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Abstract—Co-localization of mobile users combines methods
of detecting nearby users and providing them interesting and
useful services or information. By exploiting the massive use of
smartphones, nearby users can be co-localized using only their
captured ambient radio signals. In this paper, we propose a
real-time co-localization system, in a centralized manner, that
leverages co-located users with high accuracy. We exploit the
similarity of radio frequency measurements from users’ mobile
terminal. We do not require any further information about
them. Our co-localization system is based on a nonparametric
Bayesian (NPB) method called infinite Gaussian mixture model
(IGMM) that allows the model parameters to change with
observed input data. In addition, we propose a modified version
of Gibbs sampling technique with an average similarity threshold
to better fit user’s group. We design our system in a completely
centralized manner. Hence, it enables the network to control and
manage the formation of the users’ groups. We first evaluate
the performance of our proposal numerically. Then, we carry
out an extensive experiment to demonstrate the feasibility, and
the efficiency of our approach with data sets from a real-world
setting. Results on experiment favor our algorithm over the state-
of-the-art community detection based clustering method.

Index Terms—Co-location, Gaussian mixture model, mobile
computing, clustering.

I. INTRODUCTION

HE large-scale use of the smart devices has given an
energetic impulse to a rapid development of a variety
of mobile applications. Moreover, it has also triggered a lot
of attention in the research community in the recent years.
With this proliferation of mobile devices, new services are
also provided to the customers, depending on their current
location. One of them is known as location-based services
(LBS), in which nearby places of interest are ubiquitously
queried by users based on their current positions transmitted
to the location server.
Another interesting application of this widespread adoption
of powerful smart devices is to provide useful services and
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information to a co-located group of people, according to
their local geographical proximity. One way to proceed is
to allow user equipments (UEs) to sense and transmit their
shared ambient radio signals to the co-location server. Upon
receipt, the co-location server, based on the similarity of the
reported radio signals from the same ambient signals, will
cluster mobile users into the same group.

It is worth noting that, in the localization system [1],
[2], the absolute or relative position of an individual user
is estimated and displayed on a surface of a map. However,
in the co-location system, we aim at determining users who
are geographically near one to the another, which can be
somehow confusing. This confusion is mainly explained by
the fact that, contrary to the localization system [1], [2], the
absolute position of the users in the network is not necessary,
and the fixed measure of vicinity among users to state that they
are co-located is fuzzy. Therefore, depending on applications
targeted, we can define how near two or more users can be
considered as co-located.

We are witnessing an incredible change in the way we inter-
act with each other and with our physical world. Information
collected on a co-located group of people (we consider they
are interacting, in some way) can serve as many purposes.
For example, in the authentication scenarios [3] with nearby
people, in wireless networks, to prevent eavesdropper and
spoofer attacks; in gaining a better understanding of human
social interactions; in mobile geosocial networking [4]; in
providing real-time recommendations about people with the
common interests; in detecting coworkers in the same place
and deliver message on their smartphones.

In addition, by taking advantage of physically closely co-
located mobile UEs, one can directly route data traffic between
mobile users (e.g., sharing streaming video, pictures, etc.),
which is known as Device-to-Device (D2D) [5] communica-
tion, for the purposes of proximity-based services [6] in Long-
Term Evolution Advanced (LTE-Advanced) system. Thus, co-
located mobile UEs, in the context of D2D communication,
can be exploited with the objective of minimizing the power
consumption of mobile devices [7], in improving throughput,
delay, spectrum efficiency, as well as enhancing Quality of
Experience (QoE) in LTE-Advanced networks [8].

Detecting such co-located group of people based on their ge-
ographical positions was proposed in [9]. However, it presents
some issues and privacy concerns arise among them. In [9],
the location of users is used to identify group of people and
their associated places. By collecting positions of the users for
a long period of time exposes them to be easily tracked with
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today’s technologies. Here, we design an algorithm to perform
co-localization of mobile users that have been together for a
certain amount of time. This algorithm is robust in infering co-
located users, and does not disclose users’ absolute position,
which preserves users’ location privacy.

For the purpose of realizing potential applications of co-
located mobile users, we propose a new method to detect in
real-time co-located users in wireless networks. It is based
on a nonparametric Bayesian technique (NPB) called infinite
Gaussian mixture modeling IGMM) [10]. To classify users’
measured radio signals a Markov chain Monte Carlo (MCMC)
implementation of a hierarchical IGMM [11] is utilized. This
method is built on spatial-temporal location of the mobile
users, and infers co-located users using multiple ambient radio
signals, which provides an unforgeable co-localization proof.
In association with received signal strength indicator (RSSI),
MAC address, and arrival time of beacon packets from mul-
tiple ambient radio signals, we show through simulation and
experimental studies that the proposed method can efficiently
detect co-located users.

One main advantage of this method is that it avoids the need
of the a priori knowledge of the input data, i.e., the number of
active devices operating in the network. Indeed, in a real-world
scenario, the number of users that bands together in a room,
for instance, is unpredictable and changes over time, which
makes NPB an appealing technique to address this kind of
problem. Besides, with this approach the number of clusters!
in the input data is automatically detected, in contrast with
other methods that need to be told how many clusters to find
[12].

Our approaches are practical for several reasons and can
be implemented efficiently with high accuracy, as discussed
later on. First, we use ambient WiFi signals whose detection
are available in nearly every smartphone, and increasingly, hot
spots can be found anywhere we go. Second, the discovery of
co-located users is centralized, which allows the co-location
server to control the formation of co-located users. Third, by
adopting a modified version of Gibbs sampling method with
a similarity threshold, we effectively detect co-located users
that have spent a certain amount of time in the same place.

Note that our method does not estimate the absolute position
[13] of an individual user, which prevents him from being
tracked, thus protecting location privacy. The method requires
only a list of captured ambient radio signals to be reported
to the co-location server, and does not spread the list among
other users, consequently there is no privacy leakage. It is
worth noting that, even though the co-location server informs
users of the presence of other users in their vicinity, it does
not disclose their exact location.

A. Our Contributions

We summarize the contributions of our paper as follows:

« We propose a new real-time approach to infer co-located
mobile users, in a centralized manner, by exploiting the
similarity of their measurements of the shared ambient

In this work, the words cluster and group are used interchangeably.

radio signals, based on a nonparametric Bayesian method
called IGMM. Furthermore, a modified version of Gibbs
sampling is proposed as a key enabler to a high co-
localization accuracy, in accordance with application re-
quirements.

o In association with RSSI, MAC address, and arrival time
of beacon packets from environmental WiFi signals, we
analyzed the performance of our proposal not only nu-
merically but also experimentally in order to demonstrate
its feasibility. We also perform a comparison result. Be-
yond being practical and efficient, results on experiment
with real data sets favor our algorithm over its coun-
terpart modularity-based community-detection approach
presented in [14].

The remainder of this paper is organized as follows. In
Section II we overviewed the related works. In Section III we
discuss the co-location system based on IGMM and ambient
radio signals. Then, we provide a numerical results in Section
IV. In Section V we present the experimental results and a
comparison study, followed by a conclusion in Section VI

II. RELATED WORKS

The co-localization system has been subjected to several
researches in recent years, due to its importance on people-
centric and place-centric mobile applications [15].

An easy way of thinking to address this issue is to use
an already built-in positioning system equipped with each
smartphone to estimate the current position of the users. Then,
using the current obtained position to state whether or not they
are co-located [9]. Despite the fact that this approach seems
attractive at first, it presents several drawbacks associated
with positioning systems to co-localize users. One of them is
actually that the position of a target is not accurately assessed
and changes place to place (in indoor environment, it is even
not available when using GPS) [16]. Another drawback is that
collecting people’s position for a long period of time can allow
them to be easily tracked. Therefore, robust techniques to infer
groups of co-localized users are needed, without disclosing
their absolute position.

Traditional approaches such as k-means [17] or Gaussian
mixture modeling [18] provide also a way to solve this prob-
lem. However, both of them suffer from the same drawbacks.
In fact, these algorithms require a fixed number of clusters,
which they need to be told to find. As the number of users
can change over time, and consequently the number of hidden
clusters is unknown and may also vary, these algorithms
become inappropriate for this kind of problems. In addition,
in real-world settings we do not have any knowledge of the
input data, and the model chosen depends heavily on the data
sets.

Dashti ef al. [14] devised a method to co-localize mobile
users based on the similarity of their radio frequency (RF)
fingerprints, by exploiting their shared ambient radio signals.
In [14], the authors constructed a connectivity graph by taking
into account the similarity of user’s measured signals. Then,
a modularity-based community detection approach is applied
to cluster users [19]. To maximize their modularity function,
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a heuristic technique called simulated annealing is utilized
[20]. Simulated annealing is a randomized search process that
avoids the problem of getting stuck in local optima-solutions
that are better than any other neighbors, but are not the very
best. In our work, we also exploit multiple ambient radio
signals’ features. However, we apply a Markov chain Monte
Carlo (MCMC) method called collapsed Gibbs sampling tech-
nique for classification [11]. It simulates a Markov chain
whose equilibrium distribution is the posterior distribution.
Sampling from this posterior distribution circumvents the
problems with initialization and local optima [21].

Mardenfeld er al. [22], on the other hand, proposed to
identify co-located users by using their Bluetooth traces.
The proposed algorithm [22] identifies groups of users that
have been spending a certain amount of time together and
meeting for several times. To validate their approaches, one
month of collected radio signals were used from many users’
smartphones. Similar to them, we evaluate our approach in
a real-world scenario, carrying out a vast experiment in an
entire second floor of a building with several meeting rooms,
an open space, and corridors. Results from experiment show
the effectiveness of our approach.

III. PROBLEM STATEMENTS

In this section, we introduce our system architecture. Fea-
tures from environmental WiFi signals are extracted, com-
bining with the current location of the mobile users, lead to
the high clustering accuracy. Our algorithm based on IGMM
for modeling and Gibbs sampling for classification is also
explained in detail in the following.

A. System Model

Mobile users that have been together, for a certain amount
of time, experience the similar WiFi radio signals from their
shared ambient radio signals. Hence, we aim at detecting these
users with similar RF measurements and cluster them into the
same group.

In Fig. 1, we present an example network of our co-location
system. In this figure, there are several mobile user equipments
(MUE's), organized in two groups: Group 1 and Group 2.
Mobile users in the same group are expected to experience
similar radio signals from their nearest access points (APs).
Periodically, they will report to the nearest base station (BS)
their measured radio signals. Upon receipt, the base station
will in turn transmit the reported measurements to the co-
location server through the Internet. The server will perform
the task of group formation detection from the received data
sets, and will inform back the mobile users, through an
application installed on their devices, about their belonging
group.

In this work, WiFi radio signals are used because of their
easy deployment and no extra cost, and their ability of working
in both indoor and outdoor environments. However, other
ambient radio signals such as Bluetooth, GSM, FM radio, LTE
signals, efc., can be exploited as well to co-locate mobile users.

In the following subsection, we discuss in detail our im-
plementation based on IGMM. For ease of reference, Table I

Co-location
Server

= MUE
MUE \

Group 1 Group 2

Fig. 1. An example network architecture of co-localized mobile equipments.
The blue arrows indicate the transmission of the ambient radio signals to
the co-location server. The red arrows represent information of co-localized
mobile equipments sent by the server.

summarizes the notation of all the mathematical symbols used
in this paper.

B. IGMM-Based Co-location

Consider y = {y1,y2,...,yn} are our set of all observations
from N mobile users in the area of interest Q, where each
yi € RP is a feature vector of ith user in a D-dimensional
space. For the sake of simplicity, we will first present our
model for one dimensional space (D = 1), and explain how to
generalize this model for the multivariate case later on.

Farrahi ef al. [23] showed through 72 individuals over nine
month period collecting Bluetooth signals, that the distribution
of users that have been in physical proximity fits Gaussian
distribution. Based on this finding, and as we are only inter-
ested in users’ physical proximity, we assume that the received
RF measurements can be well modeled by a multivariate
Gaussian. Thus, one Gaussian mixture model will be used to
model each class.

1) Fixed number of classes: Our co-localization technique
is implemented with infinite Gaussian mixture model (IGMM)
for modeling, and Gibbs sampler for classification. In [10],
Rasmussen has shown that, even though we do not have
any knowledge of our input data, we can start with a finite
Gaussian mixture model (FGMM). That is, the number of
classes is known, and then explore the model when the number
of the classes is unknown. So, let’s assume that we have K
mixture weights to model our input data y ={y; }[Ai |» Which the
probability density function (pdf) given in (1), and derive the
model later when K — oo.
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TABLE I
LIST OF SYMBOLS AND NOTATIONS USED IN THIS PAPER
l Symbol [ Definition ‘

N Total number of observations
D Number of access points data collected
y ={yi }i]\il Set of all observations
yi €RP The ith observation

—i All observations except the current one
K Number of mixture weights
z Indicator parameters
Z_; All indicators except the current one
@ Concentration parameter
bg Mixture weights
My, M) Means and means vectors of jth component
sj, Xj Precisions and covariance matrix of jth component

nj Number of observations in the jth components
Number of observations in the jth components, without
taking ith observation into account

H Hyperparameters for Gaussian inverse Wishart (GIW)
distribution prior on mean p and covariance matrix X

Ay I Proportional to our prior mean for X
1) How confident we are about the above prior
Ho Our prior mean for
Ko How confident we are about in this above prior mean
A S Similarity thresholds for IGMM and community detec-
tion algorithm, respectively
(C] Threshold to evaluate interacting/non-interacting users
K
-1
PG = Y N (1ys7') (1)
—i

where n; are the mixture weights, with 0 < 7; < 1, and
ZJI.(: , mj = 1. The mixture weights represent the probability of
¥; belongs to one of the K classes. The parameters u; and s;
are the means and precisions (inverse covariance) of the jth
Gaussian N, respectively.

The mixture means, y;, have Gaussian priors in the follow-
ing form

p(ujla,r) ~ N(a,r™), )

whose mean, A, and precision, r, are hyperparameters of
the model. Their priors are given by p(1) ~ N(,uy,o'i)
and p(r) ~ Qa(l,a';z), which are Gaussian and Gamma,
respectively. The mean, yuy, and the variance, a‘§ are computed
from the observations.

The mixture precisions, s;, are given by the Gamma priors
as

p(s;1B,w) ~ Ga(B,w™), 3)

whose shape, 8, and mean, w~!, are also hyperparameters of

the model. Their priors are given by p(,B_l) ~ Ga(l,1), and
plw) ~ Qa(l,o-%), which are inverse Gamma and Gamma,
respectively.

Following [10], we use a symmetric Dirichlet distribution
to compute the mixture weights & = (my,m2,...,7g). In fact,
Dirichlet distribution is a conjugate prior? of the Multinomial

2 A prior is conjugate if it yields a posterior that is the same family as the
prior (a mathematical convenience) [11].

4
distribution, whose joint pdf is in the following form
p(w|la) ~ Dir(a/K, a//K L a/K)
el ﬂ @

where I'(-) is the Gamma function. The mixtures x; are
positive and sum to one, and « is the concentration parameter
whose prior has an inverse Gamma shape as p(a™') ~
Ga(1,1). The symmetric Dirichlet hyperparameters % in (4)
encode our beliefs about how uniform or skewed the class
mixture weights will be [21].

In our experiment, we collected WiFi signals sent by three
different access points. Hence, to adapt the model to the
multivariate case, with D = 3 features, some modifications
are needed, which is straightforward. We replace the normal
and Gamma variables with multivariate Gaussian and Wishart
distribution, respectively. Therefore, the normal variables u;
become multinormal random vectors ;. The Gamma variables
sj become Wishart random matrices X;. For the remainder of
this paper, all discussion will be focused on the multidimen-
sional space, i.e., D = 3.

According to [24], the conjugate prior distribution of the
mean vector i 7 and covariance matrix X;, can be computed
with Gaussian inverse Wishart (GIW) distribution, with hyper-
parameters H = (A ],Uo,ﬁo,Ko), and they are denoted as

X o~
AilEj  ~

W, (A1)
N (fio. X /ko), &)

where IW is the inverse Wishart distribution and N is the mul-
tivariate Gaussian distribution. The hyperparameters, denoted
by H, delineate our knowledge of the observations. Thus, the
fully conjugate prior density is given by

p(u,X) = GIW (i, E|A, ", v, flo, ko), (©6)

where u is the mean and X is the covariance matrix of a
multivariate Gaussian. The GIW is given by

GIW (i, E|H) £ N (pl o, Z/x0) - IW(ZIAG,v0)

Dl Ko Tr(E7'A;Y)

2y -1
= exp |- (u— )T - —— 0 (7
Zorw eXp|—5 (p = o) 3 @)
where Zgrw = 2°% Tp(vo/2)(2n/ko)P/2AG!70/2, and

I'p(-) is the multivariate Gamma function. The complete
derivation can be found in [25, Ch. 4, pp 133].

The choice of the inverse Wishart distribution is because
it is fully conjugate prior for the multivariate Gaussian. The
hyperparameters, denoted by H, for the inverse Wishart have
the following interpretations: iy is our prior mean for g, and
ko indicates how strongly we are confident about that. The
hyperparameters A !'is proportional to our prior mean for X,
and v encodes our confidence about that. For reference, the
pdf of the inverse Wishart distribution is given in (8), where
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v is the number of degrees of freedom of the distribution, A
is a D x D scale matrix, and Tr(-) denotes the trace.

v+D+1

AT Y225 exp [ Tr(AT'E" ')]
p(E) = 8)
27 Tp (v/2)

For the sake of completeness, we also provide here the pdf
of the multivariate Gaussian distribution in (9), where y is the
mean and X is a D X D covariance matrix.

pOyIp,L) = exp

o E
)

Our purpose is to infer the class of each one of our N
observations, y, from the feature space. So, let’s define a set
of N indicator parameters z = {z1,22,...,2n} Which encode
each data point y;, i.e., z; encodes y;, indicating which class
it belongs to. This specifically means that, when z; belongs to
class j, so does y; with probability p(z; = j) = ;.

2) Non-fixed number of classes: So far, we assumed a fixed
number of classes, K, as explained earlier. In reality, we do not
know the exact number of classes in our input data, and here
is where the infinite Gaussian mixture model (IGMM) comes,
which is actually an extreme case of FGMM when K — co.

We have chosen the p(rla) and p(i;,X;|H) to be our
conjugate prior, therefore one may integrate out the model
parameters 7, fi; and X;, and sample the indicator parameters
z to infer the class of each one of our N mobile users.

The indicator parameters z can be sampled according to
the Bayesian principle. Indeed, Bayes’ rule tells us that the
posterior probability of the indicator parameters z given the
input data y is proportional to the prior probability of z
times the likelihood. Hence, the posterior distribution of the
classification indicators is given by

1
@)D

p(zi = jlz_;y,a, H)
~ p(z|le)p(ylz, H)
~ p(zi = jlz-;,a&)p(ylzi = j,2-;, H)

~p(zi = jlz-i,a@)p(yily-i, H), (10)

where y_; means that all other observations except the current
one.

In order to determine the value of the posterior probability
in (10), we should derive the expressions of the first and the
second terms on the right side.

To educe the expressions for prior p(z; = j|z—;, @), we need
to integrate out the mixture weights and write the prior in terms
of indicators

p(zla) =/P(Z|7I)P(7rla)d7r, (1)

where the first term p(z|r) = nJI.(: ;" and the second term
is given in (4). Hence, following [25] we have

| |6
o0

N

Fig. 2. Graphical model representation of Bayesian infinite Gaussian mixture
model in our co-localization system.

_T@ [y
p(zla) = F(Q/K)K/]_[ﬂ,
I'(@) F(nj + a/K)
(N + @) i I(e/K) ° (12)

where n; is the number of observations belonging to class j.

Our goal is to sample from posterior distribution over the
model when the limit K — co. An MCMC technique known
as Gibbs sampling [26] is used to sample the distribution and
determine the class label of each mobile user. Gibbs sampler
makes this possible, by repeatedly replacing each component
with a value taken from its conditional distribution on the
current values of all other components. Therefore, to use Gibbs
sampling for the indicators, z;, we need conditional prior for
a single indicator given all the others. By keeping all but a
single indicator fixed in (12), we obtain

n-jj +a/K

p(zi = jlz_i,a) = , (13)

N-1+a
where z_; are the classes for the observations other than y;, and
n_;j represent the number of observations in class j before
y; belonging to.

When K — oo in (13), the conditional prior reaches the
followings limits

n-jj .
. Nol+a o M >0
p(zi = jlz—i, @) = a (14)
— if ;=0
N-1l+a ’

where n_; ; = 0 means that, no observation has been assigned
yet to class j. The generative model in (14) is a characteriza-
tion of Dirichlet process known as Chinese restaurant process
(CRP) [27].

Same as the first term in (10) (right side) follows two cases,
described in (14), we may also find two expressions for the
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second term. Indeed, following [21] and [25], the second term
in (10) is obtained by the multivariate Student-¢ distribution,
because of our previous choice of conjugate prior. Therefore,

A +1
n(Kn ) ’ (15)
kn(up — D+ 1)
where ¢ is the multivariate Student- distribution. The subscript
v, — D + 1 is its number of degrees of freedom. The rest of
the parameters in (15) are defined as follows

p(yily-i.H) ~ ty,—p+1 (ﬁn,

S Ko N _
H o+ NHO K0+Ny (16)
Kn = ko+ N (17
v, = vo+ N (18)
kon L . ,_ L \T
Ay = Ap+S+ (y = Ho) (Y — Ho) (19)
ko+ N

and ¥ is the mean of observations, D is the dimensionality.
Ui, k1,v; and A; are the updated hyperparameters after observ-
ing samples, and S is defined as, S = 2, (y; — )%

For the case where no user has been assigned to a cluster,
we need to find p(y;,H). In fact, it has the same form as
p(yily-i, H), given in (15), with the hyperparameters before
updating

Ao(K()+1) ) (20)

ko(vo—D + 1)

For reference, the pdf of the multivariate Student-7 distribu-
tion is given in (21), where v is the degrees of freedom, u is
the mean, and A is a D X D scale matrix.

p(yi, H) ~ ty,-p+1 (/70,

r(M) A2
ol A) = ——22 1A [

-w*A™ ]ZD
(%) (av)P/?

v

(2D

As a conclusion, we can say that, to be able to compute the

posterior probability for our indicators z, we need to determine

the posterior distribution when there are observations assigned
to an existing cluster. This is done by

p(zi = jlz_;,y,a,H)
n_i,j
N-1+a

L Ag(ko+1)
tyo— ,—, 22
vo—D+1 (#0 KO(UO _ D + 1) ( )
and when there is no observation assigned to a cluster. That
one is given by

p(zi # zip Mi # 1’|z, y, @, H)
a N A()(K() +1)
~ 1y ,— . 23
N—1+a"°D+l('u0 ko(vo— D + 1) 23)
Fig. 2 depicts the graphical representation of this model in
order to co-localize mobile users. It illustrates the conditional
relationships among parameters, hyperparameters and input
data in IGMM. For example, it shows that the indicator z;
depends on 7;, which in turn depends on parameter . The
rectangular blocks represent the repetition, and the number in
the lower right corner indicates the number of repetitions.

Algorithm 1 Collapsed Gibbs sampler for IGMM-based co-

location
1: Input : Data sets from N users, and pre-set threshold A.
2: Output: Users co-located in K clusters.
3. Initialize: Set all users into the same cluster, K = 1.
4: fort=1to T do

5: fori=1to N do

6

7

8

Remove y; from its current class.
for j =1to K do
Compute prob. of an existing class as in (22).

9: AVGSIM; « (24)

10: DIST|; jy « distance to cluster j.

11: end for

12: Compute prob. of a new class as in (23).

13: z; < class with highest prob. and DIST(; ;) < A.
14: Remove any empty class, and decrease K.

15: end for

16: end for

C. Modified Gibbs Sampling

The proposed co-location algorithm exploits the similarity
of users’ measurements of their shared ambient radio signals.
So, they are assigned to the same cluster depending on their
reported WiFi radio signals.

As we mentioned above, depending on application require-
ments, one can define how near two users should be considered
as co-located. In the sense that there is no precise distance of
nearness between two users, for instance, to deduce that they
are co-located.

The two posterior distributions discussed so far permit us
applying Gibbs sampler to sample the values of the indicator
parameters z, to infer the class label of each user. To take
into account how near two users should be considered as
co-located or not, we have introduced a similarity threshold
denoted by A (explained in detail later on) in our algorithm.
That is, when two users’ measurements differ less than the
similarity threshold A, we regard these users as co-located.
More specifically, we first compute the average similarity
denoted by AVGSIM of each existing cluster as follows

N
1 .
AVGSIMj = n— E OKronecker (Zi»J)» 24)
7 =1

where AVGSIM; denotes the average similarity of the jth
cluster, and Okronecker(Zi>j) is the Kronecker delta function
representing the ith observation encoded by indicator parame-
ter z;, belonging to the jth cluster. It has the task of retaining
all the observations that belong to a specific cluster j, when
z; = j in the summation. That is, when the observation y;
encoded by z; belongs to the class j, this observation is taken
in the summation, otherwise not.

Then, for a new incoming observation, y;, the Euclidean
distance denoted by DIST|; jy, i.e., the distance between the
ith observation, y;, and the jth average similarity, AVGSIM;,
is computed in signal domain. If the computed distance,
DIST(; jy, is less than or equal to the predefined similar-
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Fig. 3. Flow chart of co-localization based IGMM algorithm.

ity threshold A, the user is accepted in that cluster, i.e.,
DIST(LJ') <A.

Note that, n; is the number of observations in cluster j,
and N is the total number of observations. z; is our indicator
parameter that encodes the ith observation indicating with
cluster the observation belongs to. With this approach we were
able to leverage our co-location accuracy.

With respect to a moving user, who is walking around or
just passing by, we noticed that his measured ambient radio
signals change a lot over time compared with users that are
interacting with others. So, we define a period of time, At,
that users should have been together in order to classify them
into the same cluster. At should be set large enough in order
to ensure that people have spent time together.

Algorithm 1 shows the necessary steps of our modified
Gibbs sampling for IGMM-based co-location. The variable T
indicates the number of iterations to be accomplished by the
algorithm. It should be set large enough to ensure accurate
sampling.

D. Co-location Scheme Detection

To detect and cluster co-located users, we propose the
following scheme (see Fig. 3). Ambient radio signals are
sensed for a period of time Az, and the collected data signals
are sent to the co-location server to be processed. Upon
receiving the data signals, the server will create distinct lists of

o | ® |-

Co-localization System

A APE @ AP3 A
20 o @
)
® ® ©
®
® @ @
10}
2® 2

Fig. 4. Numerical results of our co-localization system. Each black dot
represents a user in the wireless network. The blue circles indicate the actual
co-located group of users. The red circle shows the misclassification case. We
consider four APs in this simulation.

users with the same APs. Then, for each user a Ac; (fleshed
out later on) is calculated in order to determine if a user is
interacting or not with others. Note that, in this case, we
compare Ac; with a threshold denoted by ®. More on this
threshold ® will be discussed later on.

In the next step, the mean of received signals of each user is
computed and assigned all the users to the same class, K =1,
to start the classification process. Then, hyperparameters and
parameters of IGMM are computed, as well as the average
similarity of each cluster. For an incoming observation, Gibbs
sampling will give us its cluster, i.e., it will belong to an
existing cluster or a new one. Based on a predefined similarity
threshold A we assign this incoming observation into an
existing cluster predicted by Gibbs sampler or a new one.
This is performed by comparing its distance to the center of
the predicted cluster. The optimum value of the similarity
threshold A is estimated in offline analysis in Section V.
Finally, the users with the strongest Ac; are assigned to
different classes at the end of the algorithm.

In the case when two or more users are walking together, the
proposed scheme cannot be applied directly, because clustering
group of walking users requires different approaches, which
are beyond the scope of this paper.

The proposed scheme has several advantages. One of them
is that the users that experience different APs radio signals will
never be clustered together. Another one is that by introducing
the similarity threshold A, in our process of clustering, we are
able to determine all existing clusters. The proposed approach
is also robust to deal with varying number of clusters and users
over time.
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IV. NUMERICAL RESULTS

Our co-localization algorithm is first assessed numerically,
and then experimentally. In this section, we will present our
numerical results.

We considered a square area of interest Q of 460 m? with
four access points (APs), located each one on its corner. Then,
we randomly deployed 50 nodes (users) in different regions of
that testing area. The RSSI is sampled 20 times per seconds,
and then we took the average. Each node reports its measured
RSSI from each AP, and the proposed algorithm tests the
similarities among the reported RSSIs to decide the cluster of
each one of them, according to their similarity measurements.

Fig. 4 depicts the obtained results. Each black point on this
figure is considered as a user, and the blue circles indicate
the true clusters. The red circle means the misclassification
case. To obtain a such result, we set the similarity threshold
A to 1.05. This optimum value of A is obtained by trial-and-
error process. As the moving users are not considered in this
simulation, the threshold © is not used.

As can be seen in Fig. 4, the algorithm was able to detect
the correct cluster of almost all nodes. Only two out of 50
nodes were wrongly clustered (red circle). In fact, these two
nodes form each one its own cluster. Thus, 98% of nodes were
correctly clustered.

For this simulation, we chose the similarity threshold A, by
trial-and-error process, that gave us the best results. However,
as we explain in the next section, this threshold can be deter-
mined in offline analysis, and set according to the application
requirements.

V. EXPERIMENTAL SETUP AND RESULTS

In this section, we first discuss our experimental setup and
present the obtained results using collected real-world WiFi
signals. Then, in subsection V-E, we compare the performance
of our method, in terms of clustering accuracy, against com-
munity detection-based approach proposed in [14] to co-locate
mobile users.

A. Experimental Setup

To evaluate the performances of the proposed algorithm
with a real-world setting, we carried out an extensive ex-
periment in an entire second floor of a building with six
participants, collecting WiFi signals in different places in ten
different time-stamps. The testing area is a 1200 m? of a floor
in a building composed with several meeting rooms, an open
space, and corridors (see Fig. 5).

We utilized wireless adapters AirPcap Nx [28] and a free
and open-source packet analyzers Wireshark [29] to simul-
taneously capture environmental radio signals. WiFi signals
were recorded for a period of time of one minute. Then,
all measurements were put together to be processed on a
computer.

RSSI, MAC address, and time arrival of beacon packets at
2.437 GHz from the same APs were extracted for one minute.
For this experiment, users’ measurements from three different
APs deployed in a typical office building were considered.
In this work, three different APs were considered because

Fig. 5. A corridor (left side) and a meeting room (right side) of a 2nd floor
of a building where the experiments were conducted.

it is large enough to represent the unique signature of the
location where the radio signals were captured. The fact that
we collected ambient radio signals during a period of time of
one minute for each user, and then took the average of each
user, allows us to considerably reduce the measurement errors.

The concentration parameter, @, and the hyperparameters
denoted by H = (A, Y vo, fio, ko) in IGMM model express
our prior belief on the distribution and need to be specified
roughly [25]. Therefore, in our implementation we proceeded
as follows. We used the standard setting for the concentration
parameter «, i.e., p(a’l) ~ Ga(1,1). The mean vector f is
set from our data sets. The hyperparameter k( that encodes
how confident we are about our mean is set to 0.5. Ag is
chosen to be a diagonal matrix of 0.1, and vy that represents
our confidence about Ag is set to 20.

B. Inferring Interacting Users

We investigated the effect of walking users on a group of
other users within a room, i.e., while there is a group of users
in a room, other users are walking in a corridor. The purpose
of this investigation is to evaluate the group detection process,
when a user is walking around and does not interact with the
group.

As group meeting time is an important characteristic of
co-location, we evaluated the radio signals when users are
interacting or sharing a certain amount of time together, and
when users are walking around or just passing by. The goal
is to be able to differentiate between interacting and non-
interacting users.

Fig. 6 shows the collected RSSIs from the same APs when a
user is interacting or sharing some amount of time with other
users (i.e., belonging to a cluster of users, blue dots), and
when the same user is walking in a corridor (red dots), during
the same period of time (one minute). As one can observe,
on this figure these two measurements have different power
levels. Therefore, we propose a method for their detection in
real-time based on a predefined threshold denoted by ©.

Unsurprisingly, when the user is interacting with others,
i.e., the user does not move a lot over time (for a period
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Fig. 6. RSSIs extracted from interacting (blue dots) and walking (red dots) Cluster 7 0.71 2.13
users, for a period of time (Az) of one minute. Interacting users were in the Cluster 8 0.09 1.74
same room, while a user was walking in the corridor.
Cluster 9 1.03 2.27

TABLE II
Ao j ACCORDING TO USER ACTIONS (A HYPHEN MEANS THAT NO
MEASUREMENT WAS COLLECTED)

Users Interacting  Walking

A 6.12 18.42
7.38 -
6.11 -
6.63
6.85 -
6.49 -

mmY QW

of time Ar), the measured radio signals are almost the same
(blue dots). On the contrary, when the same user is walking
in a corridor, the experienced radio signals change a lot over
time (red dots). Therefore, we differentiate these two kinds of
users (interacting and non-interacting) as follows: the standard
deviation o ; for each user of each AP is computed; then, we
square and sum the obtained value of ¢ ;; from each user; and
finally, a square root of it is computed. Hence, the Aco; for
each user is obtained, as it is shown in (25)

(25)

where D is the dimension of the observation, oj; is the
standard deviation of the jth user for ith AP.

Table II shows the obtained values of Ac-; for two different
kinds of users’ actions (interacting and walking). As expected,
their values are quite different. Accordingly, any value that
can unambiguously differentiate these two kinds of users’
actions can be chosen between these two sets of values. In our
implementation, we set the threshold ® to 12.5. The dash lines
in the walking column of Table II mean that no measurement
was collected for this particular user concerning that action.
This is explained by the fact that, in our experiment, we have
chosen only two distinct users to collect WiFi signals while
they were walking.

It is worth noting that the obtained values of interacting
users are almost the same, and also the values of walking
users are almost the same, which comfort us in our choice of
the value of the threshold ®.

C. Similarity Threshold A

The proposed algorithm clusters users based on the similar-
ity of their measured radio signals and physical proximity. As
previously mentioned, there is no fixed measure of nearness
between two users to affirm that they are co-located. Conse-
quently, when measurements from two distinct users differ less
than the predefined similarity threshold A, they are regarded to
be potentially co-located. Therefore, we performed an offline
analysis in order to determine the best value of the similarity
threshold A for users to be part of the same group, i.e., how
near two or more users should be considered as co-located.

We started by calculating the Euclidean distance between
each pair of user’s measurement. Thus, we noticed that when
two or more users belong to the same group, their computed
Euclidean distances are shorter than those from the other
groups. It means that, by setting up a suitable value for the
threshold A, we can accurately cluster co-located users.

Table III displays the minimum and the maximum Euclidean
distances found in each cluster with two or more users. This
table exhibits the values of nine clusters, because actually
there are nine clusters with two or more users. The minimum
distance of all clusters is found to be 0.07, and the maximum
distance is found to be 3.8. They are printed in bold in Table
I

According to the above obtained values (minimum and
maximum), we defined the similarity threshold interval, i.e.,
the range on which the optimum value of the similarity
threshold A can be found. Otherwise, the scope will be too
large to easily find one.

Fig. 7 depicts the effect of A on classification accuracy for
the normalized Euclidean distance metric. In this figure, one
can notice that, when the value of the threshold A increases,
the error rates decrease until attain its optimum value at
approximately the middle of the interval, and then it retakes its
growth. This corroborate our proposal of clustering co-located
users by computing the average similarity of each cluster, and
accept an incoming user if his distance to the center of that
cluster is less than the similarity threshold A. Therefore, the
optimal value of A is found to be 2.07, i.e., the value that the
best minimizes the error rate.

It should be pointed out that, the optimal value of the simi-
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Fig. 7. Effect of the similarity threshold A on users co-localization. The value
of A is computed in the signal domain for Euclidean distance metric.

larity threshold A is chosen in accordance with the application
setup. In fact, if we envisage a reduced distance between
members of the same clusters, the value of the threshold A
can be decreased. Consequently, more clusters will be found
with smaller size. On the other hand, by increasing the value
of the threshold A (more than the optimal) we also increase the
intra-cluster distances, i.e., we increase the distance between
members within clusters, which in turn produces small number
of clusters, but with bigger size. In this sense, the threshold A
must be regarded as a key parameter to take into account in
this kind of applications.

In fact, different environments, applications, and purposes
may require different values of the threshold A, which should
be taken into consideration to fulfill the potential of the
proximity-based services [6].

D. Experimental Results

In this subsection, we present our experimental results. All
the pre-computed thresholds are considered, and the setup is
as described previously.

By taking into account the two predefined thresholds (® and
A), our algorithm was able to detect almost all clusters, and
classify users into their correct classes, as it is shown in Fig.
8.

Fig. 8 depicts the map of the entire floor where the ex-
periment was conducted and the obtained results. The black
and blue dots on this map represent users in wireless network.
The black circles surrounding dots illustrate the actually co-
located users, and the red dash circle means the misdetection
group. The blue dots with a blue arrow each one, surrounding
by a black circle, indicate the users that were walking in the
corridor while we conducted the experiments.

For the misclassification case (red dash circle), we noticed
that the users in the room were separated from the user in the
corridor by a plate thin glass, which made some trouble to the
algorithm to differentiate these to clusters.
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Entire floor plan where the experiments were conducted and the

Fig. 8.
obtained results. Each black or blue dot exemplifies a user in wireless network.
The blue dots with a blue arrow indicate walking or just passing by users in
the corridor. The black circles surrounding dots represent actual co-located
users. The red dash circle denotes the misclassification case.

E. Comparative Results

In this subsection, we will perform a comparative study
between our proposal and the community detection-based
approach presented in [14], on our measured WiFi signals.

As mentioned earlier, the authors in [14] proposed to co-
locate mobile users by constructing a connectivity graph
that represents the potential co-located users, based on pair-
wise similarity of RF measurements. Then, they applied
community-detection [20] tools to cluster users into the same
group. Moreover, an objective function called “modularity” is
used. This modularity function is optimized with a heuristic
method called simulated annealing [30]. As they utilized
community detection (CD) tools and simulated annealing (SA)
method to co-locate mobile users, henceforth we will call their
approach CDSA-based.

In this work, we also exploited the similarity of user’s RF
measurements from their mobile phones to cluster them into
the same group. However, we do not consider any connectivity
graph among them. Instead, we leverage co-located users
by applying a nonparametric Bayesian method called IGMM
with a modified version of Gibbs sampling to infer users’
corresponding groups. Throughout these comparative studies
we will call our approach IGMM-based, and the one proposed
in [14] CDSA-based.

For the sake of comparison, we performed an offline analy-
sis to obtain the optimum value of similarity threshold denoted
by ¢, for CDSA-based, using the Euclidean distance metric. As
the similarity threshold 6 depends on the data signals and is set
in accordance with application requirements, we determined
its best value from our measured WiFi signals. Therefore, we
computed the best value of ¢ between an interval of [min, max]
with step size denoted by Ad, as the authors suggested to do
in [14]. We used our predefined similarity threshold interval
in this case. With the obtained value of the threshold §, we
proceeded with the evaluation process.

Notice that, in this comparative studies, we compared the
performance of the algorithms with users that are interacting
with others, i.e., users that have been together for some amount
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Fig. 9. Impact of the similarity threshold 6 [14] on connectivity errors, for
Euclidean distance metric. The step size Ad is set to 0.01. The value of ¢ is
computed in the signal domain.

of time. We do not consider the users that are walking or just
passing by.

Fig. 9 shows the impact of 6 on connectivity errors for
the normalized Euclidean distance metric. The value of step
size A¢ is set to 0.01. The optimal similarity threshold ¢
is chosen to minimize both false negative (misdetection)
and false positive connectivity errors. The best value of the
threshold ¢ for our data set is found to be 1.48.

Fig. 10 shows the obtained results applying CDSA-based
algorithm, with the value of the threshold ¢ set to 1.48.
As one can see, both algorithms (IGMM-based and CDSA-
based) misclassified a user in Case 1. However, CDSA-based
approach in addition misclassified a user in Case 2.

We mainly believe that this misclassification in Case 2, on
the one hand, is due to the predefined similarity threshold ¢.
On the other hand, the heuristic technique called simulated
annealing used to maximize the modularity function, i.e., to
maximize the intra-cluster edges, avoids getting stuck in local
optima-solutions that are better than any others nearby, but are
not the very best one.

Table IV presents the performance comparison between the
IGMM-based and CDSA-based algorithms using Euclidean
and Minkowski distance metrics. The Minkowski distance (/-
norm, p > 1) [31] can be considered as a generalization of the
Euclidean distance, and is calculated in the signal domain as

D
dyine = 5| Y |RSSI® - RSSI™ |
i=1

where RSSIl.(k ) and RSSI;’") denote the RSSI values observed
by the kth and mth users, respectively, from the ith AP. The
order p =2 for the Euclidean distance (/>-norm).

As one can observe in Table IV, IGMM-based achieves sim-
ilar performance as CDSA-based algorithm when Minkowski
distance of order p = 1.5 is used. However, with Euclidean
distance it performs better. We believe that, this is due to the
fact that we used the average similarity of each cluster to

(26)
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Fig. 10. Entire floor plan where the experiments were conducted and the
obtained results, using CDSA-based approach. The red dash circles indicate
the misclassification cases. The setup is the same as in Fig. 8, but without
walking users.

TABLE IV
PERFORMANCE COMPARISON USING EUCLIDEAN AND MINKOWSKI
DISTANCE METRICS

Euclidean Minkowski (p = 1.5)

Threshold  Accuracy  Threshold  Accuracy

IGMM-based 2.07 98.27% 1.97 94.82%
CDSA-based 1.48 96.55% 1.70 94.82%

accept a new incoming membership. As can be seen, IGMM-
based algorithm uses almost the same similarity thresholds
with both distance metrics, whereas, CDSA-based has different
similarity thresholds. This is explained again by the fact that
we made use of the centroid of cluster to accept a new member.

VI. CONCLUSION

Throughout this paper, an efficient solution has been pre-
sented and evaluated to realize in real-time the co-localization
of mobile users, by exploiting the similarity of their radio sig-
nals. It has been shown that by using a nonparametric Bayesian
method called infinite Gaussian mixture model (IGMM) with
a modified version of Gibbs sampler, our algorithm can
accurately co-locate mobile users. The proposed design allows
the co-location server to control and manage all aspects of the
formation of the user groups in a centralized manner.

First, we numerically assessed our proposal. Then, we
carried out an extensive experiment to demonstrate its perfor-
mance with data sets from a real-world setting. In both cases,
we have shown that our method can efficiently cluster co-
located users. We have also compared our framework against a
state-of-the-art community detection based clustering method.
Results on experiments with real data sets favor our approach.

The framework presented in this paper is specially con-
ceived for detecting co-located mobile users using ambient
WiFi signals, however it can be easily adapted to other radio
signals.

2327-4662 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2016.2568258, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. ..., NO. ..., DATE ... 12

ACKNOWLEDGMENT [25] K. P. Murphy, Machine Learning: A Probabilistic Perspective. Cam-
. bridge, Mass.: MIT Press, 2012.

The authors would like to thank all students from our |56 p Resnik and E. Hardisty, “Gibbs sampling for the uninitiated.” Univ.
laboratory for their precious help during the setup experiment of Maryland, College Park, Tech. Rep. LAMP-TR~153, 2010.
phases and in collecting data sets. [271 T. L qﬁfﬁths and Z. Gh’e’lh.ramani, “Infinite latent feature models and

the indian buffet process,” in Proc. Neural Inf. Process. Syst. (NIPS).
MIT Press, 2005, pp. 475-482.
REFERENCES [28] Riverbed Technology, Inc. AirPcap Nx. Available: http://www.riverbed.
com.
[1] L. Cheng, C. Wu, Y. Zhang, H. Wu, M. Li, and C. Maple, “A survey  [29] The Wireshark team. Wireshark. Available: https://www.wireshark.org.
of localization in wireless sensor network,” Int. J. Distrib. Sens. Netw.,  [30] S. Kirkpatrick, J. C. Daniel Gelatt, and M. P. Vecchi, “Optimization

vol. 2012, pp. 1-12, 2012. by simulated annealing,” Science, vol. 220, no. 4598, pp. 671-80, May
[2] S. Gezici, “A survey on wireless position estimation,” Wirel. Pers. 1983.

Commun., vol. 44, no. 3, pp. 263-282, Feb. 2008. [31] S.-H. Cha. (2007) Comprehensive survey on distance/similarity mea-
[3] L. Xiao, Q. Yan, W. Lou, G. Chen, and Y. T. Hou, “Proximity-based sures between probability density functions [Online]. Available: http:

security using ambient radio signals,” in Proc. IEEE Int. Conf. Commun. /Iwww.gly.fsu.edu/~parker/geostats/Cha.pdf.

(ICC), 2013, pp. 1609-1613.

[4] H. P. Li, H. Hu, and J. Xu, “Nearby friend alert: Location anonymity
in mobile geosocial networks,” IEEE Pervasive Comput., vol. 12, no. 4,
pp. 62-70, Oct. 2013.

[5] J. Liu, N. Kato, J. Ma, and N. Kadowaki, “Device-to-device commu-
nication in lte-advanced networks: A survey,” IEEE Commun. Surveys
and Tutorials, vol. 17, no. 4, pp. 1923-1940, Nov. 2015.

[6] “Technical specification group services and system aspects; Feasibility
study for proximity services (ProSe); Release 12, Sophia Antipolis
Cedex, France, 3GPP TR 22.803, Tech. Rep., 2013.

[71 Y. Guan, Y. Xiao, L. J. C. Jr,, and C.-C. Shen, “Power efficient peer-to-
peer streaming to co-located mobile users,” in Proc. IEEE 11th Consum.
Commun. Netw. Conf. (CCNC), Jan. 2014, pp. 321-326.

[8] J.Liu, S. Zhang, N. Kato, H. Ujikawa, and K. Suzuki, “Device-to-device
communications for enhancing quality of experience in software defined
multi-tier lte-a networks,” IEEE Netw. Mag., vol. 29, no. 4, pp. 46-52,
Jul. 2015.

[9]1 A. Gupta, S. Paul, Q. Jones, and C. Borcea, “Automatic identification
of informal social groups and places for geosocial recommendations,”
Int. J. Mobile Netw. Des. Innovation, vol. 2, no. 3, pp. 159-171, Dec.
2007.

[10] C. E. Rasmussen, “The infinite Gaussian mixture model,” in Advances
in Neural Inform. Process. Syst. MIT Press, 2000, pp. 554-560.

[11] C. M. Bishop, Pattern Recognition and Machine Learning. New York,
NY, USA: Springer Press, 2006.

[12] R. Xu and D. W. II, “Survey of clustering algorithms,” IEEE Trans.
Neural Netw., vol. 16, no. 3, pp. 645-678, May 2005.

[13] J. Wang, Q. Gao, Y. Yu, P. Cheng, L. Wu, and H. Wang, “Robust device-
free wireless localization based on differential rss measurements,” I[EEE
Trans. Ind. Electron., vol. 60, no. 12, pp. 5943-5952, Dec. 2013.

[14] M. Dashti, M. A. A. Rahman, H. Mahmoudi, and H. Claussen, ‘“Detect-
ing co-located mobile users,” in Proc. IEEE Int. Conf. Commun. (ICC),
2015, pp. 1565-1570.

[15] A. Gupta, A. Kalra, D. Boston, and C. Borcea, “MobiSoC: a middleware
for mobile social computing applications,” Mobile Netw. Applicat.,
vol. 14, no. 1, pp. 35-52, Feb. 2009.

[16] S. A. R. Zekavat and R. M. Buehrer, Handbook of Position Location:
Theory, Practice and Advances. New Jersey, USA: Wiley-IEEE Press,
2012.

[17] J. B. MacQueen, “Some methods for classification and analysis of
multivariate observations,” in Proc. 5th Berkeley Symp. Math. Stat. Prob.,
vol. 1. Univ. of Calif. Press, Berkeley, 1967, pp. 281-296.

[18] A. W. Moore. Clustering with gaussian mixture models [Online]. Avail-
able: http://www.autonlab.org/tutorials/gmm14.pdf.

[19] S. Fortunato, “Community detection in graphs,” Physics Reports, vol.
486, no. 3-5, pp. 75-174, 2010.

[20] R. Guimera and L. A. N. Amaral, “Functional cartography of complex
metabolic networks,” Nature, vol. 433, no. 7028, pp. 895-900, Feb.
2005.

[21] F. Wood and M. J. Black, “A nonparametric bayesian alternative to spike
sorting,” J. Neurosci. Methods, vol. 173, no. 1, pp. 1-12, Aug. 2008.

[22] S. Mardenfeld, D. Boston, S. J. Pan, Q. Jones, A. Iamntichi, and
C. Borce, “GDC: Group discovery using co-location traces,” in Proc.
2nd IEEE Int. Conf. Social Computing (SocialCom), Aug. 2010, pp.
641-6438.

[23] K. Farrahi, R. Emonet, and A. Ferscha, “Socio-technical network
analysis from wearable interactions,” in Proc. 16th Int. Symp. Wearable
Comput. (ISWC), 2012, pp. 9-16.

[24] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B.
Rubin, Bayesian Data Analysis, 3rd ed. London, U.K.: Chapman &
Hall/CRC Press, 2014.

2327-4662 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



