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Joint Optimization of Radio and Computational
Resources for Multicell Mobile-Edge Computing

Stefania Sardellitti, Gesualdo Scutari, and Sergio Barbarossa

Abstract—Migrating computational intensive tasks from mobile
devices to more resourceful cloud servers is a promising tech-
nique to increase the computational capacity of mobile devices
while saving their battery energy. In this paper, we consider an
MIMO multicell system where multiple mobile users (MUs) ask
for computation offloading to a common cloud server. We formu-
late the offloading problem as the joint optimization of the radio
resources—the transmit precoding matrices of the MUs—and the
computational resources—the CPU cycles/second assigned by the
cloud to each MU—in order to minimize the overall users’ energy
consumption, while meeting latency constraints. The resulting
optimization problem is nonconvex (in the objective function and
constraints). Nevertheless, in the single-user case, we are able to
compute the global optimal solution in closed form. In the more
challenging multiuser scenario, we propose an iterative algorithm,
based on a novel successive convex approximation technique, con-
verging to a local optimal solution of the original nonconvex
problem. We then show that the proposed algorithmic frame-
work naturally leads to a distributed and parallel implementation
across the radio access points, requiring only a limited coordi-
nation/signaling with the cloud. Numerical results show that the
proposed schemes outperform disjoint optimization algorithms.

Index Terms—Mobile cloud computing, computation offload-
ing, energy minimization, resources allocation, small cells.

I. INTRODUCTION

M OBILE terminals, such as smartphones, tablets and net-
books, are increasingly penetrating into our everyday

lives as convenient tools for communication, entertainment,
business, social networking, news, etc. Current predictions
foresee a doubling of mobile data traffic every year. However
such a growth in mobile wireless traffic is not matched with
an equally fast improvement on mobile handsets’ batteries, as
testified in [3]. The limited battery lifetime is then going to rep-
resent the stumbling block to the deployment of computation-
intensive applications for mobile devices. At the same time,
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in the Internet-of-Things (IoT) paradigm, a myriad of hetero-
geneous devices, with a wide range of computational capa-
bilities, are going to be interconnected. For many of them,
the local computation resources are insufficient to run sophis-
ticated applications. In all these cases, a possible strategy
to overcome the above energy/computation bottleneck con-
sists in enabling resource-constrained mobile devices to offload
their most energy-consuming tasks to nearby more resource-
ful servers. This strategy has a long history and is reported
in the literature under different names, such as cyber forag-
ing [4], or computation offloading [5]. In recent years, cloud
computing (CC) has provided a strong impulse to computation
offloading through virtualization, which decouples the appli-
cation environment from the underlying hardware resources
and thus enables an efficient usage of available computing
resources. In particular, Mobile Cloud Computing (MCC) [6]
makes possible for mobile users to access cloud resources,
such as infrastructures, platforms, and software, on-demand.
Several works addressed mobile computation offloading, such
as [7]–[16]. Recent surveys are [6], [17], and [18]. Some works
addressed the problem of program partitioning and offload-
ing the most demanding program tasks, as e.g. in [7]–[10].
Specific examples of mobile computation offloading techniques
are: MAUI [19], ThinkAir [20], and Phone2Cloud [21]. The
trade-off between the energy spent for computation and com-
munication was studied in [12]–[14], [22]. A dynamic formu-
lation of computation offloading was proposed in [15]. These
works optimized offloading strategies, assuming a given radio
access, and concentrated on single-user scenarios. In [23], it
was proposed a joint optimization of radio and computational
resources, for the single user case. The joint optimization was
then extended to the multiuser case in [24]; see also [25] for
a recent survey on joint optimization for computation offload-
ing in a 5G perspective. In the above works, the allocation of
radio and computing resources is managed at the cloud in a
centralized manner. A decentralized solution, based on a game-
theoretic formulation of the problem, was recently proposed in
[26], [11].

In current cellular networks, the major obstacles limiting an
effective deployment of MCC strategies are: i) the energy spent
by mobile terminals, especially cell edge users, for radio access;
and ii) the latency experienced in reaching the (remote) cloud
server through a wide area network (WAN). Indeed, in macro-
cellular systems, the transmit power necessary for cell edge
users to access a remote base station might null all potential
benefits coming from offloading. Moreover, in many real-time
mobile applications (e.g., online games, speech recognition,
Facetime) the user Quality of Experience (QoE) is strongly
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affected by the system response time. Since controlling latency
over a WAN might be very difficult, in many circumstances
the QoE associated to MCC could be poor. A possible way to
tackle these challenges is to bring both radio access and com-
putational resources closer to MUs. This idea was suggested in
[17], [27], with the introduction of cloudlets, providing prox-
imity radio access to fixed servers through Wi-Fi. However,
the lack of available fixed servers could limit the applicability
of cloudlets. The European project TROPIC [28] suggested to
endow small cell LTE base stations with, albeit limited, cloud
functionalities. In this way, one can exploit the potential dense
deployment of small cell base stations to facilitate proximity
access to computing resources and have advantages over Wi-Fi
access in terms of Quality-of-Service guarantee and a single
technology system (no need for the MUs to switch between
cellular and Wi-Fi standards). Very recently, the European
Telecommunications Standards Institute (ETSI) launched a new
standardization group on the so called Mobile-Edge Computing
(MEC), whose aim is to provide information technology and
cloud-computing capabilities within the Radio Access Network
(RAN) in close proximity to mobile subscribers in order to offer
a service environment characterized by proximity, low latency,
and high rate access [29].

Merging MEC with the dense deployment of (small cell)
Base Stations (BSs), as foreseen in the 5G standardization
roadmap, makes possible a real proximity, ultra-low latency
access to cloud functionalities. However, in a dense deployment
scenario, offloading becomes much more complicated because
of intercell interference. The goal of this paper is to tackle
this challenge by proposing a joint optimization of radio and
computational resources for computation offloading in a dense
deployment scenario, in the presence of intercell interference.
More specifically, the offloading problem is formulated as the
minimization of the overall energy consumption, at the mobile
terminals’ side, under transmit power and latency constraints.
The optimization variables are the mobile radio resources–the
covariance matrices of the mobile MIMO transmitters–and the
computational resources–the CPU cycles/second assigned by
the cloud to each MU. The latency constraint is what cou-
ples computation and communication optimization variables.
This problem is much more challenging than the (special) cases
studied in the literature because of the presence of intercell
interference, which introduces a coupling among the precoding
matrices of all MUs, while making the optimization prob-
lem nonconvex. In this context, the main contributions of the
paper are the following: i) in the single-user case, we first
establish the equivalence between the original nonconvex prob-
lem and a convex one, and then derive the closed form of its
(global optimal) solution; ii) in the multi-cell case, hinging
on recent Successive Convex Approximation (SCA) techniques
[30], [31], we devise an iterative algorithm that is proved to
converge to local optimal solutions of the original nonconvex
problem; and iii) we propose alternative decomposition algo-
rithms to solve the original centralized problem in a distributed
form, requiring limited signaling among BSs and cloud; the
algorithms differ for convergence speed, computational effort,
communication overhead, and a-priori knowledge of system
parameters, but they are all convergent under a unified set

of conditions. Numerical results show that all the proposed
schemes converge quite fast to “good” solutions, yielding a
significant energy saving with respect to disjoint optimization
procedures, for applications requiring intensive computations
and limited exchange of data to enable offloading.

This paper is organized as follows. In Section II we introduce
the system model; Section III formulates the offloading opti-
mization problem in the single user case, whereas Section IV
focuses on the multi-cell scenario along with the proposed SCA
algorithmic framework. The decentralized implementation is
discussed in Section V.

II. COMPUTATION OFFLOADING

Let us consider a network composed of Nc cells; in each
cell n = 1, . . . , Nc, there is one Small Cell enhanced Node B
(SCeNB in LTE terminology) serving Kn MUs. We denote
by in the i-th user in the cell n, and by I � {in : i =
1, . . . ,Kn, n = 1, . . . , Nc} the set of all the users. Each MU
in and SCeNB n are equipped with nTin

transmit and nRn

receive antennas, respectively. The SCeNB’s are all connected
to a common cloud provider, able to serve multiple users
concurrently. We assume that MUs in the same cell transmit
over orthogonal channels, whereas users of different cells may
interfere against each other.

MUs can run their application locally or remotely depending
on the available energy and computational needs. For example,
users with low battery levels may be more in need of computa-
tion offloading than users with full battery. Conversely, mobile
devices with limited computational capabilities, like smart sen-
sors in an Internet of Things (IoT) scenario, might be more
willing to offload computations. Different priorities could also
be associated to different users’ requests and different appli-
cations. Based on these considerations, we partition the MUs
in two subsets: the subset Io of users asking for computa-
tion offloading and the subset Ino of users not involved in any
computation offloading, but accessing the radio channel for
communication purposes. Note that both kind of users compete
over the radio resources, but only the users in Io compete for
the computational resources. The overall set of users is then
I = Io ∪ Ino. In this work, we assume that the partition Io and
Ino is given; for instance, the decision on where to run the appli-
cations (or part of them) is taken by the cloud manager, after
collecting all users’ requests and exchanging information with
the associated base stations about channel state and interference
level.

In this scenario, all MUs aim to minimize their energy con-
sumption. MUs in ∈ Io wish to run an application within a
given maximum time Tin . To offload their computations, the
users need to send all the information necessary to transfer the
execution of the program (or part of it) to the server. The pro-
gram can be split in modules. Each module to be executed is
characterized by: the number win of CPU cycles necessary to
run the module itself; the number bin of input bits necessary to
transfer the program execution from local to remote sides; and
the number boin of output bits encoding the result of the com-
putation, to be sent back from remote to local sides. In case
of offloading, the latency incorporates the time to transmit the
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input bits to the server necessary to enable the execution trans-
fer, the time necessary for the server to execute the instructions,
and the time to send the result back to the MU. More specifi-
cally, the overall latency experienced by each MU in ∈ Io can
be written as

Δin = Δt
in +Δexe

in +Δ
tx/rx
in

(1)

where Δt
in

is the time necessary for the MU in to transfer the
input bits bin to its SCeNB; Δexe

in
is the time for the server to

execute win CPU cycles; and Δ
tx/rx
in

is the time necessary for
SCeNB n to send the bin bits to the cloud through the backhaul
link plus the time necessary to send back the result (encoded in
boin bits) from the server to MU in. We derive next an explicit
expression of Δt

in
and Δexe

in
as a function of the radio and

computational resources.

A. Radio Resources

The optimization variables at radio level are the users’ trans-
mit covariance matrices Q � (Qin)in∈I , subject to standard
power budget constraints, i.e.,

Qin �
{
Qin ∈ C

nTin
×nTin :Qin � 0, tr (Qin) ≤ Pin

}
, (2)

where Pin is the average transmit power of user in. We will
denote by Q the joint set Q �

∏
in∈I Qin .

For any given profile Q � (Qin)in∈I , the maximum achiev-
able rate of MU in is:

rin(Q) = log2 det
(
I+HH

innRn(Q−n)
−1HinnQin

)
(3)

where

Rn(Q−n) � Rw +
∑

jm∈I,m �=n

HjmnQjmHH
jmn, (4)

is the covariance matrix of the noise Rw � σ2
wI (assumed to be

diagonal w.l.o.g, otherwise one can always pre-whitening the
channel matrices) plus the inter-cell interference at the SCeNB
n (treated as additive noise); Hinn is the channel matrix of the
uplink i in the cell n, whereas Hjmn is the cross-channel matrix
between the interferer MU j in the cell m and the SCeNB of
cell n; and Q−n � ((Qjm)Km

j=1)
Nc

n�=m=1 denotes the tuple of the
covariance matrices of all users interfering with the SCeNB n.

Given each rin(Q), the time Δt
in

necessary for user i in cell
n to transmit the input bits bin of duration Tbin

to its SCeNB
can be written as

Δt
in = Δt

in (Q) =
cin

rin(Q)
(5)

where cin = binTbin
. The energy consumption of each MU due

to the transmission is then

Ein(Qin ,Q−n) = tr(Qin) ·Δt
in (Q), (6)

which depends also on the covariance matrices Q−n of the
users in the other cells, because of the intercell interference.
Note that, for the MUs in ∈ Io, Ein represents the energy
consumption due to offloading, with bin being the number of
transmitted bits necessary to transfer the program execution to
the server.

B. Computational Resources

The cloud provider is able to serve multiple users con-
currently. The computational resources made available by the
cloud and to be shared among the users are quantified by the
computational rate fT , expressed in terms of number of CPU
cycles/second. This quantity typically takes into account the
number of machines composing the cloud, the computational
capability of each machine, and the tasks running in the back-
ground. We denote by fin ≥ 0 the fraction of fT to be assigned
to each user in ∈ Io. Note that no resources are assigned to the
users in ∈ Ino. The rates fin , with in ∈ Io, are subject to the
computational budget constraint

∑
in∈Io

fin ≤ fT . Given the
resource assignment fin , the time Δexe

in
needed to run win CPU

cycles of user in’s instructions remotely is then

Δexe
in = Δexe

in (fin) = win/fin , in ∈ Io. (7)

The expression of the overall latency Δin [cf. (1), (5),
and (7)] clearly shows the interplay between radio access and
computational aspects, which motivates a joint optimization
of the radio resources, the transmit covariance matrices Q �
(Qin)in∈I of the MUs, and the computational resources, the
computational rate allocation f � (fin)in∈Io .

We are now ready to formulate the offloading problem rigor-
ously. We focus first on the single-user scenario (cf. Sec. III);
this will allow us to shed light on the special structure of the
optimal solution. Then, we will extend the formulation to the
multiple-cells case (cf. Sec. IV).

III. THE SINGLE-USER CASE

In the single-user case, there is only one active MU having
access to the cloud. In such interference-free scenario, the max-
imum achievable rate on the MU and energy consumption due
to offloading reduce to [cf. (3) and (6)]

r(Q) = log2 det
(
I+HQHHR−1

w

)
(8)

and

E(Q) = c · tr(Q)

r(Q)
, (9)

respectively, with c = b · Tb (for notational simplicity, we omit
the user index; Q denotes now the covariance matrix of
the MU).

We formulate the offloading problem as the minimization of
the energy spent by the MU to run its application remotely,
subject to latency and transmit power constraints, as follows:

min
Q, f

E(Q)

s.t. a)
c

r(Q)
+

w

f
− T̃ ≤ 0

b) 0 ≤ f ≤ fT

c) tr(Q) ≤ PT , Q � 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ � Xs

(Ps)

where a) reflects the user latency constraint Δ ≤ T [cf. (1)],
with T̃ capturing all the constant terms, i.e., T̃ � T −Δtx/rx;
b) imposes a limit on the cloud computational resources made
available to the users; and c) is the power budget constraint on
the radio resources.
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A. Feasibility

Depending on the system parameters, problem Ps may be
feasible or not. In the latter case, offloading is not possible and
thus the MU will perform its computations locally. It is not
difficult to prove that the following condition is necessary and
sufficient for Xs to be nonempty and thus for offloading to be
feasible:

c

rmax
+

w

fT
− T̃ ≤ 0 (10)

where rmax is the capacity of the MIMO link of the MU, i.e.,

rmax = max
Q�0 : tr(Q)≤PT

r(Q). (11)

The unique (closed-form) solution of (11) is the well-known
MIMO water-filling. Note that condition (10) has an interest-
ing physical interpretation: offloading is feasible if and only
if T̃ > 0, i.e., the delay on the wired network Δtx/rx is less
than the maximum tolerable delay, and the overall latency con-
straint is met (at least) when the wireless and computational
resources are fully utilized (i.e., r(Q) = rmax, and f = fT ). It
is not difficult to check that this worst-case scenario is in fact
achieved when (10) is satisfied with equality; in such a case,
the (globally optimal) solution (Q�, f�) to Ps is trivially given
by (Q�, f�) = (Qwf, fT ), where Qwf is the waterfilling solu-
tion to (11). Therefore in the following we will focus w.l.o.g.
on Ps under the tacit assumption of strict feasibility [i.e., the
inequality in (10) is tight].

B. Solution Analysis

Problem Ps is nonconvex due to the non-convexity of the
energy function. A major contribution of this section is to i) cast
Ps into a convex equivalent problem, and ii) compute its global
optimal solution (and thus optimal also to Ps) in closed form.
To do so, we introduce first some preliminary definitions.

Let Qs be the following auxiliary convex problem

min
Q,f

tr(Q)

s.t. a)
c

r(Q)
+

w

f
− T̃ ≤ 0

b) 0 ≤ f ≤ fT

c) tr(Q) ≤ PT , Q � 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ = Xs

(Qs)

which corresponds to minimizing the transmit power of the MU
under the same latency and power constraints as in Ps. Also, let
HHR−1

w H = UDUH be the (reduced) eigenvalue decompo-
sition of HHR−1

w H, with r � rank(HHR−1
w H) = rank(H),

where U ∈ C
nT×r is the (semi-)unitary matrix whose columns

are the eigenvectors associated with the r positive eigenvalues
of HHR−1

w H, and R
r×r
++ � D � diag{(di)ri=1} is the diagonal

matrix, whose diagonal entries are the eigenvalues arranged in
decreasing order. We are now ready to establish the connection
between Ps and Qs.

Theorem 1: Given problems Ps andQs under strict feasibil-
ity, the following hold.

(a) Ps and Qs are equivalent;

(b) Qs (and Ps) has a unique solution (Q�, f�), given by

f� = fT , and Q� = U
(
αI−D−1

)+
UH , (12)

where α > 0 must be chosen so that the latency con-
straint (a) in Xs is satisfied with equality at (Q�, f�),
and (x)+ � max(0,x) (intended component-wise).

The water-level α > 0 can be efficiently computed using the
hypothesis-testing-based algorithm described in Algorithm 1.

Proof: See Appendix -A. �
Algorithm 1. Efficient computation of α in (12)

Data: (di)
r
i=1 > 0 (arranged in decreasing order), r = rank

(HHR−1
w H), and L � T̃ − w/fT > 0;

(S.0): Set re = r;
(S.1): Repeat

(a): Set α = 2

c

reL
− 1

re

re∑
i=1

log2(di)

;
(b): If pi � (α− 1/di) ≥ 0, ∀i = 1, . . . , re,

and
∑re

i=1 pi ≤ PT ,
then STOP;
else re = re − 1;

until re ≥ 1.

Theorem 1 states that, in the single-user case, the latency
constraint has to be met with equality and then the offload-
ing strategy minimizing energy consumption coincides with
the one minimizing the transmit power. Note that Q� has a
water-filling-like structure: the optimal transmit “directions”
are aligned with the eigenvectors U of the equivalent channel
HHR−1

w H. However, differently from the classical waterfill-
ing solution Qwf [cf. (11)], the waterlevel α is now computed
to meet the latency constraint with equality. This means that
a transmit strategy using the full power PT (like Qwf) is no
longer optimal. The only case in which Q� ≡ Qwf is the case
where the feasibility condition (10) is satisfied with equality.
Note that the water-level α depends now on both communica-
tion and computational parameters (maximum tolerable delay,
size of the program state, CPU cycle budget, etc.).

IV. COMPUTATION OFFLOADING OVER MULTIPLE-CELLS

In this section we consider the more general multi-cell sce-
nario described in Sec. II. The weighted sum of the overall
energies spent by the MUs offloading computations and the
MUs simply accessing the network for communication, is now
given by

E(Q) �
∑
in∈I

ainEin(Q), (13)

where Ein(Q) is defined in (6), and (ain)in∈I is a set of fixed
positive coefficients, chosen to assign (possibly) different prior-
ities among the users’ requests. For instance, higher coefficients
ain may be assigned to users with lower battery levels ask-
ing for the execution of computationally intensive applications
having a high priority level. As a case-study, in the following,
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we will focus on the minimization of the weighted sum-energy
E(Q), but the proposed algorithmic framework can be readily
applied to other functions of the users’ energies Ein(Q), such
as the geometric mean, the alpha-fairness, etc.

Each MU in is subject to the power budget constraint (2) and,
in case of offloading, to an overall latency given by

gin(Q, fin) �
cin

rin(Q)
+

win

fin
− T̃in ≤ 0, in ∈ Io. (14)

MUs in ∈ Ino that do not perform any offloading are instead
subject to the rate constraint

rin(Q) ≥ Rmin
in , ∀in ∈ Ino (15)

where Rmin
in

is the minimum rate required to meet the desired
QoS. The offloading problem in the multi-cell scenario is then
formulated as follows:

min
Q,f

E(Q)

s.t. a) gin(Q, fin) ≤ 0, ∀in ∈ Io,

b) rin(Q) ≥ Rmin
in

, ∀in ∈ Ino,

c)
∑

in∈Io

fin ≤ fT , fin ≥ 0, ∀in ∈ Io,

d) Qin ∈ Qin , ∀in ∈ I,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
� X

(P)

where a) represent the latency constraints Δin ≤ Tin with
T̃in � Tin −Δ

tx/rx
in

of the users requesting computa-
tion offloading; b) are the rate constraints associated to
non-offloading users; and c) is due to the limited cloud
computational resources.

A. Feasibility

In general, depending on the users’ requests, channel sta-
tus and cloud computational capability, not all requests can be
accommodated. The following conditions are sufficient forX to
be nonempty and thus for offloading to be feasible: T̃in > 0 for
all in ∈ Io, and there exists a Q̄ � (Q̄in)in∈I ∈ Q such that

T̃in >
cin

rin(Q̄)
, ∀in ∈ Io, rin(Q̄) ≥ Rmin

in , ∀in ∈ Ino

and
∑
in∈Io

win

T̃in −
cin

rin(Q̄)

≤ fT . (16)

Hereafter, we will assume that problem P is feasible. For
example, conditions (16) can be enforced by a proper admission
control strategy.

Problem P is nonconvex, due to the nonconvexity of the
objective function and the constraints a), b). In what follows
we exploit the structure of P and, building on some recent
Successive Convex Approximation (SCA) techniques proposed
in [30], [31], we develop a fairly general class of efficient
approximation algorithms, all converging to a local optimal
solution ofP . The numerical results will show that the proposed

algorithms converge in a few iterations to “good” locally opti-
mal solutions of P (that turn out to be quite insensitive to the
initialization). The main algorithmic framework, along with its
convergence properties, is introduced in Sec. IV-B; alternative
distributed implementations are studied in Sec. V.

B. Algorithmic Design

To solve the non-convex problem P efficiently, we develop
a SCA-based method where P is replaced by a sequence of
strongly convex problems. At the basis of the proposed tech-
nique, there is a suitable convex approximation of the noncon-
vex objective function E(Q) and the constraints gin(Q, fin),
rin(Q) ≥ Rmin

in
around the iterates of the algorithm, which are

preliminarily discussed next.
1) Approximant of E(Q): Let Z � (Q, f) and Zν �

(Qν , fν), with ν being the current iterate index, f � (fin)in∈Io ,
and fν � (fν

in
)in∈Io . Let E ⊇ X be any closed convex set con-

taining X such that E(Q) is well-defined on it. Note that
such a set exits. For instance, noting that at every (feasible)
(Q, f) ∈ X , it must be rin(Q) > 0, for all i and n, and fin >
win/T̃in , ∀in ∈ Io. Hence, condition gin(Q, fin) ≤ 0 in P can
be equivalently rewritten as

rin(Q) ≥ αin(fin) �
cin · fin

fin · T̃in − win

> 0, ∀in ∈ Io

so that one can choose E � {(Q, f) : c), d) hold, rin(Qin ,
Q−in = 0) ≥ αin(fin), ∀in ∈Io, rin(Qin ,Q−in=0)≥Rmin

in
,

∀in ∈ Ino}.
Following [30], [31], our goal is to build, at each iteration

ν, an approximant, say Ẽ(Z;Zν),1 of the nonconvex (nonsep-
arable) E(Q) around the current (feasible) iterate Zν ∈ X that
enjoys the following key properties:
P1: Ẽ(•;Zν) is uniformly strongly convex on E ;
P2: ∇Q∗Ẽ(Zν ;Zν) = ∇Q∗E(Qν), ∀Zν ∈ X ;
P3: ∇Z∗Ẽ(•; •) is Lipschitz continuous on E × X ;

where ∇Z∗Ẽ(Zν ;Zν) denotes the conjugate gradient [32] of
Ẽ(Z;Zν) with respect to the first argument Z, evaluated at Zν .
Conditions P1-P2 just guarantee that the candidate approxima-
tion Ẽ(•;Zν) is strongly convex while preserving the same first
order behaviour of E(Q) at any iterate Qν ; P3 is a standard
continuity requirement.

We build next a Ẽ(Z;Zν) satisfying P1-P3. Observe that
i) for any given Q−n = Qν

−n, each term Ein(Qin ;Q
ν
−n) =

tr(Qin) ·Δt
in
(Qin ;Q

ν
−n) of the sum in E(Q) [cf. (13)] is

the product of two convex functions in Qin [cf. (6)], namely:
tr(Qin) and Δt

in
(Qin ;Q

ν
−n); and ii) the other terms of

the sum−∑jm∈I,m �=n Ejm(Qin ;Q
ν
−in,jm

) with Qν
−in,jm

�
(Qν

jm
, (Qν

lq
)∀l,q �=m,lq �=in)−are not convex in Qin . Exploiting

such a structure, a convex approximation of E(Q) can
be obtained for each MU in by convexifying the term
tr(Qin) ·Δt

in
(Qin ;Q

ν
−n) and linearizing the nonconvex part∑

jm∈I,m �=n Ejm(Qin ;Q
ν
−in,jm

). More formally, denoting

1Note that Ẽ(Z;Zν) is a function of Z, given the current iterate Zν .
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Zin � (Qin , fin), for each in, let us introduce the “approxi-
mation” function Ẽin(Zin ;Z

ν):

Ẽin(Zin ;Z
ν) � cin · tr(Qin)

rin(Q
ν
in
,Qν−n)

+
cin · tr(Qν

in
)

rin(Qin ,Q
ν−n)

+
∑

jm∈I,m �=n

〈
∇Q∗

in
Ejm(Qν),Qin −Qν

in

〉
+ τin ‖Qin −Qν

in
‖2 + cfin

2
(fin − fν

in
)2

(17)

where: the first two terms on the right-hand side are the
aforementioned convexification of tr(Qin) ·Δt

in
(Qin ;Q

ν
−in

);
the third term comes from the linearization of

∑
jm∈I,m �=n

Ejm(Qin ;Q
ν
−in,jm

), with 〈A,B〉 � Re{tr(AHB)} and
∇Q∗

in
Ejm(Qν) denoting the conjugate gradient of Ejm(Q)

with respect to Qin evaluated at Qν , and given by

∇Q∗
in
Ejm(Qν) =

tr(Qν
jm

)Δt
jm

(Qν)

log(2)rjm(Qν)
· [HH

inm

(
Rm(Qν

−m)−1

− (Rm(Qν
−m) +HjmmQν

jm
HH

jmm)−1
)
Hinm

]
;
(18)

and the two last terms in (17) are quadratic regularization terms
added to make Ẽin(•;Zν) uniformly strongly convex on E ,
(note that cfin = 0, for all in ∈ Ino).

Based on each Ẽin(Zin ;Z
ν), we can now define the

candidate sum-energy approximation Ẽ(Z;Zν) as: given
Zν ∈ X ,

Ẽ(Z;Zν) �
∑
in∈I

Ẽin(Zin ;Z
ν). (19)

It is not difficult to check that Ẽ(Z;Zν) satisfies P1-
P3; in particular it is strongly convex on E , with constant
cẼ ≥ min(minin∈Io

(τin , cfin ),minin∈Ino
(τin)) > 0. Note

that Ẽ(Z;Zν) is also separable in the users variables Zin ,
which is instrumental to obtain distributed algorithms, see
Sec. V.

2) Inner convexification of the constraints gin(Q, fin) :
We aim at introducing an inner convex approximation, say
g̃in(Q, fin ;Z

ν), of the constraints gin(Q, fin) around Zν ∈ X ,
satisfying the following key properties [30], [31]:
C1: g̃in(•;Zν) is uniformly convex on E ;
C2: ∇Z∗ g̃in(Q

ν , fν
in
;Zν) = ∇Z∗gin(Q

ν , fν
in
), ∀Zν ∈ X ;

C3: ∇Z∗ g̃in(•; •) is continuous on E × X ;
C4: g̃in(Q, fin ;Z

ν) ≥ gin(Q, fin), ∀(Q, fin) ∈ E and
∀Zν ∈ X ;

C5: g̃in(Q
ν , fν

in
;Zν) = gin(Q

ν , fν
in
), ∀Zν ∈ X ;

C6: g̃in(•; •) is Lipschitz continuous on E × X .
Conditions C1-C3 are the counterparts of P1-P3 on g̃in ;

the extra conditions C4-C5 guarantee that g̃in is an inner
approximation of gin , implying that any (Q, fin) satisfying
g̃in(Q, fin ;Z

ν) ≤ 0 is feasible also for the original nonconvex
problem P .

To build a g̃in satisfying C1-C6, let us exploit first the
concave-convex structure of the rate functions rin(Q) [cf. (3)]:

rin(Q) = r +
in(Q) + r -

n(Q−n), (20)

where

r +
in
(Q) � log2 det

(
Rn(Q−n) +HinnQinH

H
inn

)
r -
n(Q−n) � − log2 det (Rn(Q−n))

(21)

with Rn(Q−n) defined in (4). Note that r +
in
(•) and r -

n(•) are
concave on Q and convex on Q−n �

∏
m �=nQm, respectively.

Using (20), and observing that at any (feasible) (Q, f) ∈ X , it
must be rin(Q) > 0 for all in, and fin > win/T̃in for all in ∈
Io, the constraints gin(Q, fin) ≤ 0 in P can be equivalently
rewritten as

gin(Q, fin) = −r +
in(Q)− r -

n(Q−n) +
cin · fin

fin · T̃in − win

≤ 0,

(22)

where with a slight abuse of notation we used the same symbol
gin(Q, fin) to denote the constraint in the equivalent form.

The desired inner convex approximation g̃in(Q, fin ;Z
ν) is

obtained from gin(Q, fin) by retaining the convex part in (22)
and linearizing the concave term −r -

n(Q−n), resulting in:

g̃in(Q, fin ;Z
ν) � −r +

in(Q) +
cin · fin

fin · T̃in − win

− r -
n(Q

ν
−n)−

∑
jm∈I

〈
Π -

jm,n(Q
ν),Qjm −Qν

jm

〉
(23)

where each Π -
jm,n(Q

ν) is defined as

Π -
jm,n(Q

ν) �
{
∇Q∗

jm
r -
n(Q

ν
−n), ifm �= n;

0, otherwise;
(24)

and ∇Q∗
jm

r -
n(Q

ν
−n) = −HH

jmnRn(Q
ν
−n)

−1Hjmn.
The inner convex approximation of the rate constraints

rin(Q) ≥ Rmin
in

in P can be easily obtained by equation (23) as

g̃in(Q, 0;Zν) +Rmin
in ≤ 0, ∀in ∈ Ino. (25)

3) Inner SCA algorithm-centralized implementation: We
are now ready to introduce the proposed inner convex approxi-
mation of the nonconvex problem P , which consists in replac-
ing the nonconvex objective function E(Q) and constraints
gin(Q, fin) ≤ 0, and rin(Q) ≥ Rmin

in
in P with the approxi-

mations Ẽ(Z;Zν), g̃in(Q, fin ;Z
ν) ≤ 0 and g̃in(Q, 0;Zν) +

Rmin
in
≤ 0, respectively. More formally, given the feasible point

Zν , we have

Ẑ(Zν) � argmin
Q,f

Ẽ(Q;Qν)

s.t. a) g̃in(Q, fin ;Z
ν) ≤ 0, ∀in ∈ Io,

b) g̃in(Q, 0;Zν) +Rmin
in
≤ 0, ∀in ∈ Ino,

c)
∑
in∈Io

fin ≤ fT , fin ≥ 0, ∀in ∈ Io,

d)Qin ∈ Qin , ∀in ∈ I,
(Pν)

where we denoted by Ẑ(Zν) � (Q̂(Zν), f̂(Zν)) the unique
solution of the strongly convex optimization problem.
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The proposed solution consists in solving the sequence of
problems Pν , starting from a feasible Z0 � (Q0, f0). The
formal description of the method along with its convergence
properties are given in Algorithm 2 and Theorem 2, respec-
tively. Note that the optimal solution Ẑ of Pν computed in
Step 2 of the algorithm is used in Step 3 to set the next iterate
Zν+1 � (Qν+1, fν+1) by including a step-size in the updating
rule. A practical termination criterion in Step 1 is |E(Qν+1)−
E(Qν)| ≤ δ, where δ > 0 is the prescribed accuracy. The proof
of Theorem 2 consists in showing that [31, Theorem 1] holds
true, and is omitted because of space limitation.

Algorithm 2. Inner SCA Algorithm for P
Initial data: Z0 � (Q0, f0) ∈ X ; {γν}ν ∈ (0, 1];
(S.1): If Zν satisfies a suitable termination criterion, STOP
(S.2): Compute Ẑ(Zν) � (Q̂(Zν), f̂(Zν)) [cf. Pν];

(S.3): Set Zν+1 = Zν + γν
(
Ẑ(Zν)− Zν

)
;

(S.4): ν ← ν + 1 and go to (S.1).

Theorem 2: Given the nonconvex problem P , choose cẼ >
0 and {γν}ν such that

(0, 1] � γν → 0, ∀ν ≥ 0, and
∑
ν

γν = +∞. (26)

Then every limit point of {Zν} (at least one of such points
exists) is a stationary solution of P . Furthermore, none of such
points is a local maximum of the energy function E.

Theorem 2 offers some flexibility in the choice of the free
parameters cẼ and {γν}ν while guaranteeing convergence
of Algorithm 2. For instance, cẼ is positive if all τin and
(cfin )in∈Io

are positive (but arbitrary); in the case of full-
column rank matrices Hinn, one can also set τin = 0 (still
resulting in cẼ > 0). Many choices are possible for the step-
size γν ; a practical rule satisfying (26) that we found effective
in our experiments is [33]:

γν+1 = γν(1− ᾱγν), γ0 ∈ (0, 1], (27)

with ᾱ ∈ (0, 1/γ0
)
.

4) On the implementation of Algorithm 2: Since the base
stations are connected to the cloud throughout high speed wired
links, a good candidate place to run Algorithm 2 is the cloud
itself: The cloud collects first all system parameters needed to
run the algorithm from the SCeNBs (MUs’ channel state infor-
mation, maximum tolerable latency, etc.); then, if the feasibility
conditions (16) are satisfied, the cloud solves the strongly con-
vex problems Pν (using any standard nonlinear programming
solver), and sends the solutions Qn back to the correspond-
ing SCeNBs; finally, each SCeNB communicates the optimal
transmit parameters to the MUs it is serving.

5) Related works: Algorithm 2 hinges on the idea of suc-
cessive convex programming, which aims at computing sta-
tionary solutions of some classes of nonconvex problems by
solving a sequence of convexified subproblems. Some relevant
instances of this method that have attracted significant inter-
est in recent years are: i) the basic DCA (Difference-of-Convex
Algorithm) [34], [35]; ii) the M(ajorization)-M(inimization)

algorithm [36], [37]; iii) alternating/successive minimization
methods [38]–[40]; and iv) partial linearization methods [33],
[41], [42]. The aforementioned methods identify classes of
“favorable” nonconvex functions, for which a suitable convex
approximation can be obtained and convergence of the asso-
ciated sequential convex programming method can be proved.
However, the sum-energy function E(Q) in (13) and the result-
ing nonconvex optimization problem P do not belong to any of
the above classes. More specifically, what makes current algo-
rithms not readily applicable to problem P is the lack in the
objective function E(Q) of a(n additively) separable convex
and nonconvex part [each Ein(Q) in (13) is in fact the prod-
uct of two functions, tr(Qin) and Δt

in
(Qin ;Q

ν
−n), of the same

set of variables]. Therefore, the proposed approximation func-
tion Ẽ(Z;Zν), along with the resulting SCA-algorithm, i.e.,
Algorithm 2, are an innovative contribution of this work.

V. DISTRIBUTED IMPLEMENTATION

To alleviate the communication overhead of a centralized
implementation (Algorithm 2), in this section we devise dis-
tributed algorithms converging to local optimal solutions of P .
Following [31], the main idea is to choose the approximation
functions Ẽ, g̃in so that (on top of satisfying conditions P.1-P.3
and C.1-C.6, needed for convergence) the resulting convexified
problems Pν can be decomposed into (smaller) subproblems
solvable in parallel across the SCeNBs, with limited signaling
between the SCeNBs and the cloud.

Since the approximation function Ẽ introduced in (19) is
(sum) separable in the optimization variables of the MUs in
each cell, any choice of g̃in ’s enjoying the same decomposabil-
ity structure leads naturally to convexified problemsPν that can
be readily decomposed across the SCeNBs by using standard
primal or dual decomposition techniques.

Of course there is more than one choice of g̃in meeting
the above requirements; all of them lead to convergent algo-
rithms that however differ for convergence speed, complexity,
communication overhead, and a-priori knowledge of the sys-
tem parameters. As case study, in the following, we consider
two representative valid approximants. The first candidate g̃in
is obtained exploiting the Lipschitz property of the gradient of
the rate functions rin , whereas the second one is based on an
equivalent reformulation of P introducing proper slack vari-
ables. The first choice offers a lot of flexibility in the design
of distributed algorithms−both primal and dual-based schemes
can be invoked−but it requires knowledge of all the Lipschitz
constants. The second choice does not need this knowledge, but
it involves a higher computational cost at the SCeNBs side, due
to the presence of the slack variables.

A. Per-cell Distributed Dual and Primal Decompositions

The approximation function g̃in in (23) has the desired
property of preserving the structure of the original constraint
function gin “as much as possible” by keeping the concave part
r+in(Q) of rin(Q) unaltered. Numerical results show that this
choice leads to fast convergence schemes, see Sec. VI. However
the structure of g̃in prevents Pν to be decomposed across the
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SCeNBs due to the nonadditive coupling among the variables
Qn in r+in(Q). To cope with this issue, we lower bound r+in(Q)
[and thus upper bound g̃in in (23)], so that we obtain an alter-
native approximation of gin that is separable in all the Qn’s,
while still satisfying C.1-C.6. Invoking the Lipschitz property
of the (conjugate) gradients ∇Q∗

jl
r +
in
(•) on Q, with constant

Ljl,in [we omit the explicit expression of Ljl,in because of
space limitations], we have

r +
in
(Q) ≥ r̃ +

in
(Q;Qν) � r +

in
(Qν)

+
∑
jl∈I

(〈
Π +

jl,in
(Qν),Qjl −Qν

jl

〉− cjl,in ‖ Qjl −Qν
jl
‖2) ,

for all Q,Qν ∈ Q, where each Π +
jl,in

(Qν) and cjl,in are
defined respectively as

Π +
jl,in

(Qν) �
{
∇Q∗

jl
r +
in
(Qν), if l �= n or jl = in,

0, otherwise
(28)

with ∇Q∗
jl
r +
in
(Qν) = HH

jln
(Rn(Q

ν
−n) +HinnQ

ν
in
HH

inn
)−1 ·

Hjln and

cjl,in �
{
Ljl,in , if l �= n or jl = in,

0, otherwise.
(29)

Note that r̃ +
in
(Q;Qν) is (sum) separable in the MUs’ covari-

ance matrices Qin ’s. The desired approximant of gin can be
then obtained just replacing r+in(Q) in g̃in with r̃ +

in
(Q;Qν) [cf.

(23)], resulting in

q̃in(Q, fin ;Q
ν) � −r̃ +

in(Q;Qν) +
cin · fin

fin · T̃in − win

− r -
n(Q

ν
−n)−

∑
jl∈I

〈
Π -

jl,n
(Qν),Qjl −Qν

jl

〉
�
∑
jl∈I

q̃jl,in(Qjl ;Q
ν) + q̄in(fin ;Q

ν) (30)

with q̃jl,in(Qjl ;Q
ν) and q̄in(fin ;Q

ν) given by

q̃jl,in(Qjl ;Q
ν) � cjl,in ‖ Qjl −Qν

jl
‖2

− 〈Π +
jl,in

(Qν) +Π -
jl,n

(Qν),Qjl −Qν
jl

〉
,

q̄in(fin ;Q
ν) � cin · fin

fin · T̃in − win

− rin(Q
ν).

It is not difficult to check that q̃in(Q, fin ;Q
ν), on top of

being separable in the MUs’ covariance matrices, also satisfies
the required conditions C.1-C.6. Using q̃in(Q, fin ;Q

ν) instead
of g̃in(Q, fin ;Q

ν), the convexified subproblem replacing Pν

is: given Zν ∈ X ,

Ẑ(Zν) � argmin
Q,f

∑
in∈I

Ẽin(Zin ;Z
ν)

s.t. a)
∑
jl∈I

q̃jl,in(Qjl ;Q
ν) + q̄in(fin ;Q

ν) ≤ 0,

∀in ∈ Io,

b)
∑
jl∈I

q̃jl,in(Qjl ;Q
ν)− rin(Q

ν) +Rmin
in ≤ 0,

∀in ∈ Ino,

c)
∑

in∈Io

fin ≤ fT , fin ≥ 0, ∀in ∈ Io,

d)Qin ∈ Qin , ∀in ∈ I,
(Pν

d )

where with a slight abuse of notation we still use Ẑ(Zν) �
(Q̂(Zν), f̂(Zν)) to denote the unique solution of Pν

d .
Problem Pν

d is now (sum) separable in the MUs’ covariance
matrices; it can be solved in a distributed way using standard
primal or dual decomposition techniques. We briefly show next
how to customize standard dual algorithms to Pν

d .
1) Per-cell optimization via dual decomposition: The sub-

problems Pν
d can be solved in a distributed way if the side

constraints q̃in(Q, fin ;Q
ν) ≤ 0 are dualized (note that there

is zero duality gap). The dual problem associated with Pν
d is:

given Zν � (Qν , fν) ∈ X ,

max
λ�((λin )in∈I ,λf )≥0

D
(
Ẑ(λ;Zν),λ;Zν

)
(31)

with Ẑ(λ;Zν) � (Ẑn(λ;Z
ν))Nc

n=1, Ẑn(λ;Z
ν) � (Q̂n(λ;Z

ν),

f̂n(λ;Z
ν)) = ((Q̂in(λ;Z

ν))Kn
i=1, (f̂in(λ;Z

ν))
Ko

n
i=1) and Ko

n

denoting the number of MUs in cell n performing offloading. Ẑ
is the unique minimizer of the Lagrangian function associated
with Pν

d , which after reorganizing terms can be written as

Ẑ(λ;Zν)� argmin
Q∈Q,f∈R

|Io|
+

Nc∑
n=1

(LQn
(Qn,λ;Q

ν)+Lfn(fn,λ; f
ν
n)),

(32)

where Qn � (Qin)
Kn
i=1, fn � (fin)

Ko
n

i=1 and

LQn
(Qn,λ;Q

ν) =

Kn∑
i=1

⎧⎨⎩Ẽin(Qin , f
ν
in ;Z

ν) +
∑
jl∈I

λjl q̃in,jl(Qin ;Q
ν)

⎫⎬⎭ ,

Lfn(fn,λ; f
ν
n) =

Ko
n∑

i=1

{
cfin
2

(fin − fν
in)

2 +
λin · cin · fin
fin · T̃in − ωin

+ λffin

}
. (33)

Note that, thanks to the separability structure of the
Lagrangian function, the optimal solutions Ẑn(λ;Z

ν) =

(Q̂n(λ;Q
ν), f̂n(λ; f

ν)) of (32) can be computed in parallel
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across the SCeNBs, solving each SCeNBs n the following
strongly convex problems: given λ ≥ 0,

Q̂n(λ;Q
ν) � argmin

Qn∈ΠKn
i=1Qin

{LQn
(Qn,λ;Q

ν)}

f̂n(λ; f
ν) � argmin

fn∈R
Ko

n
+

{Lfn(fn,λ; f
ν
n)} . (34)

The solution of Pν
d can be then computed solving the dual

problem (31). It is not difficult to prove that the dual function
D is differentiable with Lipschitz gradient. One can then solve
(31) using, e.g., the gradient-based algorithm with diminishing
step-size described in Algorithm 3, whose convergence is stated
in Theorem 3 (the proof follows standard arguments and thus is
omitted, because of space limitations).

Theorem 3: Given Pν
d , choose {βk} so that βk > 0, βk →

0,
∑

k βk = +∞, and
∑

k(βk)
2 <∞. Then, the sequence

{λk} generated by Algorithm 3 converges to a solution of
(31). Therefore, the sequence {Ẑk(λk;Z

ν)}k converges to the
unique solution of Pν

d .

Algorithm 3. Distributed implementation of S.2 in Alg. 2.

Initial data: λ0 ≥ 0, Zν = (Qν , fν), {βk} > 0. Set k = 0,
(S.1): If λk satisfies a suitable termination criterion:STOP;
(S.2): For each SCeNB n, compute in parallel Qk+1

n (λk;Zν)
and fk+1

n (λk;Zν) [cf. (34)];
(S.3): Update at the master node λk+1 according to

λk+1
in

�

⎡⎣λk
in

+ βk

⎛⎝∑
jl∈I

q̃jl,in(Qjl ;Q
ν) + q̄in(fin ;Q

ν)

⎞⎠⎤⎦+

,

∀in ∈ Io

λk+1
in

�

⎡⎣λk
in
+βk

⎛⎝∑
jl∈I

q̃jl,in(Qjl ;Q
ν)− rin(Q

ν)+Rmin
in

⎞⎠⎤⎦+

,

∀in ∈ Ino

λk+1
f �

[
λk
f + βk

(∑
in∈Io

fk+1
in
− fT

)]+
(S.4): k ← k + 1 and go back to (S.1).

B. Alternative Decomposition via Slack Variables

In this section we present an alternative decomposition strat-
egy of problem P that does not require the knowledge of the
Lipschitz constants Ljl,in . At the basis of our approach there
is an equivalent reformulation of P based on the introduction
of proper slack variables that are instrumental to decouple in
each r+in(Q) [cf. (21)] the covariance matrix Qin of user in
from those of the MUs in the other cells−the interference term
Rn(Q−n) [cf. (4)]. More specifically, introducing the slack
variables Yin , and

Iin(Q) �
∑

jm∈I,m �=n

HjmnQjmHH
jmn+HinnQinH

H
inn, (35)

we can write

r+in(Q) = r+
in
(Y), (36)

with

r+
in
(Yin) � log2 det (Rw +Yin) andYin = Iin(Q). (37)

Using (36), (37), and gin(Q, fin) written as in (22), the orig-
inal offloading problem P can be rewritten in the following
equivalent form: denoting Y � (Yin)in∈I ,

min
Q,f ,Y

E(Q)

s.t. a) − r+
in
(Yin)− r -

n(Q−n) +
cin ·fin

fin ·T̃in−win

≤ 0, ∀in ∈Io,

b) − r+
in
(Yin)− r -

n(Q−n) +Rmin
in
≤ 0, ∀in ∈ Ino,

c)
∑

in∈Io

fin ≤ fT , fin ≥ 0, ∀in ∈ Io,

d)Qin ∈ Qin , ∀in ∈ I,

e)0 � Yin � Iin(Q), ∀in ∈ I. (P̃)

We denote by X̃ the feasible set of P̃ . The equivalence between
P and P̃ is stated next.

Lemma 1: Given the nonconvex problems P and P̃ , the
following hold:
(a): Every feasible point of P̃ (or P) is regular (i.e., satis-

fies the Mangasarian-Fromovits Constraint Qualification
[43]);

(b): P and P̃ are equivalent in the following sense. If (Q̄, f̄) is
a stationary solution of P , then there exists a Ȳ such that
(Q̄, f̄ , Ȳ) is a stationary solution of P̃; and viceversa. �

Condition (a) in the lemma guarantees the existence of
stationary points of P̃ , whereas (b) allows us to compute
(stationary) solutions of P solving P̃ .

We convexify next P̃ following the same guidelines as in
Sec. IV [see P.1-P.3 and C.1-C.6]. Introducing

g̃in(Q, fin ,Yin ;Q
ν) � −r+

in
(Yin) +

cin · fin
fin · T̃in − win

− r -
n(Q

ν
−n)−

∑
jm∈I

〈
Π -

jm,n(Q
ν),Qjm −Qν

jm

〉
, (38)

and using the same approximant Ẽ(Z;Zν) as defined in (17),
we have: given a feasible Wν � (Zν ,Yν),

Ŵ(Wν) � argmin
Q,f ,Y

Ẽ(Z;Zν) +
cY
2
‖Y −Yν‖2

s.t. a) g̃in(Q, fin ,Yin ;Q
ν) ≤ 0, ∀in ∈ Io,

b) g̃in(Q, 0,Yin ;Q
ν) +Rmin

in
≤ 0, ∀in ∈ Ino,

c)
∑

in∈Io

fin ≤ fT , fin ≥ 0, ∀in ∈ Io,

d)Qin ∈ Qin , ∀in ∈ I,

e)0 � Yin � Iin(Q), ∀in ∈ I (P̃ ν)

where Ŵ(Wν) = (Q̂(Wν), f̂(Wν), Ŷ(Wν)) denotes the
unique solution of P̃ν , and cY is an arbitrary positive constant.



98 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 1, NO. 2, JUNE 2015

The stationary solutions of P̃ (and thus P) can be computed
solving the sequence of strongly convex problems P̃ν . The for-
mal description of the scheme is still given by Algorithm 2
wherein in Step 2, Ẑ(Zν) is replaced by Ŵ(Wν); convergence
is guaranteed under conditions in Theorem 2.

The last thing left is showing how to solve each subprob-
lem P̃ν in a distributed way. Problem P̃ν can be decoupled
across the SCeNB’s in the dual domain (note that there is
zero duality gap). Indeed, denoting by W � (Q, f ,Y), and
λ � ((λin)in∈I , λf ) and Ω � (Ωin � 0)in∈I the multipliers
associated with the constraints (a), (b), (c) and (e), respectively,
the (partial) Lagrangian has the following additive structure:

L(W,λ,Ω;Wν) �
Nc∑
n=1

{LQn
(Qn,λ,Ω;Qν)

+LYn
(Yn,λ,Ω;Yν) + Lfn(fn,λ; f

ν
n)} ,

where

LQn(Qn,λ,Ω;Qν) =

Kn∑
i=1

{
Ẽin(Qin , f

ν
in ;Z

ν)− λinr
-
n(Q

ν
−n)

−
∑
jm∈I

λjm

〈
Π -

in,m(Qν),Qin −Qν
in

〉

−
∑

jm∈I,m �=n

〈
Ωjm ,HinmQinH

H
inm

〉

−
〈
Ωin ,HinnQinH

H
inn

〉}
,

LYn(Yn,λ,Ω;Yν) =

Kn∑
i=1

{−λinr
+
in(Yin) + 〈Ωin ,Yin〉

+
cY
2
‖Yin −Yν

in‖2
}
,

and Lfn(fn,λ; f
ν
n) is given by (33). The minimization of

L(W,λ,Ω;Wν) w.r.t. W = (Q, f ,Y) � (Qn, fn,Yn)
Nc
n=1

becomes then

D(λ,Ω;Wν) �
Nc∑
n=1

(
min
Qn∈Q

LQn
(Qn,λ,Ω;Qν)

+ min
(Yin�0)in∈I

LYn
(Yn,λ,Ω;Yν) + min

f∈R
|Io|
+

Lfn(fn,λ; f
ν
n)

)
(39)

whose unique solutions Ŵ(λ,Ω;Wν) � (Q̂n(λ,Ω;Qν),

Ŷn(λ,Ω;Yν), f̂n(λ; f
ν))Nc

n=1 can be computed in parallel
across the SCeNBs n:

Q̂n(λ,Ω;Qν) � argmin
Qn∈Qn

{LQn
(Qn,λ,Ω;Qν)} (40)

Ŷn(λ,Ω;Yν) � argmin
(Yin�0)Kn

i=1

{LYn
(Yn,λ,Ω;Yν)} (41)

f̂n(λ; f
ν) � argmin

fn∈R
Ko

n
+

{Lfn(fn,λ; f
ν
n)} . (42)

Interestingly, problem (41) admits a closed form solution.
Lemma 2: Let UH

in
DinUin be the eigenvalue/

eigenvector decomposition of cYYν
in
−Ωin , with

Din = diag((din,j)
nRn
j=1 ). The optimal solution of problem

(41) is

Yin = UinDYin
UH

in (43)

with DYin
= diag((yin,j)

nRn
j=1 ) given by

yin,j =

[
−
(

σ2
w

2 − din,j

2cY

)
+

√(
σ2
w

2 +
din,j

2cY

)2
+

λin

cY

]+
.

�
Given Ŵ(λ,Ω;Wν), the dual problem associated with

P̃ ν is

max
λ≥0,(Ωin�0)in∈I

D(λ,Ω;Wν), (44)

with D(λ,Ω;Wν) defined in (39). It can be shown that the
dual function is C2, with Hessian Lipschitz continuous with
respect to Wν on X . Then, the dual problem (44) can be
solved using either first or second order methods. An instance
of gradient-based schemes is given in Algorithm 4, whose con-
vergence is guaranteed under the same conditions as in the
Theorem 3. In Step 3 of the algorithm, the symbol [A]+ denotes
the Euclidean projection of the square matrix A onto the con-
vex set of positive semidefinite matrices (having the same size
of A).

Algorithm 4. Distributed dual scheme solving P̃ ν

Initial data: λ0 ≥ 0, Ω0 � 0, Wν = (Qν ,Yν , fν), {βk}k >
0. Set k = 0,
(S.1): If λk, Ωk satisfy a suitable termination criterion:STOP;
(S.2): For each SCeNB n, compute in parallel
Qk+1

n (λk;Ωk;Wν), Yk+1
n (λk;Ωk;Wν) and fk+1

n (λk;Wν)
solving (40)-(42);
(S.3): Update at the master node λ and Ω according to

λk+1
in

�
[
λk
in + βkg̃in(Q

k+1
in

,Qk+1
−n , fk+1

in
;Qν)

]+
, ∀in ∈ Io,

λk+1
in

�
[
λk
in+βk(g̃in(Q

k+1
in

,Qk+1
−n , 0;Qν)+Rmin

in )
]+

, ∀in∈Ino,

λk+1
f �

[
λk
f + βk

( ∑
in∈Io

fk+1
in
− fT

)]+
Ωk+1

in
�
[
Ωk

in + βk

(
Yk+1

in
− Iin(Q

k+1)
)]

+
, ∀in ∈ I

(S.4): k ← k + 1 and go back to (S.1).

A faster algorithm solving the dual problem can be read-
ily obtained using second order information. It is suffi-
cient to replace the update of the multipliers in Step 3 of
Algorithm 4 with the following (convergence is still guaranteed
by Theorem 3):

λk+1 = λk + βk([λ̂
k+1]+ − λk),

Ωk+1 = Ωk + βk([Ω̂
k+1]+ −Ωk) (45)

where, introducing the multipliers vector Λ̂ �
[
λ̂k+1 ;

vec
(
Ω̂k+1

)]
with vec

(
Ω̂
)
�
(

vec
(
Ω̂in

))
in∈I

, we have

Λ̂k+1 � Λ̂k +(∇2
λ,vec(Ω∗)D(Ŵk+1,λk,Ωk;Wν))−1

· ∇λ,vec(Ω∗)D(Ŵk+1,λk,Ωk;Wν). (46)
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The explicit expression of the Hessian matrices and gradi-
ents in (46) are omitted because of space limitations. Numerical
results show that using second order information significantly
enhances practical convergence speed.

VI. NUMERICAL RESULTS

In this section we present some numerical results to assess
the effectiveness of the proposed joint optimization of the
communication and computational resources.

The simulated scenario is the following. We consider a net-
work composed of Nc = 2 cells with Kn = 6 active users per
cell, randomly deployed. We assume that for each cell 4 mobile
users are asking for computational offloading while 2 MUs
are only transmitting data. The path-loss coefficient is chosen
according to the small cell model in [44] with carrier frequency
equal to 2 GHz and noise power equal to N0 = −125 dB. In
all our experiments the system parameters are set as (unless
stated otherwise): fT = 1010 cycles/s, Rw = N0Inr

, Pin =
PT = 34 dBm. This choice guarantees the nonemptiness of the
feasible set X ; the constant ᾱ in the diminishing step-size rule
(27) is chosen as ᾱ = 1e− 4, and the termination accuracy δ is
set to 10−3.

A. Example # 1: Joint vs. Disjoint Optimization

We start comparing the energy consumption of the proposed
offloading strategy with a method where communication and
computational resources are optimized separately. The bench-
mark used to assess the relative merits of our approach is an
instance of Algorithm 2 wherein the computational rates fin
are not optimized but set proportional to the computational
load of each user, while meeting the computational rate con-
straint fT with equality, i.e., fin = winfT /

∑
in∈Io

win CPU
cycles/second. We termed such a method Disjoint Resource
Allocation (DRA) algorithm. Note that this algorithm is still
guaranteed to converge by Theorem 2. An important parame-
ter useful to assess the usefulness of offloading algorithms is
the ratio ηin := win/bin between the computational load win

to be transferred and the number of bits bin enabling the trans-
fer. Fig. 1 shows an example of overall energy consumption,
assuming the same ratio ηin := η for all users, obtained using
Algorithm 2 and DRA algorithm. In particular, η is varied keep-
ing a fixed work load w and changing the number bin of bits to
be sent. The radio channels are Rayleigh fading and the results
are averages over 100 independent channel realizations. Fig. 1
shows a few interesting features: i) the joint optimization yields
a considerable gain with respect to the disjoint optimization for
applications having a low ratio η, i.e., applications with a high
number of bits to be transferred, for a given computational load
w; ii) the overall energy consumption decreases for computa-
tionally intensive applications, i.e., applications characterized
by a high η.

B. Example # 2: On the Convergence Speed

To test the convergence speed of Algorithm 2, Fig. 2 shows
the average energy consumption E(Qν) versus the iteration

Fig. 1. Energy consumption versus η = win/bin for Algorithm 2 and for
DRA.

Fig. 2. Convergence speed: Optimal energy versus the iteration index for
different values of T̃ .

index ν, for different values of the maximum latency T̃in

(assumed to be equal for all users) and different number of
receive antennas. The curves are averaged over 100 indepen-
dent channel realizations. The interesting result is that the
proposed algorithm converges in very few iterations. Moreover,
as expected, the energy consumption increases as the delay con-
straint becomes more stringent because more transmit energy
has to be used to respect the latency limit. Finally, it is
worth noticing the gain achievable by increasing the number
of receive antennas.

Since the overall optimization problem is non-convex, the
proposed algorithm may fall into a local minimum. To evaluate
this aspect, we ran our algorithm under 1, 000 independent ini-
tializations of the initial parameter setting Z0 = (Q0, f0) ∈ X
of Algorithm 2 and in Fig. 3 we plot the histogram of the ener-
gies at the initial (before running our optimization algorithm)
energies E(Q0) (left plot), and the histogram of the energies
resulting from running Algorithm 2 (right plot). Quite inter-
estingly, our experiments show that the proposed algorithm is
robust against random initializations: Although the variance
of the initial energy is quite large, the optimal final energy
tends to be concentrated around a much smaller range of val-
ues (that have been observed to differ from each other on the
third decimal digit).
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Fig. 3. Probability density function of the initial energy E(Q0) (left plot) and
of optimal final energy E(Q�(Z0)) (right plot).

Fig. 4. Evolution of the global energy for the distributed algorithms versus the
iteration index m.

C. Example # 3: Distributed Algorithms

Finally, we tested the efficiency of the distributed algorithms
proposed in Section V. We assume ᾱ = 1e− 5 and the ter-
mination accuracy δ is set to 10−2. Fig. 4 shows the energy
evolution versus the iteration index m, which counts the overall
number of (inner and outer) iterations in Algorithm 2. More
specifically, we compared three different algorithms used to
run Step 2, namely: the dual-decomposition method described
in Algorithm 3, the dual-scheme based on the reformula-
tion of the nonconvex problem P using slack-variables as
given in Algorithm 4, and its accelerated version based on the
Newton implementation (45). All implementations are quite
fast. As expected, using second order information enhances
convergence speed.

VII. CONCLUSION

In this paper we formulated the computation offloading
problem in a multi-cell mobile edge-computing scenario,
where a dense deployment of radio access points facilitates
proximity high bandwidth access to computational resources,
but increases also intercell interference. We formulated the
resource optimization problem as the joint optimization of
radio and computational resources, aimed at minimizing MUs’
energy consumption, under latency and power budget con-
straints. In the single-user case, we computed the global optimal
solution of the resulting nonconvex optimization problem in

closed form. In the more general multi-cell multi-user scenario,
we developed centralized and distributed SCA-based algo-
rithms with provable convergence to local optimal solutions of
the nonconvex problem. Numerical results show that our algo-
rithms outperform disjoint optimization schemes. Furthermore,
the results show, as expected, that offloading is more convenient
for applications with high computational load and small num-
ber of bits to be exchanged to enable program migration. In this
paper, we focused on a static framework where a cloud manager
examines a set of requests and, after exchanging information
with the base stations involved in the radio access, derives
the optimal allocation of radio and computational resources.
An interesting extension of this approach may incorporate a
dynamic setting where battery levels, application parameters,
channel states evolve over time, depending on how the users
are being served over time, with the goal of finding a proper
scheduling mechanism. Furthermore, while we concentrated
here on a single cloud, extension to multiple distributed clouds
might be an important generalization.

APPENDIX

A. Proof of Theorem 1

(a) It is sufficient to prove the following two facts.
Fact 1: Any stationary point of the nonconvex problem Ps is

a global optimal solution of the problem.
Fact 2: Any stationary point of the convex problem Qs (and

thus a globally optimal solution toQs), is also a stationary point
of Ps, and viceversa.

Proof of Fact 1: Invoking [45, Theorem 3.39], it is sufficient
to show that the objective function E(Q) is a pseudo-convex
function on the convex set Xs, i.e., [45, Def. 3.1.3]

∀Q,Y ∈ Xs : E(Q) < E(Y) ⇒ 〈∇Q∗E(Y),Q−Y〉 < 0.
(47)

Fix Y ∈ Xs, and introduce the convex C1 function φY :
Xs → R defined as

φY(Q) � tr(Q) · r(Y)− tr(Y) · r(Q). (48)

Then, for any Q ∈ Xs such that E(Q) < E(Y), the following
holds:

〈∇Q∗E(Y),Q−Y〉 (a)= 〈∇Q∗φY(Y),Q−Y〉
r(Y)2

(b)

≤ φY(Q)− φY(Y)

r(Y)2
(c)
< 0, (49)

where (a) follows from the definition of φY in (48); (b) is due
to the convexity of φY on Xs; and (c) comes from E(Q) <
E(Y)⇒ φY(Q) < φY(Y). Since (49) holds for any given
Y ∈ Xs, (47) holds true. �

Proof of Fact 2: Let us prove the two directions sep-
arately. Qs ⇒ Ps: Let (Q�, f�) be the optimal solution
of the convex problem Qs; denote Q̃� � UHQ�U. Then,
there exist multipliers λ�

p, μ
�
p, α

�
p,Φ

�
p such that the tuple

(Q̃�, f�, λ�
p, μ

�
p, α

�
p, β

�
p ,Φ

�
p) satisfies the KKT conditions of

Qs (note that Slater’s constraint qualification is satisfied):
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denoting r̃(Q̃�) � log2 |I+D1/2Q̃�D1/2|, and after some
simplifications, one gets

(a): I− μ�
p

log(2)
D1/2(I+D1/2Q̃�D1/2)−1D1/2

+λ�
p I−Φ�

p = 0

(b):
μ�
p w c

f�2(T̃ − w/f�)2
− α�

p = 0

(c): 0 ≤ λ�
p ⊥

(
PT − tr(Q̃�)

)
≥ 0

(d): 0 < μ�
p,

c

T̃ − w
f�

− r̃(Q̃�) = 0

(e): 0 � Q̃� ⊥ Φ�
p � 0

(f): 0 ≤ α�
p, f� = fT , (KKTQs

)

where A ⊥ B stands for 〈A,B〉 = 0, and in (d) and (f) we used
the fact that μ�

p must be positive and f� = fT , respectively (oth-
erwise KKTQs cannot be satisfied). We prove next that there
exist multipliers λ�

e, μ
�
e, α

�
e ,Φ

�
e that together with the optimal

solution (Q̃�, f�) of Qs satisfy the KKT conditions of Ps, i.e.,

(a′) :
c · I
r̃(Q̃�)

− c · tr(Q̃�)D1/2(I+D1/2Q̃�D1/2)−1D1/2

r̃(Q̃�)2 log(2)

− μ�
e

log(2)
D1/2(I+D1/2Q̃�D1/2)−1D1/2 +λ�

eI−Φ�
e =0

(b′) :
μ�
e w c

f� 2(T̃ − w/f�)2
− α�

e = 0

(c′) : 0 ≤ λ�
e ⊥

(
PT − tr(Q̃�)

)
≥ 0

(d′) : 0 ≤ μ�
e ⊥

(
r̃(Q̃�)− c

T̃ − w/f�

)
≥ 0

(e′) : 0 � Q̃ ⊥ Φ�
e � 0

(f′) : 0 ≤ α�
e ⊥ (fT − f�) ≥ 0. (KKTPs

)

Plugging (a) of (KKTQs) in (a′) of (KKTPs) and using the fact
that μ�

p > 0, we obtain:

λ�
e I = −

c I

r̃(Q̃�)
+

(1 + λ�
p)

μ�
p

(
c tr(Q̃�)

r̃(Q̃�)2
+ μ�

e

)
· I

+ Φ�
e −

1

μ�
p

(
c tr(Q̃�)

r̃(Q̃�)2
+ μ�

e

)
·Φ�

p, (50)

which is satisfied if one set Φ�
e , λ�

e , and μ�
e to

Φ�
e � 1

μ�
p

(
c tr(Q̃�)

r̃(Q̃�)2
+ μ�

e

)
·Φ�

p

μ�
e �

c μ�
p

r̃(Q̃�)(1 + λ�
p)
− c tr(Q̃�)

r̃(Q̃�)2

λ�
e � 0.

(51)

By (b′) it must be

α�
e =

μ�
e w c

f� 2(T̃ − w/f�)2
. (52)

Note that, to be a valid candidate solution of KKTPs, μ�
e must

be nonnegative [cf. (d′)], which by (51), is equivalent to

1 + λ�
p

μ�
p

· tr(Q̃�) ≤ r̃(Q̃�). (53)

We show next that (53) holds true. By multiplying both
sides of (a) by Q̃� and using the complementarity condition
〈Φ�

p, Q̃
�〉 = 0 [cf. (e)] we get

1 + λ�
p

μ�
p

· tr(Q̃�) =
1

log(2)
〈Q̃�,D1/2(I+D1/2Q̃�D1/2)−1D1/2〉

= 〈∇Q∗ r̃(Q̃�), Q̃�〉 ≤ r̃(Q̃�), (54)

where in the last inequality we used the concavity of the rate
function r̃(•), i.e.,

r̃(Y) ≤ r̃(W) + 〈∇Q∗ r̃(W),Y −W〉, ∀Y,W � 0 (55)

evaluated at Y = 0 and W = Q̃�. The desired result, μ�
e ≥ 0,

follows readily combining (53) and (54).
We show now that the obtained tuple (Q̃�, f�, λ�

e, μ
�
e, α

�
e ,

Φ�
e) satisfies KKTPs. Indeed, (a′) follows from (51); given

μ�
e ≥ 0, (b′) is satisfied by α�

e as in (52); (c′) follows from
PT − tr(Q̃�) ≥ 0 [cf. (c)] and λ�

e = 0; (d′) follows from μ�
e ≥

0 and the second equality in (d). Finally, it is not difficult to
see that Φ�

e given by (51) satisfies (e′); and finally (f′) is triv-
ially met by α�

e ≥ 0 in (52). This completes the first part of the
proof.
Ps ⇒ Qs: the proof follows the same idea as for

Qs ⇒ Ps; we then only sketch the main steps. Let
(Q̃�, f�, λ�

e, μ
�
e, α

�
e ,Φ

�
e) be a tuple satisfying KKTPs (whose

existence is guaranteed by the Slater’s constraint qualification).
We prove next that there exist multipliers (λ�

p, μ
�
p, α

�
p,Φ

�
p) such

that (Q̃�, f�, λ�
p, μ

�
p, α

�
p,Φ

�
p) satisfies KKTQs. Define

κe = μ�
e +

c tr(Q̃�)

r̃(Q̃�)2
> 0.

Given (a′), it can be easily seen that (a) is satisfied if Φ�
p, λ�

p,
and μ�

p are chosen as

Φ�
p =

μ�
p

κe
Φ�

e, μ�
p =

κe

λ�
e +

c

r̃(Q̃�)

, and λ�
p = 0. (56)

From (b) it must also be

α�
p =

μ�
p w c

f� 2(T̃ − w/f�)2
. (57)

It is not difficult to check that the obtained tuple (Q̃, f�,
λ�
p, μ

�
p, α

�
p,Φ

�
p) satisfies (a), (b), (c), (e), and (f) of KKTQs;

the only condition that needs a proof is the equality constraint
in (d), as given next.
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Suppose by contradiction that r̃(Q̃�)− c

T̃ − w/f�
> 0.

Then, it follows from (d′) that μ�
e = 0, and (a′) reduces to

c I

r̃(Q̃�)
− c tr(Q̃�)D1/2(I+D1/2Q̃�D1/2)−1D1/2

log(2)r̃(Q̃�)2

= −λ�
eI+Φ�

e.

Multiplying the above equation by Q̃� and using the comple-
mentary condition (e′), we get

λ�
e =

c

r̃(Q̃∗)2

(
〈∇Q∗ r̃(Q̃�), Q̃�〉 − r(Q̃�)

)
, (58)

which, given λ�
e ≥ 0 [cf. (c′)] and 〈∇Q∗ r̃(Q̃�), Q̃�〉 ≤ r̃(Q̃�)

[due to (55)], can be satisfied only if 〈∇Q∗ r̃(Q̃�), Q̃�〉 =
r(Q̃�), i.e.,

log2 det(I+D1/2Q̃�D1/2)

= tr
(
Q̃�D1/2(I+D1/2Q̃�D1/2)−1 ·D1/2

)
· 1

log(2)
.

Denoting by (σi = σi(D
1/2Q̃�D1/2))ri=1 ≥ 0 the non-

negative eigenvalues of D1/2Q̃�D1/2, the above equality can
be rewritten as

r∑
i=1

log(1 + σi) =

r∑
i=1

σi

1 + σi
,

which can be true only if σi = 0 for all i = 1, · · · , r, and
thus Q̃� = 0 (note that D �= 0). This however is in contra-
diction with the fact that Q� is an optimal solution of Qs.
(b): Invoking part (a) of the theorem, the solution (Q�, f�) of
Qs (and thus Ps) can be computed solving KKTQs. Denote
Q̃� � UHQ�U. Multiplying (a) of KKTQs by Q̃� and using
(e), we get

I− αD1/2(I+D1/2Q̃�D1/2)−1D1/2 = 0 (59)

with α � μ�
p/ log(2) (recall that one can set λ�

p = 0). By solv-

ing (59) and using Q̃� � UHQ�U one obtains the desired
expression of Q� as in (12). Moreover, it follows from (f) that
f� = fT . The only thing left to show is how to compute α
(and thus μ�

p) efficiently. Using the optimal structure of Q�

and denoting re � rank(Q�), conditions (c) and (d) reduce
respectively to

α = 2

c

reL
− 1

re

re∑
i=1

log2(di)

and
re∑
i=1

(
α− 1

di

)
≤PT , (60)

with L = T̃ − w
fT

. Note that Slater’s constraint qualification
guarantees that there exist α and re satisfying (60). Moreover,
it is not difficult to check that they can be efficiently computed
using the procedure described in Algorithm 1.
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