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Extracting Biomedical Event with Dual 
Decomposition Integrating Word Embeddings 

Lishuang Li, Shanshan Liu, Meiyue Qin, Yiwen Wang, and Degen Huang 

Abstract—Extracting biomedical event from literatures has attracted much attention recently. By now, most of the state-of-the-
art systems have been based on pipelines which suffer from cascading errors, and the words encoded by one-hot are unable to 
represent the semantic information. Joint inference with dual decomposition and novel word embeddings are adopted to 
address the two problems respectively in this work. Word embeddings are learnt from large scale unlabeled texts and integrated 
as an unsupervised feature into other rich features based on dependency parse graphs to detect triggers and arguments. The 
proposed system consists of four components: trigger detector, argument detector, jointly inference with dual decomposition and 
rule-based semantic post-processing, and outperforms the state-of-the-art systems. On the development set of BioNLP’09, the 
F-score is 59.77% on the primary task, which is 0.96% higher than the best system. On the test set of BioNLP'11, the F-score is 
56.09% and 0.89% higher than the best published result that do not adopt additional techniques. On the test set of BioNLP'13, 
the F-score reaches 53.19% which is 2.22% higher than the best result. 

Index Terms—biomedical event extraction; dual decomposition; word embeddings; natural language processing  

——————————      —————————— 

1 INTRODUCTION

ITH the development of the Internet, a vast and 
ever-expanding body of natural language text is 

becoming increasingly difficult to leverage. This is partic-
ularly true in the domain of life science, where biomedical 
articles are increasing exponentially. We need to automat-
ically extract interested and structured information from 
biomedical text, which is known as biomedical text min-
ing. 

In past years, the major focus of biomedical text min-
ing has been named entity recognition (NER), which 
identifies entities such as genes, proteins, drugs, and bi-
nary relations between such entities. In recent years, text 
mining researchers pay more attention to complex infor-
mation extraction, such as biomedical event extraction, 
with the appearance of applicable NER systems. Biomedi-
cal event extraction concerns the detailed behavior of bio-
molecules and shows the event information in a struc-
tured form, which can represent more detailed and com-
plex relations. The behaviors of bio-molecules mainly 
include expression, transcription, catabolism, phosphory-
lation, localization, binding and regulation of genes or 
proteins. As shown in Fig. 1(c), the text describes regula-
tion and phosphorylation of protein “4E-BP1”. Take the 

event: phosphorylation of “4E-BP1” for an example, the 
trigger and argument of this event are “phosphorylation” 
and “4E-BP1” respectively. 

There are three shared tasks (ST) related with GENIA 
event (GE) extraction, BioNLP’09 [1], BioNLP’11 [2] and 
BioNLP’13 [3]. There are 24, 15 and 12 teams participating 
in the core task, GE in the three shared tasks respectively. 
Although these tasks attracted many experts and scholars 
and many methods were proposed, the task is still a chal-
lenge. 

Fig. 1. An example of pipeline-based event extraction method. The 
number by abovethe word is the index of the word in a sentence. 

Several state-of-the-art systems are pipeline-based, in-
cluding trigger recognition, argument detection and post-
processing, as shown in Fig. 1. Björne et al.’s system TEES 
[4] regarded trigger and argument detection as classifica-
tion problems. They adopted support vector machine 
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(SVM) to classify triggers and arguments. Rule-based 
post-processing was conducted to remove improper com-
bination of arguments. They achieved an F-score of 
51.95% on GE09 test data and ranked the first. Björne et 
al.’s system [5], a pipeline-based event extraction system, 
included three steps: trigger detection, argument detec-
tion and unmerging. It was the most similar to [4] devel-
oped for GE09. The major difference was the replacement 
of the rule-based unmerging component with an SVM 
based one. It achieved an F-score of 53.30% and ranked 
the third on the test data of GE11. Hakala et al.’s system 
EVEX [6] in GE13 extracted events first applying the un-
modified TEES system [4] and subsequently re-ranked its 
output with SVMrank. The re-ranker assigned a numeri-
cal score to event produced by TEES, and all events below 
a certain threshold score were removed, where the thre-
shold was learned adopting linear SVM regressor.  Their 
method achieved the best with an F-score of 50.97% on 
GE13 task.  Björne et al.’s system TEES-2.1 [7] added a 
module named Automated Annotation Scheme Learning 
into TEES, a machine-learning based tool for extracting 
event. Their system ranked the second with an F-score of 
50.74% on the GE13 task. 

The event extraction systems mentioned above were 
based on pipelines and several adopted external re-
sources, including trigger recognition and argument de-
tection. The pipeline-based systems suffer from cascading 
errors. If a trigger is not detected in trigger recognition 
step, their argument will never be detected and finally the 
event will be lost. This phenomenon has an adverse effect 
on the performance of the system. In recent years, joint 
models have been proposed. Riedel et al. [8] and Poon et 
al. [9] adopted Markov logic network and manually made 
predicate logic joint statements to extract triggers and 
arguments simultaneously. They could get the F-scores as 
high as 43.1% and 50.0% on BioNLP’09 test set respective-
ly. Although Markov logic network could avoid cascad-
ing errors, the performance did not exceed the pipeline 
systems due to the complex structure of biomedical 
events and the shortcoming that Markov logic network 
could not make good use of a large number of features. 
Riedel et al.’s system UMass [10] adopted passive-
aggressive (PA) online learning algorithm to predict the 
confidence of triggers and arguments, and then extracted 
the events with the highest confidence and some con-
straints using dual decomposition. They achieved the best 
F-scores of 57.4% and 55.2% on the test set of GE09 and 
GE11 respectively without adopting any additional tech-
nologies.  

In previous works, the way to digitalize features is 
one-hot encoding. The main problem of this method is 
that it is unable to represent the semantic information. 
Recently, word embeddings, a vector related with a word, 
are used in several NLP problems, such as named entity 
recognition (NER), chunking, and make a contribution to 
the improvement. Tang et al. [11] explored the effect of 
word embeddings on biomedical NER. Turian et al. [12] 
discussed the impact on several tasks, including NER and 
chunking. In part-of-speech tagging task, Fonseca et. al 
[13] explored the influences of kinds of word embeddings 

learnt from different models, including neural language 
model(NLM), skip-grams and hyper-space analogue to 
language(HAL). These researches indicate word embed-
dings are conducive to different natural language 
processing tasks. 

 Considering the two problems of cascading errors and 
semantic information absence mentioned, we propose 
this method: adopting dual decomposition and rich fea-
tures integrating word embeddings to detect event jointly. 
Dual decomposition has been used in other natural lan-
guage processing task, such as named entity recognition 
[14] and Chinese discharge summaries [15] and has been 
proved beneficial to improve performance. In addition, 
word embeddings, a type of word representation, are 
firstly used in event extraction to our best knowledge. 
The main strengths of our work are: 1) Rich features 
based on dependency parse. 2) Word embeddings, novel 
word features which can represent word semantically 
and syntactically. 3) Dual decomposition which can ex-
tract event jointly using inference and alleviate cascading 
errors. In this work, we use a dual decomposition method 
and adopte rich features based on dependency parse.  
Furthermore, an unsupervised word feature, called word 
embeddings is integrated into the rich features. In dual 
decomposition, the Passive-aggressive (PA) online algo-
rithm [16] is adopted to allocate confidence to triggers 
and arguments.  

The remaining part of this paper is organized as fol-
lows: the related work is described in Section 2. Our pro-
posed method is described in Section 3. Experimental 
results and analysis are illustrated in Section 4. Finally, 
conclusions are drawn in Section 5. 

2 PRELIMINARY ALGORITHMS 

2.1 Online Passive-aggressive Algorithms 
Passive-aggressive (PA) online algorithm [16] is an online 
algorithm based on perception. The main idea of the algo-
rithm is the maximum classification margin adopted in 
SVM. It updates the classifier using the instance greedily 
and predicts the instance correctly with the maximum 
margin and remains the new classifier as close as possible 
to the current one. 

The pseudo code of Passive-aggressive online algo-
rithm is shown in Fig. 2, ty is a trigger or argument type 
and tx  is feature vector. Y is the set of ty  . N is the num-
ber of iterations. w  is the weight needed to be learned. 
Multi-class PA can assign a score to each class of an in-
stance, which can provide additive confidence for dual 
decomposition. Note that all parameters in the algorithm 
are optimized on developing sets. In order to improve the 
robustness of a classifier and reduce the number of possi-
ble combinations, several outstanding classifiers’ models 
after optimized on the parameter C are selected and the 
mean of selected models is adopted. In our work, the 
trigger class and argument class with the highest scores 
are the predicted results when using online algo-
rithms.The interested readers can refer to [16] for more 
details. 
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Fig. 2. Passive-aggressive online algorithm. 

2.2 Dual Decomposition 
Dual decomposition is a combined optimization method 
and widely used to solve complicate problems. It usually 
decomposes a hard problem into two simple problems 
with constraints. The process of extracting events can be 
decomposed into simple problems with constraints 1) 
Outgoing constraints (O): There is at least one Theme ar-
gument for a trigger; Only regulation event are allowed to 
have Cause arguments; a None trigger must have no ar-
guments, 2) Incoming constraints(I): arguments must be 
proteins or another trigger. For a nested event, the trigger 
of its argument (another event) must participate in a 
complete event. The process is described in detail in [10].  

To introduce this algorithm briefly, several binary va-
riables are defined.  1, tie represents that the ith token  in 

a sentence is a trigger with type t . 1,, rjia represents 

that the jth token is the argument of the trigger i with the 
role of r . In Fig. 1, 1_,1 regNege , 1,2,1 Themea . For a com-

bination of a trigger and an argument, its score can be 
defined as (1).  
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score of the jth token being the argument of the trigger 
i with the role of r . 

The scoring function is defined as (2). 
 ),(,),;( xyfwwxysm                      (2) 

where w is the weight used in PA, ),( xyf is the 
feature vector. 

The event with the highest ),( aes is the final re-
sult extracted by dual decomposition. 

2.3 Word Embeddings 
A distributed representation, also known as word em-
beddings, is dense, low dimensional, and real-valued. 
Word embeddings are typically induced using neural 
language models, which use neural networks as the un-
derlying predictive model. There are several word em-
beddings, such as Collobert and Weston embed-
dings(C&W) [17], HLBL embeddings [18] and Word2Vec 
[19, 20]. 

Considered the time and hardware requirements in 
different distributed representation methods, Word2Vec, 
developed by [19, 20], is adopted in our work. Word2Vec 
has two models: CBOW and Skip-gram. The Skip-gram 
model extended from n-gram model is used and shown 
in Fig. 3. It aims to optimize the classification of a word 
by other words in the same sentence within a certain 
range. This tool can generate a dense, low-dimensional, 
and real-valued vector, which may capture the syntactic 
and semantic information in each dimension. This infor-
mation cannot be obtained from words encoded by one-
hot. 

Fig. 3. The Skip-gram architecture. 

To train better word embeddings, a large scale of unla-
beled texts are required. The way we train word embed-
dings is as follows: First, abstract texts are downloaded 
from the public database, PubMed, with the size of about 
5.6G. Then, all abstracts are split into sentences and toke-
nized into tokens. Finally, all tokenized sentences are sent 
into the tool Word2Vec to get the vectors. The parameters, 
window sizes and dimensions, are set 7 and 400 respec-
tively when training the vectors finally in our work. 

3 METHOD DESCRIPTION 
The overall framework of the proposed method is shown 
in Fig. 4. The system mainly has four components: pre-
processing, trigger and argument prediction, dual de-
composition and rule-based post-processing.  
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Fig. 4. The framework of the proposed method. 

3.1 Pre-processing 
The pre-processing mainly includes sentence splitting, 
tokenization, and syntactic and dependency parsing. The 
raw texts are in paragraphs and are split into sentences 
using Genia Sentence Splitter. Supporting resources pro-
vided by BioNLP’11 are adopted to correct common er-
rors and tokenize all sentences. The tokenized sentences 
are parsed with McClosky parser [21] and Enju parser 
[22]. 

3.2 Trigger Prediction 
Trigger prediction is to assign confidence scores indicat-
ing the credibility of a token to be different types of trig-
ger. It is expected to allocate a highest score to the correct 
type of a token while the lowest to the irrelevant types. It 
is depicted as token classification task in this work. To 
train a good classifier, a wide array of valid features is 
extracted from text after pre-processing, such as token 
itself, n-gram syntactic and dependency parsing informa-
tion, and word embeddings. The flow chart of trigger 
prediction is shown in Fig. 5. 

Fig. 5. The flow chart of trigger prediction. 

In this work, five kinds of features are mainly used, to-
ken, frequency, dependency chains, shortest path and 
word embeddings. The dependency paths parsed by 
McClosky-Charniak parser [21] and Enju parser [22] are 
added into the features. 

 
Token features include current token text, POS, stem, 

binary tests for presence of uppercase, digital or special 
characters, bigrams and trigrams of the token. Dependen-
cy context is of great importance for trigger detection, so 
we extract token features of candidate triggers in depen-
dency context and linear context besides candidate trig-
gers themselves. 

• Token text includes current token and the tokens 
within a window of three tokens before and after the tar-
get tokens. 

• POS includes the POS of the current token and 
the tokens within a window of three tokens. The POS is 
tagged with McClosky-Charniak parser [21]. The POS 
distribution of triggers in BioNLP’09 training set is shown 
in Table 1. 

• Stem consists of the stem of the current token, 
obtained by Porter stemmer [23]. This feature can alle-
viate the effect of morphological changes, such as “in-
volvement” and “involves”. 

• Binary features include binary tests for presence 
of uppercase, digital or special characters. Some words 
with a negative class may contain digitals or capital let-
ters. Some triggers contain special characters, such as 
“up-regulation”, “co-transfected”. 
     • Bigrams and trigrams consist of two or three con-
tinuous characters in current token. For example, for the 
token “binding”, its trigrams are “bin”, “ind”, “ndi”, 
“din”, and “ing”. 

TABLE 1  

THE PROPORTION OF TRIGGERS POS IN BIONLP’09 TRAINING 
SET 

POS PERCENTAGE(%) POS PERCENTAGE(%) 

NN 49.9 VB 4.3 

VBN 13.6 NNS 3.8 

JJ 8.1 VBG 3.4 

VBD 6.5 VBP 2.8 

VBZ 5.9 OTHERS 1.7 

 
Frequency features are defined as the number of named 

entities in the sentence and the context of a candidate 
trigger, and the frequency of words in bag-of-words. It is 
obvious that the more entities in a sentence there are, the 
more likely triggers exist in the sentence. For the frequen-
cy of words in bag-of-words, we take this sentence for an 
example, “The p53 paradox in the pathogenesis of tumor 
progression.”, the frequency of words in its bag-of-words 
are “the:2”, “p53:1”, “paradox:1”, “in:1”, “pathogenesis:1”, 
“of:1”, “tumor:1”, “progression:1”, “.:1” and “PROTEIN:1”. 
Here, the protein names are all replaced with “PROTEIN”. 

Dependency chains up to depth of three are constructed. 
At each depth, both token features and dependency types 
are included, as well as the sequence of dependency types 
in the chain. Because of the limitation of linear context, if 
the linear window size is small, some important informa-
tion related with candidate triggers cannot be considered 
and therefore dependency information is added. 

• Token features of nodes in dependency chains include 
POS of the token, the token and whether the node is pro-
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tein or not. These features are added with position infor-
mation (the distance from proteins) in dependency chains. 

• Dependency types in dependency chains are also 
added with position information, sequence of dependen-
cy types and direction. An example of dependency pars-
ing is shown as Fig. 6. For the token “inhibits”, its depen-
dency chains features are:  “1_binding”, “1_NN”, “1_dobj”, 
“1_dobj_NN”, “1_dobj_binding”, “1_Phosphorylation”, 
“1_NN”, “1_nsubj”, “1_nsubj_NN”, 
“1_nsubj_Phosphorylation”, etc. 

 

Fig. 6. An example of dependency parsing. 

Shortest path is a directed path including the path in-
formation between the candidate trigger and its nearest 
protein. Concretely, the path information includes n-
grams (n=2, 3, 4) of the edges in the shortest dependency 
path between candidate trigger and the nearest protein, 
and the combinations of the entity types in the shortest 
path. There is an important connection between the can-
didate trigger and the nearest protein. Furthermore, the 
nearest protein is more likely to be the argument of trig-
ger. As shown in Fig. 6, for the candidate word “inhibits”, 
its nearest protein is “CD40”, and the path between them 
is “inhibits-dobj->binding-prep_to->domain-nn->CD40”. The 
n-gram feature is represented as an n-tuple of vertexes 
and edges in the shortest path, where the vertexes are 
extracted from the word window “inhibits, binding, domain, 
CD40”, and the edges are obtained from the string win-
dow “dobj, prep_to, nn”. Besides, the combinations of 
entity types can be gained from “NN, NN, NN”. 

Word embeddings refer to the vectors of the current 
token. The dimension of the vectors is decided by expe-
riments. 

3.3 Argument Prediction 
Similar with trigger prediction, argument prediction is 
also treated as a classification task and online PA multi-
class classifier is adopted. Each instance will be assigned 
three scores representing the probabilities of a candidate 
argument to be Theme, Cause or Negative. Theme and 
Cause are the semantic role of arguments.  

The flow chart of argument detection is similar with 
trigger detection (shown as Fig. 5) just with different fea-
tures in the step of feature extraction. The features in this 

step mainly include: N-grams, individual component fea-
tures, semantic node features, frequency, shortest path, 
word embeddings and dependency edges. 

According to [4], the distances among event and 
named entity in the shortest dependency path are shorter 
than those in linear order of the sentence. Therefore the 
features are almost constructed on the base of the shortest 
dependency path. The two terminal ends of the shortest 
dependency path are the semantic heads of triggers or 
named entities, which can be obtained using rules.  

N-grams features are obtained from dependency paths 
of candidate arguments. N-grams combine up to 4 conti-
nuous tokens and dependency relations. Each token and 
the dependency types on the both sides, and the depen-
dency type and its two attached tokens are constructed. 
In Fig. 6, for “TRAF2”, its N-grams features are: “nsubj-
Phosphorylation-prep_of”, “inhibits-nsubj-Phosphorylation”, 
“Phosphorylation-preo_of-TRAF2” and “prep_of-TRAF2”. 

Individual component features are defined for the edges 
and tokens in a path according to their attributes and po-
sitions, where positions mean the inner or the end of the 
path. Edge attributes are combined with their direction 
relative to the path. 

Semantic node features are constructed by combining the 
attributes of the two nodes of candidate arguments.  
These features concatenate the types of nodes and their 
categories. 

Word embeddings are built with the vectors of the cur-
rent candidate trigger and argument. 

Adjacent dependency edges include POS, dependency 
type, the stem of word and entity type, together with de-
pendency direction in the dependency paths adjacent 
with the current candidate argument.  

Frequency features include the length of the shortest 
path (the longer the length is, the less likely the argument 
is), and the number of named entities in the current sen-
tence. 

Shortest path includes n-grams (n=2, 3, 4) of the edges 
in the shortest dependency path between candidate ar-
gument and the nearest protein, the dependency type and 
semantic node features in the dependency path. 

3.4 Rule-based Semantic Post-processing 
We adjust the results which may not meet the definition 
of event in the task using rules after trigger and argument 
detection. The rules are similar with those proposed by 
[4]. So we do not introduce them in detail. 

4 RESULTS AND ANALYSIS 

4.1 Corpus and Evaluation 
All experiments are conducted on the corpora provided 
by BioNLP’09, BioNLP’11 and BioNLP’13. And parame-
ters are optimized on development set. The evaluation 
criteria “Approximate Span/Approximate Recursive” 
and P(recision)/R(ecall)/F(-score) are adopted. Due to 
the inaccessibility of the evaluation interface on testing set 
of BioNLP’09 and BioNLP’11, we just show the perfor-
mance on development set. The evaluation metric P/R/F 
is defined as below (3), where TP, FP and FN are short for 
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True Positives, False Positives and False Negatives re-
spectively. 

 ,  ,  
TP TP 2* P* R

P R F -score=
TP+FP TP+FN P+R

 
                (3) 

4.2 Results of Trigger and Argument Prediction 
Integrating Word Embeddings 
Five groups of experiments are conducted on the devel-
opment set of BioNLP’09 to select the optimal dimension 
of the vectors. The dimension of the vectors is set to 50, 
100, 200 and 400 respectively to compare the influence of 
word embeddings on trigger and argument prediction. 
The results are shown in Table 2 and Table 3, and our 
baseline is that using all features except word embed-
dings. BaselineWE50, BaselineWE100, BaselineWE200 and 
BaselineWE400 mean the dimensions of word embed-
dings are 50, 100, 200 and 400 respectively when word 
embeddings are integrated.  The type with the highest 
score is the final predict result. 

 
TABLE 2 

THE INFLUENCE OF DIMENSIONS ON TRIGGER PREDICTION 

Features Gold(match) Answer(match) P/R/F(%) 

Baseline 1335(891) 1194(891) 74.62/66.74/70.46

BaselineWE50 1335(915) 1218(915) 75.12/68.54/71.68

BaselineWE100 1335(920) 1230(920) 74.80/68.91/71.73

BaselineWE200 1335(920) 1221(920) 75.35/68.91/71.99

BaselineWE400 1335(959) 1310(956) 71.57/71.84/71.70

 

TABLE 3 

THE INFLUENCE OF DIMENSIONS ON ARGUMENT PREDICTION 

Features Gold(match) Answer(match) P/R/F(%) 

Baseline 1954(1236) 1767(1236) 69.95/63.25/66.43

BaselineWE50 1954(1230) 1727(1230) 71.22/62.95/66.83

BaselineWE100 1954(1261) 1801(1261) 70.02/64.53/67.16

BaselineWE200 1954(1248) 1742(1248) 71.64/63.87/67.53

BaselineWE400 1954(1249) 1745(1249) 71.58/63.92/67.53

 
From Table 2 and Table 3, we can see all of the F-scores 

of trigger and argument prediction using word embed-
dings are improved compared with Baseline. The F-score 
improves with the increase of dimension except the di-
mension of 400 on trigger prediction. The F-scores are 
improved by 1.22~1.53% and 0.4~1.1% with the variance 
of the dimension of the vectors, which illustrates that the 
syntactic and semantic information carried by word em-
beddings has significantly increases the performance. 

4.3 Result of Event Extraction Integrating Word 
Embeddings  
To verify the effect of the word embeddings feature, the 
results with/without word embeddings on BioNLP’09 
development set are shown in Table 4 (without dual de-
composition). Word embeddings improve Binding and 

Regulation events significantly by 1.48% and 2.81% re-
spectively, though the F-score of Simple events is de-
creased slightly by 0.12% caused by the degradation of 
Transcription and Protein_catabolism event. Finally word 
embeddings improve the F-score by 1.45% for event ex-
traction. 

TABLE 4 

RESULTS WITH/WITHOUT WORD EMBEDDINGS ON EVENT DE-
TECTION ON DEVELOPMENT SET OF BIONLP’09 

Event Class Without WE 
P/R/F(%) 

With WE 
P/R/F(%)

Gene_expression 83.54/77.25/80.27 83.64/77.81/80.62 

Transcription 85.25/63.41/72.73 86.21/60.98/71.43 

Protein_catabolism 87.50/74.47/80.46 81.40/74.47/77.78 

Localization 97.56/75.47/85.11 95.35/77.36/85.42 

=[SVT-TOTAL]= 85.77/74.60/79.80 85.28/74.78/79.68 

Binding 63.01/37.10/46.70 60.74/39.92/48.18 

==[EVT-TOTAL]== 80.51/63.07/70.73 79.14/64.06/70.81 

Regulation 61.29/33.73/43.51 64.42/39.64/49.08 

Positive_regulation 59.56/39.38/47.41 60.87/40.84/48.88 

Negative_regulation 60.87/35.71/45.02 59.57/42.86/49.85 

==[REG-TOTAL]== 60.06/37.68/46.31 61.15/41.04/49.12 

==[ALL-TOTAL]== 70.41/49.13/57.88 70.10/51.43/59.33 

 

4.4 Results of Event Extraction Using Dual 
Decomposition 
We compare the performance using these two methods: 
PA online and dual decomposition. To simplify the tables, 
we just list the performance on Simple, Binding, Modifi-
cation, Regulation event, and Task 1 here and after. 

In Table 5, the F-scores on all classes of events are im-
proved by 0.34%, 2.18% and 0.39% respectively. Dual de-
composition enhances the final performance of event ex-
traction by 0.44% especially with the improvement of 
Binding event (increased by 2.18% F-score) on the devel-
opment set of BioNLP’09. As shown in Table 6, on the 
development set of BioNLP’11, the performances of all 
classes of events are increased especially Binding event 
increased by 1.88%. The F-score is finally improved by 
0.61% with the respective improvement on Simple 
(0.45%), Binding (1.88%) and Regulation event (0.41%). 
On the test set of BioNLP’13 shown in Table 7, the F-
scores of events are increased with different degrees ex-
cept slight degradation of Binding event with 0.32%. The 
final F-score on Task 1 is 0.28% improved. Thus dual de-
composition increases the performance on the three cor-
pora. 

From Table 4 and Table 5, we can see word embed-
dings and dual decomposition improve the F-scores by  
1.45% and 0.44% respectively. Thus word embeddings are 
valuable word features (obtained from unsupervised me-
thod) for event extraction. Except Binding event in Bi-
oNLP’13, the performance on other events is improved 
based on dual decomposition. It can be summarized from 
Table 5, Table 6 and Table 7 that dual decomposition and 
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rich features integrating word embeddings can improve 
the F-scores on the three corpora by 0.28%~0.61%. 
 

TABLE 5 

RESULTS USING ONLINE MULTI-CLASS PA AND DUAL DECOM-
POSITION ON DEVELOPMENT SET OF BIONLP’09 

Event Class Online multi-class PA 
P/R/F (%) 

Dual decomposition 
P/R/F (%)

Simple 85.28/74.78/79.68 83.59/76.74/80.02 

Binding 60.74/39.92/48.18 61.27/42.74/50.36 

Regulation 61.15/41.04/49.12 57.30/43.58/49.51 

Task 1 70.10/51.43/59.33 67.18/53.83/59.77 

 
TABLE 6 

RESULTS USING ONLINE MULTI-CLASS PA AND DUAL DECOM-
POSITION ON DEVELOPMENT SET OF BIONLP’11 

Event Class Online multi-class PA 
P/R/F (%) 

Dual decomposition 
P/R/F (%)

Simple 85.95/70.76/77.62 83.30/73.47/78.07 

Binding 61.51/39.41/48.04 60.23/42.63/49.92 

Regulation 53.80/37.00/43.85 51.46/39.10/44.44 

Task 1 66.98/48.81/56.47 64.40/51.25/57.08 

 
TABLE 7 

RESULTS USING ONLINE MULTI-CLASS PA  AND DUAL DECOM-
POSITION ON TEST SET OF BIONLP’13 

Event Class Online multi-class PA 
P/R/F (%) 

Dual decomposition 
P/R/F (%)

Simple 74.91/84.32/79.34 76.11/83.31/79.55 

Binding 45.95/46.36/46.15 46.25/45.43/45.83 

Modification 66.49/83.55/74.05 68.06/81.25/74.07 

Regulation 31.53/50.62/38.86 34.21/47.81/39.88 

Task 1 45.96/62.35/52.91 47.96/59.71/53.19 

 

4.5 Comparison with Other Systems 
We compare our method with others on three corpora: 
the development set of BioNLP’09 and the test sets of Bi-
oNLP’11 and BioNlP’13. We achieve the best performance 
on the three corpora as shown in Table 8, 9 and 10 except 
compared with EventMine [24] which integrated domain 
adaption and co-reference resolution in Table 9. Due to 
the inaccessibility of online evaluation of BioNLP’09 test 
set, we make the comparisons on the development set of 
BioNLP’09 briefly. 

From Table 8, our F-score on the development set of 
BioNLP’09 is 59.77%. The F-scores are improved by 0.96% 
and 1.07% respectively than EventMine [24] and UMass 
[10]. The improvement of Regulation event contributes to 
the final improvement with the similar performance on 
Simple and Binding event compared with EventMine. 
And the improvement of Simple and Binding events con-
tributes to the improvement compared with UMass. 

 

TABLE 8 

COMPARISON WITH OTHER SYSTEMS ON THE DEVELOPMENT 
SET OF BIONLP’09 

Event Class Ours 
P/R/F (%)

EventMine 
P/R/F (%) 

UMass 
F (%)

Simple 83.59/76.74/80.02 80.16 78.4 

Binding 61.27/42.74/50.36 50.52 48.0 

Regulation 57.30/43.58/49.51 47.48 49.1 

Task 1 67.18/53.83/59.77 58.81 58.7 

From Table 9, we can see our F-score on BioNLP’11 
test set is 56.09% and outperforms the state-of-art systems 
which did not adopt additional technologies such as co-
reference resolution. The performance of EventMine [24] 
exceeded ours, but it incorporated co-reference resolution 
and domain adaption into event extraction and did not 
report the performance before adopting the two technol-
ogies. Our F-score is improved by 0.89% than UMass 
which is the best system on BioNLP’11 test set by now 
without adopting additional technologies. Our result is 
superior to UTurku system[25](improved by 2.79% F-
score) which extended their BioNLP’09 Shared Task win-
ning Turku Event Extraction System with replacement of 
the rule-based unmerging component based on SVM and 
ranked the first in the shared task of BioNLP’11 at that 
time. 

TABLE 9 

COMPARISON WITH OTHER SYSTEMS ON THE TEST SET OF 
BIONLP’11  

Event Class Ours 
P/R/F (%)

EventMine  
F (%) 

UMass 
F (%)

UTurku 
F (%)

Simple 84.07/69.05/75.82 - 73.5 - 

Binding 58.02/46.44/51.58 - 48.8 - 

Regulation 48.77/40.35/44.16 - 43.8 - 

Task 1 62.16/51.11/56.09 57.98 55.2 53.3 

From Table 10, we achieve an F-score of 53.19% with 
our proposed method on the test of BioNLP’13. The great 
improvements on all kinds of events contribute to the 
final improvement. The results show that dual decompo-
sition integrating word embeddings and rich features is 
beneficial for event extraction and achieves 2.22% and 
2.45% improvement respectively than the systems ranked 
the first and second on the test of BioNLP’13 (EVEX and 
TEES-2.1). EVEX [6] re-ranked the events extracted by the 
unmodified TEES-2.1 [7] using the large-scale text mining 
resource EVEX and the tool of SVMrank, and achieved 
0.23% improvement than TEES-2.1 [7]. TEES-2.1 [7] mod-
ified Turku Event Extraction System (TEES) and added 
the module of automated annotation scheme learning. 
The features used in TEES-2.1 followed those in TEES. 
The two systems were based on pipelines and did not 
adopt additional technologies. Therefore our joint method 
incorporating word embeddings and rich features 
achieves the best and shows its strengths compared with 
pipeline systems. 
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TABLE 10 

COMPARISON WITH OTHER SYSTEMS ON THE TEST SET OF 
BIONLP’13 

Event Class Ours 
P/R/F (%) 

EVEX 
F (%) 

TEES-2.1 
F (%)

Simple 83.31/76.11/79.55 76.59 76.82 

Binding 45.43/46.25/45.83 42.88 43.32 

Modification 81.25/68.06/74.07 65.37 66.49 

Regulation 47.81/34.21/39.88 38.41 38.05 

Task 1 59.71/47.96/53.19 50.97 50.74 

4.6 Analisys 
From all above experimental results, our method im-
proves the final performance and precedes other excellent 
systems which do not integrate additional technologies 
on existing comparable corpora. The reasons may be 1) 
The rich features are the solid foundation, such as token 
features, syntactic and dependency features, the shortest 
path. 2) Word embeddings, which  can learn much deeper 
syntactic and semantic information from the large set of 
out-of-domain data obtained through unsupervised 
learning and adopted innovatively in event extraction, 
lead to the vectors of words with common semantics are 
close to each other, and thus improve trigger and argu-
ment detection significantly (shown in Table 2 and Table 
3). For example, for the two words, “diminished” and 
“reduced”, they have little common features directly in 
morphology, but the similarity between their word em-
beddings measured by cosine similarity is up to 0.897. 3) 
Dual decomposition, which avoids or alleviates cascading 
errors. Take the fragment of “… decreases 4E-BP1 amount 
without affecting its phosphorylation ... ” from develop-
ment set as an example shown in Fig. 7.  

Fig. 7. An example to show efficiency of dual decomposition. Solid 
lines represent identified events; dotted lines with a cross mean 
missing trigger or argument; dotted lines mean unrecognized events. 

Fig. 7(a) is the extracted event without dual decomposi-
tion. The three triggers “decreases”, “affecting” and 
“phosphorylation” are classified into three event classes 
“Negative_regulation”, “Regulation” and “phosphoryla-
tion” respectively. The protein “4E-BP1” is detected as the 

argument with semantic role “Theme” of the trigger “de-
creases”, and the trigger “phosphorylation” is detected as 
the argument with semantic role “Theme” of the trigger 
“affecting”. But the Theme argument “4E-BP1” of the 
trigger “phosphorylation” is lost. According to the defini-
tion of nested event, the Regulation event is not detected. 

Fig. 7(b) is the extracted event with dual decomposi-
tion. By the experiment tracked, the scores assigned by 
online PA to the trigger are Phosphorylation: 0.853763 
and Negative: 0.704227 respectively.  The protein “4E-
BP1” is the Theme argument with 0.836427 and Negative 
with 0.92632 related with the trigger “phosphorylation”. 
According to dual decomposition algorithm, “4E-BP1” is 
classified as the Theme argument of “phosphorylation” 
with higher reliability. The Regulation event is detected 
correctly accordant with the gold event structure of the 
fragment. 

In order to inspect the impact of different combination 
of trigger and argument scores, the experiments based on 
nonlinear combinations are also conducted. The experi-
mental results from Table 11 show that the impact of the 
way of combination is weak. Therefore we choose the 
simplest linear combination. 

 
TABLE 11  

THE RESULTS BASED ON LINEAR AND NONLINEAR COMBINA-
TION ON BIONLP’11 TEST SET 

The way of combination P R F 

linear combination a+b 62.16% 51.11% 56.09% 

nonlinear combination 

a*b 66.73% 47.61% 55.57% 

loga+b 66.77% 47.61% 55.59% 

a+logb 66.76% 47.68% 55.63% 

a2+b2 66.76% 47.59% 55.57% 

a and b represent the scores of trigger and argument respectively. 
 

In a word, word embeddings is verified significant to 
event extraction and the performance of event extraction 
is further improved by integrating the rich features and 
word embeddings into dual decomposition. 

5 CONCLUSION 

The proposed method improves the performance of event 
extraction, outperforming most of published works. First, 
rich features are the solid foundation. Second, word em-
beddings play an important role which implies a lot of 
useful information, including syntactic and semantic. Us-
ing word embedding, the performances in the step of 
trigger and argument prediction are improved, and thus 
the F-scores on event extraction are improved. Finally, 
dual decomposition alleviates cascading errors inherent 
in the pipeline systems and detects more events. By inte-
grating the rich features and word embeddings into dual 
decomposition, our system outperforms the state-of-the-
art systems. 

Despite the great efforts, the extraction of complex 
event is still a challenge. In the future, we will integrate 
co-reference resolution and domain adaption into the ex-
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traction of event. Further researches on how to adopt 
probabilistic, such as Bayesian approach, and unsuper-
vised or semi-supervised methods to event extraction 
should be continued. 
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