
be viewed as language modeling. The contexts of a target
word could be preceding, following or surrounding words
occurred in a piece of text. Since we do not focus on an
exact language model, we investigate surrounding words
hi = {wi−c, wi−c+1, ...wi−1, wi+1, ...wi+c−1, wi+c} as con-
text in this work. The method can be naturally extend to
preceding or following context words.

We build a prediction model analogous to the represen-
tative “context prediction” neural language model given by
Bengio et al. [6]. They model the conditional probability
P (wi|hi) of predicting a target wordwi based on its contexts
hi by taking word embeddings as a parameter. The scoring
function is a feed-forward neural network consisting of
lookup→ linear → hTanh→ linear → softmax.

Lookup layer (also referred to as projection layer) con-
tains a lookup table LT ∈ Rd×|V | which maps each word to
its continuous vector, where d is the dimension of each word
vector and |V | is the vocabulary size. The lookup operation
can be viewed as a projection function that uses a binary
vector idxi which is zero in all positions except at the i-th
index.

ei = LT · idxi ∈ R1×d (1)

We concatenate the embeddings of context words
{wi−c, wi−c+1, ..., wi−1, wi+1 , ...wi+c−1, wi+c} as the out-
put of lookup layer, which is formalized as below.

Olookup = [ei−c; ... ei−1, ei+1 ...; ei+c] ∈ R1×d·2c (2)

Afterwards, Olookup is fed to a linear layer for dimen-
sion transformation, where Wl1 ∈ Rlen×2c is the position-
dependent weights and bl1 ∈ R1×len is the bias of linear
layer, len is the length of output vector Ol1 of linear layer.

Ol1 =Wl1 ·Olookup + bl1 (3)

The linear layer is followed by a non-linear func-
tion layer for adding element wise non-linearity. S-
tandard non-linear layers include hyperbolic tangent,
hard hyperbolic tangent (hTanh), sigmoid and rectifier.
We use hTanh in this work for its computational efficiency
and effectiveness in literature [14]. We denote the output
vector of hTanh as Ohtanh ∈ R1×len.

hTanh(x) =


−1 if x < −1
x if − 1 ≤ x ≤ 1

1 if x > 1

(4)

The output layer of standard neural language model is
a softmax layer whose output length is vocabulary size.
Softmax [49] is suitable for this case as its outputs can be
interpreted as conditional probabilities, which is calculated
as below.

softmaxi =
exp(zi)∑
i′ exp(zi′)

(5)

Conditional probability P (wi|hi) is the idxwi -th value in the
output vector of softmax layer, where idxwi is the index of
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wi in vocabulary. The optimizing objective of a given word-
context pair (wi, hi) is to maximize P (wi|hi).

However, directly predicting the probability of P (wi|hi)
is time-costly as the length of output softmax layer is
vocabulary size, which is typically hundreds of thousands.
To speed-up the training process, we use noise contrastive
estimation [39], and transfer the problem of “context pre-
diction” to distinguish a word-context pair as real case or
artificial noise by means of logistic regression. The probabil-
ity that the given sample came from the data is P (D|w, θ)

P (D|w, θ) = exp(fθ(wi, hi))

exp(fθ(wi, hi)) + k · exp(fθ(wn, hi))
(6)

where wn is an artificial noise such as a randomly selected
word from vocabulary. The scaling factor k accounts for
the fact that noise samples are k times more frequent than
data samples [39]. The score function fθ(w, h) quantifies the
compatibility between context hi and target word wi, which
can be naturally defined as a feed forward neural network
consisting of lookup → linear → hTanh → linear. The
input of lookup layer is the concatenation of the current
word w and context words h. The output is a linear layer
with output length as 1, which stands for the compatibility
between context h and word w. We implement P (D|w, θ)
with a softmax layer and maximize the log probability of
the softmax for parameter estimation.

losscPred = −
∑
w∈T

logP (D|w, θ) (7)

3.2.2 Ranking Model
Collobert and Weston use a pairwise ranking approach
[36] to capture the contexts of words for learning word
embeddings. It holds the similar idea with noise contrastive
estimation but the optimizing objective is to assign a real
word-context pair (wi, hi) a higher score than an artificial
noise (wn, hi) by a margin. They minimize the following
hinge loss function, where T is the training corpora.

losscRank =
∑

(wi,hi)∈T

max(0, 1− fθ(wi, hi) + fθ(w
n, hi))

(8)
The scoring function fθ(w, h) is achieved with a feed

forward neural network. Its input is the concatenation of
the current word wi and context words hi, and the output
is a linear layer with only one node which stands for the
compatibility between w and h. During training, an artificial
noise wn is randomly selected over the vocabulary under a
uniform distribution.

3.3 Modeling Sentiment Polarity of Sentences
We present the approaches to encode sentiment polarity of
sentences in sentiment embeddings in this part. We describe
two neural networks including a prediction model and a
ranking model to take considerations of sentiment of sen-
tences.

3.3.1 Prediction Model
The basic idea of the prediction model is regarding senti-
ment prediction as a multi-class classification task. It pre-
dicts positive/negative categorical probabilities of a word
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Fig. 2. An illustration of two neural networks that model the sentiment
polarity of sentences for learning sentiment embeddings.

sequence by regarding word embeddings as parameters.
In particular, given a variable sized sentence, we slide
fixed window of words across a sentence and predict the
sentiment polarity of each window based on local word em-
beddings. This assumption is suitable for tweets if window
size is large, since tweets are typically short and sentiment
condensed. However, it might be not appropriate for docu-
ment level review texts where sentiment shifting indicators
(e.g. negation and contrast) are frequently used.

An illustration of prediction model with binary senti-
ment categories (positive and negative) is given in Figure 2
(a). It contains five layers, namely lookup → linear →
hTanh → linear → softmax. The input is a fixed-length
word sequence {wi−c, wi−c+1, ..., wi , ...wi+c−1, wi+c},
where wi is the current word and c is window size. Lookup,
linear and htanh layers are described in Section 3.2.1. The
output of htanh layer is used as features to predict the
positive and negative probabilities of input, as the contin-
uous representation of higher layers in a neural network
can be interpreted as abstractive and discriminative features
describing the input. To predict the probabilities of positive
and negative categories, we feed htanh to a linear layer to
convert the vector length to category number C , which is
2 in this binary classification case. The parameters of the
second linear layer are Wl2 ∈ RC×len and bl2 ∈ R1×C . We
then add a softmax layer as the output layer to generate
conditional probabilities over positive and negative cate-
gories.

During training, we are given the gold sentiment po-
larity of an input sentence. Let fg(t) ∈ R1×C be the gold
distribution of an input t, where C is the number of sen-
timent polarity labels, which is 2 for positive and negative
classification. fg(t) has a 1-of-C coding scheme, which has
the same dimension as the number of classes, and only the
dimension corresponding to the ground truth is 1, with all
others being 0. For example, fg(t) = [1, 0] stands for a
sentence with positive polarity and fg(t) = [0, 1] represents
a sentence with negative polarity. We use cross entropy error
between gold sentiment distribution and predicted distribu-
tion as the loss function of softmax layer. For a corpus T ,
the loss function is given below, and the parameters can be
learned with standard back propagation [50].

losssPred = −
T∑
t

∑
k={0,1}

fgk (t) · log(f
pred
k (t)) (9)

3.3.2 Ranking Model
We describe an alternative of prediction model, which is
a ranking model that outputs two real-valued sentiment s-
cores for a word sequence with fixed window size. The basic
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idea of ranking model is that if the gold sentiment polarity
of a word sequence is positive, the predicted positive score
should be higher than the negative score. Similarly, if the
gold sentiment polarity of a word sequence is negative, its
positive score should be smaller than the negative score. For
example, if a word sequence is associated with two scores
[frankpos , frankneg ], then the values of [0.7,0.1] can be interpreted
as a positive case because the positive score 0.7 is greater
than the negative score 0.1. By that analogy, the result with
[-0.2,0.6] indicates a negative polarity.

Based on this consideration, we develop a neural net-
work based ranking model, as illustrated in Figure 2 (b),
which shares some similarities with [36]. As is shown, the
ranking model is a feed-forward neural network consisting
of four layers (lookup → linear → hTanh → linear).
Compared with the prediction model as shown in Figure 2
(a), the softmax layer is removed because thisz‘ objective
does not require probabilistic interpretation. Let us denote
the output vector of ranking model as frank ∈ R1×C , where
C = 2 for binary positive and negative classification. We
design a margin ranking loss function for model training,
which is described as below.

losssRank =
T∑
t

max(0, 1− δs(t)frank0 (t) + δs(t)f
rank
1 (t))

(10)
where T is the training corpus, frank0 is the predicted
positive score, frank1 is the predicted negative score, δs(t)
is an indicator function which reflects the gold sentiment
polarity (positive or negative) of a sentence.

δs(t) =

{
1 if fg(t) = [1, 0]

−1 if fg(t) = [0, 1]
(11)

3.4 Modeling Sentiment of Sentences and Contexts of
Words
Up till now, we describe the neural network methods for
learning word embeddings by modeling contexts of words
(Section 3.2) and sentiment of sentences (Section 3.3) sep-
arately. In this section, we introduce two hybrid models,
which naturally capture both sentiment of sentences and
contexts of words for learning a more powerful sentiment
embeddings based on aforementioned models.
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Fig. 3. An illustration of hybrid models that capture contexts of words as
well as sentiment of sentences for learning sentiment embeddings.

3.4.1 Hybrid Prediction Model
We combine the context-based prediction model (Section
3.2.1) and the sentiment-based prediction model (Section
3.3.1) to get a hybrid prediction model in this part. We
design a hybrid loss function, which is weighted linear com-
bination of the sentiment loss losssPred (Equation 9) and the

context loss losscPred (Equation 7), where 0 ≤ αpred ≤ 1
weights the two parts.

losshyPred = αpred · losssPred+(1−αpred) · losscPred (12)

Furthermore, in order to encode sentence and context lev-
el information in word representation rather than in the
parameters of sentiment-specific of context-specific linear
layers, we use shared parameter for the neural layers below
hTanh, which is illustrated in Figure 3 (a). It is worth
noting that, the artificially generated “noises” are only used
for calculating context-based loss losscPred, while has no
influences on the sentiment loss losssPred.

3.4.2 Hybrid Ranking Model
Similar with the hybrid prediction model, we merge context
ranking model (Section 3.2.2) and sentiment ranking model
(Section 3.3.2) to get a hybrid ranking model in this part.
We design a hybrid loss function, which is weighted lin-
ear combination of the sentiment loss losssRank (Equation
10) and the context loss losscRank (Equation 8), where
0 ≤ αrank ≤ 1 weights two parts. The model is shown
in 3 (b). The artificially generated “noises” are only used
for calculating context-based loss losscRank, while does not
contribute to the sentiment loss losssRank.

losshyRank = αrank ·losssRank+(1−αrank)·losscRank (13)

Some recent studies [43], [51], [52], [53] also use neural
networks to encode additional evidences to word embed-
dings. They typically design tailored objective function to
incorporate task-specific information. Our work is in line
with these work as we develop neural models to learn
sentiment embeddings by using sentence level sentiment
information as task-specific evidences.

3.5 Modeling Lexical Level Information
We investigate lexical level information for enhancing

sentiment embeddings in this part. We use two kinds of
lexical-level information, namely word-word associations
and word-sentiment associations. We develop two regu-
larizers to naturally incorporate them into aforementioned
sentiment, context and hybrid neural models.

3.5.1 Integrating Word-Word Association
We model word-word association in this part, holding the
consideration that the words from same cluster should be
as close with each other in the embedding space. In this
work, the word clusters used in this part are obtained
automatically from Urban Dictionary, which will be detailed
in Section 3.6.

Given two words within the same cluster, our objective
is minimizing the distance between them in the embedding
space. We formalize it as:

lossww = λww
∑

(w,v)∈E

||ew − ev||22 (14)

where E is the set of word clusters, ew and ev are the
embeddings of word w and v, respectively. The above loss
function can be naturally integrated with the embedding
learning models introduced in Section 3.2, 3.3 and 3.4 as a
regularizer.
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3.5.2 Integrating Word-Sentiment Association
We integrate word-sentiment association by directly pre-
dicting the sentiment polarity of each word regarding the
embedding values of each word as features. Accordingly,
the optimizing objective is to minimize the negative sum
conditional probabilities:

lossws = −λws(
∑
w∈Ps

Pposw +
∑
w∈Ns

Pnegw) (15)

where Pposw and Pnegw represent the conditional probabil-
ities of classifying a word as positive and negative; Ps and
Ns are the set of words with prior positive and negative
polarity. The training data will be detailed in Section 3.6.

We give some real examples to better explain the lexical
information used for training sentiment embeddings. The
top 10 positive words are: :) :d love :-) like good lol happy thanks
haha, and top 10 negative sentiment words are: :( :-( sorry sad
bad hate ill shit sick fuck. During training, lexical level senti-
ment information is directly encoded in the embeddings of
each word. Since the learning objective of ultimate model is
modeling context and sentiment evidences simultaneously,
the words not covered in the lexicon (e.g. “coooolll”) but
sharing similar contexts with the words in the lexicon (e.g.
“cool” and “haha”) could be also mapped to close vectors in
the embedding space.

In practice, we develop a feed forward neural network
consisting of lookup → linear → softmax. The output of
lookup layer is the embedding of a word, and the length of
linear layer and softmax layer are bothC , which is the class
number and is 2 for binary sentiment/negative case. The
outputs of softmax represent the conditional probabilities
of classifying a word as positive and negative categories.
The training objective is to minimize the cross entropy error
of softmax layer. In this way, word-sentiment association
can be conveniently integrated with previously introduced
neural networks as a regularizer.

3.6 Training Data and Parameter Learning
We describe the training datasets (Section 3.6.1) and the
parameter estimation strategy (Section 3.6.2) for learning
sentiment embeddings in this part.

3.6.1 Datasets
As mentioned in Section 3.3 and 3.4, the sentiment-specific
models require sentence level sentiment information as su-
pervision to learn sentiment embedding. To model word
level information as described in Section 3.5, we need re-
sources containing word-word and word-sentiment associ-
ations.

We collect sentence level sentiment information auto-
matically from Twitter. This is based on the consideration
that larger training data usually leads to more powerful
word representation [1], and it is not practical to manual-
ly label sentiment polarity for huge number of sentences.
Specifically, we leverage massive tweets containing emoti-
cons as weakly supervised corpora without any manual
annotations. We crawl tweets from April 1st, 2013 to April
30th, 2013 with TwitterAPI. We use the carefully selected
positive and negative emoticons [54]4, and save the tweets

4. The positive emoticons are :) : ) :-) :D =), and the negative emoti-
cons are :( : ( :-( .

only containing positive emoticons or negative emoticons5.
These automatically collected tweets contain noises so that
they are not good enough if directly used as gold train-
ing data to build sentiment classifiers. However, they are
effective enough to provide weakly supervised signals for
training sentiment embeddings.

Several heuristic rules are employed to filter the noises
from the automatically collected tweets. For example, we
tokenize each tweet with TwitterNLP [57], remove the @user
and URLs of each tweet, and filter the tweets that are too
short (< 7 words). Finally, we collect 10M tweets, selected
by 5M tweets with positive emoticons and 5M tweets with
negative emoticons. The statistics are given in Table 3.

In order to collect resources containing massive word-
word associations, we leverage Urban Dictionary without
using any manual annotation. Urban Dictionary is a crowd-
sourcing resource, examples of which are illustrated in
Figure 4. For an word included in Urban Dictionary, such as
“good”, there exists a web page6 expressing its definition,
sample sentences and related words. We use the related
words which we name as word clusters in this work. Specifi-
cally, we collect words whose prefix ranges from “a” to “z”.
There are 799,430 items containing similar words, each of
which has about 10.27 similar words on average.

Fig. 4. Illustrated examples in Urban Dictionary.

In order to collect sentiment information of words, we
use the aforementioned word clusters from Urban Dictio-
nary to expand a small size of manually labeled sentiment
seeds. Specifically, we manually label the top frequent 500
words from the vocabulary of sentiment embedding as
positive, negative or neutral. After removing the ambiguous
ones, we obtain 125 positive, 109 negative and 140 neutral
words, which are regarded as the sentiment seeds. After-
wards, we use the similar words from Urban Dictionary to
expand the sentiment seeds. We formulate this procedure as
a k-nearest neighbors (KNN) classifier by regarding senti-
ment seeds as gold standard. We apply the KNN classifier
to the items of Urban Dictionary word cluster, and predict a
three-dimensional discrete vector [knnpos, knnneg, knnneu]
for each item. Each value reflects the hits numbers of
sentiment seeds with different sentiment polarity in its
similar words. For example, the vector value of “coooolll”
is [10, 0, 0], which means that there are 10 positive seeds,
0 negative seeds and 0 neutral seeds occur in its similar
words. To ensure the quality of the expanded words, we
set threshold for each category to collect the items with

5. How to automatically collecting large-scale and robust tweets with
neutral sentiment remains as an open problem, even though there are
some preliminary attempts [55], [56].

6. http://www.urbandictionary.com/define.php?term=good
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high quality as expanded words. Take positive category
as an example, we keep an item as positive expanded
word if it satisfies knnpos > knnneg + thresholdpos and
knnpos > knnneu+thresholdpos simultaneously. We empir-
ically set the thresholds of positive, negative and neutral as
6,3,2 respectively by balancing the size of expanded words
in three categories. After seed expansion, we collect 1,512
positive, 1,345 negative and 962 neutral words. We also tried
the propagation methods to expand the sentiment seeds,
namely iteratively adding similar words of sentiment seeds
from Urban Dictionary into the expanded word collection.
However, the quantity of expanded words is less than the
KNN-based results and the quality is worse.

3.6.2 Parameter Learning
We learn sentiment embeddings by taking the derivative
of the loss through back-propagation with respect to the
whole set of parameters [14]. We initialize the values of
word vectors from a uniform distribution U(−0.01, 0.01),
and initialize the values of linear layers by fan-in the
input length [14], namely from a uniform distribution
U( −0.01

InputLength ,
0.01

InputLength ). We empirically set the window
size as 7 (preceding 3 words and following 3 words), the
embedding length as 50, the length of hidden layer as
20. For parameter update, we use AdaGrad [58], which is
widely applied in deep learning literature [59], [60], [61].
The learning rate in AdaGrad is adaptively changed for
different parameters at different steps.

θt = θt−1 −
ε√∑t
τ=1 g

2
τ

gt (16)

where θt is the value of parameter θ at time step t, gt is the
gradient of θ at time step t, ε is the learning rate and is set
to 0.1 in our approach.

4 WORD LEVEL SENTIMENT ANALYSIS

We investigate whether sentiment embeddings are useful
for discovering similarities between sentiment words in this
section. We conduct experiments on word level sentiment
analysis in two settings, namely querying neighboring sen-
timent words in embedding space (Section 4.1) and word
level sentiment classification (Section 4.2).

x1

cool

awesome

x2

great

bad

nice

interesting

fantastic

excellent

terrible

love

good

good

bad

love

poor

(a) Querying Sentiment Words (b) Word Level Sentiment Classification

Fig. 5. An illustration of word level sentiment analysis tasks, including
querying sentiment words and word level sentiment classification.

4.1 Querying Sentiment Words
A better sentiment embedding should have the ability to
map positive words into close vectors, to map negative
words into close vectors, and to separate positive words and
negative words apart. Accordingly, in the vector space of

sentiment embedding, the neighboring words of a positive
word like “good” should be dominated by positive words
like “cool”, “awesome”, “great”, etc., and a negative word
like “bad” should be surrounded by negative words like
“terrible” and “nasty”. Based this consideration, we query
neighboring sentiment words in existing sentiment lexicon
to investigate whether sentiment embeddings are helpful in
discovering similarities between sentiment words. Specifi-
cally, given a sentiment word as input, we first find out the
topNw closest words in the sentiment lexicon. The closeness
of two words is measured by the similarity (e.g. cosine)
between their word embeddings. Afterwards, we calculate
how much percentage of those neighboring words have the
same sentiment polarity with the target sentiment word.
This percentage of polarity consistency corresponds to an
Accuracy evaluation metric, which is calculated as follows.

Accuracy =

∑#Lex
i=1

∑Nw

j=1 δw(wi, cij)

#Lex×Nw
(17)

where #Lex is the number of words in the sentiment
lexicon,wi is the i-th word in the lexicon, cij is the j-th closest
word to wi in the lexicon, δw(wi, cij) is an indicator function
whose value is 1 if wi and cij have the same sentiment
polarity and 0 for the opposite case. Higher accuracy refers
to a better sentiment embedding in capturing similarities
between sentiment words.

Let us take “good” and Nw = 10 as an example to fur-
ther explain the experimental protocol, which is illustrated
in Figure 5 (a). We first find the top 10 closest words in
the embedding space, including “cool”, “love”, “awesome”,
“bad”, etc. We can find that among these 10 neighbors, eight
words (except for “bad” and “terrible”) sharing the same
sentiment polarity with “good”. As a result, the accuracy for
the word “good” is 80%. We conduct experiments on three
benchmark sentiment lexicons, BL-Lexicon [19]7, MPQA
[20]8 and NRC-Lexicon [62]9. The statistics of the lexicons
are given in Table 6. We set Nw as 10 and 30 separately
to evaluate the performance of sentiment embeddings. We
compare to the following embedding learning algorithms by
apply these algorithms on our tweet dataset to learn word
embeddings.

• C&W: C&W model is a representative algorithm [36]
for learning word embeddings, which is the context-
ranking model as described in Section 3.2.2.

• Word2vec: Mikolov et al. [38] develop CBOW and
SkipGram to learn continuous word vectors, and
embed these two algorithms in a widely used toolkit
“word2vec”. We utilize CBOW in the experiments,
which is analogous to our context-prediction model.

• ReEmbed: Labutov and Lipson [47] learn task-
specific embeddings based on an existing back-
ground embedding and sentiment-specific corpus.
Re(C&W) and Re(Word2vec) stand for the use of dif-
ferent word embeddings as background embedding.

7. http://www.cs.uic.edu/liub/FBS/sentiment-
analysis.html#lexicon

8. http://mpqa.cs.pitt.edu/lexicons/subj lexicon/
9. http://saifmohammad.com/WebPages/lexicons.html



1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2015.2489653, IEEE Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, XXXX 2015 8

TABLE 1
Accuracy of querying sentiment words in different sentiment lexicons

using different word embeddings. The best method is in bold.

Embedding Nw = 10 Nw = 30
BL MPQA NRC BL MPQA NRC

C&W 65.5 60.1 58.8 64.4 59.4 58.1
Word2vec 70.8 65.0 63.0 68.8 63.2 61.3
Re(C&W) 67.1 61.8 59.6 65.9 60.9 58.6
Re(word2vec) 71.2 65.7 63.4 69.6 64.1 61.8
SE-SPred 75.0 69.3 65.5 74.6 69.0 65.1
SE-SRank 73.6 68.4 66.2 73.8 68.3 65.9
SE-HyPred 79.7 74.4 70.1 77.4 72.1 67.9
SE-HyRank 78.3 73.1 69.4 77.9 72.6 68.9

From Table 1, we can find that experimental results
with different neighbor size Nw are almost consistent. A-
mong all these methods, context-based embedding learn-
ing algorithms (C&W, word2vec) perform lower than oth-
er sentiment-specific models. The reason lies in that they
encode contexts of words into word embeddings while
ignoring sentiment information of texts, so that they are not
capable of distinguishing the words with similar context but
opposite sentiment polarity like “good” and “bad”. After
re-embedding background word embeddings with senti-
ment of texts, the accuracy of querying sentiment words
improves. This shows the importance of sentiment of texts
for boosting word embeddings in capturing similarities
between sentiment words. In all these experiments, we can
find that sentiment models (“SE-SPred” and “SE-SRank”)
and hybrid models (“SE-HyPred” and “SE-HyRank”) out-
perform baseline methods. The proposed methods differ
from context-based models in that we capture sentiment
information of texts, which provides crucial evidences for
capturing similarities between sentiment words. The hybrid
models can be viewed as the “joint” version of ReEmbed by
simultaneously encoding contexts of words and sentiment
of sentences into word representation from scratch. Two
hybrid models yields best performances as they capture
not only contexts of words but also sentiment information
of sentences. Since we evaluate sentiment embeddings on
word level sentiment analysis lexicons, we do not compare
with the embeddings learned with word level information
for fair comparison in this part.

We study the influences of context parts and sentiment
parts in hybrid models by varying αpred and αrank from 0
to 1, increased by 0.1. The SE-HyRank model with αrank =
0 is essentially the C&W model, which does not capture any
sentiment information of text. On the contrary, SE-HyRank
model with αrank = 1 is the sentiment ranking model as
described in Section 3.3.2. SE-HyPred model shares a similar
characteristic. We conduct experiments on three sentiment
lexicons (BL, MPQA and NRC), and set Nw = 10 in this
setting. Experimental results are given in Figure 6. We can
find that the trends of Figure 6 (a) and Figure 6 (b) are
similar with each other. There is an obvious performance
boost at α = 0.1, where sentiment of text is first integrated
into context-based model. This results show that sentiment
information is very important, adding of which can help to
discover similarities between sentiment words. Both hybrid
models yield best performances when α is in range [0.5,0.6],
which balances context and sentiment information.
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Fig. 6. Experimental results on querying sentiment words on three
sentiment lexicons. We set Nw as 10.

4.2 Word Level Sentiment Classification
We conduct word level sentiment classification to further
investigate the effectiveness of sentiment embeddings in
capturing similarities between sentiment words. Specifical-
ly, we conduct binary polarity classification on three sen-
timent lexicons (BL, MPQA and NRC) to infer whether a
sentiment word expresses a positive or a negative meaning.
The continuous word embeddings of a word are considered
as its features for classification. We conduct N -Fold cross
validation for each dataset, regarding (N-1) parts as training
data and one part as test data. We train supervised classifiers
N times and average the classification accuracies as the final
evaluation metric. Experimental results with N = 5 and N =
10 are given in Table 2.

TABLE 2
Accuracy of word level sentiment classification (positive vs negative)

using different word embeddings. The best method is in bold.

Embedding N -Fold = 5 N -Fold = 10
BL MPQA NRC BL MPQA NRC

C&W 76.2 70.5 68.1 76.6 69.8 67.5
Word2vec 80.1 75.7 71.7 81.8 73.4 71.2
Re(C&W) 75.0 71.3 68.6 76.6 71.4 68.2
Re(word2vec) 81.5 76.9 71.6 83.1 75.3 73.1
SE-SPred 80.8 78.2 73.3 80.4 76.0 72.4
SE-SRank 78.6 76.2 71.3 77.8 71.1 71.2
SE-HyPred 86.0 85.3 77.5 87.0 83.4 76.9
SE-HyRank 83.9 80.1 75.7 85.6 79.2 77.0

We can find that the results with different fold size are
consistent. Purely context-based methods including C&W
and Word2vec performs relatively poor as they do not use
any sentiment information of text. Re-Embedding them with
sentiment information slightly improve the classification ac-
curacy. Among the bottom four sentiment embedding learn-
ing algorithms, we can see that hybrid models (SE-HyPred,
SE-HyRank) obviously show superior performances than
sentiment models (SE-SPred, SE-SRank). This shows that
both context and sentiment information are helpful for
discovering similarities between sentiment words, and in-
corporating sentiment information significantly boost the
classification accuracy. SE-HyPred performs best in this task.

Comparing between SE-HyPred and SE-HyRank, we can
find in most cases SE-HyPred preforms slightly better. These
two methods use the same information, including contexts
of words and sentiment of sentences. The difference is that
SE-HyPred uses sentiment information in a classification
way while SE-HyRank uses sentiment information in a
ranking fashion. In this binary case, we believe that SE-
HyPred is more suitable as the sentiment labels (positive
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vs. negative) are two individual categories. There does not
exist an apparent ranking relation between these sentiment
labels. For the rating stars in review cites (e.g. Amazon and
Yelp), SEHyRank might be better.

5 SENTENCE LEVEL SENTIMENT CLASSIFICATION

In this part, we apply sentiment embedding as features
to sentiment level sentiment classification. This helps us
to investigate whether sentiment embedding is capable of
capturing discriminative features for classifying the polar-
ity labels (e.g. thumbs up or thumbs down) of text. We
first present our strategy of using sentiment embedding
as features for sentiment classification. We then describe
experimental settings and empirical results.

5.1 Sentence Level Sentiment Classification

We apply sentiment embeddings in a supervised learning
framework for sentiment classification of sentences [63],
[64]. Instead of using hand-crafting features, we use senti-
ment embeddings to compose the feature of a sentence. The
sentiment classifier is built from sentences with manually
annotated sentiment polarity.

Specifically, we use a semantic composition based frame-
work [1] to get sentence representation. The basic idea is
to compose sentence level features from sentiment embed-
dings of words. This is based on the principal of compo-
sitionality [65], which states that the meaning of a longer
expression (e.g. a sentence) is determined by the meaning of
words it contains.

We use max, average and min pooling layers [1], [3]
to obtain the sentence representation, which have been
used as simple and effective methods for compositionality
learning in vector-based semantics [66]. Each pooling layer
poolingp employs the embedding of words and conducts
matrix-vector operation of p on the sequence represented
by columns in each lookup table. z(s) is the concatenation
of results obtained from different pooling functions. In this
way, there is no additional parameters in the composition
component, so that we can naturally build a SVM classifier
with the composed sentence representation and compare to
other state-of-the-art features [64], [67] for fair comparison.
Furthermore, it is also convenient to investigate whether
there is a further performance boost by integrating sentence
embedding feature with existing feature sets. Sentiment
embeddings can also be naturally fed to other semantic
composition models like Recursive Neural Network and
Convolution Neural Network.

We conduct experiment on two types of datasets, one
Twitter dataset from SemEval [21], [68] and another review
dataset from Rotten Tomatoes [23]. The statistics of the
datasets are given in Table 3. On SemEval dataset, we follow
the experimental protocols officially provided by SemEval
2014 [68]. We train sentiment classifier from “SemEval-
2013Train”, tune parameters on “SemEval-2013Dev” and
test the performance of the classifier on “SemEval-2013Test”
and “SemEval-2014Test”. The “SemEval-2013Train” and
“SemEval-2013Dev” datasets were completely in full to task
participants of SemEval 2013. However, we were unable to
download all the training and development sets because

some tweets were deleted or not available due to modified
authorization status.

We conduct binary classification (positive vs negative)
on SemEval dataset as the sentiment embeddings are trained
with only positive and negative sentiment supervisions. As
a reference, we also conduct ternary classification (positive
vs negative vs neutral) on SemEval dataset. It is worth
noting that, Twitter sentiment classification evaluation in
SemEval asks participants to do ternary classificaton over
positive, negative and neutral categories. However, the of-
ficial evaluation metric is macro-F1 score over positive and
negative categories. In this work, we use macro-F1 score
over all categories for both binary and ternary classification.
For ternary classification, Macro-F1 is the average of F1-
Score of positive, negative and neutral categories.

MacroF1 = (F1positive + F1negative + F1neutral)/3 (18)

where each F1 score is calculated as an combination of
precision (P) and recall (R).

F1 = 2 ∗ (P +R)/P ∗R (19)

TABLE 3
Statistics of datasets. #Pos, #Neg and #Neu are the number of positive,

negative and neutral instances. lavg is average length of sentences,
|V | is the vocabulary size.

Dataset #Pos #Neg #Neu lavg |V |
Tweets-Emoticon 5M 5M 0 13.6 1.84M
SemEval-2013Train 2,642 994 3,436 21.5 17,153
SemEval-2013Dev 408 219 493 21.6 4,731
SemEval-2013Test 1,572 601 1,640 21.5 11,345
SemEval-2014Test 982 202 669 21.3 6,042
Review-Embed-Train 0.22M 0.22M 0 23.2 0.14M
Review-All 5,331 5,331 0 21.0 20,263

5.2 Experimental Results
We show empirical experiments on tweet level sentiment
classification in this part. We compare with several standard
and strong baseline methods as follows.

• Dist+Ngrams. We use the tweets containing positive
and negative emoticons as distant supervised train-
ing data to build binary sentiment classifier [69]. We
use unigram, bigram and trigram features and train
SVM classifier with LibLinear [70].

• SVM+Ngrams. In sentiment analysis community,
SVM classifier with bag of ngrams [63] is a standard
baseline for sentiment classification. We try unigram,
bigram and trigram featurs.

• SVM+TextFeatures. We build a state-of-the-art base-
line [64], [67], which uses many complexed features
such as word ngrams, character ngrams, lexicon fea-
tures, cluster features, etc.

The sentiment embeddings learned with Hybrid models
as well as lexical level information are named as “SE-
HyPred-Lex” and “SE-HyRank-Lex”. We use sentiment em-
beddings as features and build sentiment classifier with
LibLinear [70]. Experimental results are given in Table 4.

From Table 4, we can find that distant supervision (“Dis-
t”) does not perform well. The reason is that the automatical-
ly collected tweets contain noises, which are regarded as the
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TABLE 4
Macro-F1 of Twitter sentiment classification on SemEval datasets with

different classification algorithms.

Method Positive/Negative Pos/Neg/Neu
2013Test 2014Test 2013Test 2014Test

Dist+unigrams 73.7 73.3 – –
Dist+{1, 2}-grams 74.0 75.2 – –
Dist+{1, 2, 3}-grams 74.0 75.7 – –
SVM+unigrams 72.1 68.4 55.8 54.8
SVM+{1, 2}-grams 72.7 70.0 57.4 57.6
SVM+{1, 2, 3}-grams 72.7 69.6 56.9 57.1
SVM+TextFeatures 83.8 83.9 66.6 66.8
SE-HyPred-Lex 81.2 80.5 63.3 62.9
SE-HyPred-Lex+TF 84.7 84.4 67.3 67.1
SE-HyRank-Lex 84.0 84.3 64.7 62.8
SE-HyRank-Lex+TF 86.1 86.6 67.9 67.5

gold standard to build the Twitter sentiment classifier. We
can see that bag of ngram features are not powerful enough
for Twitter sentiment classification as it can not well capture
the sophisticated semantics of tweet. Complexed text level
feature is an extremely strong performer on Twitter senti-
ment classification, which shows the effectiveness of feature
engineering. For binary classification, we can find that only
using sentiment embedding feature can obtain comparable
performance with text features on both datasets. This shows
that sentiment embeddings are helpful in capturing discrim-
inative features for predict the positive/negative sentiment
of text. For ternary classification, sentiment embeddings are
still worse than complexed text features. The reason is that
sentiment embeddings are learned from tweets with only
positive or negative supervisions, without adequate neutral
supervisions of tweets. As a result, it does not capture
sufficient discriminative information for ternary sentiment
classification. Concatenating sentiment embeddings with
text features (“SE-Hy**+TF”) yields further improvements
for both binary and ternary classification.

We compare sentiment embeddings with several base-
line embedding learning algorithms for Twitter sentiment
classification. The word embeddings are learned from the
same tweet dataset and further applied as the unique sen-
tence feature with the composition strategy as described
in Section 5.1. We build Twitter sentiment classifier with
LibLinear [70].

TABLE 5
Macro-F1 of Twitter sentiment classification on SemEval datasets with

different word embeddings features.

Method Positive/Negative Pos/Neg/Neu
2013Test 2014Test 2013Test 2014Test

C&W 70.2 69.1 53.2 53.1
Word2vec 70.7 70.6 51.8 50.8
Re(C&W) 74.1 76.2 58.3 58.7
Re(Word2ve) 72.5 74.8 56.8 57.2
SE-Pred 80.8 79.1 61.4 61.8
SE-Rank 79.8 81.5 60.9 59.0
SE-HyPred 80.5 79.2 62.0 61.6
SE-HyRank 82.3 81.8 63.4 61.5
SE-HyPred-Lex 81.2 80.5 63.3 62.9
SE-HyRank-Lex 84.0 84.3 64.7 62.8

From Table 5, we can find that the results on binary
and ternary classifications are almost consistent. Context-
based embeddings are relatively weak in this setting as

they do not use the crucial sentiment factors of texts. Re-
embedding context-based embeddings with sentiment of
texts can slightly boosts the performances. Compared with
baseline methods, our Hybrid models (SE-HyPred and SE-
HyRank) get better classification performances by modeling
contexts of words and sentiment of sentences simultaneous-
ly from scratch. After interacting with lexical level infor-
mation, sentiment embeddings get further improvements.
These empirical results further demonstrate that sentiment
embeddings are helpful in capturing discriminative features
for predict the sentiment of text.

5.3 Sentiment Classification of Reviews
We apply sentiment embeddings for sentiment classification
of reviews to further investigate its ability in discovering
discriminative features from different domains. We run
supervised learning pipeline regarding word embeddings
as features. The sentiment embeddings are learned from
movie reviews (“Review-Embed-Train”), whose statistical
information are given in Table 3. We conduct 10-fold cross-
validation on “Review-All” from Rotten Tomatoes [23] and
use accuracy as the evaluation metric.

Classification accuracies using different word embed-
dings are shown in Figure 7. We can find that re-embedding
Re(**) always improves classification performances, e.g.
Re(C&W) improves C&W and Re(Word2Vec) improves
Word2vec. These results indicate that encoding sentiment
information of texts could boost the accuracy of sentiment
classification. Compared with baseline word embeddings,
hybrid models (“SE-HyPred” and “SE-HyRank”) which use
context and sentiment level information yield best perfor-
mances on sentence level sentiment classification of reviews.
The difference between hybrid models and reembeddings
is that hybrid models learn sentiment embeddings directly
while reembeddings modify a pretrained context based
word embeddings. From this perspective, the hybrid models
can be viewed as joint models that simultaneously capture
context and sentiment information.

Fig. 7. Accuracy of binary sentiment classification (positive/negative) of
review sentences. Word embeddings are used as features.

It is worth noting that sentiment embeddings could be
naturally extended to multi-dimensional sentiment classi-
fication (e.g. emotions in Experience Project dataset or 1-
5 stars in review site). Sentiment embeddings are regard-
ed as feature representations in a machine learning based
pipeline. One could design task-oriented objective function
(e.g. cross entropy error over multi categories) in order to
fit for the multi-dimensional sentiment labels. We conduct
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multi-dimensional sentiment classification on restaurant re-
views from Yelp [71], and find that sentiment embeddings
performs slightly better than SkipGram in terms of classifi-
cation accuracy (see [71] for more details).

6 BUILDING SENTIMENT LEXICON

We apply sentiment embeddings to building sentiment lex-
icon, which is useful for measuring the extent to which
sentiment embeddings improve lexical level tasks that need
to find similarities between words. We introduce a classi-
fication approach to build sentiment lexicon by regarding
sentiment embeddings as word features, and then describe
experimental settings and the results.

6.1 A Classification Approach for Building Sentiment
Lexicon

We describe a classification approach for building large-
scale sentiment lexicon, which is illustrated in Figure 8. We
cast sentiment lexicon learning as a word-level classification
task, which consists of two part: (1) an embedding learning
algorithm to effectively learn the continuous representation
of words, which are used as features for word-level senti-
ment classification, (2) a seed expansion algorithm that ex-
pands a small list of sentiment seeds to collect training data
for building the word-level classifier. The learned sentiment
embeddings are naturally regarded as continuous word
features. Seed expansion procedure has been introduced in
Section 3.6.1.

Sentiment
Classifier

Sentiment
Lexicon

Word Embedding

NEG: goon looser

Sentiment Seeds

Tweets with Emoticons

Soooo nice~ :)

It’s horrible :(

Seed 
Expansion

Embedding
Learning

POS: good :)
NEG: poor :(

NEU: when he

Training Data

POS: wanted fave

NEU: again place

[1.31,0.97]good:

[0.99,1.17]coool:

[-0.81,-0.7]bad:

[-0.8,-0.72]mess:

Learning 
Algorithm

Fig. 8. A classification approach for building sentiment lexicon.

After obtaining the training data and feature representa-
tion of words, we build a word-level sentiment classifier
with softmax, whose length is two for the positive vs
negative case:

y(w) = softmax(θ · ei + b) (20)

where θ and b are the parameters of classifier, ei is the
embedding of a word wi, y(w) is the predicted sentiment
distribution of wi. We employ the classifier to predict the
sentiment distribution of each word in the vocabulary of
sentiment embeddings, and save the words as well as their
sentiment probability in the positive (negative) lexicon if the
positive (negative) probability is larger than 0.5.

6.2 Experimental Settings and Results

We evaluate the effectiveness of the automatically generated
sentiment lexicons. As it is labor intensive to manually check
the lexicon accuracy, we apply it as features to existing

supervised learning pipeline for Twitter sentiment classifi-
cation. We compare it with traditional sentiment lexicons
including BL-Lexicon, MPQA and NRC-Lexicon as well
as automatically generated sentiment lexicons including
HashtagLex and Sentimenet140Lex [64]. The statistics of
baseline lexicons and our lexicons are given in Table 6.
Traditional sentiment lexicons with a relative small lexicon
size. HashtagLex and Sentiment140Lex are Twitter-specific
sentiment lexicons. Our lexicons (SE-HyPred Lexicon and
SE-HyRank Lexicon) are larger than traditional sentiment
lexicons, and have comparable size with automatically gen-
erated lexicons.

TABLE 6
Statistics of sentiment lexicons (unigram only).

Sentiment Lexicon Size #Positive #Negative
BL-Lexicon 6,786 2,006 4,780
MPQA 6,451 2,301 4,150
NRC-Lexicon 5,555 2,231 3,324
HashtagLex 54,129 32,048 22,081
Sentiment140Lex 62,468 38,312 24,156
SE-HyPred Lexicon 65,854 33,829 32,025
SE-HyRank Lexicon 64,603 31,591 33,012

We evaluate the effectiveness of sentiment lexicons by
applying them as features for Twitter sentiment classifica-
tion in a state-of-the-art supervised learning pipeline [64],
[67]. We use lexicon feature [64] as the unique feature to
build sentiment classifier. Specifically, the lexicon features
for each sentiment polarity (positive or negative) are:

• total count of tokens in the tweet with score greater
than 0;

• the sum of the scores for all tokens in the tweet;
• the maximal score;
• the non-zero score of the last token in the tweet;

We conduct experiments on the SemEval datasets (see
Table 3), training model on “SemEval-2013Train”, tun-
ing parameters on “SemEval-2013Dev” and testing on
“SemEval-2013Test” as well as “SemEval-2014Test”. We
conduct both binary (positive/negative) and ternary (pos-
itive/negative/neutral) classification. Experiment results
with different sentiment lexicons are given in Table 7.

TABLE 7
Macro-F1 of Twitter sentiment classification on SemEval datasets with

different sentiment lexicon features (Unique).

Method Positive/Negative Pos/Neg/Neu
2013Test 2014Test 2013Test 2014Test

BL-Lexicon 66.9 56.8 36.5 37.8
MPQA 65.0 58.4 39.1 39.4
NRC-Lexicon 62.3 55.4 34.8 37.7
HashtagLex 63.0 60.1 36.1 34.7
Sentiment140Lex 70.8 76.7 46.1 47.1
SE-HyPred 76.0 72.4 51.5 46.4
SE-HyRank 73.7 74.0 50.2 47.0

From Table 7, we can find that the performances of
traditional lexicons are relatively low. This is because that
in this setting sentiment lexicon feature is the only feature,
however, standard sentiment lexicons are typically with a
small size and low coverage. As a result, many ill-formed
expressions on Twitter can not be covered. Sentiment140Lex
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is the strongest performer among all baseline sentiment
lexicons. This indicates the effectiveness of the automatically
generated lexicon. In addition, this show that emoticons are
better sentiment signals than sentimental hashtags when
used for building sentiment lexicons. On “2013Test” dataset,
our lexicons show superior performances over all baseline
methods. On “2014Test” dataset our lexicons perform com-
parable with the best baseline lexicon Sentiment140Lex.

We further compare sentiment embeddings with context-
based word embeddings in building sentiment lexicon.
From Table 8, we can find that on binary classification,
sentiment embeddings obviously outperform baseline word
embeddings, which verifies its ability in finding similarities
between words. However, the improvement is not so signif-
icant on ternary classification because the training data of
sentiment embeddings do not contain neutral supervisions.

TABLE 8
Macro-F1 of Twitter sentiment classification on SemEval datasets with

different sentiment lexicon features (Unique).

Method Positive/Negative Pos/Neg/Neu
2013Test 2014Test 2013Test 2014Test

C&W 68.0 63.5 42.5 41.8
Word2vec 69.8 66.8 45.2 42.9
Re(C&W) 72.5 65.4 46.5 45.0
Re(Word2vec) 71.1 69.6 49.0 46.2
SE-Pred 74.8 71.4 50.1 45.7
SE-Rank 72.8 72.2 49.6 45.9
SE-HyPred 76.0 72.4 51.5 46.4
SE-HyRank 73.7 74.0 50.2 47.0

We also conduct experiments in an “Append” setting
by appending lexicon features to existing basic features.
We use the feature sets of [64] excluding lexicon feature
as the basic feature, including bag of words, pos-tagging,
emoticons, hashtags, elongated words, etc. Experimental
results in “Append” setting are given in Table 9. We can find
that the classification performances with different lexicons
are close. This is because the influence of lexicon features
is weakened when combined with hundreds of thousands
of discrete features like bag of words. Our lexicons perform
comparably with the best performed baseline lexicon in this
setting.

TABLE 9
Macro-F1 of Twitter sentiment classification on SemEval datasets with

different sentiment lexicon features (Append).

Method Positive/Negative Pos/Neg/Neu
2013Test 2014Test 2013Test 2014Test

BL-Lexicon 81.2 80.9 64.2 66.4
MPQA 79.2 79.8 63.2 65.7
NRC-Lexicon 79.8 79.4 62.6 64.0
HashtagLex 80.2 81.5 62.8 64.0
Sentiment140Lex 80.1 81.7 63.3 65.5
SE-HyPred Lexicon 81.7 81.4 64.9 64.5
SE-HyRank Lexicon 81.0 81.9 63.8 65.2

We discuss about some limitations and future direc-
tions of the classification based lexicon learning approach
introduced in this paper. It is well accepted that feature
representation is the key to build a powerful classifier.
One constrain of the approach is that each word in the
training/test process requires to have an embedding vector,
which is regarded as the feature representation. However,

the vocabulary of word embeddings cannot cover every
word due to limit of the training corpus. The approach
proposed in this work cannot handle the words not covered
in the embedding vocabulary. How to deal with the newly
generated words in social media is an interesting future
work.

7 CONCLUSION

We learn sentiment-specific word embeddings (named as
sentiment embeddings) in this paper. Different from majori-
ty of exiting studies that only encode word contexts in word
embeddings, we factor in sentiment of texts to facilitate the
ability of word embeddings in capturing word similarities
in terms of sentiment semantics. As a result, the words
with similar contexts but opposite sentiment polarity labels
like “good” and “bad” can be separated in the sentiment
embedding space. We introduce several neural networks to
effectively encode context and sentiment level informations
simultaneously into word embeddings in a unified way.
The effectiveness of sentiment embeddings are verified em-
pirically on three sentiment analysis tasks. On word level
sentiment analysis, we show that sentiment embeddings
are useful for discovering similarities between sentiment
words. On sentence level sentiment classification, sentiment
embeddings are helpful in capturing discriminative features
for predicting the sentiment of sentences. On lexical level
task like building sentiment lexicon, sentiment embeddings
are shown to be useful for measuring the similarities be-
tween words. Hybrid models that capture both context and
sentiment information are the best performers on all three
tasks.
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