
2327-4662 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/JIOT.2015.2452964, IEEE Internet of Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, XX 2015 1

Request Dependency Graph: A Model for Web
Usage Mining in Large-scale Web of Things

Jun Liu, Member, IEEE, Cheng Fang, and Nirwan Ansari, Fellow, IEEE

Abstract—In the Web of Things environment, web traffic logs
contain valuable information of how people interact with smart
devices and web servers. Mining the wealth of information
available in the web access logs has theoretical and practical
significance for many important applications like network op-
timization and security management. The first critical step of
the mining task is modeling the relationships among HTTP
requests for accessing web objects to investigate the behavior of
web clients. In this paper, we introduce the request dependency
graph, a graph representation of the relationships among HTTP
requests. Conceptually, a directed link from A to B in the graph
means that the accessing of web object B is caused by the
accessing of A, i.e., B depends on A. We propose a methodology
to establish such a graph by mining the temporal and causal
information among aggregated HTTP requests. To demonstrate
the value and effectiveness of the proposed model, we design
and implement an algorithm for primary requests identification,
which is a critical task of web usage mining, based on the request
dependency graph. Evaluation results from a large-scale real-
world web access log shows that the request dependency graph
is a useful tool for web usage mining.

Index Terms—Web of Things, request dependency graph,
HTTP traffic, web data mining, web usage mining, graph model.

I. INTRODUCTION

To create innovative and user-friendly services on top of the
Internet of Things [?], the Web of Things (WoT) [?] brings
an integrated architecture for the convergence of data from
smart devices into web applications. In the WoT environment,
users can leverage convenient web mechanisms like browsing,
searching and linking to interact with smart devices and
web servers. Therefore, mining the web traffic in WoT is
increasingly critical for network administrators for operational
and security purposes. For example, understanding traffic
characteristics is important for managing and provisioning
WoT network resources, and monitoring activities of devices
is important to identify anomalies and prevent attacks.

According to the locations of acquired traffic logs, web
traffic mining can be categorized into three types: client-side,
server-side, and network-side traffic mining. Mining the web
traffic at the client-side and server-side has been an active

J. Liu and C. Fang are with the School of Information and Communication
Engineering, Beijing University of Posts and Telecommunications, Beijing,
100876, China, E-mail: liujun, fone@bupt.edu.cn.

N. Ansari is with the Electrical and Computer Engineering Department,
New Jersey Institute of Technology, New Jersey, 07102, USA, E-mail:
nirwan.ansari@njit.edu.

Copyright (c) 2012 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

area of research in recent years. However, mining network-
side web traffic logs, which are composed by massive HTTP
requests with information of corresponding responses, poses
many technical challenges that arise from the large volume and
low quality of data [?]. The traditional emphasis of web traffic
analysis at network-side has been based on the statistical and
structural properties of the overall web environment [?][?][?].
There are relatively few studies that consider the HTTP (the
standard protocol underlying the web) requests as a set of
associated records to extract the interests and the preferences
of individuals at the network-side.

In this paper, we introduce the concept of the Request
Dependency Graph (RDG), which models the dependency
relationships among HTTP requests to analyze the behavioral
characteristics of web traffic, such as interaction structures of
web objects and browsing patterns of web clients. Given a web
traffic log, the nodes of the request dependency graph are all
the accessed web objects in the log. Each node is characterized
with a strength, which is the occurrence count of the accessed
object. A directed edge from a predecessor node A to a
successor node B represents that the access of B is caused by
the access of A, referred to as the dependency relationship.
The weight of an edge is the number of occurrences of the
dependency relationship between the two nodes appeared in
the log. The request dependency graph can be established by a
learning algorithm over a web traffic log. Based on the study
of a request dependency graph derived from real network data,
we find that the request dependency graph is large, sparse and
seemingly complex. It exhibits power-law characteristics in the
distributions of a number of graph properties, such as degree
and weight distributions.

To demonstrate the value of the request dependency graph,
we apply it on an important preprocessing task for web usage
mining, e.g., primary HTTP requests identification. It is to
identify the initial HTTP requests of opening a web page,
which is triggered by a user click or a device access action,
from the captured web traffic logs. We use the request de-
pendency graph model to describe the complex web browsing
behavior. Based on the graph, we propose a two-step algorithm
to identify the primary requests from a huge number of HTTP
requests of web pages and embedded objects. The first step is
to establish the request dependency graph from captured HTTP
requests. The second step is to identify the primary requests
by a statistical inference approach. The primary requests are
identified by comparing their probabilities of being the primary
request with a self learned threshold. Experiments on real-
world data demonstrate that our method can achieve higher
accuracy in comparison with traditional data cleaning method.

2327-4662 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/JIOT.2015.2452964, IEEE Internet of Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, XX 2015 2

Fig. 1. Web browsing behavior

The main contributions of this paper are in three aspects: (i)
we introduce the request dependency graph model to describe
the web browsing behavior and provide a methodology to
construct such a graph based on mining web traffic logs; (ii)
we demonstrate the value of the request dependency graph
by proposing a new effective primary requests identification
algorithm; (iii) we conduct extensive experiments based on
real-world datasets to illustrate the structural characteristics
of the graph and validate the primary requests identification
algorithm. The idea of the dependency graph was preliminarily
presented at WOCC 2014 [?], and this paper is an elaborated
and extended version, which includes, in particular, the investi-
gation of structural characteristics of the proposed graph model
and enhanced evaluation of the primary requests identification
algorithm.

The rest of the paper is organized as follows. In Section II,
we describe the basic concepts of web browsing behaviors.
In Section III, we introduce the request dependency graph
model and the methodology to establish the graph. In this
section, we also reveal the structural characteristics of the
request dependency graph based on a dataset collected from a
large cellular network. Then, in Section IV, we propose a novel
primary requests identification algorithm based on the request
dependency graph model and evaluate the effectiveness of the
algorithm by conducting a set of experiments using ground
truth and real-world datasets. In Section V, we review the
related works of our research. Finally, we present the future
work and conclude the paper in Section VI.

II. BASIC CONCEPTS OF WEB BROWSING

At first, we look into interactions between smart devices
and web servers reflected in the network. Fig. ?? depicts a
sample web browsing behavior, in which time flows from
left to right. For simplicity, we only illustrate the process of
three smart devices (Device 1− 3) accessing three pages (pi)
of a web server. Basically, the web browsing behaviors are
related to two factors: the structure of the web server and the
way the devices interacted with the web server. In general,
a web server comprises two types of elements: web pages
and embedded objects in each page. All pages and embedded

Fig. 2. System architecture for capturing traffic at the network-side

objects are identified by Universal Resource Locators (URLs),
which are represented as hyperlinks in the web pages. For
example, requests r1 and r9 in Fig. ?? have the same URL
because they are produced by accessing hyperlinks pointing
to the same web page p1. The structure of a web server is
determined by these hyperlinks among the web pages. When
a device accesses a hyperlink to open a page, the web client
like a web browser or an embedded web application will send
an initial HTTP request containing the URL of this page to
the web server. Responded page content of this initial request
usually contains many hyperlinks of the embedded objects.
After parsing these hyperlinks, the web client on the device
produces a set of requests to retrieve embedded objects from
web servers in a multi-thread manner. During the period of
loading a web page, devices may instill different browsing
behaviors. In terms of how devices interact with the websites,
most devices usually wait till a full page loaded, and stay for
a while before open another hyperlink in the page (Device 1
and 2). Some impatient devices, however, branch out to other
pages in parallel threads, such as a user access multiple web
pages at the same time in multiple tabs of the web browser.
This will result in some overlap request sequences of multiple
pages, such as pages p1 and p2 opened by Device 3.

Although the cause of a small piece of HTTP requests can
be explained by such a simple browsing process based on
human perception, the requests generated by a huge number
of devices that compose the web traffic logs used by network
operators for web usage mining are mixed and complicated
at the network-side. Fig. ?? illustrates a network environment
example to capture web traffic logs at the network-side in a
cellular WoT network. The example network serving both 2G
and 3G devices consists of three major parts: smart devices,
the access network and the core network. A smart device
communicates with a cell tower in the access network which
forwards its data service traffic to a Serving GPRS Support
Node (SGSN). The SGSN establishes a tunnel through the Gn
interface with a Gateway GPRS Support Node (GGSN) that
provides connectivity to external networks. Through this path,
the request message of a smart device enters the IP network
and reaches the target server. Response data from the server
to the device traverse in the reversed path. Therefore, we can
capture all HTTP requests and responses with device identities
and the accessing time between devices and web servers by

2327-4662 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/JIOT.2015.2452964, IEEE Internet of Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, XX 2015 3

TABLE I
SUMMARY OF DATASET

Factor Value
File Size 339.2GB

Number of Unique Devices 49,103

Number of Hosts 26,059

Number of HTTP Requests 2,025,994

high performance traffic monitor system (TMS) placed at the
Gn interface.

In the above context of web browsing behavior and web
traffic logs captured at the network-side, we define the main
conceptual components used in the reminder of this paper:

Web traffic log. A web traffic log contains information about
the web browsing actions and corresponding results of a group
of devices. Such information includes the device identities, the
requests submitted by the devices, the accessing time, and the
responses of the requests. A typical web traffic log produced
by the TMS device L is a set of records li =< ti, ui, ri, di >,
where ti is the accessing time, ui is an anonymized identity
of a device that submitted the request, ri is the submitted
HTTP request, and di is the summary of the response like
content length and content type. In our study, we do not use
any information from the response contents of the requests.
Thus, we denote a web traffic log with a number of records as
L = {< ti, ui, ri >}. Table ?? illustrates the summary of the
dataset used in the paper for investigation and evaluation; the
dataset was collected from the backbone of a cellular network
in a Southern province of China on May 5, 2013.

Web objects and HTTP requests: In general, a web page
pi is composed by a collection of web objects, denoted as
pi = {oj}. Each one of the web objects represents part of
information of the page like an image or a multimedia file.
A web object oj can be identified and located by a unique
identity named Universal Resource Locator (URL), which is
the major part of the HTTP request rj sent by the client to
retrieve the object. Therefore, we can also denote the web
traffic log as L = {< ti, ui, oi >}.

Primary objects and primary requests: Commonly, a web
page contains two types of web objects: primary object and
secondary object. The primary object is the first object re-
quested to retrieve the page by the devices, such as the objects
requested by r1, r4 and r6 in Fig. ??. Each web page has
only one primary object. Other objects in the web page are
the secondary objects, such as the objects requested by r2,
r5 and r7 in Fig. ??. The requests of retrieving the primary
object and the secondary object are called primary request and
secondary request, respectively. Usually, the primary request is
triggered by devices accessing a URL via web API or opening
a hyperlink in a web page. We call this kind of requests
as primary requests, which are the key information source
to reveal devices’ behaviors. Other requests are defined as
secondary requests.

Fig. 3. Example of the request dependency graph

III. THE REQUEST DEPENDENCY GRAPH

A. Modeling Browsing Behavior with Request Dependency
Graph

Based on the web browsing process and basic concepts
described above, we introduce a dependency graph model
to depict the dynamic web browsing behavior. Formally, we
model the browsing behavior as a directed and weighted graph,
G = (O,S,E,W), referred to as a Request Dependency
Graph (RDG). O = {o1, o2, ..., on} is the set of nodes
representing accessed objects which are identified by URLs.
Each node oi is assigned an occurrence count S[oi] ∈ S of the
accessed object oi. E is the set of directed edges with weights
W . There is an edge from node oi to oj if and only if they
meet the following conditions:
(i) For a request sequence υ = {ri−1, ri, ..., rj} gener-

ated by the same device, in which accessed objects are
{oi−1, oi, ..., oj}, the interval between the accessing time
of ri−1 and ri is larger than τ , where τ is called the
lookahead time window.

(ii) In the sub-sequence υ′ = {ri, ..., rj} of υ, the interval
between each pair of adjacent requests is smaller than τ .

A directed edge from oi to oj represents the dependency
relationship between them. The weight of a directed edge
is the number of times the pair < oi, oj > appears in the
measured HTTP request sequence R. A directed edge and the
weight of the edge indicate the access of oj followed by the
access of oi and the number of occurrences of such an action,
respectively. Ideally, if all devices open web pages one by one
with a given stay time and τ equals to the stay time, the edge
from oi to oj indicates that oj is an embedded object in the
web page oi. Unfortunately, this assumption is always violated
by complicated browsing behaviors in the real world, such as
the behavior of Device 3 in Fig. ??. Therefore, the request
dependency graph derived from the web traffic log is more
complicated than the simple structure of objects relationships
defined by developers of the accessed web servers [?].

Fig. ?? shows the request dependency graph derived from
the browsing behavior example shown in Fig. ??. In the
example, we have the same URL o1 pointing to web page
p1 in request r1, r9, and r17. Similarly, we get other nodes,
from o2 to o8, and their occurrence numbers which are the bold
numbers close to these nodes, such as 3 for o1. By choosing an

2327-4662 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/JIOT.2015.2452964, IEEE Internet of Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, XX 2015 4

Algorithm I: Establish the Request Dependency Graph

Input:
R = {r1, r2, ..., rn} → A set of HTTP requests

ri = {ui, ti, oi} → Data structure of each HTTP request

Output:
G = {O,S,E,W} → The dependency graph

1: H = � // The set of the request sequences of all devices

2: for each ri in R do
3: push(H[ui],ri)

4: end for
5: for each hi in H do
6: opredecessor = null
7: tlast = 0

8: for i=1 to length(hi) do
9: ri = pop(hi)

10: t = getAccessingTime(ri)

11: oi = getURL(ri)

12: O[oi] = 1

13: S[oi]++

14: if t− tlast > τ then
15: opredecessor = oi
16: else
17: E[opredecessor][oi] = 1

18: W [opredecessor][oi]++

19: end if
20: tlast = t

21: end for
22: end for

appropriate lookahead time window τ , which will be described
in detail later, a request dependency graph can be built as
shown in Fig. ??. Note that some edges start from o1 and end
at o4 to o8, as shown in dashed lines. These edges are caused
by the parallel browsing behavior of Device 3, which results
in short time intervals between all pairs of adjacent requests
in the sequence from r17 to r24. We will next introduce how
we establish the request dependency graph to represent the
dynamic behaviors and identify the primary requests from
massive HTTP requests.

B. Establishing the Request Dependency Graph

The request dependency graph is initially empty and is
established through a learning process, which is summarized in
Algorithm I. The input data of the algorithm is a set of HTTP
requests R. Each request ri maintains information including
the device identification ui, the accessing time ti, and the
URL of the accessed object oi. They are sorted in ascending
order of the accessing time. The output of the algorithm is the
request dependency graph G, which has a set of nodes O with
occurrence counts S and a set of edges with weights W .

At first, the algorithm initializes an empty set H to save the
set of the request sequences of all users at line 1. From line
2 to line 4, all requests are divided into a set of sequences.
Each sequence is made up of requests from the same device,
and ordered by the accessing time. Then, the sequence of
each device hi is processed one by one from line 5 to line

TABLE II
METRICS OF THE STUDIED GRAPHS

Metric τ = 1s τ = 3s τ = 5s τ = 7s τ = 9s

|E| 166,217 217,236 239,121 251,103 258,741

Density 6.1E-6 8.0E-6 8.8E-6 9.2E-6 9.5E-6

Centralization 3.1E-3 4.8E-3 7.0E-3 1.1E-2 1.6E-2

Heterogeneityd 5.2 6.7 7.8 8.8 9.9

Heterogeneityw 20.6 19.3 19.1 19.4 20.1

mean(din) 1.8 1.9 2.0 2.0 2.0

σ(din) 27.6 47.0 59.1 66.4 70.0

mean(dout) 4.2 5.9 6.9 7.7 8.3

σ(dout) 102.2 321.3 573.3 864.0 1208.7

mean(win) 2.8 3.1 3.3 3.4 3.4

σ(win) 1784.6 2618.6 3075.6 3382.4 3585.1

mean(wout) 6.4 9.6 11.5 13.0 14.2

σ(wout) 4179.8 7560.0 10018.0 12555.7 15349.7

|C| 14,087 9,975 8,197 7,171 6,567

22. The accessing time and URL identity of each request are
retrieved for further processing (line 10 and 11). The indicator
of whether a node is in the graph is set to 1 (line 12), and the
occurrence number of the node is incremented by one (line
13). As mentioned in Section ??, each request may act as a
primary request that is the first object requested to retrieve the
web page or a secondary request of accessing the embedded
object of a page. A secondary request is the successor of a
primary request on the temporal dimension. So, the major part
of the algorithm is to identify the predecessor and successor
relationships between the HTTP requests. The codes from line
14 to line 19 are designed for this purpose. The time interval
between a request o and the last request olast (t − tlast) is
compared with the lookahead time window τ (line 14). If it is
larger than τ , the request o will be regarded as a predecessor
request (line 15). Otherwise, the request will be regarded as
a successor request. For each successor request, a directed
edge is added from the current predecessor request to this
request (line 17), and the weight of this edge is incremented
by one (line 18). When a request is processed, the time for
the last processed request will be updated (line 20). After
having iteratively executed on request sequences of all users,
the dependency graph is established.

C. Characteristics of the Request Dependency Graph

We have established a number of request dependency graphs
by applying Algorithm I on the dataset presented in Section ??.
For all the generated graphs, we have studied their characteris-
tics from different aspects. Owing to the extra large size of all
the graphs and the results are similar at all time scales, here we
present the analysis of a log piece of one hour from 9 AM to
10 AM on May 5, 2013. The total number of nodes, which are
accessed web objects, in the studied graphs is 164,770. Table
?? presents the main characteristics of the different versions
of the request dependency graph. Each version is built with a
given value of the lookahead window τ in Algorithm I, from
1 second to 9 seconds. To comply with the evaluation method

2327-4662 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/JIOT.2015.2452964, IEEE Internet of Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, XX 2015 5

0 1 2 3 4

0
1

2
3

4
5

Vertex Weight (log10)

N
u

m
b

e
r

(l
o

g
1

0
)

y=−1.898x+4.650

Fig. 4. Distribution of occurrence counts of nodes

of the weighted directed graph, we normalize the weight of
each edge as:

w′ij =
wij

max(W)
(1)

where W = {wij} is the set of weights of each node. We can
see that the number of edges increases when the lookahead
window increases because more requests are treated as the
secondary requests that connect to the predecessor primary
requests when the lookahead window gets larger. However, it is
noted that the graphs are sparse in all conditions, as indicated
by the small values of densities in Table ??. The density of
the request dependency graph is defined as:

Density =
2|E|

|O| × (|O| − 1)
(2)

where O is the set of nodes and E is the set of directed
edges in the dependency graph. A density close to 1 indicates
that all the nodes are strongly connected with each other
while a density close to 0 means an overall weak connection
among nodes. We use the graph centralization to study how
evenly the centrality distribution is among nodes in the request
dependency graph. The graph centralization is defined as:

Centralization =
|O|
|O| − 2

× (
max(K)

|O| − 1
− mean(K)

|O| − 1
) (3)

where K = {ki} is the set of the total number of degrees of
each node and ki =

∑
eij . The small centralizations of all the

graphs indicate that the topology of the request dependency
graph is more like a grid than a star. The heterogeneity metric
measures the variation of connectivity across the nodes in the
graph. It is defined as:

Heterogeneity =

√
var(K)

mean(K)
(4)

where K = {ki} is the set of the total number of degrees or
weighted degrees of each node and ki =

∑
eij or ki =

∑
w′ij .

We calculate the heterogeneities of degree and weighted de-
gree. The big values of heterogeneities imply that these graphs
are highly heterogeneous. The heterogeneous characteristics of
the request dependency graph are also indicated by the large
variances of in-degree (din), out-degree (dout), weighted in-
degree (win) and weighted out-degree (wout) as compared to
their average values.

To study the heterogeneous characteristics of the request
dependency graph in detail, we plot the distribution curve of
several important metrics of the graph. All of the distributions
of the node occurrence, which is the number of times of
the web objects accessed, have extremely long tails spanning
several orders of magnitude. The mean node occurrence is
4, but the maximum occurrence is 13,260 and the standard
deviation of the distribution is approximately 78.1. That is,
the distribution is so skewed that we are able to approximate
the distribution with a power-law function f(x) = α ·xk. Fig.
?? shows the distribution of node occurrence and the fitted line
using the power law, whose parameters are shown in Table ??.
Besides this kind of the skewed distribution of the web object
accesses, which has been shown in previous works [?][?], we
further investigate the relationships among the accessed web
objects. In the definition of the request dependency graph, the
out-degree and weighted out-degree of each node represents
the number of the unique web objects followed by this node
and the total occurrence of such relationship appeared in the
traffic log, respectively. Fig. ?? shows the distributions of
the out-degree and the weighted out-degree in the example
request dependency graph. It is interesting to see that both of
them exhibit a power law behavior. In addition, the curves of
the distributions of the in-degree and the weighted in-degree,
which depict how many individual predecessor nodes of a web
object and the total number of such incidents, respectively,
show the similar shape of those of the out-degree and weighted
out-degree. The parameters of the fitted power laws of these
four metrics are shown in Table ??.

From the generated graphs, we note that the request de-
pendency graph is a sparse graph with a strong clustering
effect, which is shown in Fig. ??(a). It implies that the
component structure is an interesting characteristic of the
request dependency graph. A component of a graph is a
subgraph in which any two nodes are connected by a path, and
those nodes are connected to no other nodes in the super graph.
Fig. ??(b) and Fig. ??(c) show two example components of
the studied graph. The central node of the star shown in
Fig. ??(b) is an entry point of a specific statistical function

TABLE III
PARAMETERS OF THE FITTED POWER LAWS (τ = 3s)

Power Laws: f(x) = α · xk α k

Occurrence Count 4.65 -1.90

In-degree 4.70 -2.33

Out-degree 4.70 -2.04

Weighted in-degree 4.70 -2.11

Weighted out-degree 4.65 -1.94

Nodes of components 4.50 -2.65

2327-4662 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/JIOT.2015.2452964, IEEE Internet of Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, XX 2015 6

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

outDegree (log10)

N
u
m

b
e
r

(l
o
g
1
0
)

1s

3s

9s

red: y=−2.044x+4.600
green: y=−2.043x+4.700
blue: y=−1.979x+4.750

(a) Out-degree

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

outStrength (log10)

N
u
m

b
e
r

(l
o
g
1
0
)

1s

3s

9s

red: y=−2.089x+4.700
green: y=−1.938x+4.650
blue: y=−1.784x+4.550

(b) Weighted out-degree

Fig. 5. Distributions of the out-degree and the weighted out-degree in the example request dependency graph

of doubleclick.net, the leading web access statistical service
provider. The nodes around the central node is a popular forum
website in China, whose pages have the same embedded link
pointed to the specific statistical function. Fig. ??(c) shows
a component with a complicated structure, which contains a
number of web objects of the web site 51tv.com, a popular
online video website in China. The complicated topology of
this component is caused by the complex relationships among
the accessed objects in Fig. ??(c), which are homepage, login
page, video list pages and other embedded web objects. To
demonstrate how the request dependency graph can be applied
to analyze the network traffic of WoT elements, we plot a
cluster of web objects accessed by the ‘Gaode’ application,
the leading mobile navigation application in China, in Fig.
??(d). The URLs of the center nodes are the RESTful APIs
of the ‘Gaode’ web servers, such as webapi.ampa.com and
restapi.ampa.com. The mobile clients use these APIs to report
the positions to servers, and then retrieve map data and traffic
status by accessing subsequent URLs, which are parsed from
the response contents of these APIs and are the nodes around
the center nodes.

To study the overall component characteristics of the graph,
we transform the directed request dependency graph into an
undirected graph by setting e′ij = eij ∨ eji. The plot in Fig.
?? shows the connected components distribution. Each point
represents the number of components of a given size, which
is expressed as the total number of nodes in the component.
Also in this case, for all three values of τ , the distribution
follows a power law, whose parameters are shown in Table
??.

IV. PRIMARY HTTP REQUESTS IDENTIFICATION

We have utilized the request dependency graph to perform
several tasks of the web usage mining like mining of the
access patterns and website decomposition, and produced good
results. In this paper, we take a fundamental web traffic
preprocessing task, primary HTTP requests identification, as

an example to demonstrate the effectiveness and potential of
the proposed request dependency graph for web traffic data
mining.

A. Problem Statement of Primary Requests Identification
A number of studies have shown that the set of initial

HTTP requests of web pages is only a small part of the total
web traffic [?][?]. Therefore, the quality of the web traffic
mining significantly depends on the outcomes of an important
preprocessing task on web traffic records, primary requests
identification. Primary requests identification is a process of
obtaining the set of requests triggered by users or devices from
a large number of captured HTTP requests. It is important
for various web applications, such as web search optimization
[?][?], web usage mining [?][?], and anomaly detection [?][?].

As the web servers move from relatively static pages to
functional carriers with embedded multimedia and dynamic
contents, the nature of the interaction between devices and
web servers changes as well. This results in great challenges to
accurately identify primary requests in the following aspects.
(1) Web pages have become increasingly complex because the
number of embedded objects has increased [?]. Many requests
occur not only as a result of the page click, but also as a
result of interactions between devices and web servers after
the initial request. (2) The traditional browsing paradigm of
visiting a sequence of web pages one by one in the same
browser window has been greatly changed. Parallel browsing
behavior is prevalent because almost all browsers are equipped
with the multi-tab function to support opening more than one
page from a single page [?]. (3) Advanced web technologies,
such as AJAX, Flash, etc., enable web server developers to put
more functional scripts into the web pages. Dynamic requests
triggered by these scripts are hard to be distinguished from
opening web page action, and break the traffic patterns of
original embedded objects in the page.

In Section ??, we have shown some typical structures of
modern web pages and the HTTP request sequences of access-

2327-4662 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/JIOT.2015.2452964, IEEE Internet of Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, XX 2015 7

(a) Cluster effect (b) doubleclick.net (c) 51tv.com (d) amap.com

Fig. 6. Cluster effect of the request dependency graph and component examples

ing them in Fig. ??. To access a web page, a device usually
generates a HTTP request with the URL of the web page. We
call the initial HTTP request as the primary request. After re-
ceiving the response from the web server, the web client parses
a set of URLs that point to the embedded objects in the page,
named secondary objects. As a consequence, the web client
generates a cascade of separated requests to download each of
the secondary objects. Although we can describe such a simple
process based on human perception, the primary requests
cannot be determined straightforwardly at the network-side, in
which only the HTTP request sequence (r1, r2, r3, ...) along
with their own accessing time (t1, t2, t3, ...) is observed. To
the best of our knowledge, few methods have been proposed
in the literature to identify the primary requests, and are inad-
equate for today’s complicated web traffic. Therefore, primary
requests identification is an open issue and even becomes
more difficult nowadays. Towards this end, we propose a
novel primary requests identification algorithm based on the
request dependency graph built from HTTP request logs. In
this context, the primary requests identification problem is
formulated as follows:
Primary Requests Identification: Given a request depen-
dency graph G = {O,S,E,W}, which is established from
a web traffic log L = {< ti, ui, oi >}, the primary re-
quests identification problem is to identify the set of objects
Oprimary ⊆ O such that each object in Oprimary is accessed
by a request corresponding to opening a web page.

B. Primary Requets Identification Algorithm based on the
Request Dependency Graph

In the dependency graph, a node oi represents the accessed
object and the occurrence count S[oi] is the number of times
this object has been accessed by devices. A directed edge from
oi to oj represents that oj is accessed right after oi has been
accessed. Obviously, we cannot conclude whether a request is
a primary request only by the existence of an edge from other
nodes to it. For example, in Fig. ??, o4 cannot be identified
as a secondary request by the existence of an edge from o1
to o4, which is caused by the parallel browsing behavior of
User 3. We have to use other information, the weights of each
edge to a node from other nodes. The sum of these weights

represents how many times an object was accessed following
other objects. Therefore, whether a request is a primary can be
inferred by the probability p of a request oi being the primary
request, which is expressed as follows:

p = 1−
dinoi
S[oi]

= 1−

∑
oj∈O

W [oj][oi]

S[oi]
(5)

The basic idea of inferring whether a request is a primary
request is by thresholding, i.e., comparing p with a threshold
ρ. If p is larger than ρ, implying that the request following
other requests seldom occurs, the request can be identified
as a primary request. Otherwise, it tends to be the request
of an embedded object. Obviously, the number of requests
identified as the primary requests depends on the value of ρ.
A larger ρ results in fewer requests to be identified as the
primary requests, but they are more likely to be true, i.e.,
the primary requests. To get a reasonable trade-off between
the quantity and quality of identification results, we develop
a self learning process to determine the value of ρ, which is
summarized in Algorithm II. An initial threshold ρ0 is set as
a number close to 1, for example, 0.9. Nodes identified as
the primary requests by this large threshold are most likely
true. We put these primary nodes into a set Oprimary. If a
node has a directed edge from a node in Oprimary to it, this
node is placed into another set Osecondary. After this, we can
calculate the expected ratio ϕ0 of the primary requests in all
requests, i.e., the number of actual primary requests over the
total number of requests. Then, an iterative process is executed
by varying threshold ρ from 1 to 0 with a step size of 0.01.
For each ρ, we can obtain an identification result Oprimary

and the corresponding ϕ. Obviously, we have 0 6 ϕ 6 1
for 1 > ρ > 0. The iterative process is accomplished when
ϕ > ϕ0. Then, we identify the current Oprimary as the set of
primary requests C.

C. Experimental Evaluation of Identification Results

To evaluate the effectiveness of the proposed method, we
collect a ground truth dataset for an experiment similar to
[?][?]. We manually visit the top 5 popular websites of
seven categories according to Alexa ranking [?]. For each

2327-4662 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/JIOT.2015.2452964, IEEE Internet of Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, XX 2015 8

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Component Size (log10)

N
u
m

b
e
r

(l
o
g
1
0
)

1s

3s

9s

red: y=−2.717x+4.700
green: y=−2.647x+4.500
blue: y=−2.624x+4.330

Fig. 7. Distributions of component sizes

of these websites, we randomly visit at least 50 links in
them for up to 30 times by the Google Chrome browser. All
HTTP requests generated by the browser are captured by the
Wireshark tool as the ground truth dataset. The accessed URLs
are exported from the history records of Chrome and used
to mark the URLs in the dataset. By this way, we obtain an
experimental ground truth dataset with 1,913 primary requests
and 153,000 secondary requests. We use the F1 score [?],
which combines precision and recall factors with an equal
weight, to measure the accuracy of identification results. The
F1 score can be calculated using Equation ??, in which the
precision, P = TP/(TP + FP), is the number of correctly
identified primary requests divided by the number of all
identified primary requests. The recall, R = TP/(TP +FN),
is the number of correctly identified primary requests divided
by the number of requests that should be identified as primary
requests. The F1 score reaches its best value at 1 and worst
value at 0. We implement the primary identification algorithm
as a program by leveraging the Hadoop MapReduce parallel
computing model [?] to handle the massive web traffic data.
Table ?? shows the evaluation results. We can see that the F1
scores of all seven categories are around 0.9; this proves that
the proposed method is promising.

F1 =
2·P ·R
P +R

(6)

In order to illustrate the better performance of the proposed
method, we compare the identification accuracy of our method
with the data cleaning method, which is widely used by
existing commercial web traffic preprocessing systems. We
execute our proposed method and the data cleaning method
on the dataset captured from the real-world network, which is
described in Section ??. The identified user clicks produced by
the two methods are compared with the real benchmark data
derived by the human perception to verify the correctness of
the results. For each method, we evaluate the identified clicks
of 100 random users on three well-known news portal websites
having rich embedded objects in pages, namely, sina.com.cn,

Algorithm II: Identify User Clicks

Input:
G = {O,S,E,W} → The dependency graph

Output:
C = {c1, c2, c3, ...} → The set of primary requests

1: sprimary = 0

2: ssecondary = 0

3: for each oi in O do
4: din = 0

5: for each oj in O do
6: din += W [oj][oi]

7: end for
8: p = 1 − din / S[oi]

9: if p > ρo then
10: push(Oprimary ,oi)

11: sprimary += S[oi]

12: else
13: push(Osecondary ,oi)

14: ssecondary += S[oi]

15: end if
16: end for
17: ϕ0 = sprimary / (sprimary+ssecondary)

18: for ρ=1 to 0 step 0.01 do
19: sprimary = 0

20: ssecondary = 0

21: for each oi in O do
22: din = 0

23: for each oj in O do
24: din += W [oj][oi]

25: end for
26: p = 1 − din / S[oi]

27: if p > ρ then
28: push(Oprimary ,oi)

29: sprimary += S[oi]

30: else
31: push(Osecondary ,oi)

32: ssecondary++

33: end if
34: end for
35: if (ϕ=sprimary /(sprimary+ssecondary)) > ϕ0 then
36: break;

37: end if
38: end for
39: C = Oprimary

sohu.com, and ifeng.com. Identified primary requests in six
sample time slots, 9-10, 11-12, 13-14, 15-16, 17-18, and 19-
20, are verified. F1 scores of the experimental results are
shown in Table ??, in which DC represents the Data Cleaning
method and DG represents our Dependency Graph model
based method. For the above three websites, the average F1
scores of our method are 0.919, 0.899 and 0.818, respectively,
(rather close to the best value of their respective F1 scores),
while those of the data cleaning method are only 0.322, 0.282
and 0.343, respectively. The results clearly demonstrate that
our method is more accurate than the data cleaning method.

2327-4662 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/JIOT.2015.2452964, IEEE Internet of Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, XX 2015 9

TABLE IV
PERFORMANCE ON GROUND TRUTH DATASETS

Category Kids Society Sports Shopping Business Science Arts

TP 218 198 241 281 170 218 236

FP 33 15 23 11 19 18 13

FN 37 49 31 119 9 27 80

P 0.868 0.929 0.912 0.962 0.899 0.923 0.947

R 0.854 0.801 0.886 0.702 0.949 0.889 0.746

F1 0.861 0.860 0.899 0.812 0.923 0.906 0.835

In Algorithm I, the lookahead time window τ is used to
determine whether a request is an initial primary request for
establishing the request dependency graph. In our method,
whether a request is a primary request is inferred by comparing
the statistical probability value p of being the primary request
with a threshold ρ. To evaluate the impact of the value of τ
on the accuracy of identification results, we conduct a set of
experiments to study the F1 score versus various values of τ .
The evaluation result is shown in Table ??. We can see the F1
scores of the above three websites remain relatively stable with
various values of τ . This demonstrates that the accuracy of our
method is not sensitive to the parameter τ . In the experiment,
we choose τ = 3s.

In order to demonstrate the self learning process of selecting
the optimal threshold ρ in Algorithm II, we plot the values of ϕ
versus the threshold ρ as shown in Fig. ??. In the experiment,
we set the initial threshold ρ0 as 0.9. The expected ratio ϕ0

of primary requests in all the requests corresponding to ρ0
is 0.0337 (the red dotted line in Fig. ??). The ratio ϕ gets
larger with decreasing value of ρ, and reaches 0.0360 when
ρ is 0.72, which is the optimal threshold for our experiment.
In Table ??, values of the F1 score indicate that ρ = 0.72
leads to a reasonable trade-off between precision and recall in
results. The results demonstrate that the proposed identification
method can achieve high precision and do not depend on
manually choosing the right parameter values of the algorithm.

V. RELATED WORKS

Web traffic logs are widely considered as a valuable re-
source to understand web clients’ behaviors and interests. The
main challenges in analyzing web traffic logs lie in two as-
pects: extracting the relationships among HTTP requests from
the raw logs, and identifying the set of HTTP requests that can
represent web clients’ behavior. To our best knowledge, no one

TABLE V
F1 SCORES OF IDENTIFICATION RESULTS

Website Method 9-10 11-12 13-14 15-16 17-18 19-20 Avg

sina
DC 0.325 0.364 0.310 0.369 0.315 0.250 0.322

DG 0.936 0.906 0.966 0.917 0.854 0.932 0.919

sohu
DC 0.283 0.267 0.331 0.328 0.187 0.292 0.282

DG 0.958 0.894 0.949 0.789 0.901 0.901 0.899

ifeng
DC 0.343 0.369 0.382 0.288 0.345 0.331 0.343

DG 0.850 0.732 0.876 0.790 0.772 0.889 0.818

TABLE VI
F1 SCORES OF VARIOUS LOOKAHEAD TIME WINDOW

Website τ = 1s τ = 2s τ = 3s τ = 4s τ = 5s

sina 0.898 0.931 0.936 0.928 0.920

sohu 0.958 0.950 0.958 0.924 0.924

ifeng 0.846 0.844 0.850 0.781 0.757

has addressed the specific problem tackled in this paper, but
our work is related to previous works in the areas of the above
two aspects, specifically, the graph model of web traffic and
the primary requests identification. We describe these related
works as below.
Graph model of web traffic. As the primary way to un-
derstand the navigation behaviors and preferences of the web
users, web usage mining has attracted ample attention in recent
years. The most important task in web usage mining is to build
an effective data model to represent the relationships among
the accessed web objects. One main research focus attempts to
infer the hidden relationships among web objects by projecting
the raw lists of HTTP requests over different types of graphs,
a natural way to represent relations among observed objects.
For example, we modeled the affinity relationships among
websites as a graph to identify website communities [?]. After
abstracting the web traffic logs as a graph, a set of graph theory
based mathematical tools can be applied to study the graphs
for different purposes, such as web content prefetching and
frequent usage pattern mining.

Predictive web prefetching is an effective technique to
reduce the latency of retrieving web contents by prefetch-
ing web objects before the user requests them. Besides the
prefetching algorithm, the key point of web prefetching is
building a data model to represent the historical patterns of
accesses to the web objects. Considering that structures of
websites and navigation behaviors of users are commonly
determined by the hyperlinks in web pages, a graph model is
a natural way to view relations among accessed web objects.
The dependency graph (DG) model was firstly proposed to
depict the access pattern of web objects for web prefetching
by Padmanabhan and Mogul [?], which was inspired by a prior
work of predicting file accesses [?]. A node in the dependency
graph is an web object that has ever been accessed. There
is a directed edge from a node A to another node B if
and only if B was accessed within w accesses after A. The
weight of the edge from A to B is the ratio of the number
of accesses to B within w accesses after A to the number
of accesses to A itself. Based on the graph, the prefetching
controller can prefetch the web object B if A is accessed and
the weight of the edge from A to B is higher than a pre-defined
threshold, which can be dynamically set to different values
in various environments. However, the noticeable increase of
the number of embedded objects per page in the modern
web environment has reduced the effectiveness of the simple
DG based algorithm. To overcome this problem, Domenech
et al. [?] proposed an enhanced graph model named Double
Dependency Graph (DDG), which differentiated two classes
of dependences between objects of the same page and objects

2327-4662 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/JIOT.2015.2452964, IEEE Internet of Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, XX 2015 10

0
.0

2
0
.0

4
0

.0
6

0
.0

8

ρ

ϕ

0.8 0.76 0.7 0.6 0.5

0.0337

0.0360

Fig. 8. ϕ values of various ρ

of different pages. The DDG based algorithm can improve
prefetching performance by reducing useless predictions of
embedded objects. Because the goal of both DG and DDG
is to illustrate the access patterns of web objects, they only
considered the steps between accesses, and ignored the time
lapse between accesses, which is an important factor to infer
the relationships among HTTP requests. Referrer Graph (RG)
was another graph model proposed to depict access patterns of
web objects [?][?]. It was built from access logs by using the
object URI and referee field in each HTTP request. Although
RG is a more efficient solution as compared to DG and
DDG by reducing the number of edges in the graph to save
computational and memory resources, it relies on the referrer
field of the HTTP request, which is not available in the
data captured at the network-side owing to the dramatically
increased complexity and workload on the packets inspection
devices.
Primary requests identification. Web traffic has been proved
to be an invaluable asset for Internet Service Providers (ISPs)
to enhance user experience and increase revenue by web usage
mining [?]. Compared to business owners of websites, ISPs
have a unique advantage that they can observe all traffic passed
through their network elements. It enables them to expose web
clients’ behavior and interests by analyzing web traffic. The
web traffic logs consist of two types requests, the primary
requests that are the initial requests to open web pages, and
the secondary requests that are requests automatically gener-
ated by web clients to retrieve embedded objects. Obviously,
the primary requests are more important than the secondary
requests to understand which contents are interested to users.
However, as compared to the large fraction of the secondary
requests, the primary requests are a small subset of web traffic
logs [?]. Therefore, primary requests identification is a critical
technical issue to be addressed before performing web usage
mining.

In recent years, several methods have been proposed to
identify the primary requests, and they can be categorized
into four types. The first type is the time-based approach [?].
It assumes that each secondary request always appears after

a primary request in a short time. As such, a request after
a given inactive time period can be considered as a primary
request. Although the time-based approach is a straightforward
method, the estimation of the time threshold is not an easy task
because of complex network conditions. The second type is
the data cleaning based approach, which filters requests by
the type of accessing files and removes requests for unwanted
file types such as images and multimedia files, which are
considered as the secondary requests [?][?]. Although it is
simple to implement this kind of methods, they can hardly
achieve accurate identification and suffer greatly from the
increasing complexity of file types. The third type is to identify
the primary requests by means of clustering techniques [?][?].
These methods represent requests as vectors by their attributes
or accessing time, and apply clustering techniques to identify
the primary requests. Owing to the limitation of the sensitive
parameter (the number of clusters k) and the complex iterative
computational model, the clustering based methods are not
applicable in the situation with massive request records. The
fourth type is the model-based approach [?][?][?], which
abstracts web browsing behavior as a mathematical model,
such as dynamic Bayesian networks and hidden semi-Markov
models, and uses a set of training data to obtain the key param-
eters of the model. Then, the trained model is used to identify
the primary requests. These methods usually make some
assumptions to establish the models; for example, a primary
request is only determined by the previous primary request.
However, the prevalent parallel browsing behavior by using
the multi-tab browsers breaks these assumptions and renders
these methods ineffective. To improve the performance, some
researchers proposed to combine a set of filters like Referer-
based, time-based and content-type-based filters to perform
the primary requests identification task [?][?]. Although the
precision of identification can be improved for some cases, the
proposed combination approach cannot overcome the defects
of the underlying filters.

VI. CONCLUSION

In this paper, we have proposed a request dependency graph
to model the complicated web browsing behavior in the WoT
environment. We have developed a methodology to establish
the request dependency graph by processing the sequence of
HTTP requests. We have presented an extensive analysis of
a large graph derived from the traffic log containing millions
of requests. Several interesting characteristics of the request
dependency graph have emerged from the analysis. In partic-
ular, the graph appears to be weakly connected, decentralized,
heterogeneous, and a number of its measures are governed by
power laws. Then, we have shown a key application, primary
requests identification, in the web usage mining that can be
effectively tackled by the request dependency graph. We have
developed a primary requests identification algorithm from
massive HTTP requests by a self learning process based on the
graph model. We have conducted an experiment to evaluate
the proposed method based on the dataset collected from a
real world cellular IoT network. Experimental results have
substantiated that our method achieves higher accuracy as

2327-4662 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/JIOT.2015.2452964, IEEE Internet of Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, XX 2015 11

compared with the widely used data cleaning method. Brows-
ing behavior modeling and primary requests identification are
fundamentally critical for subsequent web usage mining. We
expect our work will enhance the quality of web usage mining,
and benefit the analysis of user behaviors and interests to
improve network and web server performance. In addition,
several works will need further research: (i) finding a way
to decompose and visualize the large and complex request
dependency graph built from massive traffic logs; (ii) studying
the distribution of embedded objects in web pages of modern
WoT environment based on the identification results; (iii)
exploring more applications based on the request dependency
graph.

REFERENCES

[1] K. Ashton, “That ‘internet of things’ thing,” RFiD Journal, vol. 22, no.
7, pp. 97-114, 2009.

[2] D. Guinard, “A Web of things application architecture,” Dissertation,
Eidgenossische Technische Hochschule ETH Zurich, Nr. 19891, 2011.

[3] F. Schneider, B. Ager, G. Maier, A. Feldmann, and S. Uhlig, “Pitfalls
in HTTP traffic measurements and analysis,” In Passive and Active
Measurement, Springer Berlin Heidelberg, pp. 242-251, Jan. 2012.

[4] M. R. Meiss, F. Menczer, and A. Vespignani, “Structural analysis of be-
havioral networks from the Internet,” Journal of Physics A: Mathematical
and Theoretical, vol. 41, no. 22, 2008.

[5] P. Gill, M. Arlitt, N. Carlsson, A. Mahanti, and C. Williamson, “Char-
acterizing organizational use of web-based services: Methodology, chal-
lenges, observations, and insights,” ACM Transactions on the Web, vol.
5, no. 4, pp. 19, 2011.

[6] S. Lhm, V. S. Pai, “Towards understanding modern web traffic,” In
Proceedings of the 2011 ACM SIGCOMM conference on Internet mea-
surement conference, pp. 295-312, 2011.

[7] J. Liu, C. Fang, and N. Ansari, “Identifying user clicks based on
dependency graph,” 23rd IEEE Wireless and Optical Communication
Conference pp. 1-5, May 2014.

[8] J. Domenech, J. A. Gil, J. Sahuquillo, and A. Pont, “DDG: An efficient
prefetching algorithm for current web generation,” 1st IEEE Workshop
on Hot Topics in Web Systems and Technologies, pp. 1-12, Nov. 2006.

[9] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins, “Extracting
large-scale knowledge bases from the web, ” International conference on
Very Large Data Bases, vol. 99, pp. 639-650, Sep. 1999.

[10] L. A. Adamic, B. A. Huberman, “The nature of markets in the World
Wide Web,” Quarterly Journal of Electronic Commerce, vol. 1, no. 1, pp.
5-12, 2000.

[11] U. Lee U, Z. Liu, and J. Cho, “Automatic identification of user goals
in web search,” In Proceedings of the 14th international conference on
World Wide Web. ACM, pp. 391-400, 2005.

[12] Y. Zhang, W. Chen, D. Wang, and Q. Yang, “User-click modeling for
understanding and predicting search-behavior,” In Proceedings of the 17th
ACM international conference on Knowledge discovery and data mining,
pp. 1388-1396, 2011.

[13] O. Nasraoui, M. Soliman, E. Saka, A. Badia, and R. Germain, “A web
usage mining framework for mining evolving user profiles in dynamic
web sites,” Knowledge and Data Engineering, IEEE Transactions on,
20(2), pp. 202-215, 2008.

[14] T. Pamutha, S. Chimphlee, C. Kimpan, and P. Sanguansat, “Data Pre-
processing on Web Server Log Files for Mining Users Access Patterns,”
International Journal of Research and Reviews in Wireless Communica-
tions, vol. 2, 2012.

[15] G. Oikonomou, J. Mirkovic, “Modeling human behavior for defense
against flash-crowd attacks,” IEEE International Conference on Commu-
nications, pp. 1-6, 2009.

[16] Y. Xie, S. Z. Yu, “A large-scale hidden semi-Markov model for anomaly
detection on user browsing behaviors,” IEEE/ACM Transactions on
Networking, vol. 17, no. 1, pp. 54-65, 2009.

[17] J. Huang, R. W. White, “Parallel browsing behavior on the web,” In
Proceedings of the 21st ACM conference on Hypertext and hypermedia.
ACM, pp. 13-18, 2010.

[18] Z. B. Houidi, G. Scavo, S. Ghamri-Doudane, A. Finamore, S. Traverso,
and M. Mellia, “Gold Mining in a River of Internet Content Traffic,” In
Traffic Monitoring and Analysis, Springer Berlin Heidelberg, pp. 91-103,
2014.

[19] Alexa - Actionable Analytics for the Web, http://www.alexa.com/ .
[20] C. J. Rijsbergen, Information retrieval, 1979.
[21] Apache Hadoop, https://hadoop.apache.org/.
[22] J. Liu, N. Ansari, “Identifying website communities in mobile internet

based on affinity measurement,” Computer Communications, 41, pp. 22-
30, 2014.

[23] V. N. Padmanabhan, and J. C. Mogul, “Using predictive prefetching to
improve world wide web latency,” ACM SIGCOMM Computer Commu-
nication Review, 26(3), pp. 22-36, 1996.

[24] J. Griffioen, and R. Appleton, “Reducing File System Latency using a
Predictive Approach,” USENIX Summer, pp. 197-207, June 1994.

[25] B. de la Ossa, A. Pont, J. Sahuquillo, and J. A. Gil, “Referrer graph:
A low-cost web prediction algorithm,” In Proceedings of the 2010 ACM
Symposium on Applied Computing, pp. 831-838, March 2010.

[26] P. Venketesh, and R. Venkatesan, “Graph based Prediction Model to Im-
prove Web Prefetching,” International Journal of Computer Applications,
36, 2011.

[27] J. Liu, F. Liu, N. Ansari, “Monitoring and analyzing big traffic data of
a large-scale cellular network with Hadoop,” IEEE Network, vol. 28, no.
4, pp. 32-39, July 2014.

[28] P. Barford, and M. Crovella, “Generating representative web workloads
for network and server performance evaluation,” In ACM SIGMETRICS
Performance Evaluation Review, vol. 26, no. 1, pp. 151-160, June 1998.

[29] D. Tanasa D, B. Trousse, “Advanced data preprocessing for intersites
web usage mining,” IEEE Intelligent Systems, vol. 19, no. 2, pp. 59-65,
2004.

[30] K. R. Suneetha, R. Krishnamoorthi, “Identifying user behavior by
analyzing web server access log file,” International Journal of Computer
Science and Network Security, vol. 9, no. 4, pp. 327-332, 2009.

[31] A. Bianco, G. Mardente, Mellia M, M. Munafo, and L. Mus-
cariello, “Web user-session inference by means of clustering techniques,”
IEEE/ACM Transactions on Networking (TON), vol. 17, no. 2, pp. 405-
416, 2009.

[32] Y. Fu, K. Sandhu, and M. Y. Shih, “A generalization-based approach
to clustering of web usage sessions,” Web Usage Analysis and User
Profiling, Springer Berlin Heidelberg, pp. 21-38, 2000.

[33] O. Chapelle, Y. Zhang, “A dynamic bayesian network click model for
web search ranking,” In Proceedings of the 18th international conference
on World wide web, pp. 1-10, 2009.

[34] C. Xu, C. Du, G. F. Zhao, and S. Yu, “A novel model for user clicks
identification based on hidden semi-Markov,” Journal of Network and
Computer Applications, 2012.

Jun Liu is the leader of the Research Center for Data Science in the
School of Information and Communication Engineering, Beijing University
of Posts and Telecommunications (BUPT). He received his B.E and Ph.D
degrees from Department of Information Engineering, BUPT in 1998 and
2003, respectively. His research interests include network traffic monitoring
and Telecom big data analysis.

Cheng Fang received the bachelor’s degree in communication engineering
from Jilin University, China, in 2003. He received the master’s degree in
software engineering from Tianjin University, China, in 2011. He is currently
working toward the PhD degree in School of Information and Communication
Engineering, Beijing University of Posts and Telecommunications, China.
His current research interests include mobile Internet, traffic monitoring and
analysis, cloud computing, and data mining.

Nirwan Ansari is Distinguished Professor of Electrical and Computer Engi-
neering at the New Jersey Institute of Technology. He has (co)-authored over
450 publications, over one third in widely cited refereed journals/magazines.
He has been granted more than 20 U.S. patents. Some of his recognitions
include a couple of best paper awards, several Excellence in Teaching Awards,
Thomas Alva Edison Patent Award (2010), NJ Inventors Hall of Fame Inventor
of the Year Award (2012), the NCE Excellence in Research Award (2014).

