
2327-4662 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2016.2564428, IEEE Internet of
Things Journal

Data-Driven Event Triggering for IoT Applications
Panayiotis Kolios, Christos Panayiotou, Georgios Ellinas, and Marios Polycarpou

Abstract—Event-triggering (ET) is an up-and-coming techno-
logical paradigm for monitoring, optimization, and control in
the Internet of Things (IoT) that achieves improved levels of
operational efficiency. This paper first defines the envisioned
event-triggering architecture for the IoT domain. It then classifies
and reviews the various different event-triggering approaches
obtained from the available literature for the three phases of ET,
namely behavior modeling, event detection, and event handling.
Thereafter, a novel data-driven technique is developed to address
all three phases of ET in an efficient and reliable manner. Finally,
the applicability of the proposed data-driven technique is show-
cased in a real-world public transport scenario, demonstrating
a substantial improvement in energy and spectrum efficiency
compared to existing periodic techniques.

Index Terms—Internet of Things, Event-triggering, Opera-
tional models, Monitoring and control

I. INTRODUCTION

The Internet of Things (IoT) has recently received signifi-
cant attention by researchers and industrial companies alike.
This is clearly due to its potential to offer new monitoring
capabilities on processes/systems, to optimize operations, es-
pecially for cost savings, and to improve operational resilience,
[1], [2].

To facilitate the interaction between the physical and the
cyber space, IoT devices need to support a variety of sensors
and actuators in addition to customary processing, storage,
and communication circuitry [3], [4]. Already, the plethora
of consumer electronics such as smartphones, tablets, and
wearables (currently available in the market) boast several
different sensors (including accelerometer, gyro, proximity,
compass, barometer, microphone, and camera) and actuators
(including display, vibrator, and speaker). Interestingly, recent
efforts to modularize smartphone hardware (primarily to meet
the diverse consumer needs) has demonstrated the potential of
smartphone platforms to support IoT applications [5]. How-
ever, contrary to the design priorities for consumer electronics,
IoT devices aim to support applications and services that have
ubiquitous presence in the world [6], [7]. And to do that, a
very large number of IoT devices needs to be deployed and
operated with minimal human intervention [8].

The latter design priority raises significant challenges with
respect to the devices’ operational efficiency (as exemplified
in [9]). Firstly, most IoT devices are expected to operate
on batteries or with limited power supply for extended time

P. Kolios, C. Panayiotou, G. Ellinas, and M. Polycarpou are with
the KIOS Research Center for Intelligent Systems and Networks
and the Department of Electrical and Computer Engineering,
University of Cyprus, e-mail:{pkolios, christosp, gellinas,
mpolycar}@ucy.ac.cy.
“Copyright (c) 2012 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org”.

periods. Thus, energy efficiency becomes a crucial design
consideration. Secondly, the necessity for a wide range of
capabilities may translate to higher computational complexity
which in turn can influence battery lifetime. Hence, intelligent
algorithmic solutions are needed to improve computational
efficiency and maintain performance. Thirdly, the inherent
inter-networking between these devices will dramatically in-
crease contention over the available communication channels,
as shown in [10]. Therefore, curbing data exchange will
improve channel utilization and further help minimize the
energy expenditure.

Event-triggering (ET) is a promising paradigm that has
the potential to adequately address the aforementioned chal-
lenges [11]. With ET, computation/communication actions take
place only when a particular event or a certain series of
events have taken place. Events represent unexpected changes,
abnormalities, or faults of the process/system that alter the
system expected state. In contrast to continued and periodic
triggering, ET ensures that normal operation is interrupted only
after the relevant events have taken place [12]. In doing so,
the available resources (including battery capacity, processing
cycles, and communication channels) are thriftily used while
communicated information reduces from raw data to simple
event descriptions [13], [14].

In this work, a novel data-driven technique is developed to
address all phases of ET, based solely on intelligence gained
from quantifiable measurements. This data-driven paradigm is
a natural fit for the IoT, in which data is produced with ease,
it can be effectively processed and readily communicated as
shown in [15]. Most importantly, data-driven approaches can
offer the level of automation necessary to deploy IoT solutions
in large numbers and to sustain their operational efficiency.
Overall, the paper provides the following key contributions:

1) Provides an extensive literature review of existing event-
triggering technologies.

2) Designs, develops and implements a purely data-driven
(based on statistical measures) event-triggering technique
for behavior modeling, event detection and event han-
dling.

3) Demonstrates the applicability of the proposed technique
utilizing simulations and via experimentation in opera-
tional environments.

4) Demonstrates the significant gains of the proposed tech-
nique compared to traditional periodic solutions that are
currently being employed in state-of-the-art tools.

Related work is provided in Section II and the envisioned
ET architecture is detailed in Section III in which, the three
phases of event triggering, namely behavior modeling, event
detection, and event handling are described. The proposed
data-driven ET technique is then developed in Section IV

2327-4662 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2016.2564428, IEEE Internet of
Things Journal

2

within the scope of a public transport scenario. Thereafter,
experimental results are provided in Section V to analyze
the performance of the proposed data-driven ET technique
under real-world settings. The whole process demonstrates
the multiple efficiency gains of the proposed technique and
the ease by which the proposed technique can automatically
adapt to dynamic changes in an online fashion and provide
scalability to IoT solutions. Finally, Section VI concludes this
work.

II. RELATED WORK

To date, the Internet has been deployed and operated based
on the assumption of perpetual availability of networked
machines. Traditionally, these machines consisted mainly of
computing units with ample power availability and as a result,
continuous monitoring and control could easily be realized.
However, the aforementioned assumption is becoming increas-
ingly invalidated by IoT applications [16].

It is envisioned that, within the realm of the IoT, embedded
devices will make use of the Internet to conduct machine-
to-machine operations in either semi- or fully-autonomous
fashion [17], [18]. Thus, operational efficiency is crucial
for a sustainable deployment in large scales. Evidently, the
tight form-factor necessitated by most of these devices puts
stringent constraints on the hardware design. This necessity,
in turn, has severely limited the onboard energy resources,
since battery technology has failed to catch up to the demand
as compared to transistor technology for computing, storage,
and communication (that follows Moore’s Law). Consumer
electronics (including smartphones, phablets, and tablets) al-
ready experience this technology mismatch. The percentage
contribution of battery packs to the total weight and volume
of smart devices is disproportionately set very high in order
to support adequately-long recharging cycles. Fortunately, the
great improvement in computation and communication capa-
bilities of these devices enables a plethora of new ways to
increase operational efficiency. This is the primary reason that
such devices have consistently being employed for various IoT
applications in sectors such as the automotive, health-care, and
security as noted in [19], [20] and [21].

Applications (that employ smart devices to implement IoT
solutions) have demonstrated that time-based periodic trigger-
ing is primarily used for both monitoring and control [22]. The
appealing proposition of this strategy is that there is a definite,
predetermined interaction of the local and remote host. Hence,
absence of communication results in an indisputable indication
of a fault in the system. The advantage of periodic triggering is
that devices are able to duty-cycle between the active and sleep
states in order for them to improve their resource utilization.
Nevertheless, periodic triggering can result in an unnecessarily
high number of computation and communication actions (that
convey no new information or do not indicate a change in
state) simply due to the inherent periodicity of the paradigm
[23]. At the same time, network scalability issues can arise
due to this periodicity.

As exemplified above, ET compensates for these shortfalls
by carrying out computation and communication actions only

when certain events have taken place and which can potentially
change the state of the system at hand [24], [25], [26]. In
this way, the resource utilization efficiency is improved, (i.e.,
when no events are triggered, processing can scale down and
communication circuitry can be put to sleep).

In its different forms, the ET technology is already heavily
used in practice. It has been used to drive interrupts on
computer machinery and provide traceability through event
data logs. It has also been extensively referenced within
the control community for more than three decades as the
alternative more pragmatic solution to control applications. As
of late, the communications community is also looking into
the potentials of ET for improved efficiency through device
duty cycling.

Still, most existing ET implementations within the IoT
domain consider spontaneous events and thus fail to take
advantage of the recurrent patterns and the system dynamics.
Processing and analyzing streams of events can reveal recur-
rent patterns which can in turn be used to extract accurate
behavior models and eventually more meaningful information.
In doing so, all anticipated events are incorporated into a be-
havior model and relevant actions take place only when some
unanticipated events have occurred. This greatly improves
resource efficiency which is becoming increasingly important
for sustainable IoT operation.

Interestingly, the proposed approach capitalizes on a number
of technologies that have received considerable attention as of
lately. For one, enormous effort is placed on stream processing
and data analytics within the big data domain (an overview of
the topic can be found in [27]). Data-driven solutions proposed
within this realm can be used to build system behavior models
that are necessary for event triggering. At the same time, a
plethora of model-based event-triggering strategies have been
developed for system monitoring and control (a review of such
triggering strategies can be found in [28] [29]). In addition to
reviewing the most prominent solutions that could enable ET,
the work described in this paper introduces a novel data-driven
ET paradigm and demonstrates its multiple gains in terms
of efficiency and scalability compared to existing periodic
techniques.

III. EVENT-TRIGGERING ARCHITECTURE

The basic system architecture under consideration assumes
a local and a remote host. The local host is an embedded IoT
device that is used for monitoring, control, and optimization of
physical systems and the remote host can be any other entity
(such as another device, server, or cloud infrastructure) that
would also like to manage the system. Within the envisioned
ET architecture, both the local and remote hosts obtain a model
that approximates the system behavior. The local host uses this
model to detect and trigger unanticipated event interrupts. The
local host can take corrective actions in response to this event
and communicate with the remote host in order to inform it of
the updated system behavior which will allow the remote host
to respond accordingly as well. A schematic of the proposed
system architecture and the possible flow of information is
presented in Figure 1 to aid understanding.

2327-4662 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2016.2564428, IEEE Internet of
Things Journal

3

Local

Remote

System Operations

Reconfiguration
Higher-level
Diagnostics

Behaviour Model

Event Detection

Event Handling

Local
Diagnostics

Fig. 1. Collaborative event triggering architecture.

With respect to the application scenarios, the primary focus
is on systems that exhibit recurrent patterns for which a
behavior model suffices. Under this regime, events are defined
as follows:

Definition 1. Events are all those unanticipated changes that
are detected to be outside the normal system behavior model. A
behavior model captures all those patterns that suffice during
normal operating conditions.

Overall, the three main diagnostic phases that emerge from
the aforementioned ET architecture are the following:
Phase 1 : Behavior Modeling
Phase 2 : Event Detection
Phase 3 : Event Handling

Obviously, for events to be detected and acted upon, there
should exist a model of the system to be monitored and
controlled. This model is used as a reference for the normal
behavior of the system. In practice the actual system behavior
will be compared against this model to detect abnormal events.
Therefore, a prerequisite to build such a model is for the
system to exhibit patterns that can adequately characterize its
evolution. Clearly, changes that may occur over long time
horizons can be incorporated into the model by iterative
updates and adaptations. On the contrary, when the system
characteristics are completely unpredictable, then discrete in-
dicators (e.g., on/off states) can be used for event triggering
[29]. Further details on behavior modeling are provided in
Section III-A.

Assuming the presence of a behavior model, unanticipated
events can be effectively detected. An extensive literature,
especially on control theory, has detailed numerous techniques
for detecting events varying from simple threshold-checking
solutions, to statistical changes of the system behavior, state
estimation, and principal component analysis as elaborated in
[28]. Section III-B provides a review of these techniques and
then discusses data-driven solutions that are highly relevant to
IoT applications.

Depending on the hierarchy to be used, these events are
handled either locally, by a remote host, or collaboratively
between the hosts as discussed in [30]. Originally, the unavail-
ability of communication capabilities allowed only handling
of events at a local level, while the intelligence built into

Modeling
Methodologies

Empirical/
Stochastic Model

Exact Model

Deterministic
Model

Dynamic
Learning

Approximate
Model

Fig. 2. Behavior modeling taxonomy

monitoring and control algorithms was limited to the available
processing and storage units. With the introduction of com-
munication circuitry, networked solutions began to emerge.
Centralized supervisory levels were setup and studied due to
their relative simplicity [29]. Of course, distributed solutions
were, and still are, among the most popular approaches due to
their ability to significantly reduce system complexity [31]-
[36]. More recently, the collaborative approach has gained
considerable attention due to its ability to strike a balance
between computation and communication and thus improve
flexibility while reducing complexity [37], [38]. The latter ap-
proach also adheres to the state-of-the-art computing solutions
in which local hosts perform as many computing actions as
needed to maintain adequate quality of service (QoS) while
intensive tasks are dealt with by remote hosts (usually in a
distributed and parallel fashion) supported by scalable cloud
services [39], [40]. Event handling is examined in detail in
Section III-C.

Each of the three phases of ET are described in detail below.

A. Phase 1: Behavior Modeling

Differential changes in the system state can form the sim-
plest event triggers. For instance, discrete events (e.g., on/off
switching) are commonly used in practice to indicate changes
[29], [41]. However, there could be cases where such changes
might be part of routine tasks that repeat over time or occur in
tandem with other recurrent tasks. In effect, routine changes
become highly predictable and offer no valuable information.
Nevertheless, the patterns that arise can be used to build
models of the system’s normal behavior and hence capitalized
upon to detect actual abnormalities.

Depending on the degree of available information with
regards to the target system, several different behavior mod-
eling methodologies exist as shown by the classification in
Figure 2. When the actual physics of the system are available,
its behavior can be characterized exactly by the underlying
mathematical equations. Alternatively, the system might have
an overall behavior that could be closely approximated by
either some deterministic model or even an empirical model
that most frequently incorporates some stochastic component.
In the case when no a priori information is available or when

2327-4662 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2016.2564428, IEEE Internet of
Things Journal

4

Triggering
Techniques

Process AnalysisSignal Processing

Change Checking
Threshold/ Limit

Checking

Sample Based

Multiple SignalsSingle Signal

Stream Based

Statistical
Analysis

Fig. 3. Event detection techniques.

the system can change dynamically, then statistical modeling
and machine learning approaches are employed to learn and
update its behavior model on the fly, [42].

Among the alternatives, dynamic learning is the most favor-
able approach for IoT solutions for a multiplicity of reasons.
Firstly, behavior modeling is greatly simplified since no a
priori information is necessary to build the system model.
Moreover, the data-driven nature of this methodology is well
suited for IoT applications in which sampled data is readily
available. Equally important is also the fact that the model
can be constantly updated by the changing statistics in the
data and thus easily adapted to evolutionary changes. Finally,
the degree of detail built into the model is highly flexible, with
increasing levels of detail easily incorporated into the system
at any time. In Section IV that follows, the latter modeling
methodology is adopted to build a simple mobility model for
a transportation scenario.

B. Phase 2: Event Detection

Event detection encompasses all the steps taken to ensure
that unanticipated changes in the system’s normal operation
are detected. As emphasized above, a prerequisite for the
correct detection of these events is the availability of an
adequately accurate behavior model of the recurrent patterns
that suffice. With the behavior model at hand, one or more
different techniques can be employed to detect behavioral
changes.

Viewed broadly, event detection can be classified into two
main categories as shown in Figure 3. Sample-based tech-
niques consider only individual samples to detect events while
stream-based techniques explore the information provided by
the flow of data samples to trigger an event.

The simplest and most commonly used sample-based tech-
nique is threshold-checking (with either static or adaptive
thresholds) whereby an event is detected when the measured
data sample crosses either a lower or an upper limit [43].
Change-checking is an alternative approach, where changes
in the sample data are detected and evaluated. Examples
of change-checking are techniques that learn trends in the

changing data or changes in statistical measures as discussed
in [44]. Obviously, sample data moments (especially the mean
and variance) are frequently used, together with statistical
tests (e.g., hypothesis testing, run-sum testing, etc.) for change
detection [45]. With statistical measures, small changes can
be detected more effectively without increasing the detection
sensitivity.

The alternative to sample-based detection is stream-based
detection as shown in Fig. 3. Stream-based techniques utilize
information of data flows to build up knowledge of behavior
changes. Signal processing techniques are particularly popular
solutions in this category, in which specific features of the
signal are extracted and evaluated [46]. Signal transforms of
various kinds (including, Fourier, Z-transform, and wavelets)
are extensively used for this type of analysis. Therein, auto-
and cross-correlation operations are also used when the system
model contains stochastic components that need to be consid-
ered.

Process analysis (either for single or multiple signals) looks
into the problem from a higher level by trying to detect
changes in the behavior model that happened due to obfuscated
events [47]. This is mainly achieved by analytical redundancy
whereby measurements are taken based on various excitation
inputs. Several different process-identification techniques have
already been devised to gain information on the model dy-
namics. As before, correlation methods can also be employed
here. In addition, linear and non-linear parameter estimation
techniques are also utilized [48]; with least squares being the
most prominent solutions in the former case, and artificial
neural networks in the latter.

Residuals is yet another stream-based approach that de-
scribe the difference between the actual system behavior and
that of the model [28]. Parity equations can be employed
to derive residuals through transfer functions or state-space
formulations. State observers and state estimation can also be
used as residuals by computing the discrepancies between the
changes in the behavior model and the associated changes
to the triggering events. Subsequently, threshold-checking is
used to trigger events that are associated with residuals that
exceed limiting values. Unfortunately, residuals can change
continuously due to the inherent uncertainty in the model, the
state, and the system noise. Hence, considerable effort should
be placed in dealing with these disturbances when residuals
are computed in this way.

To simplify the entire effort, (multivariate) statistical anal-
ysis has been extensively used. This technique focuses on
data-driven tools to detect unanticipated events [42]. Deriving
probability bounds, for certain random variables, given some
of their moments, is a problem that appears frequently in the
literature [49]. Values that fall outside these bounds can be
used, in turn, to trigger event interrupts. Another important
tool in this category is principal component analysis (PCA)
[42]. PCA attracted considerable attention by the research
community due to its ability to reduce the problem dimen-
sionality and thus greatly reduce the number of processing
requirements. Instead of using a large number of correlated
variables, PCA produces a small number of uncorrelated
variables (i.e., principal components) that preserve most of

2327-4662 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2016.2564428, IEEE Internet of
Things Journal

5

Refinement

Triggered Event

H
is

to
ri

ca
l

D
a

ta
 /

H

e
u

ri
st

ic
s

/
K

n
o

w
le

d
g

e

Event Diagnosis

Event
Refinement

Situation
Refinement

Impact
Assessment

System

Fig. 4. JDL multisensor data fusion model applied to CEP.

the information describing the system. These new variables
are then used to compute the residuals to be used in event-
triggering.

The simplicity of statistical analysis tools is demonstrated in
the section that follows, whereby a data-driven event detection
approach is developed.

C. Phase 3: Event Handling

Having detected an event, intelligence should be built to
extract higher level knowledge, so as to be in a position
to achieve actionable decisions. Over time, this procedure
has shifted from simple event processing (with synchronous
and sequential handling of events) to complex event process-
ing (that supports asynchronous and batch execution) [50].
Complex event processing (CEP) elaborates on all necessary
steps that need to be followed in order to build adequate
knowledge out of a set of events either probabilistically (based,
for example, on the theory of belief) or in a rule-based manner
(based, for example, on detection theory). The Joint Directors
of Laboratories (JDL) multisensor data fusion model is one
of the most popular reference models in detection theory
with broad applicability to various domains [51], [52]. As a
note, legacy models including command and control [53] and
condition-based maintenance [54] have also been proposed
but address only specific aspects of event handling. JDL
decomposes the whole functionality into five steps as shown
in Fig. 4.

The first step deals with the decoding of primitive events
into distinguishable interrupts. A diagnostic procedure is fol-
lowed to determine the root cause of the event through the
collection and processing of as much information as possible
with regards to the event, including the event timestamp, and
its location. Depending on the level of available information,
a diagnostic method is then used to provide event meta-
data. Example diagnostic methods include pattern recognition,
Bayes and polynomial classifiers.

Various data-driven methods have also become popular
diagnostic methods in recent times. Clustering is one of the
most popular methods of this type that relies solely on the

event characteristics for classification. Events that are near
each other in an arbitrary feature space are clustered together
and labeled to belong to the same class of events. Notably,
clustering is not as adaptive as neural network approaches
but requires much less prior input and can be shown to
improve its performance with higher volumes of data. Clearly,
the latter fact is also true for other data-driven methods that
are extensively used in practice, including regression, linear
support vector machines, and expectation maximization [55],
[56].

When the root cause of an event is unclear, inference
methods such as event-tree-analysis, heuristic reasoning and
fuzzy logic are also utilized that simplify the conditional rules
necessary for event diagnosis [57].

The second step in the JDL model considers the refine-
ment of events to determine attributes that are relevant to
decision making. An important aspect of event refinement
is the information gained by individual events in relation to
their predecessors. These relations can be with respect to time,
causality, ontology, or taxonomy. The information gained by
these dimensions can then be used to build knowledge models
on monitoring and control actions that should take place under
different circumstances. Eventually, a combination of time
with causality, knowledge models, and reasoning techniques
can result in hybrid solutions that benefit from the knowledge
build-up over time to better support decision making.

In the third step, a train of events (each containing meta-
data extracted from event processing, as discussed above) is
analyzed to gain situational awareness. This correlation is done
to estimate the current situation and to suggest, identify, and
predict the system evolution. Step four in JDL carries out
an assessment of the impact and the consequences for the
system to be in the current state. This assessment also takes
into account not only the current state but also the predicted
reactions (based on historical data, knowledge, heuristics, etc.)
and known plans (using for example user-based rules as in
[58]). Given this assessment, the final step is to make decisions
if further action is necessary. As discussed in Section III, the
decision may be to deflect further action to a remote host
(including re-synchronization), take local action to refine the
system operation (including update of the behavior model),
or do both. As shown in Fig. 1, information from this last
diagnostic step is fed back to local operations for immediate
action or sent to a remote host for higher-level management.

In the sequel, a simplified data-driven event handling ap-
proach is developed to extract higher level knowledge from
triggered events.

IV. EVENT TRIGGERING TECHNIQUE

Without loss of generality, a transportation scenario is
considered hereafter to aid understanding. However, the same
steps can be employed for any other use-case scenario that
exhibits recurrent behavior patterns. The transportation sce-
nario under consideration assumes public transport vehicles
(i.e., buses) that service specific routes in an urban setting.
The proposed data-driven ET technique deals with tracking
trip changes conducted by these vehicles.

2327-4662 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2016.2564428, IEEE Internet of
Things Journal

6

Intervals (l)

Tr
a

v
e

l
ti

m
e

 (
t)

t41

1 2 3 4

t42

t
ln

Fig. 5. Trips conducted with traveling times along different segments.

This scenario is one of the most prominent IoT application
scenarios in the automotive sector. As such, the problem
received substantial attention from both academia and the
industry. However, most current solutions consider either con-
tinuous or periodic signaling, both causing excessive overhead
(as shown in [59] and [60]) as opposed to ET that can greatly
improve efficiency. Moreover, with the proposed data-driven
technique all three phases of ET can be easily generated
and automatically updated on demand, resulting in improved
scalability as well.

The solutions for all three phases (as detailed above) are
considered for the following setup. An onboard device (i.e.,
the local host discussed in Section III) is used to track the
actual vehicle movement (using GPS traces), while the remote
host uses a predetermined mobility model to estimate this
movement. Clearly, no interaction is necessary between the
two entities whenever the model closely matches the actual
vehicle movement. On the contrary, the local host will trigger
an event interrupt whenever it detects a substantial deviation
(e.g., delay in transit) between the actual movement and the
model estimate. This interrupt is then used to make model
adjustments, re-synchronize the remote host, and deal with
any incidents that could be inferred.

For each bus route service a set of B = {1, . . . , B} stops are
considered (intermediate check points can also be considered
to improve resolution when deemed necessary). It is assumed
that bus stop locations are known and the requirement is to
monitor the bus schedule and track trip changes.

A. Phase 1: Mobility Model

Consider the problem of building a mobility model based
on travel times between the different legs of the particular
route. Let tln be the travel time observed on the nth journey
along an arbitrary leg of the path l = (i 7→ j), {i, j} ∈ B
with l ∈ L. Obviously, the travel time is the measured elapsed
time between the GPS samples received at bus stops i and j.
Hence tl is the travel time observed each time l is traversed
(an example with n=3 distinct trips is shown in Fig. 5). Then,
the first sample moment θlN after N sample measurements is
given as follows:

θlN =
1

N

N∑
n=1

tln, ∀ l ∈ L (1)

while higher order moments (i.e., θklN = 1
N

∑N
n=1 [tln]

k for
the kth moment) improve the knowledge with regards to the
actual probability distribution of the random variable.

Importantly, sample moments can be updated recursively
with each new sample. The updating for an arbitrary moment
can be expressed as follows:

θkl(N+1) =
1

N + 1

N+1∑
n=1

[
tl(n+1)

]k
=

1

N + 1

(
N∑

n=1

[tln]
k
+
[
tl(N+1)

]k) (2)

=
NθklN +

[
tl(N+1)

]k
N + 1

where, as shown in eq. (2), the updating simply requires
the total number of samples already fed into the calculation,
N , and the latest moment value, θlN . Each moment can be
updated dynamically with only these two elements. In this
way, the behavior (i.e., the mobility model) can be charac-
terized by the first K = 1, . . . , k moments for each leg of
the path instead of the raw sample data, greatly reducing the
processing and storage/memomry load of the computing units.
Of course, better accuracy can be achieved by introducing
higher-order moments. In addition, the central moments can be
computed from the raw moments using the binomial transform
ϑk
lN =

∑k
i=0

(
k
i

)
(−1)k−iθklN (θ1lN)k−i.

Alternatively, with a total of N measurements made, a
simple mobility model could be the ensemble of the latest M
raw measurement samples made along each leg of the path,
i.e., S = {S12,S13, . . . ,Sij ,S(B−1)B}, {i, j} ∈ B resulting in
a time window of measurements tnij ∈ Sij , n = {N − M +
1, . . . , N−1, N}. Evidently, maintaining the first K moments
greatly reduces the memory requirements (since M is usually
several order of magnitude larger than K) while ensuring that
adequately accurate statistics of the sample distributions are
used.

Given this information with regards to the vehicle journey,
probabilistic estimates can be computed on the travel times,
as well as the journey frequency and schedules, while unan-
ticipated changes can be detected and acted upon.

B. Phase 2: Time Deviation (Event) Detection

Noticeably, recurrent journeys along the particular route
reinforce the information regarding the expected travel times
for each leg of the path. This information can be used to set
bounds on the travel times anticipated on the route and in
turn trigger interrupts when deviations in the schedule occur.
Evidently, having loose bounds can reduce the frequency of
event interrupts, at the cost, however, of low-tracking accuracy.
On the other hand, tight bounds may result to an unnecessarily
high number of interrupts, since corrective control actions
may be required for small schedule deviations. Therefore, a
good bound should be computed to strike a balance between
tracking accuracy and resource efficiency.

Let τij , {i, j} ∈ B be the mean travel time in segment (i 7→
j). Then, the bound in the travel time is set to be the time
interval around the mean, given as τij ± α, where α is the
threshold value. Given this travel time bound, a time-deviation
event occurs whenever the measured travel time in segment
(i 7→ j) is not within the travel time bound.

2327-4662 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2016.2564428, IEEE Internet of
Things Journal

7

Let E be the target number of deviation events triggered in
a single trip on a particular route. Noticeably, if E is high the
tracking accuracy increases but too much communication may
take place. On the other hand, if E is set too low tracking
inaccuracy may become unacceptable and the system may
even fail without even the central controller ever knowing it.

In this work, E is left as a design parameter that can be
adjusted by the route operator. Then, the number of distinct
combinations of events that can possibly occur along the
different legs of the route can be found by the binomial
coefficients that are expressed with matrix C whose rows
consist of all possible combinations of the B route stops
taken E at a time. Hence, matrix entry Cce determines the
eth, e = 1, . . . , E deviation event that occurs in the cth

instantiation of events, c = 1, . . . , C, where C = B!
(B−1)!E!

is the number of all possible combinations that could occur.
An example of this matrix is shown below with both the index
of the rows and columns as well as the entries of the matrix.
The matrix illustrates the case of B = 40 and E = 5.

C =

1
2

c

C

1 2 3 4 5
3 6 10 17 23
7 17 24 38 40

. . .
20 27 30 37 40

. . .


As an illustrative example, consider the c = 1st combination
of events in the matrix above. C11 indicates that a time-
deviation event is triggered at the 3rd stop while the next
event is triggered at the C12 = 6th stop, and so on. Hence,
no interrupt occurs between the 4th or the 5th road segment
for the particular pair. This is to say that after an event
interrupt was triggered at the 3rd stop, the time deviation
that accumulated on the subsequent two segments was within
the set bounds while the measured deviation on the 6th stop
exceeded those bounds and another interrupt was triggered.
Noticeably, with every event interrupt, the estimated vehicle
movement is reset to its true value.

Then, the probability of an event occurring at j ∈ B given
that the previous event occurred at segment i ∈ B can be
expressed as follows:

P (i, j) = P̄ (i, i+1)×P̄ (i, i+2)×. . .×P̄ (i, j−1)×(1−P̄ (i, j))
(3)

where P̄ (i, j) expresses the probability of no event triggered
when traversing segment i 7→ j. Formally, this probability is
defined as follows:

P̄ (i, j) = P (τij − α ≤ Sij ≤ τij + α) (4)

where Sij = {tln, l = (i 7→ j), n = 1, . . . , N} is the set of
samples observed between stops i 7→ j, {i, j} ∈ B. Left and
right border cases in the combination of events should also be
considered. The leftmost border deals with the probabilities
from the start of the route up to the 1st event. Similar to (3),

these probabilities can be expressed as follows:

P (1, i) = P̄ (1, 2)× P̄ (1, 3)× . . .× P̄ (1, i−1)× (1− P̄ (1, i))
(5)

In reality, an event is triggered at the start of each trip to
synchronize the local and remote hosts. This interrupt can be
due to a real event trigger or automated indicators triggered
virtually by the bus schedule.

The rightmost border deals with the probabilities of the
route segments that are traversed from the last event interrupt
to the end of the route. These probabilities can be expressed
as follows:

P (j, |B|) = P̄ (j, j + 1)× P̄ (j, j + 2)× . . .× P̄ (j, |B|) (6)

Overall, the probability of all possible combinations of
events results in the following expression:

PT =
C∑

c=1

E−1∏
e=1

[P (Cce,Cce+1)]× P (1,Cc1)× P (CcE , |B|)

(7)
where P (Cce,Cce+1) is defined in equation (3) and the last
two terms are defined by equations (5) and (6), respectively.
Clearly, the total probability expressed in equation (7) should
be equal to 1 since it includes all possible combinations of
events that could occur for a target of E interrupts.

In this expression, the only unknown parameter is threshold
α of the bound in equation (4). The bisection method can be
used to solve (7) and the method is described by the iterative
algorithm shown below. The method begins by assuming that
the solution lies within a definite interval (al, au). Thereafter,
the interval is halved (i.e., a = 0.5 ∗ (au + al)) and a new
value of the function is calculated. Then, the feasibility of the
result is tested and the interval is updated according to the
range that satisfies feasibility. The procedure continues until
a favorable precision is reached with respect to the threshold,
i.e., au − al > ϵ.

Algorithm 1 Bisection Method
Ensure: al = 0, au = A

1: while (au − al) > ϵ do
2: a=

(au+al)
2

3: Compute PT in (7)
4: if PT > 1 then
5: au = a
6: else
7: al = a, α = a
8: end if
9: end while

In summary, the proposed event detection approach relies
only on a set of travel time measurements to build a mobility
model of the vehicle movement and for tracking schedule
changes. For tracking schedule changes, probability bounds
are calculated based on a target number E of out-of-bound
event interrupts to be triggered in each trip. The bisection
method, that is used to calculate these bounds, terminates when
a favorable precision ϵ is reached. Noticeably, the mobility
model can be dynamically updated with each journey to

2327-4662 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2016.2564428, IEEE Internet of
Things Journal

8

incorporate the latest vehicle traveling behavior. The same
is true for the event detection bounds that can be easily
recomputed on the fly. Specifically, the complexity of this
solution, involves the calculation of |B|(|B|−1)

2 travel times in
the mobility model and an update of the K sample moments.
Furthermore, at every update of the bounds using the proposed
solution, there are C combinations that are considered in (7),
a number which exponentially increases with E. Finally, the
bisection method converges linearly with a total of log2(

ϵ0
ϵ)

iterations carried out, where ϵ0 is the initial interval at the start
of the iterative procedure.

C. Phase 3: Mobility Incident Inference

As discussed in Section III-C, event processing can offer
higher-level knowledge of the system operating conditions and
allow proactive decisions to be made. Evidently, sporadic event
interrupts are triggered based on the design requirements as
discussed above. On the other hand, sequences of events that
do not reflect usual behavior patterns could allow for vari-
ous different incidences (such as the build-up of congestion,
speeding, and system faults) to be detected quickly, allowing
for prompt responses.

One such event processing approach is described herein. Let
PΞ(1, i) be the probability for a total of Ξ events occurring
from the start of every new trip until bus stop i. It should
be noted here that the volume of event interrupts may differ
from the target number E set in computing the event detection
bounds (as elaborated above). Hence, historical data can be
used to extract the probability distribution of PΞ(1, i). Given
PΞ(1, i) and the probability 1−P̄ (i−1, i) of an event triggered
within segment (i−1 7→ i) (as defined in the previous section),
then the probability of a sequence of events occurring up to
segment l, can be computed as follows:

PS(l) =
Ξ∏

e=1

[
P e(1, i− 1)(1− P̄ (i− 1, i))

]
(8)

As before, thresholds on this probability can be used to
detect unlikely event sequences that would suggest some form
of an incident. Then, various rules can be used to identify
particular incidents and make decisions, as in [61], [62].

V. EXPERIMENTAL RESULTS

A bus service route operated by the Transportation Orga-
nization of Nicosia District in Cyprus is considered for the
experimental set-up. The particular route considered, together
with the designated bus stops, is shown in Figure 6. Service
on this route is maintained by three buses (at any one time)
that carry out a total of 25 trips each day (on weekdays).

These buses have been retrofitted with tracking devices
and location, speed, and timing data have been collected
for analysis. As a result, a total of approximately 500,000
samples have been collected over a six-month period which
were subsequently used to extract the mobility model and
compute the event triggering bounds as elaborated above. Of
those, M = 1000 samples were used to build the mobility
model of raw samples (as detailed in Section IV-A), while the

33.36 33.37 33.38 33.39 33.4 33.41 33.42

35.14

35.145

35.15

35.155

35.16

35.165

35.17

35.175

Longitude (
o
)

L
a
ti
tu

d
e
 (

o
)

1
2 3 4

5

6

7

8

9
10

111213
14

1516171819 20
21

222324
25
26

27 28 2930
31

32
3334

35
36

37
3839

40
41 42

Route 150

Designated Bus Stops

Fig. 6. OSEL service route 150 with designated bus stops.

first K = 4 moments were used to describe the travel time
distribution of the model as detailed in Section IV-A.

A. Phase 1: Mobility Model Results

Figure 7 depicts the road segments of the measurements
made and the corresponding travel time histograms (including
both raw samples and sample moments) for two distinct cases.
In each case, an arbitrary pair of bus stops is selected and
the travel times calculated from the collected GPS traces is
shown. For instance, the plots in Figure 7a depict the travel
times for road segments starting from the first bus stop on the
route while Figure 7b shows the travel times from a bus stop
further down the route. From these plots, it is clear that the
spread of travel times is well defined and the sample moments
(as shown in the rightmost plot in each subfigure) can in fact
closely resemble the distributions observed by the raw samples
(as shown by the middle plot in each subfigure). Moreover,
these distributions describe precisely the mobility of the buses
between a pair of stops along the particular route and thus can
be used to approximate the vehicle trip.

B. Phase 2: Event Detection Results

As detailed in Section IV-B, to calculate probability bounds
on these measurements the bisection method (as shown in
Alg. 1) has been coded in Matlab and was used to calculate
probability bounds using 80% of the collected samples. The
remaining 20% was used as a test set to validate the method-
ology. A threshold ϵ = 1 sec is used in the algorithm that is
both realistic and highly accurate for this application. Figure
8a presents the bounds achieved when both raw samples are
used and when samples are produced from the distributions
characterized by the first K = 4 moments. In the results,
the target number of events, E, varies from 1 to 6 in total.
As shown in the figure, the bound closes significantly for
both mobility modeling approaches with only a few interrupts.
Indicatively, E = 4 interrupts achieve a bound of less than a
minute. This is to say that, on average, the proposed ETA will
trigger a mere 4 deviation detection events along the complete
trip of the bus. At any other time, the bus movement can be
adequately approximated by the mobility model within the

2327-4662 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2016.2564428, IEEE Internet of
Things Journal

9

33.36 33.37 33.38 33.39 33.4 33.41 33.42

35.14

35.145

35.15

35.155

35.16

35.165

35.17

35.175

Longitude (°)

L
a

ti
tu

d
e

 (
°
)

0 500 1000 1500 2000 2500 3000 3500
0

50

100

150

F
re

q
u

e
n

c
y

Travel Times (sec)

0 500 1000 1500 2000 2500 3000 3500
0

50

100

150

F
re

q
u

e
n

c
y

Travel Times (sec)

Raw Samples Sample Moments

(a)

33.36 33.37 33.38 33.39 33.4 33.41 33.42

35.14

35.145

35.15

35.155

35.16

35.165

35.17

35.175

Longitude (°)

L
a

ti
tu

d
e

 (
°
)

0 500 1000 1500 2000 2500 3000 3500
0

50

100

150

F
re

q
u

e
n

c
y

Travel Times (sec)

0 500 1000 1500 2000 2500 3000 3500
0

50

100

150

F
re

q
u

e
n

c
y

Travel Times (sec)

Raw Samples Sample Moments

(b)

Fig. 7. Distribution of travel times between two arbitrary bus stops.

achieved 1 minute bound. During all this time (the total trip
time for service route 150 is about 50 minutes), there is no
need for communication between the local and the remote
host and there is no need for any additional computation
actions to be performed by the remote host. As such, the
proposed ET technique provides a gain of 12 times compared
to basic periodic triggering (that updates the vehicle status
every minute1, since 50 interrupts will be needed by the
periodic scheme as compared to only 4 by the proposed ET
technique as shown in the experiments). It also offers a far
greater improvement if the basic periodic scheme follows more
frequent updating. Noticeably, the scheme is realized simply
by keeping travel time statistics and dynamically updating
event detection bounds as discussed in Section IV.

Figure 8b depicts the number of interrupts triggered (using
the achieved 1-minute deviation bounds) based on the sample
test set (i.e., the 20% of the collected samples). In the box
plots, the central mark is the median, the edges of the box
are the 25th and 75th percentile, the whiskers (i.e., the lines
above and below the box) extend to those points not considered
outliers (i.e., whiskers extend to cover approximately 99% of
the values, assuming points are normally distributed), and all
outliers are plotted individually. Similar to the experimental
results shown in Fig. 8a, the total number of events drops
dramatically for wider bounds for the test set as well. More
importantly though, it is evident from the comparison of the
two plots in Fig. 8 that the volume of triggered events is within

1 The proposed ET technique uses 1 minute bounds on event triggers and thus
it is compared against the performance of periodic triggering that exchanges
messages every 1 minute.

the computed bounds.

1) Implementation Results: As an additional validation
step, the proposed ET technique has been implemented as an
application for Android devices and has been used for live
testing on route 150 of OSEL’s fleet. A function was written
to: a) acquire GPS signals for location information at intervals
of 15sec, b) calculate the travel time between successive
pairs of bus stops, and c) check for bound violations. The
mobility model derived from the collected traces (as discussed
in the previous section) was used to set a threshold value of
α = 60sec for a target of K = 4 interrupts. A second function
was used to collect and log event interrupts. The application
was installed on 3 mobile devices which were subsequently
placed onboard the buses operating that particular route.

Figure 9 presents the results for a total of 100 trips con-
ducted by buses on route 150. As shown in the figure, the
proposed solution successfully maintains the target volume of
interrupts for more than 90% of the trips conducted while for
the rest of the cases analysis of the collected traces has shown
that those interrupts occurred due to delays experienced at
the start of the trips. Interestingly, the cumulative distribution
curve of Fig. 9 has a sharp start indicating that many of the
trips trigger only very few interrupts. For instance, more than
40% of the cases trigger less than 1 event interrupt while
70% of the trips trigger less than 2 out-of-bound events.
In that respect, this implementation demonstrates in practice
the great potential of the proposed ET technique in building
more efficient tracking applications by minimizing processing
and communication overhead (since only out-of-bound event
interrupts need to be handled) while maintaining good tracking

2327-4662 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2016.2564428, IEEE Internet of
Things Journal

10

2 2.5 3 3.5 4 4.5 5 5.5 6
20

40

60

80

100

120

140

160

B
o

u
n

d
 α

 (
s

e
c

)

Event Interrupts, E

Raw Samples

Sample Moments

(a)

0

2

4

6

8

10

12

14

16

20 40 60 80 100 120 140 160

Threshold value, α (sec)

E
v

e
n

t
in

te
rr

u
p

ts
,

K

(b)

Fig. 8. a) Travel time bounds for varying number of target event interrupts,
and b) experimental performance with a test set.

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Event interrupts, K

E
m

p
ir

ic
a

l
c

u
m

u
la

ti
v

e
 d

is
tr

ib
u

ti
o

n

Fig. 9. Empirical results of event interrupts created on route 150.

accuracy using the predetermined mobility model.

C. Phase 3: Event Handling Results

The potential to infer on the various mobility incidents is
investigated herein. This is achieved by following the sequence
of event interrupts that are produced by the proposed event
detection algorithm using the collected traces and assuming

0 5 10 15 20 25 30 35 40 45
10

 6

10
 5

10
 4

10
 3

10
 2

10
 1

10
0

Bust Stop Index

P
S

Fig. 10. Evaluating PS for a number of trips conducted on route 150.

K = 4, as before. The variability in the volume of event
triggers has already been discussed above (and shown in Fig.
8b), while the empirical distribution that suffices (as expressed
in eq. (2)) is used to compute PΞ(1, i), ∀i ∈ B (as elaborated
in Section IV-C).

Figure 10 shows the accumulated drop in probability based
on equation (8) for a number of trips conducted along route
150. In the figure, the frequency with which a sequence of
event interrupts takes place is highlighted with bolder lines.
Noticeably, each drop in every line is associated with the
triggering of an event interrupt and for the majority of the
cases only very few interrupts are triggered. This is in line
with the results shown in Fig. 8b, where for a target of K = 4
the mean volume of interrupts is around 1. It is also evident
that in the majority of the cases the accumulated probability
drop does not exceed two orders of magnitude while greater
drops occur only infrequently.

In the simulations that follow, the mean probability from
the observed results is used as a threshold for detecting
unlike event sequences. Moreover, the following random event
triggers are considered:

• Spontaneous: Individual random event interrupts are
injected and the volume of event interrupts follows the
uniform distribution across all route segments.

• Continuous: A series of event interrupts, each occurring
in tandem along successive route segments, is considered.
The initial route segment where the first event is triggered
is randomly and uniformly selected from all route seg-
ments and so is the volume of the event interrupts that
follow.

• Continuous Repeated: Similar to the previous case,
with multiple event interrupts occurring within each route
segment as well. The volume of event interrupts occurring
within each segment is also randomly and uniformly
distributed in the interval U (1, 4).

Figure 11 provides simulation results by varying the volume
of event interrupts triggered for all three cases considered
above (i.e., Fig. 11a for the case of spontaneous triggers,
Fig. 11b when continuous triggering takes place, and Fig. 11c
for the case of continuous and repeated event triggers). As

2327-4662 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2016.2564428, IEEE Internet of
Things Journal

11

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

In
c

id
e

n
t

D
e

te
c

ti
o

n
 (

%
)

Volume of events triggered

Threshold × 10%

Threshold × 1%

Threshold × 0.1%

(a)

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

In
c

id
e

n
t

D
e

te
c

ti
o

n
 (

%
)

Volume of events triggered

Threshold × 10%

Threshold × 1%

Threshold × 0.1%

(b)

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

In
c

id
e

n
t

D
e

te
c

ti
o

n
(%

)

Volume of events triggered

Threshold × 10%

Threshold × 1%

Threshold × 0.1%

(c)

Fig. 11. Performance evaluation for a) Spontaneous, b) Continuous, and c)
Continuous Repeated event interrupts.

discussed above, an incident is inferred if the probability drop
is lower than the mean probability drop obtained by the actual
performance illustrated in Fig. 10. In the results presented in
Fig. 11, the threshold is varied by 1− 3 orders of magnitude
from the mean probability drop in order to investigate the
incident detection potentials.

As shown in the results, the percentage of detected incidents
is substantially lower when the volume of triggered interrupts
is lower than K = 4 for all three cases. This is expected

since the event triggering technique derived in Section IV-B
is designed to anticipated up to K interrupts; a number that
was set to 4 in the analysis conducted in the previous section.
Even so, the percentage of incidents detected in all cases grows
non-linearly both with increasing number of triggered events
and with tighter thresholds.

Comparing the results obtained for the three cases, it
is evident that the order by which events are triggered
only marginally affects the percentage of incidents detected.
Clearly, this is due to the fact that only loose bounds are
needed for K = 4 which do not substantially penalize PS

in eq. (8). When tighter bounds are set, the impact on the
probability of an out-of-bound event would be more severe
and thus incident detection would be more probable. In any
case, the order by which events are triggered can be used
with higher level reasoning to infer on the different incidents,
as discussed in Section IV-C.

VI. CONCLUSIONS

In this work, the highly-promising event-triggering archi-
tecture has been reviewed with particular emphasis placed
on data-driven approaches for the IoT domain. Specifically,
the three distinct phases of ET, namely behavior modeling,
event triggering, and event handling have been studied and
analyzed. Additionally, and to aid understanding of each
phase, a practical scenario considering road mobility has been
investigated and data-driven solutions have been derived for all
three phases. Finally, the potential of data-driven ET has been
demonstrated through a real-world public transport tracking
scenario. As shown by this case study, data-driven ET can
provide many-fold improvement in resource utilization effi-
ciency (including energy and spectrum efficiency) and offers
the level of autonomy necessary for scalability.

ACKNOWLEDGMENTS

This work is supported by the European Research Council
under the Advanced Grant FAULT-ADAPTIVE ERC-2011-
AdG-291508.

REFERENCES

[1] J.A. Stankovic, “Research Directions for the Internet of Things”, IEEE
Internet of Things Journal, 1(1):3-9, Feb. 2014.

[2] C. Cassandras, “Event-driven Control, Communication, and Optimiza-
tion”, Chinese Control Conference, July 2013.

[3] J. Anderson and L. Rainie, “Digital Life in 2025 - The Inter-
net of Things will Thrive by 2025”, Pew Research Center - Num-
bers, Facts and Trends Shaping the World, May 2014, Available at:
http://www.pewinternet.org/2014/05/14/internet-of-things/.

[4] Lopez Research, “An Introduction to the Internet of Things (IoT)”, The
IoT Series, Part 1, Nov. 2013.

[5] Google’s Advanced Technology and Projects group, “Project Ara”,
http://www.projectara.com/.

[6] GSMA, “Connected Living Linking the Physical and Digital Worlds”,
The Mobile Economy, 62-64, April 2014.

[7] A.M. Ortiz, D. Hussein, S. Park, S.N. Han, and N. Crespi, “The Cluster
Between Internet of Things and Social Networks: Review and Research
Challenges”, IEEE Internet of Things Journal, 1(3):206-215, June 2014.

[8] C. Perera, C.H. Liu, S. Jayawardena, M. Chen, “A Survey on Internet of
Things from Industrial Market Perspective”, IEEE Access, 2:1660 - 1679,
Jan. 2015.

[9] L. Li, S. Li, and S. Zhao, “QoS-Aware Scheduling of Services-
Oriented Internet of Things”, IEEE Transactions on Industrial Informat-
ics, 10(2):1497-1505, May 2014.

2327-4662 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2016.2564428, IEEE Internet of
Things Journal

12

[10] W. Heemels, A.R. Teel, N. Wouw, and D. Nešić, “Networked Control
Systems with Communication Constraints: Tradeoffs between Transmis-
sion Intervals, Delays and Performance”, IEEE Transactions on Automatic
Control, 55(8):1781-1796, Aug. 2010.

[11] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Context
Aware Computing for The Internet of Things: A Survey”, IEEE Commu-
nications Surveys & Tutorials, 16(1):414-454, 2014.

[12] W.P.M.H. Heemels, and N. van de Wouw, “Stability and Stabilization of
Networked Control Systems”, Networked Control Systems, Lecture notes
in control and information sciences, Springer 406, pp. 203-253.

[13] M. Lemmon, “Event-Triggered Feedback in Control, Estimation, and
Optimization”, Networked Control Systems - Lecture Notes in Control
and Information Sciences, 406:293-358, 2010.

[14] X. Meng, L. Xie, Y.C. Soh, C. Nowzari, and G.J. Pappas, “Periodic
Event-Triggered Average Consensus over Directed Graphs”, IEEE Con-
ference on Decision and Control, Dec. 2015.

[15] Q. Wu, G. Ding, Y. Xu, S. Feng, Z. Du, J. Wang, and K. Long,
“Cognitive Internet of Things: A New Paradigm Beyond Connection”,
IEEE Internet of Things Journal, 1(2):129-143, Apr. 2014.

[16] R. Saracco, “The Internet of Things (and With Things)”, IEEE Commu-
nications Society Blogs, http://www.comsoc.org/blog/internet-things-and-
things.

[17] Commission of the European Communities, “Internet of Things An
Action Plan for Europe”, Communication from the Commission to the
European Parliament, the Council, the European Economic and Social
Committee and the Committee of the Regions, COM(2009) 278, June
2009.

[18] The Working Party on the Protection of Individuals with Regard to the
Processing of Personal Data, “Opinion 8/2014 on the Recent Develop-
ments on the Internet of Things”, Directive 95/46/EC of the European
Parliament and of the Council of 24 October 1995, Articles 29 and 30
thereof, Sept. 2014.

[19] GSMA, “Understanding the Internet of Things (IoT)”, Connected Living,
July 2014.

[20] S. Chen, H. Xu, D. Liu, B. Hu, and H. Wang, “A Vision of IoT:
Applications, Challenges, and Opportunities With China Perspective”,
IEEE Internet of Things Journal, 1(4):349-359, Aug. 2014.

[21] D. Evans, “The Internet of Things - How the Next Evolution of the
Internet is Changing Everything”, Cisco Internet Business Solutions
Group, Apr. 2011.

[22] O. Vermesan and P. Freiss, “Internet of Things - From Research and
Innovation to Market Deployment”, River Publishers Series in Commu-
nications, 2014.

[23] M. Mahmoud and M. Sabihb, “Networked Event-triggered Control: An
Introduction and Research Trends”, International Journal of General
Systems, 43(8):810-827, Apr. 2014.

[24] W. Heemels, K.H. Johansson, and P. Tabuada, “An Introduction to Event-
triggered and Self-triggered Control”, IEEE Conference on Decision and
Control, Dec. 2012.

[25] O. Vermesan and P. Freiss, “Internet of Things - Converging Tech-
nologies for Smart Environments and Integrated Ecosystems”, River
Publishers Series in Communications, 2014.

[26] P. Huang, C. Wang, and L. Xiao, “RC-MAC: A Receiver-Centric MAC
Protocol for Event-Driven Wireless Sensor Networks”, IEEE Transactions
on Computers, DOI: 10.1109/TC.2014.2308174, Feb. 2014.

[27] H. Hu, Y. Wen, T.S. Chua, and X. LI, “Toward Scalable Systems for
Big Data Analytics: A Technology Tutorial”, IEEE Access, 2:652-687,
June 2014.

[28] R. Isermann, Fault-Diagnosis Systems: An Introduction from Fault
Detection to Fault Tolerance, Springer, 2006.

[29] C. Cassandras, and S. Lafortune, Introduction to Discrete Event Systems,
Springer, 2nd Ed., 2008.

[30] M. Blanke, M. Kinnaert, J. Lunze and M. Staroswiecki, Diagnosis and
Fault Tolerant Control, Springer, Ed. 2, 2006.

[31] D. Castanton, and D. Teneketzis, “Distributed Estimation Algorithms for
Nonlinear Systems”, IEEE Transactions on Automatic Control, 30(5):418-
425, May 1985.

[32] A. Nayyar, A. Mahajan, and D. Teneketzis, “Decentralized Stochastic
Control with Partial History Sharing: A Common Information Approach”,
IEEE Transactions on Automatic Control, 58(7):1644-1658, July 2013.

[33] M. Zhong, and C. Cassandras, “Asynchronous Distributed Optimization
with Event-Driven Communication”, IEEE Transactions on Automatic
Control, 55(12):2735-2750, Dec. 2010.

[34] Y. Khazaeni, and C. Cassandras, “A New Event-Driven Cooperative
Receding Horizon Controller for Multi-agent Systems in Uncertain Envi-
ronments”, IEEE Transactions on Automatic Control, 55(12):2735-2750,
Dec 2010.

[35] P. Panagi and M. Polycarpou, “A Coordinated Communication Scheme
for Distributed Fault Tolerant Control”, IEEE Transactions on Industrial
Informatics, 9(1):386-393, Feb. 2013.

[36] M. Mazo and P. Tabuada, “Decentralized Event-Triggered Control Over
Wireless Sensor/Actuator Networks”, IEEE Transactions on Automatic
Control, 56(10):2456-2461, Oct. 2011.

[37] T. Schlage, “Remote Diagnosis of Technical Systems”, Institute of
Automation and Computer Control, May 2009.

[38] T. Schlage and J. Lunze, “Modeling of Networked Systems for Remote
Diagnosis”, International Conference on Control and Fault Tolerant
Systems, Oct. 2010.

[39] V. Cevher, S. Becker, and M. Schmidt, “Convex Optimization for
Big Data: Scalable, Randomized, and Parallel Algorithms for Big Data
Analytics”, IEEE Signal Processing Magazine, 31(5):32-43, Sept. 2014.

[40] S. Ren and M. van der Schaar, “Efficient Resource Provisioning and Rate
Selection for Stream Mining in a Community Cloud”, IEEE Transactions
on Multimedia, 15(4):723-734, June 2013.

[41] Y.C. Tseng, T.Y. Lin, Y.K. Liu, and B.R. Lin, “Event-Driven Messaging
Services Over Integrated Cellular and Wireless Sensor Networks: Proto-
typing Experiences of a Visitor System”, IEEE Journal on Selected Areas
in Communications, 23(6):1133-1144, June 2005.

[42] K. Slavakis, G. Giannakis, and G. Mateos, “Modeling and Optimization
for Big Data Analytics: (Statistical) Learning Tools for Our Era of Data
Deluge ”, IEEE Signal Processing Magazine, 31(5):18-31, Sept. 2014.

[43] M. Basseville, “Detecting Changes in Signals and Systems - A Survey”,
Automatica, 24(3):309-326, 1988.

[44] H. Stark, and J. Woods, Probability, Random Processes and Estimation
Theory for Engineers, Prentice Hall, 1994.

[45] H. Akaike, “A New Look at the Statistical Model Identification”, IEEE
Trans. on Automatic Control, 19(6):716-723, 1974.

[46] S. Stearns, Digital Signal Analysis, Hayden Book Company, 1975.
[47] D. Hall, and J. Llinas, Handbook of Multisensor Data Fusion, CRC

Press LLC, 2001.
[48] X.W. Chen, and X. Lin, “Big Data Deep Learning: Challenges and

Perspectives”, IEEE Access, 2:514-525, May 2014.
[49] D. Bertimas and I. Popescu, “Optimal Inequalities in Probability Theory:

A Convex Optimization Approach”, SIAM Journal on Optimization,
15(3):780-804, 2005.

[50] P. Vincent, “Complex Event Processing”, Workshop on Distributed
Object Computing for Real-time and Embedded Systems, June 2008.

[51] D. Hall and J. Llinas, Handbook of Multisensor Data Fusion: Theory
and Practice, Taylor & Francis, 2nd Ed., Sept. 2008.

[52] D. Luckham, The Power of Events, Addison Wesley, 2002.
[53] RAF, “The RAF Fighter Control System”, Background to the Battle of

Britain, 1940, http://www.raf.mod.uk.
[54] A. Steinberg, and C. Bowman, “Data Fusion for Developing Predictive

Diagnostics for Electromechanical Systems”, Handbook of Multisensor
Data Fusion, CRC Press, 2001.

[55] X. Wu, X. Zhu, G.Q Wu and Wei Ding, “Data Mining with Big Data”,
IEEE Transactions on Knowledge and Data Engineering, 26(1):97-106,
Jan. 2014.

[56] H. Peng, F. Long, and C. Ding, “Feature Selection Based on Mutual
Information: Criteria of Max-Dependency, Max-Relevance, and Min-
Redundancy”, IEEE Transactions on Pattern Analysis and Machine
Intelligence, 27(8):1226-1238, Aug. 2005.

[57] Y. Wang, and K. Cao, “Context-aware Complex Event Processing for
Event Cloud in Internet of Things”, International Conference on Wireless
Communications & Signal Processing, Oct. 2012.

[58] C.Y. Chen, J.H. Fu, T. Sung, P.F. Wang, E. Jou, and M.W. Feng, “Com-
plex Event Processing for the Internet of Things and its Applications”,
IEEE International Conference on Automation Science and Engineering,
Aug. 2014.

[59] J. Biagioni, A.B.M. Musa, and J. Eriksson, “Thrifty Tracking: Online
GPS Tracking with Low Data Uplink Usage”, ACM International Con-
ference on Advances in Geographic Information Systems (SIGSPATIAL),
2013.

[60] IBM Ireland, “Dublin City Council”, Travel & Transport, July 2013.
[61] S. Hasan, E. Curry, M. Banduk, and S.O. Riain, “Toward Situation

Awareness for the Semantic Sensor Web: Complex Event Processing with
Dynamic Linked Data Enrichment”, International Workshop on Semantic
Sensor Networks, Oct. 2011.

[62] Y. Wang, and K. Cao, “A Proactive Complex Event Processing Method
for Large-Scale Transportation Internet of Things”, International Journal
of Distributed Sensor Networks, Mar. 2014.

