
2329-9290 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TASLP.2016.2522655, IEEE/ACM
Transactions on Audio, Speech, and Language Processing

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XXX 20XX 1

Post-Filters to Modify the Modulation Spectrum
for Statistical Parametric Speech Synthesis

Shinnosuke Takamichi, Student Member, IEEE, Tomoki Toda, Member, IEEE, Alan W. Black, Member, IEEE
Graham Neubig, Nonmember, IEEE Sakriani Sakti, Member, IEEE Satoshi Nakamura, Fellow, IEEE

Abstract—This paper presents novel approaches based on
Modulation Spectrum (MS) for high-quality statistical para-
metric speech synthesis, including Text-To-Speech (TTS) and
Voice Conversion (VC). Although statistical parametric speech
synthesis offers various advantages over concatenative speech
synthesis, the synthetic speech quality is still not as good as
that of concatenative speech synthesis or the quality of natural
speech. One of the biggest issues causing the quality degradation
is the over-smoothing effect often observed in the generated
speech parameter trajectories. Global Variance (GV) is known
as a feature well correlated with the over-smoothing effect, and
the effectiveness of keeping the GV of the generated speech
parameter trajectories similar to those of natural speech has
been confirmed. However, the quality gap between natural speech
and synthetic speech is still large. In this paper, we propose
using the MS of the generated speech parameter trajectories as
a new feature to effectively quantify the over-smoothing effect.
Moreover, we propose post-filters to modify the MS utterance by
utterance or segment by segment to make the MS of synthetic
speech close to that of natural speech. The proposed post-
filters are applicable to various synthesizers based on statistical
parametric speech synthesis. We first perform an evaluation of
the proposed method in the framework of Hidden Markov Model
(HMM)-based TTS, examining its properties from different per-
spectives. Furthermore, effectiveness of the proposed post-filters
are also evaluated in Gaussian Mixture Model (GMM)-based
VC and Classification And Regression Trees (CART)-based TTS
(a.k.a., CLUSTERGEN). The experimental results demonstrate
that (1) the proposed utterance-level post-filter achieves quality
comparable to the conventional generation algorithm considering
the GV, and yields significant improvements by applying to
the GV-based generation algorithm in HMM-based TTS. (2)
the proposed segment-level post-filter capable of achieving low-
delay synthesis also yields significant improvements in synthetic
speech quality, and (3) the proposed post-filters are also effective
in not only HMM-based TTS but also GMM-based VC and
CLUSTERGEN.

Index Terms—Statistical parametric speech synthesis, over-
smoothing, post-filter, global variance, modulation spectrum,
HMM-based text-to-speech, GMM-based voice conversion,
CLUSTERGEN

I. INTRODUCTION

ALTHOUGH human beings naturally utilize their own
speech as a communication tool, there exist many barri-

ers in speech communication, such as vocal disorders [1], [2],
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[3], language differences [4], [5], [6], and physical constraints
[3], [7]. Many speech technologies have been studied to break
down these barriers. One of the promising technologies is
parametric speech generation [8], including Text-To-Speech
(TTS) synthesis [9] and Voice Conversion (VC) [10]. TTS
is a technique to synthesize speech corresponding to a given
text, and VC is a technique to convert non-/para-linguistic
characteristics of input speech while preserving linguistic
characteristics.

In parametric speech generation, statistical parametric
speech synthesis [11] was established in the 1990s [12], [10],
and has gained popularity in this decade. Nowadays, many
technologies have been studied within this basic framework,
including speech synthesis using Hidden Markov Models
(HMM) [13], Gaussian Mixture Model (GMM) [14], Classi-
fication And Regression Trees (CART) [15], kernel regres-
sion [16], [17], and Deep Neural Nets (DNN) [18], [19].
Whereas concatenative speech synthesis [9], [20] directly uses
waveform segments or natural speech parameter segments to
generate a speech waveform, statistical parametric speech syn-
thesis collects statistics from the speech parameter segments
and utilizes these to generate speech parameters to be used
in speech waveform generation. This statistical modeling and
generation framework make it possible to build small footprint
synthesizers [21], adapt existing voices to other target voices
using only a small amount of speech data [22], and flexibly
control voice characteristics of synthetic speech [23], [24].

On the other hand, a serious drawback of statistical para-
metric speech synthesis compared to concatenative speech
synthesis is the lower quality of synthetic speech [25], [26].
There are three main reasons causing the quality degradation
[11]: parameterization errors in the speech analysis/synthesis
stage [27], [28], [29], inaccurate modeling in the training
stage [30], [18], and over-smoothness of the generated speech
parameters in the synthesis stage [25], [26]. In particular, the
last factor, the over-smoothing effect usually makes synthetic
speech sound muffled compared to concatenative speech syn-
thesis or natural speech. One promising approach to alleviate
the over-smoothing effect is to extract a specific feature to
quantify the over-smoothing effect and to generate speech
parameters so that their corresponding features become more
similar to those of natural speech parameters. One widely
known example of such a feature is Global Variance (GV) [31],
[14], which is a second order moment of the speech parameter
sequence. Considering the GV during parameter generation
effectively works to alleviate the over-smoothing effect and to
significantly improve synthetic speech quality. Currently, the
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GV-based parameter generation has been applied in a number
of ways [32], [33], [34], [35]. However, the use of this metric
in the parameter generation tends to additionally generate
artificial sounds [32], [34] and the quality gap between natural
and synthetic speech is still large.

In this paper, we propose a new feature more sensitively
correlated to the over-smoothing effect than the GV, the
Modulation Spectrum (MS). The linear-scaled MS of a speech
parameter sequence is defined as the power spectrum of the
sequence. The linear-scaled MS, like GV, is a second order
moments of the parameter sequence. The effectiveness of the
MS in capturing speech properties has been noted in other
research areas, such as spectral cues of speech perception [36],
the use as acoustic features in HMM-based speech recognition
[37] and acoustic signal classification [38], and as a counter-
measure to discriminate synthetic speech from natural speech
in speaker verification [39]. Related to the perceptual effect,
[40], [41] investigated the effect of the MS (especially, lower
modulation frequency band) on the perceptual intelligibility.
Because generated speech parameter sequences tend to be
temporally smoothed by the parameter generation process, the
MS of synthetic speech tends to be degraded compared to that
of natural speech. This MS degradation is still observed even
when GV is used in parameter generation. The post-filtering
approach proposed in this paper remedies this problem by
modifying the generated speech parameter sequence so that
its MS becomes more similar to that of natural speech. The
proposed post-filter modifies the MS utterance by utterance
and can be automatically constructed using natural speech
and synthetic speech as training data. This utterance-level
post-filter is further extended to a segment-level post-filter to
modify the MS segment by segment in order to achieve low-
delay parameter generation [42], [43].

We first evaluate the proposed post-filters in HMM-based
TTS from various perspectives. Then, we evaluate them in
other speech synthesizers: the utterance-level post-filter in
GMM-based VC [14] and the segment-level post-filter in
CART-based TTS (a.k.a., CLUSTERGEN) [15]. The exper-
imental results show that (1) the proposed post-filters effec-
tively improve the naturalness of the spectrum, F0, and HMM-
state duration, yielding significant quality improvements in
HMM-based TTS (as also shown in [44], [45]), (2) the
proposed segment-level post-filter is also effective (as also
shown in [45]), and (3) the proposed post-filters are effective
in not only HMM-based TTS but also GMM-based VC (as
also shown in [46]) and CLUSTERGEN.

The rest of this paper is organized as follows. Section
II briefly reviews HMM-based TTS, GMM-based VC, and
CLUSTERGEN. Section III presents the concept of our study,
the MS, and Section IV proposes the MS-based post-filter.
Section V and Section VI are the experimental evaluation and
conclusion, respectively.

II. SPEECH PARAMETER GENERATION IN STATISTICAL
PARAMETRIC SPEECH SYNTHESIS

This section describes the speech parameter generation pro-
cedures in statistical parametric speech synthesis frameworks,

Fig. 1. An overview of HMM-based TTS.

such as HMM-based TTS, GMM-based VC, and CLUSTER-
GEN.

A. HMM-Based TTS [13]

Figure 1 illustrates an overview of HMM-based TTS. The
HMM models the T -frame output speech feature sequence

Y =
[
Y >1 , · · · ,Y

>
t , · · · ,Y

>
T

]>
given the contextual factor

sequence X of the input text, where Y t is a speech feature
vector at frame t. Speech features and HMM-state duration
are simultaneously modeled in a unified framework [47].
In synthesis, given the contextual feature sequence X , the
corresponding HMM is first constructed, then the HMM-state
sequence q̂ = [q̂1, · · · , q̂t, · · · , q̂T ] is determined by maximiz-
ing the duration probability density function as follows:

q̂ = argmax
q

P (q|X,λ) , (1)

where q̂t is a HMM-state at frame t, and λ is the parameter
set of the HMM. The synthetic speech parameter sequence is
generated by the following algorithms.

Using HMMs [48]: The speech parameter sequence is
generated by maximizing the following output probability
density function under the explicit relationship between static
and dynamic features.

ŷ = argmax
y

P (Wy| q,X,λ) , (2)

where ŷ =
[
y>1 , · · · ,y>t , · · · ,y>T

]>
is a speech

parameter vector sequence of T frames, yt =
[yt (1) , · · · , yt (d) , · · · , yt (D)]

> is a D-dimensional speech
feature vector at frame t, d is a dimension index, and W
is the weighting matrix for calculating the dynamic features
[11], where Y =Wy.

Synthetic speech parameter sequences generated by Eq. (2)
tend to be over-smoothed, and the synthetic speech sounds
muffled compared to the natural speech.

Using HMMs and a GV model [31]:
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The GV is defined as a second order moment of the
parameter trajectory, which is calculated as

v (y) = [v (1) , · · · , v (d) , · · · , v (D)]
>
, (3)

v (d) =
1

T

T∑
t=1

(
yt (d)−

1

T

T∑
τ=1

yτ (d)

)2

. (4)

The speech parameter sequence is generated by maximizing a
weighted combination of the two probability density functions.

ŷ = argmax
y

P (Wy| q,X,λ)P (v (y)|λv)
wv , (5)

where λv is the parameter set of the GV, and wv is the
weight of the GV probability density function. The probability
density function of the GV is trained from the natural speech
parameters in the training data.

B. GMM-Based VC [14]

In GMM-based VC, a GMM performs frame-level modeling
using input and output speech feature sequences X and Y .
The Dynamic Time Warping (DTW) algorithm is used to
temporally align X and Y . In synthesis, mixture component
sequence q̂ is determined similarly to Eq. (1), where qt is a
mixture component at frame t. The synthetic speech parameter
sequence ŷ is determined in the same manner as Eq. (5), where
P (Wy| q,X,λ) is derived from the GMM.

C. CLUSTERGEN [15]

Whereas HMM-based TTS ties the probability density func-
tions over multiple frames with the HMM-state-level probabil-
ity density function, which is usually determined by decision
tree clustering based on the Minimum Description Length
(MDL) criterion [49], CLUSTERGEN predicts the probability
density functions frame by frame in the CART framework.
The output probability density function in Eq. (2) is calculated
using the contextual factor sequence X . The synthetic speech
parameter sequence ŷ is determined in the same manner as
Eq. (2).

III. MODULATION SPECTRUM ANALYSIS

Though the MS is traditionally defined as a value calculated
using the Fourier transform of the parameter sequence [50],
this paper defines the MS as its log-scaled power spectrum.
The temporal fluctuation of the parameter sequence is modeled
as power values of individual modulation frequency com-
ponents of the parameter sequence. The MS s (y) of the
parameter sequence y is calculated as:

s (y) =
[
s (1)

>
, · · · , s (d)> , · · · , s (D)

>
]>

, (6)

s (d) = [sd (0) , · · · , sd (f) , · · · , sd (Ds)]
>
, (7)

sd (f) = log

( T∑
t=1

yt (d) cosmt

)2

+

(
T∑
t=1

yt (d) sinmt

)2
 , (8)

Fig. 2. Graphic representation of how to derive the MS s (y) from the speech
parameter sequence y.
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Fig. 3. Averaged MSs of the 1st, 9th and 15th mel-cepstral coefficient
sequences from above in HMM-based TTS.

where f is a modulation frequency index, m = −πf/Ds is
a modulation frequency, and Ds is one half of the Discrete
Fourier Transform (DFT) length. The MS is calculated from
zero-padded parameter sequences so its length is 2Ds. As
shown in Fig. 2, s (y) is given as a super vector consisting of
the MSs corresponding to individual feature dimensions.

To demonstrate how the MS allows us to capture relevant
frequency characteristics, we first demonstrate some charac-
teristics of the MS of natural and synthetic speech. Figure 3
shows the MS mean of the mel-cepstral coefficient sequences
generated using Eq. (2) (“HMM”) and Eq. (5) (“HMM+GV”)
in HMM-based TTS. Additionally, the MS mean of a natural
speech parameter sequence (“natural”) is shown in the same
figure for comparison. It can be observed that the MS of
“HMM” is markedly degraded compared to that of “natural.”
This is because temporal fluctuation observed in the natural
speech parameter sequences is lost in the HMM framework.
We can also find that the MS of “HMM+GV” is closer to
natural speech in lower modulation frequency bands but there
is still a large gap between the MSs of “HMM+GV” and
“natural speech” in higher modulation frequency bands (more
than 10 Hz). From these results, we can expect that further
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Fig. 4. Averaged MSs of log-F0 contours in HMM-based TTS. Note that the
Nyquist frequency is 100 Hz similarly to the spectral parameters, but only
< 10 Hz components are shown.

Fig. 5. Averaged MSs of phoneme-level duration in HMM-based TTS. Note
that the pseudo Nyquist frequency is set to 100 Hz because we cannot define
the Nyquist frequency for duration.

quality improvements will be yielded by compensating for
these differences in the MS.

In addition, we consider the spectral tilt of the MS (defined
as “MS tilt”) which indicates the power difference between the
lower and the higher modulation frequency components in Fig.
3. We can observe that the MS tilt of the natural mel-cepstrum
tends to increase in the higher order mel-cepstral coefficients.
On the other hand, the MS tilt of the generated mel-cepstrum
is similar among different order mel-cepstral coefficients. Even
when using the GV in the parameter generation “HMM+GV,”
the MS is just shifted and the MS tilt is not changed. These
results show that the parameter generation process shown by
Eq. (2) or Eq. (5) tends to constrain the MS tilt of the generated
speech parameter sequence to be unnatural.

In addition to the cepstral coefficients, we can also calculate
the MSs of the other features. as described in the following
section. The MS of the F0 contour shown in Fig. 4 is also de-
graded by the statistical process. Higher modulation frequency
components of the generated MS are almost the same as those
of natural speech, but lower components are slightly different.
HMM-state duration determined by Eq. (1) is also affected
by the over-smoothing effect due to the statistical averaging
process implicit in conventional parameter generation, as in
the spectrum and F0 components [47], [51]. Figure 5 shows
the MS mean of phoneme duration sequences. We can see
that the generated MS is generally smaller than that of natural
speech.

Training
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Power 
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Modulation spectrum

Statistical model

PhaseGeneration

Postfilter
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Training
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Fig. 6. A schematic diagram of the proposed MS-based post-filter to modify
the MS of the generated parameter sequence in the case of HMM-based TTS.

Fig. 7. An example of the MS conversion in the synthesis stage. Note that
the MS envelope (“Generated MS” and “Filtered MS”) is drawn instead of
the MS itself for clear illustration. The MS envelope is calculated by low-pass
liftering the cepstrum of MS.

IV. PROPOSED MS-BASED POST-FILTER

This section proposes post-filters to modify the MS of the
generated parameter sequence. Figure 6 shows a schematic
diagram of the proposed method. Parameters of the pro-
posed post-filter are automatically trained using natural and
generated speech parameter sequences in the training data.
The speech parameters are generated by an individual speech
synthesizer. First, the utterance-level MS-based post-filter is
described for spectrum, F0, and HMM-state duration. Then,
the segment-level MS-based post-filter is derived by localizing
the utterance-level post-filtering process.

A. Utterance-level MS-Based Post-Filter

The post-filter described in this section performs utterance-
level MS filtering. The MS is calculated from a parameter
sequence that is zero-padded to set its sequence length to 2Ds,
and it is assumed that the sequence length in the training and
synthesis is less than 2Ds.

1) Training Stage: The following probability distribution
function is estimated from natural speech parameter se-
quences:

P (s|λs) = N
(
s;µ(N)

s ,Σ(N)
s

)
, (9)
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TABLE I
THE DETAILED PROCEDURE OF THE PROPOSED POST-FILTERING PROCESS.

1 Zero-pad the original parameter sequence.
2 Take the DFT and store the phase characteristics.
3 Calculate the log-scaled power spectrum (= MS).
4 Apply the post-filter to the MS.
5 Compute the power and add the original phase.
6 Take the inverse DFT.
7 Truncate the resulting signal to have an appropriate length.

where µ(N)
s and Σ(N)

s are the mean vector and the diagonal
covariance matrix of the MS s,

µ(N)
s =

[
µ

(N)
1

>
, · · · ,µ(N)

d

>
, · · · ,µ(N)

D

>
]>

, (10)

Σ(N)
s = diag

[
Σ

(N)
1 , · · · ,Σ(N)

d , · · · ,Σ(N)
D

]
, (11)

µ
(N)
d =

[
µ
(N)
d,0 , · · · , µ

(N)
d,f , · · · , µ

(N)
d,Ds

]>
, (12)

Σ
(N)
d = diag

[
σ
(N)
d,0

2
, · · · , σ(N)

d,f

2
, · · · , σ(N)

d,Ds

2]
, (13)

where µ
(N)
d,f and σ

(N)
d,f

2
are the mean and the variance of

sd (f), respectively. λs is the parameter set of the MS.
N
(
·;µ(G)

s ,Σ(G)
s

)
is also estimated in the same manner using

the speech parameter sequences generated as described in
Section II. To avoid the effect of the duration difference
between natural and generated speech parameter sequences in
HMM-based TTS, the parameter sequence is generated using
the natural speech duration. In the case of GMM-based VC,
temporally-aligned input speech parameter sequenceX is used
to generated the speech parameter sequence y.

2) Synthesis Process: The following filter is applied to the
generated speech parameter sequence y (see Fig. 7.):

s′d (f) = (1− k)sd (f)

+ k

[
σ
(N)
d,f

σ
(G)
d,f

(
sd (f)− µ(G)

d,f

)
+ µ

(N)
d,f

]
, (14)

where k is a post-filter emphasis coefficient between 0 and
1. If k = 1, the MS will be modified to be close to the MS
of natural speech parameter sequences. On the other hand,
if k = 0, the filtered sequence will be the same as the non-
filtered sequence. The filtered parameter sequence is calculated
from the modified MS and original phase characteristics of the
parameter sequence before filtering. The detailed procedure is
shown in Table I.

We implemented the simple time-invariant filter as the yet
another implementation to recover the MS, but the synthesized
speech sounded discontinuous as reported in [45].

B. Application to Various Features

1) F0 Contour: While the proposed post-filter can be di-
rectly applied to the spectral component, additional processing
is required for its application to the F0 component because
observed F0 contours are not a continuous sequence. To solve
this problem, we use continuous F0 modeling [52] which also
estimates F0 values at the unvoiced frames. Following [53],

Fig. 8. An illustration of the pre-processing procedures to calculate the
continuous F0 contour from the original F0 contour.

s

s

Fig. 9. Procedures of the segment-level MS-based post-filter in HMM-based
TTS.

F0 values of the unvoiced frames are estimated with spline-
based interpolation. Because the effect of micro prosody on
speech quality is small [54] but the effect on the MS is not
negligible, we remove it with a Low Pass Filter (LPF). More-
over, the utterance-level F0 mean is subtracted from original
F0 values before estimating continuous F0 contours to avoid
discontinuous transitions in the zero-padding process. These
procedures are shown in Fig. 8. Because spline-based methods
are inappropriate for extrapolation, i.e., silence frames, we
calculate the MS from the non-silence frames1.

In synthesis, the utterance-level mean and unvoiced/voiced
regions of the generated F0 contour are extracted before
applying the proposed post-filter. First, the filtered continuous
F0 contour is calculated in the same manner as the spectral
component. Then, the filtered F0 contour is calculated by
adding the mean to the filtered continuous F0 contour and
restoring the unvoiced/voiced regions.

2) HMM-state duration: The proposed utterance-level post-
filter modifies the MS of the phoneme-level duration calculated
from the state-level duration determined by Eq. (1). The
phoneme-level duration sequence is filtered after excluding
silence and its mean value is normalized as with the F0 param-
eters. After restoring the utterance-level mean, the phoneme-

1We also considered simple approaches to estimate F0 of silence such as
the use of the utterance-level mean of F0 or the use of the F0 value in the
nearest voiced frame. However, we have confirmed that the current method
is better to model the MS.
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level duration is revised if it is smaller than the number of
states of the phoneme HMM. Finally, the HMM-state duration
is updated by maximizing the state duration while fixing the
phoneme duration to the filtered values.

C. Segment-Level Post-Filter

Because the proposed utterance-level MS-based post-filter
calculates the MS utterance by utterance, the DFT length needs
to be set large enough to cover various lengths of utterances.
This MS calculation causes some problems: if the length of
an utterance to be synthesized is longer than the previously
determined DFT length, the MS can not be calculated ac-
curately, and thus it is difficult to apply the utterance-level
filtering process to a low-latency speech synthesis framework
[42], [43] where frame-level or segment-level processing based
on the recursive parameter generation is essential [12].

In order to handle these cases, we propose a segment-
level post-filter that is effective on shorter segments. The
segment-level post-filter is derived by localizing the post-
filtering process as illustrated in Fig. 9. A part of the speech
parameter sequence that is windowed by a triangular window
with constant length is used as a segment to calculate the
MS and its statistics. The window shift length is set to a half
of the window length. The MS-based post-filtering process
is performed segment by segment in the same manner as
the trajectory-level post-filtering process. The filtered speech
parameter sequence is generated by overlapping and adding
the filtered segments. The Hanning window may also be used
instead of the triangular window. Note that for the spectrum
parameters, silence frames are removed in calculating the
MS statistics to alleviate the over-fitting problem [18]. The
segment-level post-filtering can be applicable to low-delay
speech waveform generation. Moreover, it is possible to further
implement context-dependent post-filtering.

D. Discussion

The proposed post-filters can be automatically constructed
in a data-driven manner. Whereas conventional post-filtering
processes [47], [55], [56], [57] requires the rule-based design
[47], or manual tuning [55], the proposed post-filters enable
automatic design and tuning.

Another data-driven approach is the post-filtering process
to maintain the GV of the generated parameter sequence [35].
The generated speech parameters are linearly converted as
follows:

ŷt (d) =

√√√√µ
(GV,N)
d

µ
(GV,G)
d

{yt (d)− 〈yt (d)〉}+ 〈yt (d)〉, (15)

where µ
(GV,N)
d and µ

(GV,G)
d are the GV mean of the d-

th dimension of the natural and synthetic speech parameters
in the training data, respectively, and 〈yt (d)〉 is the mean
of the d-th dimension of the synthetic speech parameters.
In this method, since only the variance of the sequence is
considered, the MS degradation is not completely recovered.
Thus, temporal fluctuation of the generated speech parameters
after filtering is still very different from that of natural speech.

Fig. 10. An example of the 1st, 9th, and 15th mel-cepstral coefficient
sequences from above in HMM-based TTS.

Fig. 11. An example of the spectrograms in HMM-based TTS.

On the other hand, the proposed post-filters can recover this
fluctuation because we directly consider the MS itself.

According to the Parseval’s theorem, the power of a tem-
poral sequence is preserved during a DFT. The GV defined
in Eq. (4) represents the power of the sequence excluding the
bias component. Because the utterance-level MS is defined
as the power spectrum of the sequence, the sum of the MS
over all modulation frequencies excluding the bias component
(frequency zero) is equal to the GV2. In the GV-based post-
filtering process, MSs of all modulation frequencies other than
the bias are converted in the same way. Namely, the GV-based
post-filtering process is a special case of the proposed MS-

2Properly described, the sum of linear-scaled MS excluding the bias is
proportional to GV.
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Fig. 12. An example of the F0 contour in HMM-based TTS.

Fig. 13. An example of the phoneme-level duration in HMM-based TTS.

based post-filtering process under the following conditions:

µ
(·)
d,f = logµ(GV,·) (f > 0), (16)

µ
(N)
d,f = µ

(G)
d,f (f = 0), (17)

σ
(N)
d,f = σ

(G)
d,f , (18)

in which the post-filter emphasis coefficient is set to 1.
Namely, the GV-based post-filtering process only causes the
constant MS shift as shown in Fig. 33. On the other hand, the
proposed methods can directly convert the MS components at
individual modulation frequencies.

Figure 10 draws an example of the filtered/non-filtered mel-
cepstral coefficient sequences. It is observed that the proposed
post-filter generates the fluctuated parameter sequence, and
the effect is larger in the higher order of the mel-cepstral
coefficients. This is because the MS difference between natural
and generated parameter sequences is larger in higher-order
mel-cepstral coefficients as shown in Fig. 3. The effect of
the proposed post-filter is also observed in the spectrogram
shown in Fig. 11. We can find that the proposed post-filter
produces a more fluctuated spectral sequence compared to the
conventional approaches. Similarly, Fig. 12 and Fig. 13 show
the F0 contour and duration. We can also find the fluctuated
parameter sequences are generated by the proposed post-filter.

Note that although these fluctuated parameter sequences
are effective for improving naturalness of synthetic speech,

3In Fig. 3, the parameter generation algorithm considering the GV rather
than the GV-based post-filter is used. Although it tends to make the GV of
the generated speech parameter sequence almost equal to the GV mean µv
[58], [59], it still roughly results a MS shift in practical effect, although the
amount of the MS shift changes utterance by utterance.

they sometimes result in audible warbling in the synthesized
speech.

V. EXPERIMENTAL EVALUATION

First, we investigate the effects of the proposed utterance-
level and segment-level post-filters from various perspectives
in HMM-based TTS. Then, we evaluate them in other statisti-
cal parametric speech synthesis frameworks: the effect of the
utterance-level post-filter in GMM-based VC and the effect of
the segment-level post-filter in CLUSTERGEN.

A. Experimental Conditions for Evaluation in HMM-Based
TTS

We trained a context-dependent phoneme Hidden Semi-
Markov Model (HSMM) [60] for a Japanese female speaker
for evaluation in HMM-based TTS. We used 450 sentences
for training and 53 sentences for evaluation from the 503
phonetically balanced sentences included in the ATR Japanese
speech database [61]. Speech signals were sampled at 16
kHz. The shift length was set to 5 ms. The 0th-through-24th
mel-cepstral coefficients were extracted as spectral parameters
and log-scaled F0 and 5 band-aperiodicity [62], [63] were
extracted as excitation parameters. The STRAIGHT analysis-
synthesis system [27] was employed for parameter extraction
and waveform generation. The feature vector consisted of
spectral and excitation parameters and their delta and delta-
delta features. Five-state left-to-right HSMMs were used.
The proposed post-filter was trained in a context-independent
manner. A 10 Hz-cutoff LPF was used to remove the micro
prosody from the continuous F0 contours4.

We conducted evaluation with the following systems:
HMM: The spectrum and F0 are generated with Eq. (2), and

the HMM-state duration is determined with Eq. (1).
HMM+MS: The proposed post-filter is applied to “HMM.”
HMM+GV: The spectrum and F0 are generated with Eq.

(5).
HMM+GV+MS: The proposed post-filter is applied to

“HMM+GV.”
Note that the post-filter of “HMM+GV+MS” was trained using
parameter sequences generated with the GV. The “HMM”
system was used for the components that the proposed meth-
ods were not applied to. The post-filters were not applied to
the aperiodicity component because there is no quality gain
achieved by the post-filters5. Sections V-B and V-C adopt
the utterance-level and the segment-level MS-based post-filter,
respectively.

B. Evaluation of Utterance-Level MS-Based Post-Filter

We investigate the effectiveness of the proposed utterance-
level post-filter in HMM-based TTS. The filter emphasis
coefficients for spectrum, F0 and duration are first tuned by
the likelihoods. The synthetic speech quality is then evaluated

4We evaluated training accuracy of MS likelihood for various cutoff
frequencies, and confirmed that this setting was the best.

5The same tendency is reported in the parameter generation algorithm
considering the GV [63].
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Fig. 14. HMM, GV, and MS likelihoods for the spectral parameter sequences
filtered by the proposed utterance-level post-filter in HMM-based TTS.

Fig. 15. HMM, GV, and MS likelihoods for the F0 contours filtered by the
proposed utterance-level post-filter in HMM-based TTS.

using the tuned emphasis coefficients. The DFT length to
calculate MS (= 2Ds ) was set to 4096, which is over the
maximum frame length in training and evaluation data.

1) Tuning of the Emphasis Coefficients: In order to deter-
mine the filter emphasis coefficients, we calculated the HMM
likelihood, GV likelihood, and MS likelihood for filtered
spectrum, F0, and HMM-state duration for settings of the
emphasis coefficient from 0 to 1. The duration likelihood was
calculated instead of the HMM likelihood when tuning the
coefficient for duration. For comparison, the likelihood for
natural speech parameter sequences was calculated, which was
labeled as “natural.” Note that the HMM likelihood and the
MS likelihood were normalized by the total number of frames
T and one half of the DFT length Ds, respectively.

Figure 14 shows the likelihoods for the filtered spectral
parameters. It is observed that the HMM likelihoods of
“HMM+MS” and “HMM+GV+MS” decrease as the emphasis
coefficient increases. Nevertheless, their values are always
higher than that of “natural.” In the GV likelihood, we can
see that these likelihoods cross that of “natural speech” at
k = 0.85. On the other hand, MS likelihoods increase as
the coefficient increases but their values always lower than
“natural speech.” Considering these results, we determined the
filter emphasis coefficient for spectral component to be 0.85.

Figure 15 shows the likelihoods for the filtered F0 contour.
The change of these likelihoods as the coefficient varies show
the same tendency as those for the spectral components except
the relation with the likelihoods of “natural speech.” We can

Fig. 16. HMM, GV, and MS likelihoods for the phoneme-level duration
sequences filtered by the proposed utterance-level post-filter in HMM-based
TTS.

Fig. 17. Preference scores on speech quality with 95% confidence interval
(proposed utterance-level post-filter).

find that all likelihoods of “HMM+MS” and “HMM+GV+MS”
are higher than “natural speech” when setting the emphasis
coefficient over k = 0.75, and we can also find that the
coefficient k = 1.0 is the highest point of MS likelihood.
From these results, we set the coefficient to 1.0.

Figure 16 shows the likelihoods for the filtered phoneme-
level duration. The tendency of the likelihood change is similar
to those of the spectrum and F0, and the MS likelihood is the
highest at k = 1.0. Therefore, we set the coefficient k = 1.0.
We can also see discontinuous transitions of the MS likelihood.
We expect that this was caused by the effect of rounding the
filtered duration values into integer values after filtering.

2) Subjective Evaluation on Speech Quality: To investigate
whether or not quality improvements are yielded by applying
the proposed post-filter to the spectrum, F0, and duration
components, we conducted a preference AB test on speech
quality. Every pair of these types of synthetic speech was
presented to listeners in random order. Listeners were asked
which sample sounded better in terms of speech quality.
Evaluation for spectrum, F0, and duration was conducted by
8, 8, and 6 listeners, respectively.

Figure 17 shows the preference test for the spectrum, F0,
and duration. For spectrum, we can see that the score of the
“HMM+MS” system dramatically increases over the “HMM”
system, and achieves a similar score to the ”HMM+GV”
system. Additionally, further improvement can be observed
by applying the proposed method to “HMM+GV.” From these
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Fig. 18. HMM, GV, and MS likelihoods for the spectral parameter sequences
filtered by the proposed segment-level post-filter in HMM-based TTS.

results, the effectiveness of the proposed method for the
spectral component is confirmed. For F0, “HMM+MS” and
“HMM+GV+MS” achieve a better score than “HMM,” but
there are not additional gains over when GV is considered.
The reason why the score differences among conventional
and proposed methods are smaller than those in the spectral
components is that the MS of the generated F0 contours is
quite close to that of the natural F0 contours, as shown in Fig.
4, even if not applying the proposed post-filter. Finally, we can
also see a slight improvement in quality for duration. These
results demonstrate a quality gains by the proposed utterance-
level post-filter for spectrum, F0 and duration.

We have explained that the MS involves the GV, but it is
shown that combining the GV and MS (“HMM+GV+MS”)
yields improvements compared to HMM+MS. This is because
the post-filtering-based approach ignores the HMM probability
density function. We expect that quality of parameter genera-
tion considering the MS will be comparable to that considering
the GV and MS.

C. Evaluation of Segment-Level MS-Based Post-Filter

We evaluate the effectiveness of the segment-level post-filter
in HMM-based TTS. The window length and window shift
length were set to 125 ms (25 samples) and 60 ms (12 samples)
[64]. A 64-taps DFT was used to calculate the MS. The tuning
step and evaluation step were conducted in the same way as
the evaluation of the proposed utterance-level post-filter. Note
that the post-filter was not applied to the duration because
we could not observe a large difference between filtered and
non-filtered sequences.

1) Tuning the Emphasis Coefficients: The HMM likelihood,
GV likelihood, and MS likelihood for the filtered spectral
parameters and F0 contours were calculated. The results are
shown in Fig. 18 and Fig. 19. Their tendencies are similar to
those of the utterance-level post-filter. Although the segment-
level post-filtering process causes a degradation of the HMM
likelihoods, they are still greater than those of natural pa-
rameters. Almost all likelihoods tend to increase as the filter
coefficient approaches 1. We observed a degradation of the
MS likelihood for F0, but it is always greater than that of
natural parameters. From these results, we tuned the emphasis
coefficient to 1.0 for both spectrum and F0. As the general

Fig. 19. HMM, GV, and MS likelihoods for the F0 contours filtered by the
proposed segment-level post-filter in HMM-based TTS.

Fig. 20. Preference scores on speech quality with 95% confidence interval
(proposed segment-level post-filter in HMM-based TTS).

tendency, the change of the MS likelihoods is smaller than
that in the utterance-level post-filter.

2) Subjective Evaluation on Speech Quality: The prefer-
ence AB test on speech quality by 7 listeners was conducted in
the same manner as in the previous section. The post-filtering
was applied to both spectrum and F0.

The preference score is shown in Fig. 20. It is observed
that a significant quality gain is yielded by “HMM+MS”
compared to “HMM,” and it is comparable to that yielded by
“HMM+GV.” Furthermore, we can see that an additional gain
is yielded by “HMM+GV+MS” compared to “HMM+GV.”
This tendency is similar to that observed in the utterance-level
post-filter. Note that the segment-level post-filter is applicable
to speech parameter sequences of various lengths but the
utterance-level post-filter is not.

3) Comparison of Utterance-Level and Segment-Level
Post-Filters: We compare the proposed utterance-level and
segment-level post-filters that are applied to “HMM+GV” for
spectrum and F0. We used the emphasis coefficients tuned
in this and the previous section. The preference AB test on
speech quality by 8 listeners was conducted.

Fig. 21 shows the result. Because there is no significant
difference between two post-filters, we can find that the
proposed post-filters have the same capability in the speech
quality improvement.

D. Evaluation in Various Synthesizers

We confirm the effectiveness of the proposed post-filters in
GMM-based VC and CLUSTERGEN.
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Fig. 21. Preference scores on speech quality with 95% confidence interval
(proposed utterance-level and segment-level post-filters in HMM-based TTS).

Fig. 22. GMM, GV, and MS likelihoods for the spectral parameters filtered
by the proposed utterance-level post-filter in GMM-based VC.

1) GMM-Based VC: The proposed utterance-level post-
filter was applied to GMM-based VC. Because this framework
has a similar synthesis criterion as that described in Section
II, the tuning step and evaluation step are conducted in
the same manner as the evaluation for HMM-based TTS.
Here, “HMM+GV” and “HMM+GV+MS” were relabeled as
“GMM+GV” and “GMM+GV+MS,” respectively. The sys-
tems corresponding to “HMM” and “HMM+MS” were not
used in the evaluation.

We prepared speech from two Japanese male and female
speakers6. We selected 50 parallel sentences of subset A from
the 503 phonetically balanced sentences included in the ATR
Japanese speech database [61] for training, and 50 sentences
of subset B for evaluation. We trained female-to-male GMMs.
The speech features were the same as in the evaluations
for HMM-based TTS. The spectral parameters and aperiodic
components were converted with a 64-mixture GMM and a
16-mixture GMM, respectively. The log-scaled F0 was linearly
converted. The DFT length to calculate MS was set to 2048,
which is over the maximum frame length in the training and
evaluation data. The proposed utterance-level post-filter was
applied to the spectral parameters.

The GMM likelihood, GV likelihood, and MS likelihood
for the filtered spectral parameters were shown in Fig. 22.
From this result, we can see that the tendency of the likelihood
changes is almost the same as that in Fig. 14, but the GV
likelihood of “GMM+GV+MS” starts to fall below “natural”

6The female speaker here is a different person from the speaker we used
in the evaluation for HMM-based TTS.

Fig. 23. Preference scores on speech quality with 95% confidence interval
in GMM-based VC and CLUSTERGEN

at the emphasis coefficient k = 0.90. Therefore, the emphasis
coefficient is set to 0.90.

We conducted a preference AB test on speech quality,
and a preference XAB test on speaker individuality. We
first presented an analysis-synthesized reference speech as
”X”, then we presented random-ordered synthesized speech.
7 listeners participated in each evaluation. Fig. 23 shows the
results. In term of speech quality, a significant quality gain
is observed. However, there is no significant difference in the
preference score on speaker individuality. We expect that no
cues for individuality are at higher modulation frequencies that
are recovered by the MS-based post-filter.

2) CLUSTERGEN: The proposed segment-level post-filter
was also applied to CLUSTERGEN. We also tuned the em-
phasis coefficient as in the previous experiments. We observed
that the likelihoods didn’t vary very much as shown in Figs. 18
and 19. We also confirmed that a quality gain was yielded by
setting k to 1.0. Here, the methods corresponding to “HMM”
and “HMM+MS” were relabeled as “CNV” and “CNV+MS,”
respectively.

We prepared an English female speaker. 418 and 46 sen-
tences of news reader speech were used for training and
evaluation, respectively. The speech features were the same
as those in the evaluation for HMM-based TTS, but they were
extracted by Speech signal Processing ToolKit (SPTK) [65]
and the aperiodicity component was not used. The window
length and window shift length of the segment-level post-filter
were set to 125 ms (25 samples) and 60 ms (12 samples). A
64-taps DFT was used to calculate the MS. The segment-level
post-filter was applied to both spectrum and F0. parameters.

A preference AB test on speech quality was conducted
by 6 listeners on the Amazon Mechanical Turk service [66].
Because many listening environments are expected, a no
preference option was prepared. The right side of Fig. 23
shows the result. We can see that large improvements are
yielded by the segment-level post-filter.

The results presented in this section suggest that the pro-
posed MS-based post-filters are effective for a variety of
statistical parametric speech synthesis frameworks.
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VI. CONCLUSION

This paper introduced the Modulation Spectrum (MS) of
speech parameter trajectory as a new feature to effectively
quantify the over-smoothing effect, which is the main cause
of the synthetic speech quality degradation in statistical
parametric speech synthesis. Moreover, this paper also pro-
posed the MS-based post-filters on the utterance level and
the segment level to improve the synthetic speech quality.
Experimental evaluation was conducted using various statis-
tical parametric speech synthesis methods, such as Hidden
Markov Model (HMM)-based Text-To-Speech (TTS), Gaus-
sian Mixture Model (GMM)-based Voice Conversion (VC),
and Classification And Regression Trees (CART)-based TTS
(a.k.a., CLUSTERGEN). The experimental results demon-
strated that (1) the proposed utterance-level post-filter achieves
better quality for spectrum, F0, and HMM-state duration in
HMM-based TTS, (2) the proposed segment-level post-filter
capable of achieving low-delay synthesis also yields significant
improvements in synthetic speech quality, and (3) the proposed
post-filters are also effective in not only HMM-based TTS but
also GMM-based VC and CLUSTERGEN. As future work,
we plan to investigate which modulation frequency bands
significantly affect synthetic speech quality, and integrate the
MS into the speech synthesis metric.
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