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TABLE II
AVERAGE EXECUTION TIME OF THE MOBIFISH SCHEME

Techniques Phases Execution time (s)

OCR-based technique
Taking screenshot 0.015

3.315OCR extraction 3.206
SLD searching 0.094

Non-OCR technique Timestamp comparison 0.018

D. Overhead Evaluation

We have validated the efficacy of our proposed three sub-
schemes through the above experiments. Next, we evaluate
the usability (performance) by measuring the execution time
of MobiFish scheme. There are two major techniques used
in MobiFish: searching the SLD in the text extracted from
the screenshot, and blocking the SMS and socket connections
for a certain period of time. The SLD searching is based
on OCR technique, which is considered much more time-
consuming. Hence, we evaluate the delay overhead of OCR-
based techniques and other non-OCR techniques, separately.
The results are presented in Table II.

The OCR-based techniques can be roughly divided into
three phases: taking a screenshot, extracting text from the
screenshot, and searching if the SLD exists in the text.
Since the SLD searching technique is applied in all the three
sub-schemes, our testing samples include (1) the 13 official
websites listed in Table I and 13 corresponding phishing
web pages (2) 10 popular benign apps that support persistent
account and the phishing apps developed by us. The average
execution time of the three phases are 0.015, 3.206, and 0.094
seconds, respectively. As we can see, the OCR extraction
phase holds 96.7% of the delay overhead (3.206 out of 3.315
seconds). Regarding the non-OCR techniques, we tested the
SMS and socket connection blocking for a period of time. The
app samples used are the same 10 popular benign apps and
the phishing apps as above. The delay overhead is very low
(0.018 seconds) because we only needs to decide whether the
blocking period has expired, through a single comparison of
two timestamps.

Note that the above phishing detection techniques are per-
formed in parallel to the normal functions (e.g. web page
and app authentication), hence the user experience will not be
influenced. When the checking starts, a toast (a quick message)
is displayed to notify the user. Users are suggested to submit
the credentials after the checking is done. We believe that
in most cases, the checking can be finished before a mobile
user inputs the credentials. Meanwhile, we seek to improve the
OCR technique so that the extraction process can be expedited.

VII. RELATED WORK
A. Conventional Phishing Web Page Detection

Web users have been suffering from phishing attacks since
their first appearance in 2003. Researchers have proposed
many solutions (such as alert protection and phishing detec-
tion) to defend against phishing attacks.

Alert protection is a simple notification when a user is
entering sensitive information. Kirda et al. proposed AntiPhish
[12], which tracks the sensitive information of a user and
generates warnings whenever the user attempts to give away

this information to a website that is considered untrusted.
However, this scheme cannot automatically check and detect
phishing attacks. Instead, users have to judge by themselves
after being warned.

In addition, many phishing detection tools have been de-
signed for phishing on PC web pages. Based on the methods
used, they can be generally categorized into two groups:
heuristics schemes and blacklist schemes. Heuristics schemes
outperform blacklist schemes since they can deal with new
phishing sites without having to wait for an update. Usually,
heuristics schemes for phishing detection utilize other tech-
niques such as machine learning techniques [13], [14], [15]
and search engine [15], [16]. CANTINA [16] is a content-
based approach to detecting phishing websites, and it adopts
TF-IDF information retrieval algorithms. Garera et al. [13]
proposed a heuristics-based scheme which identified several
generic features of phishing URLs, and used these features in
a logistic regression classifier. CANTINA+ [15] is a compre-
hensive feature-based solution for web page phishing which
combines machine learning and search engine techniques.
However, existing heuristics used in phishing detection are all
based on features extracted from the HTML source code. As
we have shown in section III, HTML source code should not
be trusted since it may not reflect the actual content presented
to users.

Based on the assumption that the most spoofing phishing
sites are those whose visual appearances look identical or
very similar to authentic sites [17], [18], several similarity-
based phishing detection approaches are proposed. Spoof-
Guard [19] uses URLs, images, links, and domain names
to check the similarity between a given page and the pages
previously stored. Afroz et al. proposed PhishZoo [20] that
uses the profiles of trusted websites’ appearances built with
fuzzy hashing techniques to detect phishing. PhishZoo makes
profiles of sites that consist of fuzzy hashes of several common
content elements (e.g. URL, images, most used texts, HTML
codes, script files, etc.), which are related to the structure
and appearance of the sites. They further enhanced their
phishing detection scheme by adding displayed images into
profiles and utilizing SIFT image-matching algorithm [8].
However, similarity-based approaches also depend on HTML
source code and cannot detect phishing sites with different
appearances.

GoldPhish [9] utilizes the optical character recognition
(OCR) technique for phishing detection in PC browsers. OCR
is used to extract text from images found in web pages
(e.g., the company logo), then it is compared to the top-
ranked domains from Google’ s search service. However, OCR
performance on PC is demonstrated to be limited in both speed
and accuracy. Our lightweight scheme works with mobile
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browsers, and does not depend on external search engines.

B. Mobile Phishing Detection

Mobile phishing attacks are emerging as a significant threat
for mobile users. Niu et al. [4] discussed the weakness of
mobile browsers caused by the hardware limitation of mobile
devices. Felt et al. [6] examined the mobile phishing threats
by detailing several phishing attack models during control
transfers. Both works give some suggestions on phishing miti-
gation. Niu et al. [4] advised redesigning the browsers to make
the origin and authenticity of the site more apparent to users.
However, it is very difficult to add more features to the mobile
user interface due to the limited screen size. And even if they
are added, some web users will still ignore the identifier [21].
Felt et al. [6] proposed to add an always-present identity bar
that displays the name of the current foreground application
or the domain name of the current web page. Bianchi et al.
[22] implemented an identity indicator for apps in the system
navigation bar, in which Extended-Validation (EV) HTTPS
infrastructure is used to validate the app developers. Marforio
et al. [23] applied personalized security indicators (an image
chosen by the user that is displayed in the login UI) to mobile
apps. However, all these indicator-based approaches require
the user to make the final decision.

Another group of phishing defense techniques employ a
unified and trusted login UI for apps. ScreenPass [24] provides
a trusted software keyboard which allows users to specify
their passwords domains (i.e., to tag passwords) together with
the credentials. The OCR is used to ensure that passwords
are entered only through the trusted software keyboard. This
approach needs the user to switch to the secure keyboard
when entering password, tag the password, and make the
final decision, which may greatly degrade the user experience.
VeriUI [25] utilizes an attested login which augments user
credentials with a certificate about the software and hardware
that handled the credentials. However, this work requires not
only the user effort, but also modifications to the client apps.

Moreover, a proxy service is designed in [4] which performs
anti-phishing filtering against the URLs, page content, or user
context. But it has to be downloaded and configured manually
in the browser. Users also need to be able to authenticate the
identity of the proxy (attackers can also set up fake proxies).
Hou et al. [26] developed a defense scheme which loads hook
into iOS so that the system interrupts the user when sensitive
information is being entered into applications not in the
whitelist, and prompts the user to decide whether to continue
or not. However, this idea is quite similar to AntiPhish [12],
which only gives a warning of credential rendering instead of
phishing vulnerability. Cooley et al. proposed Trusted Activity
Chains [27] to protect activities from spoofing preventions.
However, it is the developer’s responsibility to annotate the
chain of activities that should not be interrupted. This means
that existing apps are not protected, and the developers may
not assume the extra burden of annotation. Our previous work
[28] proposed the WebFish and AppFish schemes. In this
article, we present the new persistent account phishing attacks
which has been neglected by existing works. We resolve this
vulnerability with the AccountFish scheme.

Our work differs from previous works in three folds: (1)
MobiFish is a completely automated defense scheme, users
do not need to make the final decision. Although it is users
who finally remove the phishing app, the user effort is trivial.
Actually, they do not need to explicitly make the decision at
all, since the only explanation for the login failure (with correct
credentials) is a phishing attack. (2) No change is required to
the browser/app/website’s UIs, MobiFish is compatible with
all existing websites and apps (no developer effort is needed).
(3) The phishing attacks targeted at the persistent account is
discovered and handled by the AccountFish scheme.

Besides, mobile phishing attacks could also be in the
form of Emails or Short Messaging Services (SMS). Phishing
emails usually request users to click a link to a fake website
where the user is prompted to enter login credentials [29][30].
The SMS phishing attacks (SMiShing) [31][32] usually trick
users into visiting a fraudulent website or calling a phishing
number, where the victims are enticed into providing the
credentials. The fraudulent websites could be defended by
WebFish. But the detection of the phishing voice calls is
beyond the scope of this article. Most voice phishing (Vish-
ing) uses the VoIP technique in which the phone number is
dynamically generated, we left this part for future work.

VIII. CONCLUSION

In this paper, we studied the important issue of mobile
phishing detection. We proposed MobiFish, a novel auto-
mated phishing defense scheme for mobile platforms. We
identified the weaknesses of the heuristics-based anti-phishing
schemes that highly rely on the HTML source code of web
pages. MobiFish resolves this issue by using OCR, which
can accurately extract text from the screenshot of the login
interface so that the claimed identity can be verified. Com-
pared to existing OCR-based anti-phishing schemes (designed
for PC only), MobiFish is lightweight as it works without
using external search engines or machine learning techniques.
Besides, MobiFish can also detect the app phishing attacks
and account phishing attacks. We implemented MobiFish on a
Google Nexus 4 smartphone running the Android 4.2 OS. Our
evaluation demonstrated that MobiFish can effectively detect
and defend against mobile phishing attacks.
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