
2327-4662 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/JIOT.2015.2483023, IEEE Internet of Things Journal

 1

Abstract—Following recent advances in sensing and wireless

technologies, Internet-of-Things (IoT) applications are being
exploited in various fields. The scale of IoT systems and the
number of devices that they include has become huge, and the
construction of IoT applications is therefore becoming
increasingly challenging. This work proposes a script framework
as a convenient development interface for Service-Oriented
Architecture (SOA) scheduling of web-based information of IoT
applications, called ScriptIoT, which is composed of the IoT
fundamental in case of all type of devices integration and a
scriptable agent. Based on the IoT fundamental class, various IoT
devices may be developed and the scriptable agent enables IoT
applications to be configured using scripts. The proposed
ScriptIoT framework contributes to large-scale logistic network
applications result from offers both polling and an event-driven
mechanism for delegating IoT applications to the agent with the
reporting event of the specified device. Experiments herein reveal
that in the proposed ScriptIoT framework, the access time and
CPU loading are slightly greater than those achieved using
traditional C programming by 3% and 13% respectively, but the
proposed framework exhibits improved flexibility and scalability.

Index Terms—Internet-of-Things (IoT), Script Framework,
Event-Driven Mechanism.

I. INTRODUCTION

N recent years, substantial progress has been made in sensing
and wireless technologies, and smart mobile devices have

become increasingly popular; these trends driven the
flourishing of the Internet-of-Things (IoT) industry [1].
Research concept of IoT in providing ubiquitous framework in
sensing the environment, basically has to be integrated
seamlessly into human daily life. Therefore the IoT R&D
cannot be distinguished from the perspective of space and
spatial area of living environment. City becomes a major target
for IoT R&D implementation, the smart city projects have been
initiated sporadically and involved many sectors including the
industry. IBM smarter planet [2] is the one of prominent effort
from the industry enable comprehensive framework of IoT

Manuscript received April 16, 2015; Revised Jun 22, 2015
H.-C. Hsieh, K.-D. Chang, L.-F. Wang and J.-L. Chen* are with Department

of Electrical Engineering, National Taiwan University of Science and
Technology, Taipei, Taiwan. (Email: lchen@mail.ntust.edu.tw)

H.-C. Chao is with the Department of Computer Science and Information
Engineering, National Ilan University, I-Lan, Taiwan. (Email:

hcc@niu.edu.tw)
Copyright (c) 2012 IEEE. Personal use of this material is permitted.

However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org

technology implementation in the environment. Since IoT has
to deal for object identification; unique identity (UID)
management becomes an important role for guaranteed the
efficiency of IoT system. A proposed scheme using distributed
hast table (DHT) to improve the look-up scheme for improving
UID management system [3]. The paper deals the problem with
incorporating wireless sensor and actuator network on the IoT
web based architecture. The basic solution for this architecture
enables UPnP protocol at the gateway, however the method
will causing a bottleneck due to the protocol translation
between ZigBee and UPnP. Therefore a solution using
constrained application protocol (CoAP) is proposed and
reduces the congestion at the gateway with satisfactory
performance [4]. A challenge of IoT service composition is the
difficulties in extending SOA. A special approach has to be
address for huge number of services including user-centric and
situation aware process. Dealing with such problem, the paper
proposes a new methodology to enable web service in very
large scale (VLS) IoT system. The VLS system elaborates the
design of proposed composition that separately defines the
choreography and orchestration modules (COM) [5].

A large number of sensors that are used in the IoT field used
exclusively form a special function network. Regardless of the
applications, the challenge that must be met by an IoT system
concerns the diversity of physical objects/devices on which the
development and maintenance of the system depend, and it is
difficult to unify context of the things. Moreover, implementing
a smart web interface for that case is also not a trivial problem
[6]. Hence, an IoT must satisfy the following requirements; (a)
it must have a unified API must be used in the development of
applications; (b) it must be easily ported among platforms; (c)
IoT systems must be easy to configure [7]. Recently, a growing
research topic on mobile agents to access data in IoT
environment [8], based on the above requirements, this work
designs a script-based framework, called ScriptIoT, which is
referred to herein as a form of IoT middleware. This
middleware allows users with little or no programming
expertise to develop IoT applications with minimum effort.
Following improvements in hardware performance over the last
few years, the scripting language that is utilized herein enables
complex tasks to be carried out in relatively few steps. Herein
the framework that is based on script leads to a 13% greater
CPU loading; consumes 3% more time, and consumes 17%
more memory than that which uses the C code program, and it
could simplify the development and maintenance process. This
framework proposes the IoT application and contributes to
large-scale logistic network applications.

Han-Chuan Hsieh, Kai-Di Chang, Student Member, IEEE, Ling-Feng Wang,
Jiann-Liang Chen, Senior Member, IEEE, and Han-Chieh Chao, Senior Member, IEEE

ScriptIoT: A Script Framework for and
Internet-of-Things Applications

I

2327-4662 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/JIOT.2015.2483023, IEEE Internet of Things Journal

 2

The rest of this paper is organized as follows. Section 1
introduces to brief the proposed framework, the previous
solutions, the highlighted problems, and a summary of the
contributions. Section 2 then describes the background of IoT
and script language for the proposed framework. Next, Section
3 presents the proposed script framework that copes with the
elements of IoT architecture. Section 4 presents a simulation of
the proposed ScriptIoT and verifies the feasibility and
performance. Moreover, Section 5 proposes the framework for
performance analysis in processing time and the C code
program. Conclusions are finally drawn in Section 6, along
with recommendations for future research.

II. BACKGROUND

The industry initiative in IoT research would expect a
realization of commercial product that instantly impact humans
life. As commercialized product IoT is expected to deliver a
new paradigm for consumer electronic. IoT applications
definition can be assumed as unique objects that connected
through internet to perform information exchanging, object
identification, location updating and security monitoring.

A. Internet of Things (IoT)

Internet of Things (IoT) technology is being implemented
broadly for information technology and industry applications.
Recently top 10 IoT commercial products are announced to
give an insight how the consumer electronics trend is now
approached into the new era. Some of featured IoT products
are:

Pachube: A platform that bridging the application and data
to be worked together to convey useful information to the users.
User can use real-time sensing data provided by Pachube create
a connection to a particular application through web service [9].

Mi:ror: A commercial product from Violet a French
company providing a smart detection of a particular object. The
technology is merely developed from Radio Frequency
Identification (RFID) tag that collaborated with smart web
application [10].

Those functions are enabled by the integration of
management systems that essentially comprised by RFID,
Wireless Sensor Networks and Global Positioning Systems
(GPS). IoT architecture is broadly divided into three categories
- sensor networks architecture, middleware architecture, and
application-based service-oriented architecture (SOA) [11].
These categories are described below with reference to
corresponding script language.
1) Sensor Networks Architecture

This category of architecture is focused on the integration of
perception and network layers. For example, Electronic
Product Code (EPC) is based on RFID as an integrated ZigBee
network architecture [12]. With Internet Protocol (IP) is
proposed to Sensor Networks for an All-IP world (SNAIL)
protocol to approach to IoT architecture on the realization by
combining the heterogeneous networks [13].
2) Middleware Architecture

Much research concerning middleware architecture is based
on widely popular technology [14]-[16], such as the VIRTUS,

which is based on XMPP technology [17], whose applications
can be expanded using Google-developed tools and API.
Service-Oriented Architecture (SOA), established by OSGI, is
based on Java VM [18]. IoT Cloud architecture, based on a
combination of Java and some frequently used open source
software, has also been proposed for running cloud applications
[19]. A web application framework for IoT that relies on the
Google Web Toolkit is proposed [20]. This plugin-based
framework is visualized and controlled using an extensible user
interface, but has a high development threshold, and its
performance, including code size, has not been analyzed. The
interesting perspective on the management of method for
managing resource-constrained IoT devices management is
proposed [21]; it involves the use of SNMP and NETCONF to
manage a specific hardware platform, saving RAM and ROM
but at the cost of lost flexibility and scalability.
3) Application-based Service-Oriented Architecture (SOA)

Web architecture is based mainly on passive requests and
cannot handle responses from logistic networks in real time.
Service-oriented research focuses on optimizing message
scheduling or the realization of an Event-Driven mechanism
[22]. The IoT network system can be divided into various
sub-systems, forming a hierarchical system structure. The
concept of SOA can be applied to the scheduling of web-based
information to calculate the shortest processing time and
provide effective and stable real-time responses. Some
investigations based on Event-Driven Service-Oriented
Architecture (e-SOA) mechanism, have involved dynamic
sensing and the event response times of various connection
proposed framework monitoring [23].

B. Script Language

Script Language is a computer language whose main purpose
is to shorten the check of composition, compilation, connection
and execution. Command codes are generally directly executed
instead of compiled. The programming languages are used to
compose programs for computers. The important purpose of a
descriptive language is to accomplish certain complicated tasks
simply and rapidly. Accordingly, a description language is
usually simpler than a conventional programming language,
such as C, C++ and Java language. For example, the Bash Shell,
which is the most frequently among Unix-like systems, has
been widely implemented in various platforms such as
GNU/Linux, Mac OS, MS-DOS, Windows and etc., most of
which are downward-compatible with the older Bourne Shell.

III. PROPOSED SCRIPT FRAMEWORK

Figure 1 presents the proposed IoT service architecture,
which is composed of four parts - Devices, Agent Servers,
Agent Clients and Hosts as applications. The Hosts can use the
Agent Clients to directly access the Agent Servers or use the
script to completely define all interactive behaviors of the entire
group for smart applications. The Hosts can communicate with
the Agent Servers through the Agent Clients to receive
feedback from devices or to drive devices to take
pre-determined actions and responses. The Agent Server also
provides another interface that is connected to the Agent Client,

2327-4662 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/JIOT.2015.2483023, IEEE Internet of Things Journal

 3

and can be regarded as an API that can be accessed by the Host.

Fig. 1. IoT Service Architecture

Fig. 2. IoT System Architecture

Device refers to various IoT devices, such as environmental
sensors, GPS receivers, RFID readers and others, which are
connected to the Agent Server through the network, which is
the proxy Agent Server of Host group, is in charge of managing
all data feedback from devices in the group and controls mutual
correlation behaviors. The script can be easily used to describe
the check behaviors of the devices in the entire group. For
example, when the RFID reader recognizes a TAG ID, it will
send out the command to open a door, or when a particular
device moves to a particular position; a particular action will be
triggered. Figure 2 presents the proposed system architecture,
whose four parts are as follows.

A. Device

To integrate all IoT devices, a so-called IoT fundamental
class is presented in Figure 3. This class specifies the minimum
necessary support Function. Any IoT device can be expanded
for requirement. All IoT devices that are supported by the
architecture in this work will be implemented in compliance
with this IoT fundamental class, such that they can be registered
and report to the Agent Server.

Fig. 3. IoT Fundamental Class

This class can be divided into two major parts - Common and
Override/Virtual. The common part defines the properties and
configuration of the corresponding IoT devices, and these basic
properties must be set for all IoT device categories. The
override part defines the active and passive types which must
be implemented by various IoT devices. In this work, the
simplest <Key, Value> pair is utilized to process all feedback
and saved data. Therefore, data processing with the <Key,
Value> pair is implemented using the report and the action
function. The consistent use of <Key, Value> pair significantly
simplifies the processing mechanism during actual
implementation, maximizing expansion flexibility. Access of
the <Key, Value> pair by hash mapping during the
implementation of data pool also leads to rather high efficiency.

Definition of data structure, two active and passive types
function pointers are defined for the override of the two device
categories. A unique function pointer is assigned to each device
category, and devices are extended based on the principle of
objective orientation for IoT device fundamental class/function
override.

B. Agent Server and Agent Client

As the proxy of host in the group, the Agent Server must
implement two interfaces, the IoT device interface and the
Agent Client interface, which are the communication interfaces
for device and host respectively. A sufficiently large data pool
in the Agent Server to save the report <Key, Value> pair
constantly feedback from the group is required. The
implementation of this data pool is based on asynchronous
access to distinguish between the device report write-in and
Agent Client Fetch read-out, resulting in more efficient Agent
Client application without the need to wait for the report
write-in. Since the report data are <Key, Value> pairs, the hash
table method can be used to accelerate the access. The
following functions are completed by coordination between the
Agent Server and the Agent Client.

2327-4662 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/JIOT.2015.2483023, IEEE Internet of Things Journal

 4

Fig. 4. Event-Driven Script Register Flow Chart

Fig. 5. Signaling flow for Event-Driven Script Register

1) Register Event-Driven Script
The purpose of Event-Driven script registration module is to

enable the host to activate a specified script by Agent Client
registration once the designated <Key, Value> has been sent
out by the specific device with Agent Client registration. Figure
4 presents the saving of the Event-Driven script by the Agent
Server and its execution when the conditions associated with
the report command are met, and signaling flow for
Event-Driven script register presents in Figure 5.
2) Fetch Data

Figure 6 presents the arrival at the Agent Server of the <Key,
Value> pair that is reported by the device and signaling flow for
Fetching Data presents in Figure 7. The pair is saved to the data
pool, and whether the <Key, Value> of this device matches the
registered report command, as indicated by arrow in the
figure below will be determined. If it is registered on Agent
server, it will call upon and execute the designated script, as
indicated by arrow in the figure. The executed Script, just
like the host, is composed of the API of the Agent Client. It
differs from the Host only in that the host IP address,
introduced by the Agent Client of the script, generally refers to
the IP address of its Agent Server. Hence, the Agent Server
must support the API of the Agent Client in addition to its own
software function. The Agent Server IP address that is
designated in the Event-Driven script is not necessarily its
actual IP address: it may be the IP address of another Agent

Fig. 6. Fetch Data Flow Chart

Fig. 7. Signaling flow for Fetching Data

Fig. 8. Signaling flow for Device Action

Server. Various groups can be crossed by coordinating several
Agent Servers by exploiting such flexibility.

Meanwhile, the host can be set the Agent Server IP,
communication port, and a device ID in the group using its
Agent Client API, to obtain the <Key, Value> that is reported
by that device, obtaining the reported value that corresponds to
the <Key, Value> using the Fetch Command. In Figure 6,
arrows and indicate the data path.

2327-4662 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/JIOT.2015.2483023, IEEE Internet of Things Journal

 5

Fig. 9. Polling Script Block Diagram Flow Chart

Fig. 10. Flow for Polling Script

Fig. 11. Event Script Block Diagram

Fig. 12. Flow for Event Script

3) Device Action
The Host can use the Agent Client to drive directly the Agent

Server to perform the designated Action <Key, Value>, and
signaling flow for device action presented in Figure 8. Table 1
presents the API of Agent Client. The host can communicate
and cooperate with the Agent Server using the parameters.

C. Host

The application program on the Host is in the form of script
and the Agent Client must be used as an API to access the
Agent Server to compose the script. Scripts of the Host may be
Polling Scripts or Event-Driven scripts on immediacy and
initiative. When the Host is not directly connected to the device,
it relies on polling of the Agent Client to determine all statuses
in the group, as presented in Figure 9, and the signaling flow for
Fetching Data presented in Figure 10. This characteristic
greatly reduces the immediacy and initiative of the device in the
group. This work proposes another approach, called
“Event-Driven Script Register”. The Host can register with the
Agent Service to cause it to execute particular scripts upon
receiving particular <Key, Value> that are reported by devices.
The Agent Client must also be installed in the Agent Server
hardware to operate as the API to execute Scripts on the Agent
Server. A simple change to the Agent Server IP easily supports
cross-group control, as presented in Figure 11 and flow for
Event Script presented in Figure 12.

TABLE I
AGENT CLIENT API

Agent Client Parameter Note

Argument 1 Agent
Server IP

IP address of the Agent Server.

Argument 2 Port Port number of the Agent Server;
default is 5001.

Argument 3 Command FETCH: Get specific data from
Agent Server.

 REGISTER: Register the
Event-Driven Script.
ACTION: Directly drive the device
by specified action.

Argument 4 ID ID = IDValue: Define ID for the
Device.

Argument 5 REPORT REPORT = KEY:
 Command = FETCH: Return the
Value that corresponds to the Key.
 Command = REGISTER: Trigger
the corresponding Script when the
Agent Server receives the <Key,
Value> from Device.
 ACTION = deviceAction:
 Command = Action: This
parameter specifies the contents of
the drive.

Argument 6 ACTION SCRIPT = ScriptFilePath:
 Command = REGISTER: This
parameter specifies the path of the
Event-Driven Script.
 CLEAR = [True | False]:
 Command = FETCH: This
parameter indicates whether the
<Key, Value> record in the Agent
Server should be cleaned when
received.

2327-4662 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/JIOT.2015.2483023, IEEE Internet of Things Journal

 6

Fig. 13. Event Script Block Diagram

Fig. 14. Example of Host Polling Script

Fig. 15. Device Simulation Script

IV. SYSTEM APPLICATIONS

The infrastructure and scripts for proposed simulations will
complete in this section. The registration of the script on
Host-side, and assign two ports of the interfaces on Agent
Server-side to verify the RFID TAG values and then trigger
Event-Driven script to issue door events. In this work, RFID
TAG access control is difficulty on implementation to simulate
the proposed ScriptIoT and verify the feasibility.

A. Infrastructure

Two laptops are used for simulation, as presented in Figure
14. Laptop A on the left is used to simulate the RFID reader and
the lock on a door, which is connecting to the Agent Service on
that laptop. Laptop B on the right is used to simulate the Host.

B. Polling script

This case is an actual access simulation system. The Host
continuously polls the TAG values that are scanned by the
RFID reader and makes judgments. If the received expected,
then the code unlock the door through the Agent Client.

Fig. 16. Example of Event-Driven Script

Fig. 17. Event-Driven Script--Agent Server Running Screen Capture

1) Host-side
Host-side refers to the script template on the Host, presented

in Figure 14.
2) Device-side
a) The RFID is used to simulate as report function, allowing the
Reader continuously to report TAG values between
“FFFF8888CCCC0000” and “FFFF8888CCCC0007”.
b) Simulate unlocking of the door. The action “OPEN” is supported,
and a beep sound indicates that the door has been unlocked.
c) Simulate the script of device, as presented in Figure 15. RFID
reader and door device are simulated, and the devices and some literal
descriptions can be set according to the parameters below.
3) Agent Server-side

The Agent Server can be activated by simply assigning to
two ports of the interface, Port-5000 for all devices and
Port-5001 to serve the Agent Client. The Agent Server
indicates that two devices are connected and that it has begun
receiving TAG values.

C. Event-Driven Script

This case is identical to except that the polling script of the
Host is replaced with the Event-Driven script. The task of the
Host is just completed following the registration of the script,
such that it does not consume anymore operating resources of
the Host. When the received TAG is one of the pre-set values
“FFFF8888CCCC0000” and “FFFF8888CCCC0005”, the
Event-Driven script is triggered to lock the door. As presented
in Figure 16, the <Key, Value> are proposed by the Agent
Server to trigger the event. Figure 17, once the TAG that is
reported by the device is a pre-set value FFFF8888CCCC0000
or FFFF8888CCCC0005, the Agent Server will trigger the
Event-Driven Script, which will send out the command to the
Agent Server through the Agent Client to unlock the door.

2327-4662 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/JIOT.2015.2483023, IEEE Internet of Things Journal

 7

Fig. 18. Cost analysis result of ScriptIoT

V. PERFORMANCE ANALYSIS

The architecture that is proposed in this work makes some
sacrifices to preserve considerable flexibility and expandability.
This section assesses the performance in processing time as
cost of the ScriptIoT Framework and the C code program that
are herein.

A. Cost analysis

In order to analysis the cost of each Event-Driven script
register, Fetch Data, and Device Action in the proposed
ScriptIoT framework. The detailed signaling flow of are shown
in previous section. Then, the following parameters are used to
analysis the cost:

By applying the parameter to the, the cost can are shown as
the following equations: The cost of Register Event-Driven is

2(Ps+Pc)+2α. (1)
The cost of Fetch Data is

3(Ps+Pc)+4α. (2)
The cost of Device Action is

(2Pc+Ps)+2α. (3)
The computing power or resource of Agent Server and Agent

Client are different. From the cost analysis in Figure 18, which
shows different ratio of computing power of client and server.
Table 2 presents the cost parameters. The Ps is assumed with
value 1, which means maximum computing power. The
parameter α is neglected is this analysis due to the very little
time. Also, the range of Pc is changing from 1 to 10, which
means the computing power are from the 100% same with Ps to
lowest 10% Ps.

The result shows that with higher Ps and Ps ratio, which
means the Agent Client is the same computing power with
Agent Server, would get loser cost and vice versa. Moreover,
the cost overhead exists when the computing power of client is

Fig. 19. CPU Loading Comparison

Fig. 20. Memory Usage Comparison

almost the same with server. The impact of overhead presents
in the implementation section by comparing different codes.

B. Code performance analysis

To be assessed, the program code must meet at least the
following three criteria.
1) Bulk access to the Agent Server is required to determine

the difference between access by Script through the Agent
Client and direct access by the C code program.

2) The Script and the C code must be used to simulate
overhead associated with the same functions, other than
accessing the Agent Server. In this case: the overhead of
calculating the time difference is considered, and C code
and script are used to implement this function.

3) The C code program is obtained by slightly modifying the
source code of the Agent Client to reduce the difference
between both sides in implementation.

Then, an experiment with the following steps is performed:
1) The Agent Server is activated to simulate 50 RFID readers,

each reporting one set of TAG values per second.
2) The C code program and Script Fetch Agent Server are

activated simultaneously 5000 times.
3) The performance and resources of the systems are

monitored ten times, once every 1s.
4) When the number activations have reached 5000 times, the

time difference between the C code program and script is
calculated.

TABLE II
COST PARAMETERS

Parameter Note

Ps Agent Server/Local processing time

Pc Agent Client/Host processing time

α Transmission Delay

2327-4662 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/JIOT.2015.2483023, IEEE Internet of Things Journal

 8

The performance statistics are obtained as described in Table
3 with mean time consumption, average CPU loading, and
memory consumption. And the comparison with Host and
Agent Server, as presented in Figure 19 and Figure 20. The
Agent Client uses approximately 388 Kbytes, while the
environment of the Bash shell will require approximately 1184
Kbytes.

The average research statistics have indicated that:
1) The memory consumption by ScriptIoT, which is the

memory used total capacity of its calling upon Agent Client
is 1854833.

2) The memory capacity used by ScriptIoT can be obtained
from the basic overhead of the Bash shell, as 670833.

3) Memory usage rate is 670833/571667=1.17.
Herein the framework that is based on script leads to a 13%

greater CPU loading; consumes 3% more time, and consumes
17% more memory than that which uses the C code program.

VI. CONCLUSION

This work proposes an Agent that can use descriptive
language to establish logistic network application architecture
for diverse logistic network devices on a huge scale. The
universal definition of IoT fundamental class is used to achieve
the group-based delegation of IoT devices to the Agent Server.
The Host side can use the well-known shell script to access the
Event-Driven Agent Client of the Agent Server to control the
configuration settings for collaboration within the entire
logistic network. The script mechanism is proposed to resolve
the issue of Host polling. The script that corresponds to the
event of a certain device will be registered, such that the Agent
can process the event with immediate response. The Host is not
involved following the registration so that it does not use Host
operating resources. This work proved that, even though the use
of script results in the consumption of 3% more time, 13% more
CPU resources, and 17% more memory than C code program, it
simplifies the development and maintenance process while
maintain its expandability and functionality. This framework
contributes to large-scale logistic network applications.

REFERENCES
[1] J. Gubbia, R. Buyyab, S. Marusica and M. Palaniswamia, “Internet of

Things (IoT): A Vision, Architectural Elements, and Future Directions,”
Future Generation Computer Systems, Vol.29, No.7, pp.1645-1660,
September 2013.

[2] http://www.ibm.com/smarterplanet/
[3] Qing Shen, Yu Liu, Zhijun Zhao, Song Ci, and Hui Tang, “Distributed

hash table based ID management optimization for internet of things,” In
Proceedings of the 6th International Wireless Communications and
Mobile Computing Conference (IWCMC '10), pp.686-690, Caen, France,
July 2010.

[4] Jin Mitsugi, Shigeru Yonemura, Hisakazu Hada, and Tatsuya Inaba,
“Bridging UPnP and ZigBee with CoAP,” Proceedings of Conference on
Emerging Networking Experiments and Technology, Tokyo, Japan,
December 2011.

[5] Kashif Dar, Amirhosein Taherkordi, Romain Rouvoy, and Frank Eliassen,
“Adaptable service composition for very-large-scale internet of things
systems. In Proceedings of the 8th Middleware Doctoral Symposium
(MDS '11), Lisbon, Portugal, December 2011.

[6] Jing He, Yanchun Zhang, Guangyan Huang, and Jinli Cao, “A smart web
service based on the context of things,” ACM Transaction of Internet
Technology, Vol.11, No.3, pp.13-22, 2012.

[7] S. Bendel, T. Springer, D. Schuste, A. Schill, R. Ackermann and M.
Ameling, “A Service Infrastructure for the Internet of Things based on
XMPP,” Proceedings of the IEEE International Conference on Pervasive
Computing and Communications Workshops, pp.385-388, San Diego,
USA, March 2013.

[8] M. X. Dong, K. Ota, L. T. Yang, S. Chang, H. Zhu, and Z. Y. Zhou,
“Mobile agent-based energy-aware and user-centric data collection in
wireless sensor networks,” Computer Networks, vol. 74, pp. 58–70, 2014.

[9] Pachube opens the Internet of things to end users [Online]. Available:
http://www.information-age.com/industry/start-ups/1678543/pachube-op
ens-the-internet-of-things-to-end-users.

[10] Violet's Mirr:or: Internet of Things Via RFID [Online].
Available:http://radar.oreilly.com/2008/09/violets-mirror-internet-of-thi.
html.

[11] Luigi Atzori, Antonio Iera and Giacomo Morabito: The Internet of Things:
A survey. Computer Networks 54 (2010) 2787–2805

[12] H. Hada and J. Mitsugi, “EPC-based Internet of Things Architecture,”
Proceedings of the IEEE International Conference on RFID-Technologies
and Applications, pp.527-532, Sitges, Spain, September 2011.

[13] S.M. Hong, D.Y. Kim, M.K. Ha, S.H. Bae, S. J. Park, W.Y. Jung and J.E.
Kim, “SNAIL: an IP-based Wireless Sensor Network Approach to the
Internet of Things,” Proceedings of the IEEE Wireless Communications,
Vol.17, No.6, pp.34-42, December 2010.

[14] P. Mahalle, S. Babar, N. R. Prasad and R. Prasad, “Identity management
framework towards internet of things (IoT): Roadmap and key
challenges,” In Recent Trends in Network Security and Applications,
Vol.89, pp.430-439, Chennai, India, July 2010.

TABLE III
CASE 1 SUMMARY TABLE

2327-4662 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/JIOT.2015.2483023, IEEE Internet of Things Journal

 9

[15] T. Li and C. Liping, “Internet of things: Principle, framework and
application,” Future Computing, Communication, Control and
Management, Vol.144, pp.477-482, 2012.

[16] S. Bandyopadhyay, M. Sengupta, S. Maiti and S. Dutta, “Role of
middleware for internet of things: A study,” International Journal of
Computer Science and Engineering, Vol.2, No.3, pp.94-105, Aug. 2011.

[17] Conzon, T. Bolognesi, P. Brizzi, A. Lotito, R. Tomasi and M.A. Spirito,
“The VIRTUS Middleware: An XMPP Based Architecture for Secure IoT
Communications,” Proceedings of the IEEE International Conference on
Computer Communications and Networks, pp.1-6, Munich, Germany,
July 2012.

[18] M. Bazzani, D. Conzon, A.Scalera, M.A. Spirito and C.I. Trainito,
“Enabling the IoT Paradigm in E-health Solutions through the VIRTUS
Middleware,” Proceedings of the IEEE International Conference on Trust,
Security and Privacy in Computing and Communications, pp.1954-1959,
Liverpool, UK, June 2012.

[19] G.C. Fox, S. Kamburugamuve and R.D. Hartman, “Architecture and
Measured Characteristics of a Cloud based Internet of Things,”
Proceedings of the International Conference on Collaboration
Technologies and Systems, pp.6-12, Denver, USA, May 2012.

[20] P. Castellani, M. Dissegna, N. Bui and M. Zorzi, “WebIoT: A web
application framework for the internet of things,” In Wireless
Communications and Networking Conference Workshops (WCNCW),
pp.202-207, Paris, French, April 2012.

[21] Sehgal, V. Perelman, S. Kuryla and J. Schonwalder, “Management of
resource constrained devices in the internet of things,” Communications
Magazine, IEEE, Vol.50, No.12, pp.144-149, Dec. 2012.

[22] S. Alam, M.M.R. Chowdhury and J. Noll, “SenaaS: An Event-driven
Sensor Virtualization Approach for Internet of Things Cloud,”
Proceedings of the IEEE International Conference on Networked
Embedded Systems for Enterprise Applications, pp.1-6, Suzhou, China,
November 2010.

[23] S. Babar, A. Stango, N. Prasad, J. Sen and R. Prasad, “Proposed
Embedded Security Framework for Internet of Things (IoT),”
Proceedings of the International Conference on Wireless Communication
Vehicular Technology Information Theory and Aerospace & Electronic
Systems Technology, pp.1-5, Chennai, India, February 2011.

Han-Chuan Hsieh was received a B.S.
degree in Electrical Engineering from
National Taipei University of Technology
(NTUT), in 1998, and an M.S. degree in
Communication Engineering from Tatung
Institute of Technology, Taipei, Taiwan, in
2008. He is currently a PhD candidate in
Department of Electrical Engineering of
National Taiwan University of Science and

Technology (NTUST). His major interests are in Long Term
Evolution-Advanced, Internet of Things, Software Defined
Networking and Network Functions Virtualization in 5G.

Kai-Di Chang received his B.S. degree in
electrical engineering from National Dong
Hwa University, Taiwan in 2007. He
received his Master’s degree in institute of
computer science and information
engineering at National I-Lan University,
Taiwan. He is currently pursuing his Ph.D.
degree in electrical engineering at National
Taiwan University of Science and

Technology. He is a student member of IEEE. His research
interests include Mobile Communications, Cloud Computing,
IP Multimedia Subsystem, Internet of Things and Network
Security. Also, he is a researcher, works at United Daily News
Group Co., Ltd, Taipei.

Ling-Feng Wang was received a B.S.
Degree in Electrical Engineer form
National Yunlin University of Science
and Technology (NYUST) in 1997 and an
M.S degree in Electrical Engineering and
Computer Science from Nation Taiwan
University of Science and Technology in
2013. He interests in IoT and embedded
system applications.

Jann-Liang Chen received the Ph.D.
degree in Electrical Engineering from
National Taiwan University, Taipei,
Taiwan in 1989. Since August 1997, he
has been with the Department of
Computer Science and Information
Engineering of National Dong Hwa
University, where he is a professor and
Vice Dean of Science and Engineering
College. Prof. Chen joins the Department

of Electrical Engineering, National Taiwan University of
Science and Technology, as a full professor now. His current
research interests are directed at cellular mobility management,
digital home network, telematics applications, cloud computing
and RFID middleware design. Prof. Chen is an IEEE Senior
Member and UK BCS Fellow. He has published more than 150
papers in journals and conferences, and also holds several
patents.

Han-Chieh Chao is a joint appointed Full
Professor with the Department of
Computer Science and Information
Engineering and Electronic Engineering,
National Ilan University, I-Lan, Taiwan
(NIU). He is serving as the President since
August 2010 for NIU as well. He was the
Director of the Computer Center for

Ministry of Education Taiwan from September 2008 to July
2010. His research interests include High Speed Networks,
Wireless Networks, IPv6 based Networks, Digital Creative
Arts, e-Government and Digital Divide. He received the M.S.
and Ph.D. degrees in electrical engineering from Purdue
University in 1989 and 1993, respectively. He has authored or
co-authored 4 books and has published about 400 refereed
professional research papers. He has completed more than 100
M.S.E.E. thesis students and 4 Ph.D. students. Dr. Chao has
been invited frequently to give talks at national and
international conferences and research organizations. Dr. Chao
is the Editor-in-Chief for IET Networks, the Journal of Internet
Technology, the International Journal of Internet Protocol
Technology, and the International Journal of Ad Hoc and
Ubiquitous Computing. Dr. Chao has served as the guest
editors for Mobile Networking and Applications (ACM
MONET), IEEE JSAC, IEEE Communications Magazine,
IEEE Systems Journal, Computer Communications, IEE
Proceedings Communication, the Computer Journal,
Telecommunication Systems, Wireless Personal
Communications, and Wireless Communications & Mobile
Computing. Dr. Chao is an IEEE senior member and a Fellow
of IET (IEE).

