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Online Algorithm for Robots to Learn
Object Concepts and Language Model

Joe Nishihara, Tomoaki Nakamura, Takayuki Nagai

Abstract—Humans form concept of objects by clas-
sifying them into categories, and acquire language
by simultaneously interacting with others. Thus, the
meaning of a word can be learned by connecting a
recognized word to its corresponding concept. We
consider this ability important for robots to flexibly
develop knowledge of language and concepts. In this
paper, we propose an online algorithm for robots to
acquire knowledge of natural language and learn object
concepts. A robot learns the language model from word
sequences, which are obtained by the segmentation of
phoneme sequences provided by a user, by using un-
supervised word segmentation each time it is provided
with a new object. Moreover, the robot acquires object
concepts using these word sequences as well as multi-
modal information obtained by observing objects. The
crucial aspect of our model is the interdependence of
words and concepts: there is a high probability that the
same words will be uttered to describe objects in the
same category. By taking this relationship into account,
our proposed method enables robots to acquire a more
accurate language model and object concepts online.
Experimental results verify this.

Index Terms—multimodal categorization, MLDA,
object concepts, language acquisition, online learning,
unsupervised learning,

I. Introduction

IT is well known that the categorization of objects plays
an important role in human intelligence [1]. Humans

form concepts through categorization. An important as-
pect of concepts is that they allow us to predict unobserved
information. For example, we can infer how hard an object
is, how to use it, and so on by simply watching. This
is possible because we form concepts while experiencing
the world by categorizing multimodal information, which
we call “multimodal categorization.” Another important
aspect of concepts is their role in humans’ comprehension
of the meanings of words. Words are phonetic labels of
concepts, and we can understand their meanings by asso-
ciating them with concepts. In other words, the problem of
language acquisition at a preliminary stage can be defined
as a combination of the segmentation of speech signals
(word acquisition), multimodal categorization (concept
acquisition), and the association between the two. The
mechanism in humans of understanding the meanings of
words can thus be explained as inference using concepts.

In order to design robots that form concepts and under-
stand meanings of words in the same manner as humans,
the ability to categorize experience is considered important
[2]. To accomplish this, robots would need a model to infer
unobserved information using the generated concepts, i.e.,
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Fig. 1. Basic idea underlying the learning of concepts and words.
Please note that the “Feedback Loop” represented by the thick allow
in the figure is the main difference between our proposal and [6], [7].
This feedback loop significantly improves learning results, as shown
in later experiments.

multimodal categories. Hence, in [3], we proposed a cat-
egorization model that uses Multimodal Latent Dirichlet
Allocation (MLDA), which is an extension of LDA [4]. This
model enables robots to form natural object categories
using multimodal information.

The idea underlying MLDA is as follows: In the learning
process, the robot obtains speech signals uttered by a
human partner as well as multimodal data regarding
the target object. The speech signals are recognized as
phoneme sequences followed by unsupervised word seg-
mentation [5]. We use the bag-of-words model to represent
multimodal data. At the recognition stage, the trained
model can be used to infer unobserved information from
observed information. Since the original MLDA encounters
problems with batch learning, it was extended to an
online version in [6], [7]. A batch-type algorithm normally
assumes that the system can immediately use all available
training data.

This is not the case for the type of concept learning
discussed in this paper, because our target is a robot that
learns concepts and language in the same manner as hu-
mans. Humans gradually acquire training data through ex-
perience and learn incrementally. Moreover, humans learn
concepts and language interactively, through communica-
tion with others, and the level of communication changes
dynamically depending on the linguistic knowledge of the
learner [8]. To realize such interactive learning, a batch-
type algorithm is insufficient, because it requires too much
time to learn objects, and because the robot cannot quickly
respond to the teacher. This occurs because the batch-type
algorithm uses all of the data for training, including new
data. This requires considerable computation and memory
capacity. This results in significant delays when the robot
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responds to the partner, hindering the natural interaction
between the robot and the partner. Moreover, the situation
is exacerbated as the learning progresses. Therefore, an
algorithm that can learn more quickly is desired. To tackle
this problem, we have in past work proposed a “Parti-
cle Filter-based online MLDA” (PFoMLDA), an online
extension of MLDA [6], [7]. PFoMLDA allows robots to
incrementally form object concepts in real environments,
and is the baseline algorithm used in this paper.

Although the PFoMLDA yields results that are com-
parable with those of batch-type MLDA [6], we address
the following issue in this paper: The most important
assumption in this paper is that robots do not have a priori
knowledge of natural language, except for phonetic knowl-
edge. This is because we are interested in the language
acquisition process in robots from the very beginning. It is
difficult for robots to correctly recognize phonemes uttered
by a human without a lexicon or a language model. This
causes phoneme recognition errors that significantly affect
the learning of concepts. Reference [7] reported a degrada-
tion in learning performance due to phoneme recognition
errors. As is well known, the performance of recent speech
recognition technology heavily depends on the language
model. Therefore, the robot should incrementally learn
the language model as the lexicon grows. However, this
is obviously a chicken-and-egg problem, since the learning
of a language model requires correct speech recognition
results, and vice versa. The idea is that object concepts
formed by multimodal perception can be the other source
of information to learn the language model. Unfortunately,
this raises another chicken-and-egg problem, since object
concepts are formed using a lexicon.

To solve the above problems, we propose an online
method by which robots can learn object concepts and
a language model iteratively. In this paper, “language
model” refers to a set of phoneme sequences as a lexicon
and bigram counts of the words in the lexicon. In our
method, the robot learns the language model and the cat-
egory to which a given object belongs jointly and online by
using human utterances and multimodal information ac-
quired from the target object, respectively. Speech signals
uttered by a human partner are converted into phoneme
sequences by a speech recognizer. Since co-occurrence is
the key to learning the meanings of words, these phoneme
sequences are expected to represent features of the target
object. Therefore, object categories, which are formed us-
ing multimodal information, are intimately related to co-
occurring phoneme sequences. The critical idea underlying
our proposal is a recognition of the interdependence of
words and concepts: there is a high probability that the
same words are used to describe objects in the same
category, and objects referred to by identical words are
highly likely to have identical features. Using this relation,
the accuracy of both phoneme recognition and object
classification can be improved. The idea of joint learning
was first proposed in [9] by the co-authors of this paper.
However, the algorithm proposed in [9] is a batch-type
algorithm, subject to the problems described above.

Therefore, in this paper, the PFoMLDA is extended to
a model that can incrementally acquire a language model
and the concepts of different objects.

The contributions of this paper are twofold. First, in a
rigorous manner, we formulate the online joint learning
of concepts and a language model, based on a generative
model. In contrast to this paper, [6] and [7] provide no the-
oretical formulation of the joint learning problem, and the
online algorithm is not involved in [9]. Hence, this is the
first attempt to propose an online joint learning algorithm
that achieves the aforementioned learning objectives, as
shown in Fig. 1. The most important claim is that the
feedback loop in Fig. 1 significantly improves performance
when learning both concepts and words online. Second,
we analyze the online joint learning process in detail to
determine what is happening during the learning process.
The dynamics of learning the language model and concepts
are revealed in the results of an experiment. We strongly
believe that these results are significant, because they pro-
vide insight into the cognitive model of language learning.

This paper is organized as follows: Related work is
described in the next section. Our proposed model is
explained in Section III, and an overview of parameter
estimation of this model is explained in Section IV. The
methods for learning the language model and object con-
cepts are described in Sections V and VI, respectively,
and the algorithm for learning the model is presented in
Section VII. Experiments are described in Section VIII,
and the results are discussed in Section IX. Finally, Section
X concludes this study.

II. Related Work
A considerable amount of research has been conducted

on designing robots that can simultaneously acquire con-
cepts and words [10], [11]. However, no study to date has
simultaneously considered the acquisition of the concepts
of objects as well as language based on various modalities,
e.g., visual, audio, haptic, and word information, as in
this paper. Roy and Pentland [10] proposed a method for
robots to learn objects and their names using audio cues
and co-occurrence relations among objects. However, the
accuracy of word segmentation obtained from continuous
speech using their method was approximately 30%; nor did
they consider a language model. Reference [11] proposed
a method for a robot to learn the names of locations.
However, the pattern of teacher utterance was fixed in
this experiment. On the contrary, we propose for robots to
acquire the concepts of objects as well as a language model
using words segmented from free expressions and multi-
modal information. Online learning is another important
feature of our method.

Many researchers have investigated methods for robots
to learn relationships among multimodal sensory data
[12]–[16]. The purpose of these studies was to predict one
modality from another by using models. This mapping
is very useful for robots because it allows them to select
suitable actions with regard to the target object simply by
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watching it, for instance. Although we share the objectives
of past work in the area, the problem of the acquisition of
the meanings of words is fundamentally different from the
prediction of modalities.

Several studies have been carried out on the categoriza-
tion of objects using images in an unsupervised manner
[17]–[20]. Moreover, unsupervised object categorization
has been effected by using point clouds acquired from a
laser range finder or a time-of-flight camera [21]. However,
object categories in these cases were not solely determined
from visual information. Sinapov and Stoytchev showed
that object categorization can be accomplished by utilizing
sounds made when a robot touches an object [22]. How-
ever, they focused on categorization to the exclusion of the
acquisition of the meanings of words. Studies using tactile
sensors have also been conducted [23]–[25], but with the
aim of object recognition (using their shapes) rather than
categorization. We believe that humans categorize objects
using multimodal information, and this is thus needed for
robots to form categories.

Several researchers have studied scene and action recog-
nition using multiple information such as objects and lan-
guage [26]–[30]. In [26]–[28], human actions are recognized
by considering manipulated objects. Moreover, in [29], ac-
tions are recognized with a language model trained with a
large corpus. The model extracts the relationships between
actions (verbs) and tools (nouns). In [30], a method was
proposed for segmenting and recognizing images using
verbal information. These studies have shown that per-
formance can be improved by using multiple information.
However, scene and action recognition is a focused research
direction, and language acquisition was not considered in
these studies.

Online algorithms for LDA have been proposed, and
there are two types of inference algorithms. One is based
on variational Bayes (VB) inference [31], [32], [33], and
the other is based on a sampling approach [34]. We em-
ployed the sampling-based approach, because [35] reported
that this approach provides relatively better performance.
Moreover, an implementation of the VB-based approach
is generally more complex than the sampling-based ap-
proach. Canini et al. proposed a sampling-based online
algorithm for LDA that is similar to our use of PFoMLDA
in this paper. However, old data is used during resampling
step in their algorithm. This is not applicable to our
method, because we assume that the robot learns incre-
mentally using only recent data. Our PFoMLDA updates
its parameters from a single object exclusively, and it does
not use old data.

III. Integrated Language and Object Concept
Acquisition Model

A. Multimodal Categorization by MLDA [3]
We have in past work proposed a series of methods

to form object concepts using multimodal data and user
utterances [3], [36]–[38]. The basic idea underlying these
methods is “multimodal categorization,” which assumes
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Fig. 2. Graphical model of MLDA.

no prior linguistic knowledge. The robot is assumed to
have only acoustic models that enable it to recognize the
phoneme sequences of the utterances of a human teacher.
The robot also obtains multimodal information, such as
visual, audio, and haptic, by using its embodiment and
word information by segmenting the phoneme sequences
into words. The robot can form the concepts of objects like
humans do by categorizing such multimodal information.
Fig.2 shows the graphical model of MLDA. w∗ in the figure
denotes each item of multimodal information, which are
generated by a multinomial distribution parameterized by
ϕ∗. These parameters of multinomial distributions are in
turn generated from a Dirichlet distribution parameterized
by β∗. z represents a category generated from a multino-
mial distribution parameterized by θ, and θ is generated
in turn from a Dirichlet distribution parameterized by
α. In this figure, gray nodes represent observable infor-
mation, and dashed nodes represent latent parameters.
The problem of object categorization is thus equivalent
to estimating these latent parameters from the observable
information w∗.

B. Extension to Integrated Model

As mentioned earlier, phoneme recognition results in-
clude error because robots do not have prior linguistic
knowledge. Words are obtained by segmenting recognized
phoneme sequences in an unsupervised manner. However,
it is difficult to segment phoneme sequences containing
errors correctly into words, and appropriate concepts of
objects are thus not formed. In order to represent the
generative process of words more accurately, we need an
integrated model that consists of both a language model
and the concepts of objects. To this end, the model of
MLDA shown in Fig.2 is extended to a more complex one
to enable it to represent the generative process of uttered
speech signals.

Fig.3 shows the extended model, which represents the
generative process of speech signals, words, and concepts
of objects. This model assumes that each observation is
generated as follows:

1) Parameter θ of the multinomial distribution for defin-
ing object categories and parameter ϕ∗ of the multi-
nomial distribution for generating object information
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Fig. 3. Integrated model of language and concepts of objects.

(observations) are generated as

θ ∼ D(θ|α), (1)
ϕ∗ ∼ D(ϕ∗|β∗), (2)

where D represents a Dirichlet distribution, and α and
β∗ are hyperparameters.

2) The following procedures are iterated for all objects
j ∈ {1, 2, · · · , J}:

a) The followings are iterated W ∗ times for each
modality ∗ ∈ {w, v, a, h}:
i) The object category z is drawn as

z ∼M(z|θ), (3)

whereM represents a multinomial distribution.
ii) Each observation w∗ is drawn as

w∗ ∼M(w∗|ϕ∗). (4)

b) The following procedures are iterated Ij times in
order to generate user utterances that represent
object features.
i) A phoneme sequence is generated based on the

above generated words ww and the language
model parameterized by L.

s ∼ P (s|L, ww) (5)

ii) A speech signal o is generated based on the
phoneme sequence s using the acoustic model
parameterized by A.

oj ∼ P (o|A, s) (6)

It is worth noting that the model integrates both object
concepts and the language model. This means that the
object category z affects the process of the generation of
uttered speech signal o. The most important upshot is that
object categories and phoneme sequences can be estimated
by inferring the latent variables, which are represented by
dashed nodes in the graphical model in Fig.3 by using the
observable information. Hence, the learning problem here
corresponds to the inference of the latent variables L, ϕ∗,
θ, s, and ww based on observations wv, wa, wh, and user
utterances o for a fixed acoustic model A.

(a) (b) (c)

• Depth sensor

• CCD camera

•Barrette Hand

•Tactile Array Sensor

• 6-DOF Arm

Fig. 4. Capturing (a) visual information, (b) haptic information,
and (c) auditory information.

The multimodal information used to learn the inte-
grated model was obtained by using the robot shown in
Fig.4. The details are as follows:
Visual information : wv

A charge-coupled device (CCD) camera and a depth
sensor were mounted on the robot’s arm (Fig. 4 (a)),
and images of objects were captured to use as visual
information. A dense, scale-invariant feature trans-
form (DSIFT) [39] was computed from each image.
Each feature vector was quantized using 500 represen-
tative vectors and converted into a 500-dimensional
histogram.

Haptic information : wh

Haptic information was obtained using a BarrettHand
mounted on the arm of the robot and a tactile array
sensor mounted on its hand (Fig. 4 (b)). The robot
grasped objects and obtained a time series of sensor
values. The sensor values were approximated by a
sigmoid function the parameters of which were used
as feature vectors [38]. Finally, these feature vectors
were quantized and converted into a 15-dimensional
histogram.

Auditory information : wa

A microphone was mounted on the robot’s hand,
and sound was recorded by shaking the given objects
(Fig.4 (c)). The sound was divided into frames, and
a 13-dimensional Mel-frequency cepstrum coefficient
(MFCC) was computed at each frame. The sound was
thus converted into a 13-dimensional feature vector.
With regard to other information, feature vectors
for these were quantized and converted into a 50-
dimensional histogram.

User utterances : o
A user described features of the given object while the
robot observed it, and speech signals were recorded to
forward to the robot.

IV. Inference of model parameters
As described above, the tasks of concept formation

and learning the language model correspond to param-
eter estimation in Fig.3. However, the integrated model
in Fig.3 is too complex to simultaneously estimate all
parameters. We thus approximate the model by dividing
it into three parts, as shown in Fig.5. The language model
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Fig. 5. Language and object concept acquisition model. (a)Speech
recognition. (b)Language model. (c)Word generation.

and the concepts of objects can be learned by estimating
the parameters of each part. The gray nodes represent
observable information, and the dashed nodes represent
latent parameters in Fig.5. It is impractical to conduct
batch learning for all objects every time a new object
is obtained because it takes long to compute the model
parameters. Therefore, we propose a method to learn the
model online.

The parameters can be estimated by the following iter-
ative process:

1.Speech Recognition
Fig.5(a) shows the model for speech recognition. Here,
acoustic model parameter A and language model pa-
rameter L are assumed to be known. The N phoneme
sequences s′

1:N are sampled from the given teacher’s
utterances o.

s′
1:N ∼ p(s′

1:N |o,A,L) ∝ p(o|A, s′
1:N )p(s′

1:N |L)
(7)

p(o|A, s′
1:N ) represents the acoustic likelihood of the

given teacher’s utterances and p(s′
1:N |L) represents

the prior probability of s′
1:N for the given language

model L. However, Julius [40], the speech recogni-
tion software we use, cannot perform such sampling.
Therefore, the sampling procedure is approximated,
and we use the n-best speech recognition results that
can be obtained from Julius, rather than sampled
phoneme sequences. In our experiments, we used the
standard acoustic model in the Julius package.

2. Learning the language model
The parameter of the language model L can be
calculated by maximizing P (o|A,L), which is the
probability of generating the teacher’s utterances o
in Fig.3, as follows:

L = argmax
L

p(o|A,L)

= argmax
L

∫
p(s|L)p(o|s,A)ds (8)

It is impossible, however, to directly compute the
probability because the integral over s requires the
sum of all phoneme combinations. Hence, the proba-
bility p(o|s,A) is considered to be sufficiently small
for most phoneme sequences, and only the n best
phoneme sequences s′

1:N are used to calculate the
above equation. Therefore, the language model is
separated from the other parts, as shown in Fig.5(b).
That is, we compute L by maximizing the probability
that s1:N is generated from the n best sequences s′

1:N
of speech o, instead of maximizing the probability
that speech o is generated.

L, s1:N = argmax
L,s1:N

p(s1:N |s′
1:N ,L) (9)

This maximization can be carried out by the pseudo-
online NPYLM [7], which is described later.

3. Word Generation
It is possible to generate words related to the concepts
of objects in the same manner as the language model
is learned, if we can compute the following probabil-
ity:

ww = argmax
ww

p(ww|o,A,L, wv,a,h, βw, α)

= argmax
ww

∫
p(o|s,A,L)

× p(s|ww,L)p(ww|wv,a,h, βw, α)ds (10)

Here, wv,a,t denotes visual, audio, and haptic in-
formation obtained from the object. However, it is
difficult to compute this probability because of inte-
gration over s. We assume that P (o|s,A) is negli-
gibly small for most phoneme sequences, and hence
separate the model used to generate words from the
language model by utilizing the n best results s1:N ,
as shown in Fig.5(c). The latent model parameters in
Fig.2 become known parameters in Fig.5(c) by being
estimated from observed information wv, wa, wh, and
words can thus be generated. Therefore, we do not
maximize the probability that ww is generated from
the teacher’s utterances o, but rather the probability
that ww is generated from the n best word sequences
s1:N :

ww ∼ p(ww|o,L,A, wv,a,h, βw, α)

≈ p(ww
n |wv,a,h, βw, α)

ΣN
n=1p(ww

n |wv,a,h, βw, α)
(1 ≤ n ≤ N)

(11)
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where ww
n represents the bag-of-words representation

of sn.

4. Object Concept Formation
We can obtain relevant words ww affected by the con-
cept and speech recognition assigned to each object
by the above process. The concepts of objects can be
formed by learning the model shown in Fig.2, which is
separated from the speech recognition and language
model. Learning the concepts of objects is equivalent
to estimating the parameters β∗ that maximize the
probability that multimodal information w∗ is gener-
ated. These parameters can be inferred by PFoMLDA,
which is an online extended version of MLDA.

We use the language model where all phonemes have the
same probability as the initial language model parameter
L0. We then estimate the parameters through the above
process each time a new object is provided.

In Sec. V, details of language model learning are de-
scribed, followed by details of object concept formation in
Sec. VI. The entire learning algorithm for the proposed
integrated model is outlined in Sec. VII.

V. Learning the Language Model
A language model can be obtained by segmenting rec-

ognized phoneme sequences into words. L is a parameter
that maximizes the probability that word sequences s are
generated by segmenting recognized sentences s′:

L, s = argmax
L,s

P (s|s′,L) (12)

In this paper, we utilize pseudo-online NPYLM (oN-
PYLM) [7], which is an extension of NPYLM [5] to online
learning. For the sake of the completeness of this paper,
we explain these methods in the following subsections.

A. Hierarchical Pitman-Yor Language Model
The Hierarchical Pitman-Yor Language Model

(HPYLM) is an n-gram language model that applies
the hierarchical Pitman-Yor process. HPYLM computes
the probability that a word w appears following a context
h as follows:

p(w|h) = c(w|h)− d · thw

γ +
∑

w c(w|h)
+

γ + d ·
∑

w thw

γ +
∑

w c(w|h)
p(w|h′) (13)

where h′ denotes the context of (n− 1) gram and p(w|h′)
denotes the probability that w will appear following the
context prior to h. The probability can be calculated recur-
sively. Moreover, c(w|h) denotes the number of occurrences
w in context h, and d and γ denote hyperparameters of
the Pitman-Yor process.

B. Nested Pitman-Yor Language Model
If a lexicon is given, probability p(w|h′) can be set to

be the inverse of the number of words in case of unigram.
However, it is difficult to calculate this probability with-
out a predefined dictionary because all substrings can in

Algorithm 1
Pseudo-online NPYLM (for a single input)

1: function oNPYLM( s′|Ŵ
w

)
2: // L and T are predefined parameters of oNPYLM
3: A new phoneme sequence s′ is entered:
4: w(s′) ∼ p(w|s′, Ŵ

w
)

5: Add s′ to S
6: Add w(s′) to Ŵ

w

7: if |S| > L then
8: Remove the oldest sentence from S
9: end if

10: Blocked Gibbs sampler:
11: for t← 1 to T do
12: for all s′ in S do
13: Remove w(s′) from Ŵ

w

14: w(s′) ∼ p(w|s′, Ŵ
w

)
15: Add w(s′) to Ŵ

w

16: end for
17: end for
18: return w(s′)
19: end function

principle be words. NPYLM solves this problem by using a
character HPYLM as a base measure of the word unigram.
Thus, this model is called “nested” because the character
HPYLM is embedded as a base measure of the word
HPYLM. NPYLM can rapidly segment sentences using a
blocked Gibbs sampler and dynamic programming.

C. Pseudo-online NPYLM
NPYLM usually requires a large learning dataset for

word segmentation, as well as considerable computational
time. In our model, however, the robot has to segment
sentences given assigned a target object by a user, and
there are at most five to 10 sentences. We extend NPYLM
to pseudo-online NPYLM to solve this problem. oN-
PYLM stores word sequences Ŵ w obtained by segmenting
phoneme sequences as a parameter and applies the blocked
Gibbs sampler to only the final L sequences when a new
phoneme sequence is provided. The algorithm for pseudo-
online NPYLM is shown in Algorithm.1. s′ and w(s′)
here denote a new phoneme sequence and the segmented
results of s′, respectively. Ŵ

w
, T , and L represent the

parameter of the model, the number of sampling iterations,
and the number of sentences to which sampling is applied,
respectively. In the experiment, we set L = 200.

VI. Learning Concepts of Objects Online
We use Particle Filter-based online MLDA (PFoMLDA)

[6], which is an extension of MLDA for online learning, for
object concepts formation. PFoMLDA is described in the
following subsection.

A. Particle Filter-based oMLDA
We calculate each parameter in Fig.2 using Gibbs sam-

pling. The category zmi, which is the category concerning
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the i-th item of information regarding the modality m of
the target object, is sampled from the following posterior
distribution:

p(zmi = k|z , wm, α, βm) ∝

(N−mi
k + α)

N−mi
mwmk + βm

N−mi
mk + W mβm

(14)

where Nk represents the number of times category k is
assigned to all information regarding the target object,
and Nmwmk represents the number of times category k is
assigned to multimodal information item wm of the object.
W m denotes the number of dimensions of the object’s
modality m. The superscript with the “-” sign indicates
the exception to the feature. Nk and Nmk are computed
as follows:

Nk = ΣnwmNmwmk (15)
Nmk = ΣwmNmwmk (16)

Finally, parameters θ̂kj and ϕ̂m
wmk are estimated as follows:

θ̂kj = Nkj + α

Nj + Kα
(17)

ϕ̂m
wmk = Nmwmk + βm

Nmk + W mβm
(18)

It is likely that the learned concepts will widely fluctuate
because of the order of objects in online learning. Hence,
we adopt a forgetting rate λ, and solve the problem by
allowing the robot to forget part of the model every time
it learns a new object.

Nmwmk(j+1) = (1− λ)Nmwmkj (19)

Eq.(19) denotes the forgetting rate of the parameters of
the model. Furthermore, we introduce a particle filter to
oMLDA and extend it to PFoMLDA in order to make it
more robust against initial parameters and the influence
of the learning order. PFoMLDA deals with these prob-
lems by constructing a variety of models with different
forgetting rates λ and initial parameters. We then select
a model based on the likelihood of the word provided by
the user because word information is considered correct
information. The probability can be computed by the
following equation:

p(ww|wv,a,h) =
∫

Σzp(ww|z)p(z|θ)p(θ|wv,a,h)dθ (20)

Of all the models, we select ones with higher likelihood
based on Eq.(20). The selected models continue to be
learned without changing the forgetting rate and the initial
value. Models with lower likelihoods are rejected and
replaced with ones with the highest likelihoods. It thus
becomes possible for the robot to learn objects online
and reduce the influence of the order of objects. The
algorithm used to learn each object is summarized in
Algorithm.2. Fig.6 shows a schematic figure of the online
learning system. In the experiment detailed later, we used
50 particles.

Learned Objects

Target Object

Speech Recognition

and Word Segmentation

This is a

plastic bottle

Acquisition of Visual, Audio, 

and Haptic Information
Learning Object Concept

Multimodal Object Concept
(Category)

Stuffed toy

Soft

[Category 2]

Plastic bottle

Drink

[Category 1]

Fig. 6. Online learning system.

Algorithm 2 PFoMLDA (for single object)
1: function PFoMLDA (wv,a,h, ww|Θ)
2: // Θ = {Nmwmk|m ∈ (v, a, h, w), 1 ≤ k ≤ K}
3: // λ, α and βm are predefined model parameters
4: for all m, wm, k do
5: Nmwmk ← (1− λ)Nmwmk

6: end for
7: The following process is repeated until convergence
8: for all m, i (of new input data) do
9: for k ← 1 to K do

10: P [k]← P [k − 1] + (N−mi
k + α) N−mi

mwmk
+βm

N−mi
mk

+W mβm

11: end for
12: u← random value [0, 1]
13: for k ← 1 to K do
14: if u < P [k]/P [K] then
15: zmi = k, break
16: end if
17: end for
18: end for
19: return Θ
20: end function

VII. The learning algorithm

When we are told “This is a plastic bottle” when shown
one, we can correctly recognize it even if we hear “This
is a pdastig bottle,” for instance. We can predict the
natural sentence that follows “This is” using linguistic
knowledge. Moreover, we utilize the knowledge that the
object in front of us is denoted by the term “plastic
bottle.” Thus, language and concepts are closely related,
and it is important to learn both at the same time. The
language model and the concepts of objects can be learned
together by applying PFoMLDA and oNPYLM to the
model described in Sec. IV. The proposed algorithm is as
follows:

The robot can obtain the N best phoneme sequences
s

′Lj−1
j,1:Ij ,1:N from utterances oj,1:Ij for the j-th object with

language model parameter Lj−1. The subscripts 1 : Ij and
1 : N denote a set of Ij utterances and a set of the N
best recognition results, respectively. However, recognition
using Lj−1 is not always correct. Thus, the robot also
obtains s′A

j,1:Ij
recognized by the use of the language model

L0, where all phonemes have the same probability of
occurring. Word sequences s

Lj−1
j,1:Ij ,1:N and sA

j,1:Ij
are then

computed by segmenting s
′Lj−1
j,1:Ij ,1:N and s′L

j,1:Ij ,1:N by using
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oNPYLM.

s
Lj−1
j,1:Ij ,1:N ∼ oNPYLM(s′Lj−1

j,1:Ij ,1:N |Ŵ
w) (21)

sA
j,1:Ij

∼ oNPYLM(s′A
j,1:Ij
|Ŵ w) (22)

where oNPYLM(·|∗) denotes a function that segments a
sentence into words using oNPYLM with parameter ∗,
and Ŵ w represents word sequences selected based on the
concepts of objects. A new language model parameter Lj

is then computed from s
Lj−1
j,1:Ij ,1:N and sA

j,1:Ij
as follows:

Lj ∼ LM(sLj−1
j,1:Ij ,1:N , sA

j,1:Ij
, Ŵ w) (23)

where LM(·) denotes a function to compute a parameter
of the language model. The utterance is recognized again
with the new language model parameter Lj , and the
n best word sequences s

Lj

j,1:Ij ,1:N are computed as well
as Eq.(21) and Eq.(22). The appropriate word sequence
is sampled from the n best word sequences based on
the probability Eq.(20) that words are generated from
multimodal information.

For all i

n̂ ∼
P (wLj

jin|w
v,a,h
j , Θj−1)

ΣN
n=1P (wLj

jin|w
v,a,h
j , Θj−1)

(1 ≤ n ≤ N) (24)

sji = s
Lj

jin̂ (25)

ww
ji = w

Lj

jin̂ (26)

where w
Lj

jin denotes the n-th word sequence of the i-
th utterance for the j-th object and the bag-of-words
representation of s

Lj

jin, which is an element of s
Lj

j,1:Ij ,1:N .
Θj−1 denotes the parameter of the concept of the relevant
object.

Following this, the parameter of the concept of the
relevant object is updated from the selected word sequence
ww

j,1:Ij
.

Θj ∼ PFoMLDA(wv,a,h
j , ww

j,1:Ij
|Θj−1) (27)

Finally, sj,1:Ij is added to the word sequences Ŵ w.
The robot incrementally acquires the language model

and the concept of the object by updating language model
parameter L and object concept parameter Θ each time
it is given a new object. However, the robot does not
have a parameter of the object concept Θ, and hence
the probability Eq.(24) cannot be computed when it first
learns the object. Hence, we select words with the highest
score from the n best word candidates in case of the first
object.

The above process is summarized in Algorithm.3, and
the baseline online learning system in Fig.6 can be ex-
tended to that in Fig.7.

VIII. Experiments
We conducted experiments to test our proposed method.

We used 50 objects belonging to 10 categories, as shown
in Fig.8. In the experiments, multimodal information,

this

is

a

soft

plastic bottle

toy

BOS

Learned Objects

Target Object

Speech Recognition

and Word Segmentation

This is a

plastic bottle

Acquisition of Visual, Audio, 

and Haptic Information
Learning Object Concept

Multimodal Object Concept

Stuffed toy

Soft

Plastic bottle

Drink

Language Model

This / is / a …

is / a / snack …

soft / stuffed …

Word

Generation

Linguistic knowledge

Select appropriate candidatesImprove Speech Recognition 

Fig. 7. Extended online learning system.

Algorithm 3 Learning language model and
concepts of objects together

1: function Learn( wv,a,h
j , oj,1:Ij |Lj−1, Θj−1, Ŵ

w

j−1 )
2: Update language model:
3: s′A

j,1:Ij
← Recognize(oj,1:Ij |A,L0)

4: s
′Lj−1
j,1:Ij ,1:N ← Recognize(oj,1:Ij |A,Lj−1)

5: sA
j,1:Ij

∼ oNPYLM(s′A
j,1:Ij
|Ŵ

w

j−1)
6: s

Lj−1
j,1:Ij ,1:N ∼ oNPYLM(s′Lj−1

j,1:Ij ,1:N |Ŵ
w

j−1)
7: Lj ∼ LM(sA

j,1:Ij
, s

Lj−1
j,1:Ij ,1:N , Ŵ

w

j−1)
8: Obtain word information:
9: s

′Lj

j,1:Ij ,1:N ← Recognize(oj,1:Ij |A,Lj)
10: s

Lj

j,1:Ij ,1:N ∼ oNPYLM(s′Lj

j,1:Ij ,1:N |Ŵ
w

j−1)
11: ww

j,1:Ij ,1:N = BoW(sLj

j,1:Ij ,1:N )
12: for i← 1 to Ij do
13: Select words:
14: n̂ ∼ P (ww

jin|ww
j , wa

j , wh
j , Θj−1)

15: ww
ji ← ww

jin̂

16: sji ← sjin̂

17: end for
18: Learn concept of object:
19: Θj ∼ PFoMLDA (wv

j , wa
j , wh

j , ww
j,1:IJ

|Θj−1)
20: Ŵ

w

j = sj,1:Ij + Ŵ
w

j−1
21: return Lj , Θj , Ŵ

w

j

22: end function

explained in Sec. III-B, and teaching utterances were pro-
vided by the user while the robot observed the objects. In
the proposed method, teaching utterance o is recognized
and converted into a phoneme sequence based on language
model parameter L according to Algorithm 3 every time
a new item of object information wv,ah, o is obtained.
Then, the phoneme sequence is segmented into words by
NPYLM with parameter Ŵ w. Finally, the object concept
is learned from the multimodal information, and words
as parameters L, Ŵ w and Θ affect each other. In order
to test the proposed model, speech recognition accuracy
was used to assess L, segmentation accuracy to test the
value of Ŵ w, and object classification accuracy was used
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Fig. 8. Objects used in the experiments.

to assess Θ. To note the variation in learning, the robot
was made to learn the same objects twice. Therefore, it
learned 100 times (50 objects × 2) in total. We conducted
experiments using the following four methods to evaluate
the proposed method:
(a) A method that used only word sequences obtained

by NPYLM by segmenting the phoneme recognition
results (Acoustic model only).

(b) A method that used word sequences obtained by
NPYLM by segmenting the 1 best result of speech
recognition, and updated the language model using
this (Language model only).

(c) A method that used word sequences selected from the
n best recognition results and updated the language
model. (Proposed method).

(d) A method that used word sequences obtained by
NPYLM by segmenting correct phoneme sequences
scorrect provided manually by a human teacher and
free from phoneme errors (Correct sequence).

Method (a) was the baseline method used in a past
study [7], (b) only updated the language model with-
out considering the concept of the object, (c) was our
proposed method, and (d) represented ideal conditions
and the performance limit. Considering variations in the
learning results, each method was learned three times. The
following shows the average of the three learning results.
The utterances provided to the robot were in Japanese.

A. Accuracy of Speech Recognition
To assess the language models learned using methods

(b) and (c), the robot recognized all speech signals for
all objects by using the language model learned at each
step. We determined the accuracy of speech recognition
by calculating the edit distance from scorrect as correct
sentences:

Accuracy = 1− LS(s1, s2)
max(len(s1), len(s2))

(28)

where LS(s1, s2) is a function that returns the edit distance
between s1 and s2, and max(a, b) is a function that returns
the longer of the two sequences.

TABLE I
Example of improved phoneme recognition.

The Number of Learning Steps Recognition Result
Step 1 e i go ro ko
Step 2 e i go ro mi
Step 12 nu e i gu ru mi
Step 36 nu i gu ru mi

Fig.9 shows speech recognition accuracy values obtained
by each method at each step of learning. The score for
method (a) was constant at approximately 65% because
it did not update its language model. On the contrary,
the scores for methods (b) and (c) were lower than that
for method (a) when learning commenced. This is because
language model L, calculated using a few samples, worked
against language model L0, where all phonemes had the
same probability of occurrence. However, as learning pro-
gressed, these scores improved; finally, the scores for each
method converged to 73%. The score for the proposed
method (c) was higher by about 2% than that for method
(b), although the difference in scores between methods
(b) and (c) was small. It was natural for method (b) to
improve its accuracy of phoneme recognition because it
updated language models by utilizing the 1 best result.
However, the score for method (c) was higher because
the n best results of speech recognition included can-
didates with fewer errors, and method (c) could select
these candidates. Table I shows an instance of improved
phoneme recognition of “nu i gu ru mi,” which means
“stuffed animal” in Japanese, by our proposed method.
These results suggest that the robot was able to accurately
recognize speech by learning the language model through
online learning.

It might appear that the approximately 2% improve-
ment in phoneme recognition is insignificant. However, the
consistency of the speech recognition, which is discussed
in the next section, improves with mutual learning. One
can confirm that the classification accuracy remarkably
improves in the proposed method and, in fact, the perfor-
mance of the categorization is comparable to the correct
phoneme sequence case, as we will presently see.
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Fig. 9. Accuracy of speech recognition for each method.

B. Word Segmentation
Table II shows examples of speech recognition and

word segmentation by method (a), method (b), and the
proposed method (c): “Ko re wa ha n do so u pu no e ki ta
i” means “This is liquid for hand soap” and “Ko re wa do u
bu tsu no nu i gu ru mi” means “This is a stuffed animal.”
The italic letters in Table II denote phoneme errors.

To calculate the accuracy of word segmentation, we
utilized dynamic programming to match the strings of
word sequences and the correct word sequences segmented
by a human teacher. A correctly estimated segmentation
point was considered a true positive (TP), whereas a
point incorrectly assigned as a segment was considered a
false positive (FP). Similarly, a point that was correctly
determined as not being a segment point was considered
a true negative (TN), whereas a segment point incorrectly
assigned as not being a cut point was considered a false
negative (FN). We calculated the precision, recall, and F-
measure of the segmentation as follows:

P = NT P

NT P + NF P
, (29)

R = NT P

NT P + NF N
, (30)

F = 2PR

P + R
, (31)

where NT P , NF P , and NT N represent the number of
points assessed as TP, FP, and FN. Table III shows an
example where a recognized phoneme sequence “ABCD”
and a segmented sequence “A/BC/D” are evaluated in the
case where the answer is “AB/C/D.” Fig.10 shows these
results. The recall rate for method (a) was higher than
those for methods (b) and (c). However, the precision of
method (a) was the lowest of all methods. This is because
the oNPYLM in method (a) tended to segment speech
recognition results into shorter phoneme sequences, since
it was difficult to correctly estimate segments because of
phoneme errors. On the contrary, the precision of methods

Fig. 10. Accuracy of word segmentation for each method.

(b) and (c) was higher than that of method (a), whereas
the recall was lower. This is because the robot identified
frequently appearing patterns, such as pronoun-be-verb
and preposition-noun, as one word, as shown in Table
II. Method (d) recorded the highest score of all methods
tested.

In order to assess the performance by simultaneously
considering speech recognition and word segmentation, a
“word entropy” was introduced. Entropy represents the
dispersion of words generated from a given utterance.
Therefore, the smaller the entropy, the more consistent
the word generation. Word entropy Hl was calculated us-
ing the multinomial distribution obtained from frequency
counts of words, which were recognized using the language
model Ll and segmented using parameter Ŵ w

l at the l-th
learning step:

Hl = −
∑
j,i,k

P (wjikl) log P (wjikl), (32)

where Hl represents the word entropy at the l-th learning
step, and P (wjikl) is the probability of the occurrence of
the k-th word of the i-th utterance given the j-th object.
Fig.11 shows examples of multinomial distributions. It
should be noted that the components of multinomial
distributions were sorted in descending order for method
(a) and the proposed method (c) following the final step of
learning. It can be seen that method (a) generated a multi-
nomial distribution with a longer tail as it segmented many
words with minor differences. This led to higher word
entropy. Fig.12 represents a transition of word entropy for
each method. The entropy increased for all methods, since
the number of words in the robot’s lexicon increased as
learning progressed. In early stages of learning, the meth-
ods (b) and (c) yielded very small entropy values. This
is because the acquired language model overfitted small
amounts of data in the early stage of learning, and speech
recognition results were thus biased. One can see that the
proposed method yielded the lowest entropy values of the
three methods. This indicates that the proposed method
generated words highly consistently because it learned the
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TABLE II
Examples of speech recognition and word segmentation

Teacher Utterance kore (this) / wa (is) / ha n do so u pu (hand soap) / no (for) / e ki ta i (liquid)
(This is liquid for hand soap.)

(a) o re wa / ha n do / so u pu / no e e i / chi / ta e
(b) ho re wa ha n do so / pu no e i chi ta e
(c) ko re wa/ ha n do zo bu/ n ro e ki ta i

Teacher Utterance ko re (this) / wa (is) / do u bu tsu (animal) / no (of) / nu i gu ru mi (stuffed)
(This is a stuffed animal.)

(a) ko re wa / do u a / bu tsu no / nu gi / zu ru mi
(b) ko re wa / do u a / bu tsu no nu gi zu ru mi
(c) ko re wa do o bu tsu no / nu i gu ru mi

TABLE III
Example of word segmentation evaluation

Result A / B C / D
Correct A B / C / D

Evaluation TN FP FN TN TP TN

Fig. 11. Example of word distribution used to calculate word entropy.

language model and selected candidate words based on the
acquired concepts.

These results indicate that the robot was able to ob-
tain more significant words by improving the accuracy
of speech recognition by updating the language model.
oNPYLM in methods (b) and (c) often segmented words
incorrectly, e.g., a preposition and a noun were connected.
This is because the number of utterances given to the
robot was small, and this problem can be solved by increas-
ing the variety of expressions, such as by including “That
is,” “This was,” “This has,” and so on. Moreover, the
precision and recall of method (c) were higher than those
of method (b), and the proposed method improved the
accuracy of word segmentation. This is because the pro-
posed method selected more appropriate word sequences
by using the learned concepts of objects, whereas method
(b) used the 1-best word sequences without considering
concepts. This result means that the robot could consis-
tently recognize the teacher’s utterances by referring to

Fig. 12. Entropy for each method.

Fig. 13. Accuracy of object classification.

its learned model. That is, the robot was able to obtain
proper word sequences by learning the language model and
the concepts of objects.

C. Learning the Concepts of Objects
The robot formed concepts of objects for each method.

Fig.13 shows the accuracy of object classification for each
method at each learning step against the correct classifi-
cation shown in Fig.8. The accuracy of method (b) was
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TABLE IV
Comparison between online and batch scores

Online Batch
Accuracy of Speech Recognition 0.732 0.791

P 0.763 0.915
Accuracy of Word Segmentation R 0.382 0.560

F 0.509 0.695
Accuracy of Classification 0.907 0.940

higher than that of the previously proposed method (a),
that of the proposed method (c) was higher still than
that of method (b), and was approximately 40% higher
than that of method (a). Moreover, the accuracy of the
proposed method was as high as that of method (d), which
used correct phoneme sequences. Fig.14 shows the classi-
fication results of the final learning step for the proposed
method (c), where objects in squares denote the robot’s
classification mistakes. These included mistaking “candy
box” for “cup noodle” (Category 7) and “hand soap” and
”shampoo” (Category 8) because the features of these
objects are similar—hardness, sound, and packaging. In a
similar manner, mistakes in understanding the expression
“cleaner sheet” were caused by similar issues. However, the
robot accurately classified objects in general, which means
that it can learn the concepts of objects as we do. This
is because the robot was able to recognize the teacher’s
utterances more accurately by learning the language model
and the concepts of objects. This result shows that it is
important to learn language and concepts together.

D. Comparison between Online Method and Batch Method
We compared the performance of the online method

with the batch method. Table IV shows the accuracy of
speech recognition, word segmentation, and object classi-
fication for each.

Each score recorded by the online method was lower
than that of the batch-type method. However, these scores
were considered sufficiently high, except in the case of
word segmentation. The accuracy of classification was
especially high at approximately 90%, and was comparable
to that of the batch method. With regard to the accuracy
of word segmentation, that of the online method was
significantly worse than that of the batch method. This is
because the parameter was estimated from only the latest
L phoneme sequences in the case of the online method.
In particular, when the robot did not have a sufficient
number of phoneme sequences at the early learning phase,
it was difficult to estimate the correct cut points, and
incorrect words were thus added to the lexicon. Following
this, even if the robot obtained a large number of phoneme
sequences, incorrect words remained in the lexicon and af-
fected the segmentation of subsequent phoneme sequences.
However, this problem can be solved by providing more
utterances to the robot and increasing the number of
stored sentences L.

Furthermore, an advantage to our proposed online
method is the computational time. The computational
time of the batch method increases in proportion to

the number of learned objects. On the other hand, the
computational time of the online method is constant. In
fact, it required approximately 46 times longer to learn
the 50-th object with the batch method than it did with
the online method. With the batch method, more time
is needed as more objects are learned. We consider this to
be impractical for the robots learning objects interactively
in a real environment. By contrast, our online method is
efficient for learning more objects in such a situation.

IX. Discussion
The goal of this paper was to develop a framework

for robots to learn concepts and a language model in
a bottom-up manner. In general, concepts and language
are closely connected to each other. There is a chicken
and egg problem concerning the two: concept formation
requires consistent speech recognition, and speech recog-
nition in turn requires formed concepts. The proposed
model captures this interdependence so that robots learn
both the language model and concepts better than in
the conventional model, which considers only concept
formation. Therefore, it is interesting to see how the
language model and concepts were jointly learned through
the learning process. We will discuss such dynamics of
learning involving the language model and concepts.

We examine the likelihood of the model to determine
the progression of the learning process. Recent studies
on language acquisition have revealed that children refine
their learning strategies with later lexical development.
The principle of conventionality contributes to gradual
convergence towards adult naming patterns [41], [42]. In
[43], the authors experimentally examined how children
learn the meanings of basic color words, and how they
are immersed into the language-specific system of the
color lexicon. It is very interesting if we can compare
the learning process in robots and humans in terms of
interdependence between concepts and language. To see
this, the variations in log likelihood over time for different
models were observed.

The upper part of Fig.15 shows plots of the log like-
lihood of multimodal information excluding word infor-
mation, such as visual, auditory, and tactile information.
The lower part of Fig.15 indicates the log likelihood of
word information. The yellow curve in Fig.15 (Upper)
represents the result of learning using multimodal in-
formation excluding word information. In this case, the
learning algorithm tried to maximize the log likelihood
for given multimodal information. Therefore, the log like-
lihood rapidly increased and saturated around step 20 of
learning. On the contrary, the log likelihoods of methods
(a) and (c) gradually increased, since these methods used
multimodal information, including words. Now, note that
step 60 of the learning process is interesting. In the upper
part of Fig.15, the log likelihood values of (a) and (e)
monotonically increased, whereas those for (c) began to
decline around step 60. Correspondingly, the log likelihood
of word information (lower part of Fig.15) shows that the
values monotonically decreased in (a). They also decreased
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Fig. 14. Classification results.

Fig. 15. Log likelihood of visual, audio, and haptic information
(Upper), log likelihood of word information (Lower).

in (c), but began increasing after step 60. These results
imply that robot and humans share a similar dynamics
underlying their language learning mechanisms.

As mentioned above, concepts and language are in-
terdependent in the proposed model. As the language
model improves, concepts are refined, and vice versa. This
bootstrapping process makes it possible for the robot
to learn better concepts and the language model, which
results in better performance in speech recognition and
object categorization in comparison with methods (a) and
(b).

More importantly, these results imply that the concept
and language learning processes can be viewed as emergent
systems [44]. At early stages of learning, concepts and the
language model are built in a bottom-up manner and, after
a while, work as constraints to correctly recognize teaching
utterances, which refines concepts and the language model.
This kind of loop can be seen as an emergent phenomenon.

On the contrary, the proposed algorithm may confuse
different words with similar sounds if the utterances used
by the user become complex. This difficulty can be re-
solved by multimodal information that is a key to correctly
forming concepts. It also provides an important insight
into how users provide teaching utterances to the robot.
Roy et al. recently launched the ”Human Speechome

Project,” and revealed that caregivers changed the form
of their utterances in order to accommodate the linguistic
knowledge of children [8]. We also obtained preliminary
results regarding the dynamics of communication between
human teachers and concepts/words learned by the robot
in [7]. Although this issue is beyond the scope of this pa-
per, we are planning to carry out a long-term experiment
to observe the extent to which the robot learns concepts
and the language model in real, complex situations.

X. Conclusion
In this paper, we proposed an integrated model for

a robot to learn a language model and the concepts
of objects online, and estimated its parameters using
PFoMLDA and oNPYLM. The robot was able to reduce
phoneme recognition errors, which had been a problem
in our previously proposed method, and greatly improved
the learning of the concepts of objects. Experimental
results showed that appropriate knowledge of language
and the concepts of objects can be obtained by learning
them together. We considered this issue not only from
the viewpoint of accuracy of learning, but also from the
interrelation between the language model and concepts
learned by using word entropy and classification accu-
racies. Furthermore, the transition of the log likelihood
of models over time reveals the bootstrapping learning
process of concepts and the language model.

In future work, we plan to conduct long-term exper-
iments where robots learn the concepts of objects and
language by interacting with users for several months.
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