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Disambiguating Discourse Connectives for
Statistical Machine Translation

Thomas Meyer, Najeh Hajlaoui, and Andrei Popescu-Belis

Abstract—This paper shows that the automatic labeling of
discourse connectives with the relations they signal, prior to
machine translation (MT), can be used by phrase-based statistical
MT systems to improve their translations. This improvement is
demonstrated here when translating from English to four target
languages–French, German, Italian and Arabic–using several test
sets from recent MT evaluation campaigns. Using automatically
labeled data for training, tuning and testing MT systems is ben-
eficial on condition that labels are sufficiently accurate, typically
above 70%. To reach such an accuracy, a large array of features
for discourse connective labeling (morpho-syntactic, semantic
and discursive) are extracted using state-of-the-art tools and
exploited in factored MT models. The translation of connectives is
improved significantly, between 0.7% and 10% as measured with
the dedicated ACT metric. The improvements depend mainly on
the level of ambiguity of the connectives in the test sets.
Index Terms—Discourse connectives, machine translation (MT).

I. INTRODUCTION

D ISCOURSE connectives are words such as although,
however, since, or while, which play an important role in

conveying the argumentative structure of a text. They are chal-
lenging for human and machine translation alike, because they
differ considerably across languages, in terms of syntactical
construction, frequency and position [1], [2]. A given discourse
connective may convey different argumentative or rhetorical
relations between the clauses or sentences it connects, which
has a direct influence on the translation of each occurrence. For
example, in English, while can convey either a contrastive or a
temporal relation, which can be rendered in French respectively
by mais and pendant que. For many occurrences of English
connectives, determining the exact relation is necessary for
correct translation. However, most current statistical machine
translation (SMT) models use features that are too local to
model these ambiguities. Therefore, the translation of am-
biguous connectives is often mistaken, which has a detrimental
impact on the coherence and readability of SMT output. Indeed,
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Fig. 1. Mistranslation of a discourse connective from English (since) to French
(reference: depuis, MT: parce que) in the nt2012 dataset (see II-B).

when a wrong discourse connective is generated in translation,
the output may often be grammatically correct, but conveys a
distorted argumentative relationship between sentences, and
makes the recovery of the correct sense nearly impossible. For
instance, in the example in Fig. 1 (as well as those in IV-E),
since signals a temporal relation (correctly rendered by depuis
in French) but an SMT system generates the connective parce
que, which signals a cause, and makes the original meaning
difficult to recover. Our goal is to avoid this type of translation
errors.
In this paper, we present a new method for integrating dis-

course features into SMT. Rather than caching translated units
[3], [4], resolving pronouns [5]–[7], or modeling lexical con-
sistency across sentences [8]–[10], which are other recent in-
cursions into discourse and MT, we focus on discourse con-
nectives, and show that contextual features are beneficial for
disambiguating and then translating them. The contributions of
the paper are two-fold. Firstly, we enrich the state of the art
with new semantically-oriented features for the automatic dis-
ambiguation of English discourse connectives. Secondly, we
use the automatically annotated connectives for training and
testing SMT systems, and demonstrate that their translations
are improved from English into four target languages: French,
German, Italian, and Arabic. This is therefore, to the best of our
knowledge, the first study to improve connective translation,
hence text coherence, based on source-side contextual features.
The paper is organized as follows. We first introduce the

data, connectives, and labels for the relations they convey in
Section II. The syntactic, semantic and discourse features,
along with baseline translation candidates, are presented in
Section III1. In Section IV, we combine the automatically
assigned labels with a phrase-based SMT system upon training,

1The data sets, models, feature extractors, and evaluation metric are available
at https://www.idiap.ch/dataset/Disco-Annotation, https://github.com/idiap/
DiscoConn-Classifier and https://github.com/idiap/act.
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tuning and testing. The translation of connectives improves
when the overall labeling accuracy is above about 70%, with
small improvements in BLEU scores as well.

II. DATA AND EVALUATION METRICS

In this section, we introduce the parallel corpora annotated
with the senses of English discourse connectives, which we will
use for labeling and translation experiments (II-A). We then
present the data sets used for training, tuning, and testing SMT
(II-B). Finally, we introduce the ACT reference-based evalua-
tion metric for connective translation (II-C).

A. Multilingual Corpora with Annotated Connectives
The automatic disambiguation of discourse connectives is

usually approached as a supervised classification problem,
where machine learning classifiers are trained and tested over
manually-labeled data sets (gold-standard). One of the most
important English resources, which has enabled numerous
studies, is the Penn Discourse Treebank (PTDB) [11]. The
PDTB provides a discourse-level annotation layer over theWall
Street Journal corpus (WSJ) and the Penn Treebank syntactic
annotation, with manually annotated senses for 100 types of
explicit connectives, as well as implicit ones and argument
spans. For the entire WSJ corpus of about one million tokens,
there are 18,459 explicit connectives. The senses they signal
are organized in a hierarchy with 4 top-level senses, followed
by 16 sub-senses at the second level and 23 sub-senses at the
third level. Composite senses are also allowed: for instance,
meanwhile is almost exclusively annotated as Temporal. Syn-
chrony/Expansion. Conjunction. Thus, the PDTB hierarchy
lists 129 possible senses, and 63 simple or composed ones were
observed in the WSJ. Connectives have two propositional ar-
guments, as the PDTB annotation does not target complete tree
structures, unlike e.g. Rhetorical Structure Theory (RST) [12].
In our work, we built classifiers using manually labeled

data from the PDTB. However, texts from the PDTB cannot
be used for training or testing MT systems, because no trans-
lation of them is available. Therefore, we considered the
Europarl parallel corpus of parliamentary debates, a large and
frequently used resource for MT [13]. While it is possible
to train connective classifiers on the PDTB and use them to
label the English side of Europarl, we found it important to
train and test our classifiers on portions of Europarl as well.
Therefore, we have annotated from the beginning of Europarl
about 2,200 instances of seven highly ambiguous English
discourse connectives: although, however, meanwhile, since,
(even) though, while, and yet [14]. They were annotated using
translation spotting [15], i.e. indicating the French transla-
tion, and then clustering and mapping them to a set of seven
sense labels: CONTRAST, CONCESSION, TEMPORAL, CAUSAL,
ADVERB, TEMPORAL/CONTRAST, and TEMPORAL/CAUSAL. The
granularity of these labels is similar to the second level of the
PDTB. However, unlike the PDTB, we have included in our
annotation all occurrences of the lexical items regardless of
their discourse or non-discourse role. In the latter case, we
still assigned to them the closest matching sense labels (e.g.
temporal for ) or, when this was not possible
(for yet), we used the adverb label. This is indeed a more

realistic target for automatic annotation than distinguishing first
the discourse vs. non-discourse uses.
Two factors have guided our choice of connectives: their am-

biguity, which has an impact on translation difficulty, and their
overall frequency, to maximize coverage. Considering the sense
frequencies from the PDTB annotation, we clustered senses into
second-level ones and added an ‘other’ category for composite
labels. Then, we computed the entropy of label distributions in
the PDTB for each connective, as a simple measure of their am-
biguity, and sorted them by decreasing entropy. Twelve connec-
tives had an entropy larger than 0.80, while the connective and
was at 0.58. Among the twelve, we excluded indeed and still
for their low frequencies and because their ambiguities were be-
tween neighboring classes. Moreover, we excluded as, but and
when because we observed that they were not significantly am-
biguous in the EN/FR and EN/DE language pairs, hence their
automatic labeling is not likely to improve translation. Addi-
tionally, connectives such as and or as have a large proportion of
non-connective usage, which we do not aim to address directly.
Our seven connective types thus cover 2,392 tokens (13%) of
the 18,459 explicit PDTB connectives. Note that the four most
frequent types (but, and, also, if) cover 9,277 tokens (50%) but
are less challenging to EN/FR and EN/DE translation. Similar
frequencies have been observed over Europarl; however, en-
tropies of senses (or of translations) could not be computed as
the annotation effort was limited to the seven connectives under
study.
We extracted for each connective type all the explicit in-

stances in accordance to the recommendation from the PDTB
manual, i.e. using WSJ Sections 02-21 for training, Sections 00,
01, 22, and 24 for development, and Section 23 for testing con-
nective labelers. To ensure a larger amount of training data, we
merged Europarl and the PDTB by mapping the PDTB senses to
those we defined for Europarl, using a small set of rules. While
our labels tend to correspond to the PDTB’s second level, we
also consider labels encoding two senses, unlike previous work
which is limited to the first one.

B. Data for SMT with Labeled Connectives

The data for SMT experiments was chosen from evaluation
campaigns of the Workshop on Statistical MT (WMT) and the
US National Institute of Standards Technology (NIST), aiming
for testing sets of similar sizes. Table II shows the data sets, in
terms of origins, genre, numbers of sentences and of labeled
connectives. The data for EN/FR, EN/DE and EN/IT comes
from the Workshops on Machine Translation2. Data prepro-
cessing for these three language pairs consisted of tokenization
and truecasing. For EN/AR the data comes from the United
Nations Corpora3and from the Linguistic Data Consortium
for the NIST OpenMT evaluation sets4. The English side was
tokenized and lowercased, while Arabic was transliterated and
words were segmented using MADA [16].
The training corpora, Europarl and the UN Corpus, provide

large collections of EU Parliament debates and, respectively

2http://www.statmt.org/wmt12/translation-task.html
3http://www.uncorpora.org/
4http://catalog.ldc.upenn.edu/LDC2013T03
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TABLE I
NUMBERS OF CONNECTIVES AND DISTRIBUTIONS OF LABELS IN THE TRAINING AND TEST SETS FOR CONNECTIVE LABELING, FROM EUROPARL (EP)

AND THE PENN DISCOURSE TREEBANK (PDTB). CT: CONTRAST, CS: CONCESSION, T: TEMPORAL, CA: CAUSAL, ADV: ADVERB

TABLE II
GENRES, SIZES AND NUMBERS OF CONNECTIVES IN THE DATA FOR TRAINING, TUNING AND TESTING SMT SYSTEMS. THE SOURCES
ARE: EP (EUROPARL CORPUS V. 7), NT (NEWSTEST), SY (NEWSSYSCOMB), UN (UNITED NATIONS CORPUS), NIST (NIST OPENMT).

IDENTICAL NUMBERS IN PARENTHESES INDICATE IDENTICAL SOURCE SIDES

resolutions of the UN General Assembly. System tuning and
testing was performed over news articles with a variety of
topics, constrained by availability. While the EN/FR and
EN/DE systems were tuned and tested on the same EN source,
this was not the case for EN/IT and EN/AR. However, one
test set could be shared across EN/FR, EN/DE, and EN/IT
( ). Moreover, we extracted from it a subset in
which each sentence contains one connective, i.e. a “densified”
set of 122 sentences that served to observe the behavior of
evaluation metrics.
The performance of SMT systems is sensitive to the simi-

larity between the training/tuning and the test data. For instance,
the designers of the MERT tuning method [17] emphasized that
tuning improves quality only if tuning data is from the same do-
main and genre as in the test set. Therefore, we examined the
similarity between the EN sides of our data sets, using cosine
text similarity as implemented by Pedersen et al. (v0.10, June
2013)5. Overall, the similarity of the test sets for FR-DE-IT with
the respective tuning sets is around 0.74–0.78, but this value is
markedly lower for AR at only 0.64. The similarity of the test

5http://text-similarity.sourceforge.net/. The cosine similarity, between 0 and
1, was computed over term-frequency vectors, from lowercased texts excluding
punctuation.

sets with the training sets is even lower, around 0.50–0.55 for
all four languages.
The similarities between test sets (2)–(4) used for EN/FR

and EN/DE (see Table II) are in the same range (0.74–0.77).
However, the distribution of the seven EN connective types
differs quite markedly across these three sets, as shown in
Table VI hereafter. For instance, the proportion of since varies
between 17% and 37%, and that of while between 9% and 34%.

C. Evaluation Metrics

The accuracy of connective disambiguation is rated, as in pre-
vious work, using precision and recall scores for all classes,
and their F1 average ( ). The global score is the
weighted average of F1 scores taking into account the size of
each ground-truth class (micro-averaged F1), rather than with
uniform weights per class (macro-averaging).
The improvement of MT is measured both in terms of overall

text quality as estimated by BLEU (proximity to a reference
translation), and of correct translation of discourse connectives,
using the ACT measure that we briefly present below. We used
the MultEval v. 0.5.1 script [18], which outputs BLEU [19],
METEOR and TER scores; the latter two had the same variation
as BLEU. The BLEU scores were computed on tokenized and
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truecased text, thanks to the tools provided with theMoses SMT
toolkit [20]. We report averages over five runs of MERT tuning.
Reference-based metrics at the text level like BLEU are not

sensitive enough to the improvement of a small category of
words such as discourse connectives (1.8% of the WSJ data).
Therefore, we defined the ACTmetric, for Accuracy of Connec-
tive Translation [21], which attempts to identify the translation
of each source connective in the reference and candidate transla-
tions using word alignment (on tokenized and lowercased SMT
output). The two translations are compared, with the following
possible cases: identical (case 1); “synonymous” according to a
predefined, sense-specific dictionary (case 2); or incompatible
in terms of connective senses (case 3). Moreover, the candidate
connective can be missing or not spotted by the alignment pro-
cedure (case 4), or the reference connective can be missing (case
5), or both (case 6). For each source connective, ACT scores
one point for cases 1 and 2, and zero for all others. The total is
normalized by the number of source connectives. ACT is avail-
able under GPL v3 licence (see footnote 1) and was shown to
be within 2-5% of human scores on the four languages of this
paper.

III. AUTOMATIC DISAMBIGUATION OF
DISCOURSE CONNECTIVES

In this section, we present experiments on automatically la-
beling discourse connectives using a large variety of features.
While some of these features have been used before, others are
new: we add a series of semantically-oriented features to cap-
ture some of the finer-grained label distinctions present in our
data. The features are defined in Section III-B, accompanied by
an explanation on how they were extracted. Using a Maximum
Entropy classifier (III-C) and cross-validation experiments, we
analyze the utility of each feature (III-D), showing that using all
features is the best overall strategy for all connectives, leading
also to the best results on the held-out test sets (III-E). But first
(III-A), we explain why connective labeling is different from
word sense disambiguation and provide experimental evidence
for this claim.

A. Connective Labeling vs. Word Sense Disambiguation
The most obvious difference between WSD and connective

labeling is that WSD concerns potentially all content words
from a sentence, while connectives are sparse function words.
Insights from linguistics indicate that modeling the semantic
meaning of content words differs considerably from modeling
the procedural meaning of function words. The features needed
to perform automaticWSD are quite different from those needed
for connectives. Many WSD methods rely on local criteria, or
sometimes on text-level topic models, which do not seem ap-
propriate as features for discourse connectives, which require
longer-range contextual features.
To illustrate empirically the need for connective-specific

syntactic and semantic features, we implemented a baseline
WSD system using as features only the two words preceding
the occurrence of a discourse connective, and the three fol-
lowing ones. The system thus learns the word senses–here, the
discourse relation labels–from a context window of five words,
often considered sufficient for acceptable WSD performance.

We used the SenseLearner system [22] to define models for
the targeted word types and lists of senses, and experimented
with it on our training data for the connective while, which has
the most senses (five) and is the most difficult to classify (see
Section III-E). With 10-fold cross-validation on the training
set for while (980 occurrences, see Table I), SenseLearner
reached an average F1 score of 0.39. Furthermore, we trained
a Conditional Random Field classifier [23] to label while with
our sense labels, using as features the two words preceding each
occurrence and their POS tags. With 10-fold cross-validation
over the same training set, the F1 score was 0.47. Both scores
are clearly lower than those obtained with the higher-level
features we propose below, which are between 0.76 and 0.79
( ) for 10-fold cross-validation experiments over the
same training set. Therefore, the results of typical WSD tech-
niques on discourse connectives did not appear as particularly
encouraging.

B. Features for Connective Labeling
The features used for discourse connective disambiguation

include word-level and syntactic features already used in the
past, as well as a series of novel semantically-oriented features.
We will illustrate these features, extracted automatically, on the
following excerpt from the PDTB development set (WSJ_2448)
with a while signaling contrast:

Hong Kong trade figures illustrate the toy makers’ re-
liance on factories across the border. In 1989’s first seven
months, domestic exports fell 29%, to HK 3.87 billion,
while re-exports rose 56%, to HK 11.28 billion.

The features are computed for the sentence containing the
connective and for the preceding one (when available), thus ac-
counting for possible inter-sentential dependencies which are
not accessible to current SMT systems.
1) Surface Features: Words, POS, Syntax and Punctuation:

Previous studies (see V-A) have reached above-random disam-
biguation scores by using surface features such as the connec-
tive word form (capitalized), POS tags, and syntactic patterns
from the ground-truth parse trees provided by the Penn Tree-
bank over the WSJ corpus. We also use these features, though
we obtain them from Charniak and Johnson’s parser [24]. From
its output, we extract a total of 9 word forms and 9 POS tags for
each connective instance: the connective itself (capitalization
indicates sentence-initial position), the words preceding and fol-
lowing it, as well as the words at the beginning and end of the
sentence containing the connective, and similarly for the pre-
vious one. The verb following the connective and the first verb
in its sentence are also extracted from the parse trees. All word
forms are lowercased after extraction, except the connective.
For the example above, we obtain the following words and POS
tags: hong kong, NNP, border, NN, while, IN, billion, NN, re-ex-
ports, NNS, in, IN, billion, NN, fell, VBD, rose, VBD.
Another feature is the path of syntactic ancestors leading from

the top of the parse tree to the connective, for which we build
a pattern, e.g. . Punctuation serves as another fea-
ture, which is encoded, following [25], as A.A,CA for the ex-
ample above, where refers to the connective and to all other
words.
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These syntactic features, along with the dependency ones
hereafter, intend to capture the constituent or dependency
structures of a connective’s context, which are potentially
indicative of its sense. As with several other types of features,
these are not captured by phrase-based SMT systems, nor even
by syntax-based SMT ones. Indeed, the grammatical structures
inferred by the latter type of systems are generally of a local
nature. Moreover, empirical evidence in Section IV-D will
show that phrase-based systems outperform syntax-based ones
in our setting.
2) Dependency Features: Discourse connectives can bemod-

ifiers of subjects, objects, predicates, or even other modifiers.
We thus consider as another feature the dependency tags for
the same 9 words as for the syntactic features above, using the
output of Henderson’s et al. dependency parser [26], along with
the word position in the sentence. For the example above, the
values are: NAME, 1, ROOT, 14, TMP, 13, PMOD, 12, SBJ, 14,
PMOD, 19, ROOT, SUB, 15.
3) Auxiliary Verbs: In early work on automatic disam-

biguation of discourse connectives, Miltsakaki et al. [27] have
shown the usefulness of auxiliary verb features. Charniak and
Johnson’s parser tags them as AUX, which allows the extraction
of have, be, do and need as auxiliary verbs. We generalize the
auxiliaries in the same vein as [27], with feature values of the
form AuxVerb(Infinitive)_Tense for all auxiliaries except when
conjugated in present tense and third person singular, where
the feature value becomes, e.g., has_third. When no auxiliary
verbs appear, as in the above example, the features remain
unspecified.
4) WordNet Features: We attempt to detect semantically-re-

lated words surrounding the connective. We extract from the
parse tree the words before and after it, the first and last word
of the sentence, the first verb in the sentence, and the first verb
after the connective. We then compute lexical similarity scores
for all 15 pairs of these six words using the Lesk metric [28],
which measures the distance between two words in WordNet
[29]. The sum of these scores is the value of the feature (0.10 in
the above example).
WordNet also indicates semantic relations such as synonymy,

meronymy and antonymy. The latter type is especially relevant
for our task, as we focus on connectives that may signal con-
trast or concession. For the six words for which we compute the
similarity scores, we look for existing antonyms in WordNet.
We then check in turn if one of those antonyms is present on the
opposite spans linked by the connective. The feature value is
the pair of actual antonyms found, i.e. in our example sentence:
fall-rise.
5) TimeML Features: Some discourse connectives (mean-

while, since, while and yet) signal temporal relations, which is
why information on the temporal ordering of events is poten-
tially helpful to detect those relations. We use the TimeML la-
bels of temporal expressions as features, assigned automatically
by the Tarsqi toolkit [30] with about 0.80 F1 score. From the au-
tomatically annotated TimeML instances, we extract the main
events in the sentence containing the connective and the pre-
ceding one, with their ordering and information on verb tenses
and aspects. The value of this feature for the above example is
the pattern OCCURRENCE-PRES-OCCURRENCE-PAST, in-

dicating a present event in the first sentence, and a past event
in the second one.
6) Polarity Features: contrast and concession, which can be

signaled by although, (even) though, however, while or yet, are
often accompanied by polar expressions such as negations or
polar adjectives, verbs and nouns (e.g. good, bad, increase, de-
crease, abuse or admiration). To detect these expressions, we
use a lexicon providing hand-annotated positive and negative
sentiment values for about 8500 words [31]. We determine
first the polarity of all the words from the sentence con-
taining the connective (e.g. ‘negative_weaksubjective’), and
then check for each word whether its five preceding words
include negations and/or intensifiers (from a small hand-made
list) and if they do we then either invert or reinforce the po-
larity value obtained from the lexicon. Finally, we count the
positive and negative polarity values for the text spans pre-
ceding and following the connective (until the end of the sen-
tence), and generate four numeric feature values representing
polarity. Moreover, we perform the same procedure for the
preceding sentence, adding a fifth feature. For the above ex-
ample, there is only one weak-subjective, negative word: fell
(because rose is not in the polarity lexicon), resulting in the
values 0, 0, 1, 0, 0.
7) Discourse Features: The discourse connective labeling

task has strong relations with discourse parsing. Therefore, we
use the output of the discourse parser by Soricut and Marcu [32]
as features for our labeler. (Of course, if such a parser was fully
accurate, it would de facto solve our task, but this is not yet
the case.) The parser outputs a tree structure, with nodes be-
tween text spans labeled with one of the 128 RST discourse
relations, which are closely related to our task. Our discourse
feature consists of the concatenation of three patterns of RST
tags: one for the preceding sentence, one for the span of text
preceding the connective and one for the span following it until
the end of the sentence. For the example above, the pattern is
Root-Joint-Joint, Contrast, indicating that there is no discourse
relation in the first sentence (‘Root’), then the first span of the
second sentence (‘Joint’) is coordinated with the second one
(‘Joint’), which contains a subordination of the type ‘Contrast’
starting at while.
8) Translational Features: The disambiguation model for

discourse connectives is intended for MT systems. However, it
can also benefit from the output of baseline MT, by using the
hypothesized translation of a connective as a feature. Indeed,
some occurrences of connectives may be translated by a connec-
tive that disambiguates them (e.g. while translated as pendant
que for a temporal sense), correctly found by the MT system
based on local constraints. We translate each discourse connec-
tive with a baseline Moses SMT system from English into each
target language for which the labeler will be used, and align the
outputs with the English source. For all languages, the candidate
translation, its position in the target sentence and its sense from
the ACT dictionary are the values of this feature (12 values). For
the example above, the French target provides the values tandis
que, 25, contrast. This feature is of course noisy: the baseline
SMT contains errors (which our MT system aims to correct),
the alignment is imperfect, and the translation might not solve
the ambiguity.
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TABLE III
F1 SCORES FOR CONNECTIVE LABELING (10-FOLD C.-V.) FOR EACH TYPE OF SYNTACTIC AND SEMANTIC FEATURES.

THE BEST SCORES PER CONNECTIVE FOR EACH HALF OF THE TABLE ARE IN BOLD

TABLE IV
F1 SCORES FOR CONNECTIVE LABELING (10-FOLD C.V.) FOR VARIOUS FEATURE SETS, ALWAYS WITH ALL THE SYNTACTIC FEATURES ( ) AND IN THE

LOWER HALF ALSO THE DEPENDENCY ONES (DEP). THE BEST SCORES PER CONNECTIVE FOR EACH HALF OF THE TABLE ARE IN BOLD

C. Classifiers

We consider two classification algorithms, Maximum
Entropy (MaxEnt from Stanford [33]) and Support Vector
Machines (LibSVM package [34]). Both performed well on
connective labeling in previous work, and can handle large
sets of discrete features. However, MaxEnt can learn the
most useful feature associations through feature weighing and
inter-dependence analysis [33], [35], unlike the SVM model
which considers each feature independently. We compared
these algorithms empirically over three connectives (although,
(even) though and since) for all 26 feature subsets, and found
that in two thirds of the cases the MaxEnt classifier outper-
formed the SVM one. For these reasons, we will use MaxEnt
in the remainder of the paper.

D. Feature Analysis and Selection

For each of the seven discourse connectives, we trained and
tested a classifier with 10-fold cross-validation on randomly
drawn folds from the PDTB training set described in II-A. We
defined 26 different feature subsets, listed in Tables III and IV,
and trained 26 different classifiers for each of the seven connec-
tives, for extensive evaluation and analysis.
To estimate the contribution of each feature, we started by

testing them individually. Then, we grouped the surface and
syntactic features (connective type, words from the context and

their POS tags, punctuation, and syntactic ancestor pattern) into
a set called and tested it as well. The results
of this batch of 13 experiments are shown in Table III. The

set appeared to outperform all other features
considered individually, including the semantic ones, echoing
previous results by Pitler et al. [36]. Still, the fea-
tures, which are the best performing semantic features, are close
to , and even outperform them for meanwhile
and (even) though.
A second series of tests, shown in the upper half of Table IV,

was performed by using for classification the
subset of features, plus each of the semantic features sepa-
rately (7 experiments). A third series of tests, shown in the
lower half of Table IV, was performed by incrementing the

set with the semantic features ordered by
decreasing average of individual performance. Finally, the last
line of Table IV shows the scores with .
From these experiments, it appears that performance in-

creases quite modestly when adding more features. The
variations for each connective, especially in the lower half of
Table IV, are quite small. The highest scores for each connec-
tive are reached with different subsets, and the best scores for

plus the best-performing semantic features
are generally slightly higher than those for ,
though most of the differences in scores are not statistically
significant (for significance tests, see [37], Table V.11). For
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TABLE V
F1 SCORE ON TEST DATA FOR CONNECTIVE LABELING WITH THE MODEL, WITH THE BEST MODEL FOUND ON THE TRAINING DATA ( ), AND

WITH SYNTACTIC AND DEPENDENCY FEATURES ONLY ( ). THE PROPORTION OF THE MAJORITY CLASS ON THE TEST SET IS
INDICATED AS A BASELINE, ALONG WITH THE F1 SCORE OF ON THE TRAINING DATA, WITH CONFIDENCE INTERVALS

only one connective (although), the model
was significantly outperformed by certain feature subsets (like

). We hypothesize that in this
case the amount of data was not sufficient to learn a model
using .
Classification scores close to the best ones can be reached

by using the surface and syntactic features only, as found also
in previous work [36], [38]. However, the
models are always outperformed when adding features
from the dependency parses. Moreover, the
and models for each con-
nective reached particularly high scores. Therefore, using

models appears to be a rec-
ommendable strategy, which is applicable to a larger range of
languages than the models that require higher-level semantic
features. Below, however, we keep using .
A separate classifier should be used for each discourse con-

nective. Indeed, a unique classification model for all seven dis-
course connectives, with , reached 0.80 F1 score
in 10-fold c.-v. experiments. This is slightly but significantly
lower than when averaging over the seven single connective
classifiers with , which results in 0.82 F1 score.
This corroborates a previous comparison of item-specific vs.
joint classifiers for discourse markers [39].

E. Results on the Test Sets

We tested the accuracy of our best classifiers on three previ-
ously unseen test sets: one from Europarl, another one from the
PDTB, and their union noted (see Table I). We
evaluated for each of the connectives and for each test set the
best-scoring MaxEnt model found on the training data (noted

), the model, and the
model. The F1 scores are shown in Table V,

adding in the first line the performance of the
model on the training data with 95% confidence intervals
computed by 10-fold c.-v. Almost all classifiers outperform
significantly the scores of the majority class baselines, given by
the proportion of the largest class in Table I. Only the classifiers
for meanwhile sometimes perform below their baseline (due
to the large majority class), whereas substantial improvement
is gained for all other classifiers, with yet outperforming its
baseline the most ( vs. 0.51).

TABLE VI
CORRECTLY LABELED EN CONNECTIVES AS PERCENTAGES ( ) AND F1

SCORES OF AUTOMATIC LABELING ON EN/DE MT TEST SETS

The scores on the test sets confirm that while very much of
the performance can be gained by using syntactic features plus
dependency ones, the use of is the most reliably
strategy. From both training and test set scores one can also
see that since is the easiest connective to disambiguate, with
F1 scores from 0.85 to 1.0. For while, the c.-v. scores on the
training set (around 0.76) are much higher than on the unseen
test sets, though still above the baseline; this can be due to a
larger proportion of difficult cases in the test sets.
The results above are from systems trained on

with various feature sets. We have also explored the influence
of the training data when evaluating on the same unseen test
sets, by considering a system trained only on the PDTB data,
with its best feature set (see [37], Table V.2). We found that
training on does not significantly improve average
results on the PDTB test set (WSJ s. 23) compared to training
on the PDTB only: both average F1 scores are around 0.75. For
instance, the labeling of sincewas improved (0.78 vs. 1.0) while
the labeling of while was degraded, as above (0.96 vs. 0.46).
Additional experiments would be needed to ascertain the merits
of training on corpora from different genres such as Europarl
and PDTB. However, for the purpose of this paper, the most
robust option is to train the classifier on the largest set (

), as it will serve to label Europarl data for MT.
Table VI reports the scores of our connective labeler with the

EN/DE feature on the test sets used below for
MT. Connectives such as since and yet appear as rather easy to
classify, while others (while, however) show lower scores and
varying performance. This difference clearly affects the overall
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labeling performance: , with the lowest av-
erage F1 score, has fewer instances of since and the most oc-
currences of however, while nt2010 has more occurrences of
since, fewer of however, but the most of while. Finally, nt2012,
with the best labeling performance, has the most occurrences
of since, about the same amount of however as nt2010, but
much fewer of the difficult while. Furthermore, we compared
the classifiers for EN/DE with those for EN/FR and EN/IT (on

) and for EN/FR (on nt2010 and nt2012). Be-
tween language pairs, the classifiers are rather stable, e.g. on

with EN/DE, only two occurrences of con-
nectives are changed with respect to EN/FR and EN/IT. As ex-
pected, these changes are due to varying baseline translations
obtained for the feature.
Our classifiers compare favorably to the state of the art

for classifying highly-ambiguous connectives reviewed in
Section V-A, thanks to the specialized features we defined.
Moreover, to the best of our knowledge and besides our own
previous work [40], [41], these are the first experiments on
automatically labeling some of the composite senses of am-
biguous connectives.

IV. STATISTICAL MT WITH DISCOURSE LABELS

There is no one-size-fits-all solution for augmenting SMT
models with linguistic information. In this section, we first
present approaches for integrating discourse labels into SMT
(IV-A) and discuss a baseline experiment showing that
post-editing the connectives based on their labels does not
improve their translation (IV-B). Using a factored translation
model presented in IV-C, we demonstrate that combining
automatic discourse connective labeling with SMT leads to a
measurable improvement in translation quality (IV-D).

A. Models and Label Integration Methods

We have considered, in previous work, several possibilities
for using the discourse connective labels as input to SMT sys-
tems, from the less principled to the more principled ones. The
first method [42] searches through the translation table con-
structed by a phrase-based SMT model for occurrences of Eng-
lish connectives. When, in a phrase pair, the target connective
clearly indicates one of the senses of the English connective,
then the sense label is added to the English connective, and
the probability of the pair is increased. This led to small im-
provements in translation, at the cost of rule-based phrase-table
editing. Another method, used in a number of studies including
ours [42], concatenates the sense label (gold-standard or auto-
matically assigned) with the connective, thus creating new word
forms that are learned by a translation model. Although small
improvements in translation were measured, this approach in-
troduces sparsity in the training data.
To mitigate the effect of wrong labels upon training the SMT,

we have studied the possibility of duplicating each training sen-
tence containing a connective in proportion of the probability
assigned to each label by a connective classifier, then using the
concatenated labels as above. Alternatively, to mitigate the ef-
fect of wrong labels when translating, we considered the confi-
dence of the classifier: when it is high, the occurrence is handled

by a connective-aware SMT system (e.g. with concatenated la-
bels), and otherwise the occurrence is translated by a baseline
one. This led again to small improvements in BLEU and ACT
scores [42].

B. Post-editing Discourse Connectives

The ACT metric introduced in Section II-C incorporates
heuristics for word alignment applied to connectives, along
with lists of acceptable translations of connectives depending
on their identified senses. These can be used to post-edit the
output of SMT in order to correct target connectives that are
incompatible with the sense hypothesized for their source
connective. For instance, in the example shown in Fig. 1, if
the source connective since is labeled as temporal, and an
MT system generates the French causal connective parce que,
this then can be post-edited to one of the acceptable temporal
French translations of since, like depuis que.
We have experimented with the output of the SMT sys-

tems for EN/FR and EN/DE as described below, including
tuning, with the difference that all data was lowercased. The
connectives were labeled by the model de-
scribed above. Comparing the baseline EN/FR SMT with the
post-edited output, the BLEU scores were identical at 26.7,
while ACT scores were respectively 56.28 and 56.48 on nt2012
(averages over 5 MERT tuning runs), a non-significant differ-
ence. For EN/DE, the BLEU scores were nearly identical (12.0
vs. 11.9) while ACT scores increased from 62.28 to 65.58,
which is a significant improvement ( 0.001). A possible
explanation of the difference between EN/FR and EN/DE is
that in the set of sentences that were actually post-edited (31
for FR and 37 for DE, out of 176 connectives), there were more
correct connective labels in the EN/DE data (25 vs. 13). This
suggests that post-editing could be a viable strategy if labels
were improved. Indeed, we also scored a post-edited output
with oracle labels, with ACT scores of 59.58 for EN/FR and
66.66 for EN/DE, both significantly higher than the baseline
( ).
The manual scoring of the post-edited output, performed on

a 1-to-4 scale by three FR (respectively DE) native speakers,
showed that for both EN/FR and EN/DE, the baseline trans-
lations were rated significantly higher than post-edited ones:
2.5 vs. 2.0, for EN/FR; and 3.2 vs. 2.5,
for EN/DE. The post-editing strategy thus appears to produce
results that are less acceptable to human judges, but similar
in terms of BLEU and ACT. The approach was not pursued,
though it could yield better results when more accurate labels
are available.

C. Factored Models

Factored translation models [43] for phrase-based SMT
systems offer a principled way to use linguistic labels and
do not require human intervention in the data or translation
tables. Such models have most often been used to integrate
part-of-speech information. These models combine features in
a log-linear way, as shown in the following equation for the
most probable target sentence to be found when decoding:

. is the number
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TABLE VII
BLEU AND ACT SCORES AVERAGED OVER FIVE OPTIMIZER RUNS. IS THE SCORE DIFFERENCE BETWEEN THE BASELINE AND THE SYSTEM USING
AS SOURCE-SIDE FACTORS THE AUTOMATICALLY-ASSIGNED CONNECTIVE LABELS. THE STATISTICAL SIGNIFICANCE OF (I.E. THE -VALUE OF A
PAIRED T-TEST OVER THE FIVE RUNS) IS NOTED WITH FOR THE 10% LEVEL, FOR 1%, AND FOR 0.1% (MOST RELIABLE DIFFERENCE).

THE RESULTS OF THE CDEC EN/FR SYNTAX-BASED SYSTEM ARE GIVEN IN LINES 5-6

of features, are the feature functions over the fac-
tors, and are the weights for combining the features, which
are optimized during tuning. The feature functions depend
on a source vector (words and labels) and a target vector

(words). We consider source-side factors only, which are
the labels assigned automatically to discourse connectives or
‘null’ for all other words. These are represented as
or in the source texts, for instance, in the example
sentence shown in Fig. 1, all words receive the NULL label
(e.g. “What stands ”) except the connective
since which receives a TEMPORAL one.
We built MT systems with Moses [20] (version of Nov. 13,

2012) from English to four target languages: French, German,
Italian, and Arabic. The baseline systems were built on texts
that were tokenized and true-cased with the Moses tools. The
language models were 3-gram ones built with the IRSTLM
toolkit [44]. For Italian, they were built from Europarl v7,
while for French and German they were built over a com-
bination of Europarl v7 and the News Commentary corpus,
years 2007-2011, as distributed by the Workshops on Statistical
MT. For Arabic, we built a 3-gram language model from
the United Nations corpus (see II-B). Optimization was done
using Minimum Error Rate Training (MERT) [17]. as provided
with Moses Additionally, we used the cdec syntax-based SMT
system [45] for aligning, training, and decoding, with the same
data as for EN/FR Moses. The cdec system learns synchronous
context-free grammars on the source and target sides, and
supports the use of factors in the same way as Moses.

D. Quantitative Results and Discussion
The BLEU and ACT scores obtained for the four target

languages and four test sets (some of which share the source

side) are shown in Table VII. We indicate significance values
of the differences between baseline systems and those with
labeled connectives, which were computed from five indepen-
dent tuning runs. The scores vary considerably depending on
the training and testing sets and the language pair, and our
main goal is to assess the improvement brought by labeled
connectives in each condition.
The BLEU scores decrease slightly for EN/FR on nt2010

and nt2012 when using labeled connectives, compared to the
baseline. However, they increase slightly (with statistical sig-
nificance) for EN/FR and EN/IT on , as well
as for EN/AR when testing on . Thus, the
use of labeled connectives with factored models does not sys-
tematically improve the single-reference BLEU scores over un-
seen test corpora, likely due to the small proportion of connec-
tives among all words. When this proportion is increased by se-
lecting only test sentences that include a connective, as in the

’ densified test set, the BLEU scores of the
systems using labeled connectives increase more significantly
(about three times more on EN/FR, EN/DE and EN/IT) than on
the non-densified test sets, although BLEU is generally less re-
liable on smaller test sets.
Turning now to the targeted lexical items, most of the ACT

scores indicate a significant improvement in the translation of
connectives when using our EN/FR and EN/DE systems on the
nt2010 and nt2012 data sets, of up to 7 ACT points. This shows
that our proposal is a viable method to improve the translation
of connectives by labeling them prior to MT.
The empirical results of the syntax-based SMT model (cdec)

shown in lines 5-6 of Table VII indicate that labeled connectives
do not significantly improve or degrade its results. Its scores re-
main overall lower than those of phrase-based SMT ones, as we
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had also shown earlier [46]. Although recent work has demon-
strated the qualities of syntactical or hierarchical SMT systems,
the phrase-based approach outperforms it in our context, and of-
fers advantages in terms of simplicity and robustness.Moreover,
these results show that the local structures captured by cdec do
not supersede the syntactic features used to disambiguate con-
nectives, as we hypothesized in Section III-B1 above.
The negative results in Table VII must also be explained.

The lack of improvement when using labeled connectives is ap-
parent when testing on the data, for EN/FR,
EN/DE and EN/IT alike. When examining this data in terms of
genre, topics, or even cosine similarity (see II-B), no marked
difference is found with nt2010 or nt2012. However, as shown
in Section III, Table VI, the accuracy of connective labeling on

is lower ( ) than on nt2010 (
) and especially on nt2012 ( ), due to the different

proportions of easy vs. difficult connectives. These differences
are reflected in the ACT improvements ( ), or lack thereof, on
the different test sets, and explain in particular the lack of im-
provement for all the target languages on
data set on which connective labeling is insufficiently accurate.
We therefore hypothesize that if labeling for the difficult con-
nectives would be improved beyond a certain threshold (ap-
pearing, in our data, to be at around 0.70 F1), their translation
when using discourse-aware MT would become more accurate,
as is the case on nt2010 and nt2012.
In the case of EN/AR, the ACT score on nist2005–nist2009

is degraded the most in comparison to the other language pairs.
Uponmanual inspection of the labels output by our classifier, we
noticed again its lower accuracy, which is likely due to the dif-
ferences between this data ( ) and
( ).
In our previous work [46], the ACT score on nt2010 for

EN/FR improved by up to 5.7 points, which is higher than
the improvement shown in Table VII (0.48 points). We here
made use of all Europarl data available for EN/FR, whereas
in [46], only the original EN and direct FR translations of the
EN/FR pair in Europarl were used. With such reduced data,
discourse-aware MT contributed more noticeably to improve
connective translation. In the present work however, due to a
much larger training set, the baseline system reaches a higher
translation quality, confirmed by its higher BLEU score: 24.4
for EN/FR on nt2010 vs. 21.7 in [46] on the same test set.

E. Qualitative Results and Discussion

Appendix A provides examples of
Mistranslations of Connectives, to exemplify how our
discourse-aware SMT system qualitatively improves the
translations, in addition to the quantitative results given above.
The three examples (one from each language pair under study,
except EN/AR) illustrate how low the quality of a baseline
SMT translation can be when the connective is not translated
correctly.
In the EN/FR example, the connective yet signals a conces-

sion, which is not rendered in the baseline translation (French
adverb encore, literally ‘again’). The output of our system that
makes use of the concession label is more readable and offers

a direct translation of yet with a concessive meaning (pour-
tant). This resembles closely the reference translation which
also has a concessive connective (néanmoins, literally ‘how-
ever’). In the EN/DE example, the baseline translation lacks a
German connective for the English while, which signals here a
concession, while our discourse-aware SMT system correctly
generates the connective zwar (literally ‘though’), as in the ref-
erence translation. Finally, for EN/IT, understanding the causal
role of since can be challenging even to a human reader, due
to the temporal expression “last spring”. The baseline EN/IT
system wrongly generates a temporal connective (da quando,
literally ‘since then’), while our system, having found the cor-
rect discourse label (causal), provides a correct translation with
poiché (literally ‘therefore’), which is equivalent to the refer-
ence translation (visto che, literally ‘given that’). Thus, in all
these examples, our discourse-aware SMT systems successfully
convey the argumentative structure and improve the quality of
the translations.

V. RELATED WORK

A. Disambiguation of Discourse Connectives
Several approaches have been proposed for automatic dis-

course parsing, i.e. computing the tree-like rhetorical structure
of a text [47]. Discourse parsing has proven to be a difficult task,
evenwhen complex statistical models (CRFs, SVMs,Maximum
Entropy, Structural Learning) are used [48]–[50]. The perfor-
mance of discourse parsers is in a range of 0.4 to 0.6 F1 score.
Lin et al. [50] released one of the first discourse parsers that label
rhetorical relations and the linked text spans, in PDTB style.
Marcu et al. [51] have proposed an RST-based model for the
translation of discourse structure from Japanese into English,
but no MT results were reported.
For the disambiguation of discourse connectives, the state-

of-the-art performance for labeling all types of connectives in
English is quite high. In the PDTB data, the disambiguation of
discourse vs. non-discourse uses of connectives reaches 97%
accuracy [50]. The labeling of the four top-level PDTB senses
(temporal, contingency, comparison, expansion) reaches 94%
accuracy [36]. However, the baseline accuracy is already around
85% when using only the connective token as a feature. Various
methods for classification and feature analysis have been pro-
posed [35], [52], [53].
Fewer studies have focused on the analysis of highly am-

biguous discourse connectives. Miltsakaki et al. [27], using
a Maximum Entropy classifier, reach 75.5% accuracy for
since, 71.8% for while and 61.6% for when. As the PDTB
was not completed at that time, the data sets and labels are
not exactly identical to the ones that we used above. Versley
[54] designed hierarchical Maximum Entropy classifiers for
the PDTB hierarchy, targeting its third sense, using syntactical
and verbal tense/mood features. The accuracy scores for 25
connective types were in a range of 45% to 100%, with the
most difficult distinctions being contrast vs. concession and
temporal vs. contingency. The conclusion of the two latter
studies are in line with ours and confirm the increased difficulty
when disambiguating single, highly ambiguous connectives
only, and when aiming for detailed PDTB senses.
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B. Statistical MT with Linguistic Information

1) Factored Translation Models: Factored translation
models with semantic information have been studied by e.g.
Baker et al. [55] who augmented hierarchical (syntax-based)
translation models with semantic labels. The labels were pro-
duced by named entity recognition, modality and negation
taggers, and were appended to the nodes in the syntactic tree
input, in order to build the translation models. As a result,
Urdu/English translation was improved by 0.5 BLEU points
over the baseline. Birch et al. [56] made use of supertags from
a Combinatorial Categorial Grammar as factors for translation
models. When the supertags (combined with other factors, e.g.
POS tags) were applied on the target side, the models improved
by 0.46 BLEU points for Dutch/English translation. However,
when the factors were only applied to the source side, the
factored models did not conclusively improve German/English
translation. Wang et al. [57] have shown improvements for
BLEU and manual evaluation for Bulgarian/English translation
when using as factors POS, lemmas, dependency parsing, and
minimal recursion semantics supertags.
2) Text-level Models: The significance to MT of discourse

information has long been acknowledged [4], [51], [58]. How-
ever, making use of such information within operational sys-
tems–be they statistical or rule-based–remains a major chal-
lenge. Several methods have been proposed to constrain pro-
noun choice [5]–[7], relying on knowledge of a pronoun’s an-
tecedent, which is prone to anaphora resolution errors. In a more
syntactically oriented approach, Novak et al. [59] built an Eng-
lish/Czech translation system that relies on rich syntactic anno-
tation, external anaphora resolution tools and lexical co-occur-
rence features in order to better translate the English genderless
pronoun it into Czech. Lexical chains have also been consid-
ered for MT, in preliminary studies [10], [60], showing the im-
portance of referential cohesion. As a complement to current
phrase-based, syntax-based and/or factored translation models,
a text-level decoder for SMT was presented by Hardmeier et al.
[3], [4], allowing for document-wide features.
3) Word Sense Disambiguation for Machine Translation:

Attempts to couple function word disambiguation with SMT
are still infrequent. Chang et al. [61] disambiguated the Chinese
particle ‘DE’ which has five different context-dependent usages
(modifier, preposition, relative clause, etc.). Using a linguisti-
cally-informed LogLinear classifier to label the particles prior
to SMT, they improved translation quality by almost 1.5 BLEU
points for phrase-based ZH/EN translation. English Simple
Past verbs were classified according to the expected tense when
translating into French [62], leading to an improvement of 0.2
BLEU points for EN/FR translation. Ma et al. [63] proposed
a Maximum Entropy model to annotate English collocational
particles (e.g. come down/by, turn against, inform of) with
more specific labels than a standard POS tagger would output.
Such a tagger could, as the authors suggest, be useful in the
future for EN/ZH translation.
Chan et al. [64] as well as Carpuat and Wu [8] improved MT

by combining it with word sense disambiguation. The latter
authors used the translation candidates output by a baseline
SMT system as word sense labels. Then, the output of several

classifiers based on linguistic features was weighed against the
translation candidates from the baseline SMT system. There-
fore, integration of MT and WSD amounted to postprocessing
of MT, while in the present proposal, connective labeling
amounts to preprocessing. The system of Carpuat
and Wu improved BLEU scores by 0.4–0.5 for EN/ZH transla-
tion. Xiao et al. [65] identified ambiguous words in the SMT
system output and then re-decoded the input using a filtered set
of translation options, e.g. using the most frequent translation,
focusing on document-level consistency. Improvements in
translation have been observed when enforcing consistency
or “one translation per discourse” [9], [66], although baseline
SMT systems appeared to be often consistent. Enforcing con-
sistency in German compounds has also been shown to improve
their translation [67].

VI. CONCLUSIONS

This paper presented a two-fold contribution. Firstly, for the
disambiguation of discourse connectives, we implemented new
and specialized features, allowed for composite sense classes
and built classifiers for single, highly ambiguous connectives.
Feature analysis showed that a large part of the performance can
be gained by syntactic and dependency structures only, which is
promising for the disambiguation of connectives in languages
other than English, where no sophisticated NLP resources and
tools exist.
Secondly, we successfully integrated discourse label infor-

mation into SMT in an attempt to improve the coherence and
readability of SMT output. The labels were annotated automat-
ically over large data sets, by taking the preceding context into
account, and then used to train and test phrase-based factored
translation models. The discourse labels were most helpful
when the number of connectives that are easy to classify (e.g.
since) was high in the test sets. Thus, if labeling for the other
highly ambiguous connectives is improved in the future, their
translation would likely become more accurate. Moreover, if
connectives that are often left implicit in translation can be
reliably indicated to an SMT system, its output could become
even more coherent and more similar to human translations.
The automatic labeling of discourse connectives may appear

as a complex addition to SMT.However, considering the knowl-
edge required to disambiguate certain connectives, and more
generally to deal with other discourse-level phenomena such as
pronouns, verb tenses, or lexical cohesion, we submit that its ex-
ploitation within SMT cannot be overly simplified. A possible
solution would be to integrate such discourse-level knowledge
sources into a flexible architecture, for instance inspired from
blackboard systems, and call them into play only when ambigu-
ities cannot be solved by local-scope SMT.

APPENDIX A
MISTRANSLATIONS OF CONNECTIVES

We provide below examples of mistranslations of discourse
connectives from English to French, German and Italian, with
human reference, baseline and discourse-aware translations
from our SMT systems. The examples are taken from the

dataset and are discussed in Section IV-E.
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English: Next, there is - and once again it is inevitable,
yet_CONCESSION questionable - an element of randomness,
which is understandable, in the decisions made by the European
Institute of Florence.
French reference: Ensuite, il y a, lá; encore, c’est inévitable,

mais néanmoins_CONCESSION discutable, une part d’arbi-
traire, on le comprend, dans les choix opérés par l’institut de
Florence.
French baseline MT: Ensuite, il est - et une nouvelle fois, il

est inévitable, encore_ADV sujette á caution - un élément de
randomness, qui est compréhensible, dans les décisions prises
par l’institut européen de Florence.
French discourse-aware MT: Ensuite, il y a - et une nou-

velle fois, il est inévitable, et pourtant_CONCESSION con-
testable - un élément de randomness, qui est compréhensible,
dans les décisions prises par l’institut européen de Florence.
English: Thirdly,while_CONCESSION Iwelcome the Rapid

Reaction Force, we have to be clear from Europe’s perspective,
as we only get one chance to get this right.
German reference: Drittens halte ich zwar_CONCESSION

die schnelle Eingreiftruppe für begrüßenswert, doch müssen wir
eindeutig aus europäischer Sicht handeln, denn uns steht nur
eine Chance zur verfügung, es richtig zu machen.
German baseline MT: Drittens, ich begrüße ——die

schnelle Eingreiftruppe, müssen wir uns im Klaren sein in
der europäischen Perspektive, wie wir nur noch eine Chance,
dieses recht.
German discourse-aware MT: Drittens, ich begrüße

zwar_CONCESSION die schnelle Eingreiftruppe, wir müssen
deutlich aus den europäischen Vorausschau, wie wir eine
Chance, dieses recht.
English: Administration in the EU has been inexcusably

poor, since_CAUSAL, for example, last spring around EUR
3 billion of unused funds were returned to Member States.
Italian reference: L’unione europea ha dimostrato un’ineffi-

cienza insostenibile nella gestione, visto che_CAUSAL, per es-
empio, la primavera scorsa sono stati rimborsati agli statimembri
risorse finanziarie non utilizzate pari a tre miliardi di Euro.
Italian baseline MT: Amministrazione nell’unione europea

é stata colpevolmente poveri, da quando_TEMPORAL, per
esempio, la scorsa primavera circa 3 miliardi di Euro di fondi
inutilizzati sono stati restituiti agli stati membri.
Italian discourse-aware MT: Amministrazione nell’unione

europea é stata colpevolmente poveri, poiché_CAUSAL, per es-
empio, la scorsa primavera circa 3 miliardi di Euro di fondi inu-
tilizzati fosse restituito agli stati membri.
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