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Allocation of Heterogeneous Resources of an IoT
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Abstract—Internet of Things (IoT) devices can be equipped
with multiple heterogeneous network interfaces. An overwhelm-
ingly large amount of services may demand some or all of
these interfaces’ available resources. Herein, we present a precise
mathematical formulation of assigning services to interfaces with
heterogeneous resources in one or more rounds. For reasonable
instance sizes, the presented formulation produces optimal so-
lutions for this computationally hard problem. We prove the
NP-Completeness of the problem and develop two algorithms to
approximate the optimal solution for big instance sizes. The first
algorithm allocates the most demanding service requirements
first, considering the average cost of interfaces resources. The sec-
ond one calculates the demanding resource shares and allocates
the most demanding of them first by choosing randomly among
equally demanding shares. Finally, we provide simulation results
giving insight into services splitting over different interfaces for
both cases.

I. I NTRODUCTION

O ver the last few years we have witnessed the technologi-
cal revolution represented by the Internet of Things (IoT)

[2]. A massive number of devices with different capabilities
such as sensors, actuators, smart objects, and servers can
interconnect and give rise to the development of compelling
services and applications. Each IoT device can be perceived
as an edge-node of a cyber-physical ecosystem with the ability
to dynamically cooperate and make its resources available in
order to reach a complex goal i.e., the execution of one or
more tasks assigned to the network [3].

Although available resources (exchangeable energy, pro-
cessing power, storage capabilities etc.) are often limited,
IoT devices may be called on to provide a large variety of
services. It is evident that an efficient allocation of these IoT
resources would improve the performance of this network.
Optimal resource allocation for IoT is not trivial considering
its distributed and heterogeneous nature.

In this paper we assume that an IoT device consists of
multiple network interfaces of heterogeneous technologies. We
consider that each of them has a set of non-interchangeable
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Fig. 1. An instance of an allocation on an IoT device with threeinterfaces
(i = 1, 2, 3) offering three different resources (k = 1, 2, 3, visualized with
red, green, and blue in the center of the figure).Left: Before the allocation,
two services demand resources; the first (yellow), and the second (orange)
services demandd1 = (8, 10, 13) and d2 = (8, 5, 0) of these resources
respectively.Right: After the allocation, two service splits have happened:
the demands of the first (yellow) service are served by the second and the
third interface, while the second (orange) service’s resources are split into
two interfaces; the first and the third one. Note the leftover capacities of the
allocation: one unit of the first (red) resource of the first interface and four
units of the second (green) resource of the second interface.

resources which are in demand by a given set of services.
Considering that the services are flexible in that they can
be split between more than one interface, we model the
assignment of them to the interfaces (see Fig.1). We call this
problemService-to-Interface Assignment (SIA)and character-
ize its complexity. We also provide fast algorithms which we
compare with the optimal solution.

A. Related Work

Heterogeneity of networking systems with multiple and
different interfaces has been extensively studied. Existing
applications in 4G/Wi-Fi heterogeneous wireless networks,
related to this work, are presented in [4]. Therein, the authors
present methods of offloading tasks such as object recognition
in a series of images, features matching, and computing
descriptors to accelerate the required tasks and avoiding traffic
overload. Similarly, the authors of [5] propose a framework to
disseminate content such as social network updates, notifica-
tions, and news feeds. A framework for reliable networking,
considering also Free Space Optic (FSO) connections and
Optical Fibers, is presented in [6].
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Resource Allocation (RA) has been extensively studied in
wireless networks. In [7], models that capture the cross-layer
interaction from the physical to transport layers in wireless
network architectures such as cellular, ad-hoc and sensor
networks as well as hybrid topologies are presented. These
models consider the time varying nature of arbitrary networks
with different traffic forwarding modes, including datagrams
and virtual circuits. Information and Communications Tech-
nology (ICT) systems may allocate resources according to
some performance metrics such as efficiency and fairness
[8, 9], or based on traffic type [10]. Such objectives can
often be conflicting and it may be very hard to simultaneously
achieve them to a satisfactory degree [9]. Ismailet al.have also
published a work where constant and variable bit rate services
with priorities are considered [11], such that each network
gives a higher priority on its resources to its own subscribers
rather than other users.

An example IoT application with strict demand constraints
over resources to serve multiple users is presented in [12].
The proposed framework is also appropriate to many RA
settings because it provides ways to coordinate users with
delay preferences using only limited information. A distributed
protocol based on consensus is proposed in [17] to solve the
RA problem and management in IoT heterogeneous networks.
This protocol is robust to link or node failures in dynamic
scenarios. In that paper, an IoT scenario is presented with
nodes pertaining to a given IoT task by adjusting their task
frequency and buffer occupancy.

Variable channel conditions and users’ demands tie RA in
with Quality of Service (QoS) requirements and guarantees.
The research has offered different angles on tackling RA. For
instance, Tanet al. [13] present methods and algorithms to
maximize network utility for three different QoS requirement
scenarios. The traditional QoS attributes such as throughput,
delay and jitter are not necessarily suited to IoT, but can still be
relevant depending on the application [14–16]. Thus, the QoS
in IoT is still not well-defined, mainly because an IoT service
cannot be defined as the simple acquisition and processing of
information and the decision making process in identification
and communication [17]. In IoT, more QoS attributes such
as information accuracy, privacy, and timelinesswhich rely
fundamentally on thereliability of the network connectivity,
availability of device energy, andoverall resourcesmay con-
siderably matter [18, 19].

Additionally, some IoT services are required to be recon-
figurable and composable. Liet al. [20] propose a three-layer
QoS scheduling model for QoS-aware IoT service. At the
application layer, the QoS schedule scheme explores optimal
service composition by using the knowledge provided by each
service. Contemporary applications of RA can be found in
[21], where the impact of inter-user interference in Wireless
Body Sensor Networks (WBSNs) is studied.

The heterogeneity of IoT devices and the resources they
provide to developing IoT applications are at the core of our
work. Recent architectural frameworks (see e.g., [22, 23] and
the references therein) call for de-verticalization of solutions,
with applications being developed, independently of the end
devices, which may be anything from a sensor to the latest

smartphone.
We focus on IoT networking devices having multiple,

different interfaces, each of which has access to a collection
of finite heterogeneous resources such as downlink data rate,
buffer space, CPU interrupts, and so forth. We also consider
that each service is characterized by a set of demands that can
be served by the resources available on one device’s interfaces.
Assuming a middleware has already assigned a service onto a
given device, in this work we address the problem of flexibly
mapping the service resource demands onto the interfaces of
that device. The novel notion of flexibility of the services lies
in the assumption that a demand may be served by more
than one of the available interfaces, in case the available
resource does not suffice, or the cost of utilizing resources
over different physical interfaces proves beneficial. From the
point of view of a service, the mapping of resources from the
device’s interfaces to its demands could be viewed as a virtual
serving interface.

B. Contribution and Paper Layout

In this work, we present a mixed-integer linear program-
ming (MILP) formulation of the problem of assigning services
to interfaces with heterogeneous resources. The goal is to
minimize the total cost of utilizing the interfaces’ resources,
while satisfying the services’ requirements. We consider the
total cost as the sum of the cost of utilizing each resource
unit along with the activation of each interface being en-
gaged to serve a service. An example of an instance of this
assignment problem can be seen in Fig. 1. We also prove
the NP-Completeness of the problem. For reasonable instance
sizes, the presented formulation produces optimal solutions.
We present two cases; (i) when the interfaces have enough
available resources to serve the demands in one round, and
(ii) when the interfaces need to serve the demands in multiple
rounds i.e., serving a partial amount of the demands in each
round. We develop two algorithms to approximate the optimal
solution for large instance sizes. The first algorithm allocates
the most demanding service requirements first, taking into
consideration the average cost of utilizing interface resources,
while the second one calculates the demanding resource shares
and allocates the most demanding of them first by choosing
randomly among equally demanding shares. Finally, we pro-
vide simulation results giving insight into service splitting over
different interfaces for both cases.

The rest of the paper is organized as follows. In Section
II, we describe the MILP formulation of assigning services to
interfaces with heterogeneous resources, where the allocation
takes place in one round i.e., the interfaces capacities can
accommodate the whole resource demands and the problem
is feasible. Herein lies the NP-Completeness proof of the
problem. In Section III, we analyze the algorithms we derived
to approximate the optimal solution to the problem. Section IV
provides the extension of the problem to more than one round.
Additionally, we prove a proposition for the number of rounds
required to ensure feasibility. In Section V, we present the
results of our experiments for each of the aforementioned cases
and for different configurations of services and interfaces’
parameters. Finally, Section VI concludes the paper.
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TABLE I
NOTATION

Symbol Description
K the set ofK resources
I the set ofI interfaces
J the set ofJ services

xijk amount of resourcek on interfacei used by servicej
cik the unit utilization cost of resourcek on interfacei
Fi the activation cost of interfacei
Aij binary indicator ofi-th interface’s activation for servicej
djk j-th service’s demand for resourcek
bik k-th resource capacity of interfacei
aijk the overhead for utilizing resourcek on interfacei

for servicej

II. SYSTEM MODEL

We consider a set of interfacesI = {1, . . . , I}. The
interfaces are characterized by a setK = {1, . . . ,K} of
resources associated with them (for example CPU cycles,
downlink data rate, buffer size). We assume that each service
j ∈ J = {1, . . . , J} is associated with aK-dimensioned
demand integer vectordj. Likewise, each interface has aK-
dimensioned capacity (resource availability) integer vectorbi.

We consider the case that services are flexible in the
sense that they can be realized by splitting their demands on
multiple interfaces. To model the burden that is imposed on
the operating system of the device to handle such splits, we
introduce a fixed-cost factor: the activation cost per interface.
This is employed as a parameter to gauge the number of splits.
Aside from this fixed cost, we also consider a utilization cost
per unit of resource used on an interface.

Finally, to state the problem, we make the assumption that
the given assignment is feasible i.e., the interface capacities
are enough to serve the requested demands, which can be
expressed as

∑

j∈J

∑

k∈K

djk ≤
∑

i∈I

∑

k∈K

bik, ∀k ∈ K.

. In Section IV, this assumption is removed for problem
extension.

Our goal is to serve all demands by assigning them to the
physical interfaces, minimizing the total cost of using them,
namely the total resource utilization and activation cost. We
call this theService-to-Interface Assignment (SIA)problem.

In the model that follows, we use the variablexijk for the
amount of thek-th resource of thei-th interface utilized by
servicej. We consider these values to be integer such as the
ones in the demands vectors. We denote bycik the per-unit
cost to utilize resourcek on interfacei.

The activation cost of interfacei is Fi and the auxiliary
variableAij becomes one if and only if there is at least one
resource utilizing interfacei for servicej.

We also assume that each servicej incurs an overhead on
the resource it utilizes, which may vary by interface in order
to capture MAC and PHY layer practical considerations; this
is denotedaijk. Thus, our model amounts to:

min.
∑

k∈K

∑

i∈I

cik
∑

j∈J

xijk +
∑

i∈I

∑

j∈J

FiAij , (1)

s.t.
∑

i∈I

xijk = djk, ∀j ∈ J , ∀k ∈ K, (2)
∑

j∈J

(1 + aijk)xijk ≤ bik, ∀i ∈ I, ∀k ∈ K, (3)

xijk ≥ 0, ∀i ∈ I, ∀j ∈ J , ∀k ∈ K, (4)

Aij = 1

(

∑

k∈K

xijk

)

, ∀i ∈ I, ∀j ∈ J , (5)

where the objective of (1) is to minimize the total cost of
two terms: the first aims to capture the total cost incurred by
the utilization of the resources over heterogeneous interfaces,
while the second term captures the cost introduced by splitting
the service over multiple interfaces, since with each additional
interface utilized the overall cost is encumbered by another
activation costF -term. The set of constraints in (2) ensures
that all services demands are met, while the constraints of (3)
ensure that the service allocation will be performed on inter-
faces with available resources. In (5) the1(.) symbol denotes
the characteristic function becoming one if the argument is
positive, zero otherwise, thus,Aij becomes one if one resource
of servicej is served by interfacei. A summary of the notation
we use can be found in TABLE I.

Theorem. The SIA is NP-Complete.

Proof. The Partition Problem (PP)amounts to determining
if a set of N integers, of sumS can be partitioned into
two subsets, each having a sum ofS/2. The PP is a well-
known NP-Complete problem [24]. We base the proof on the
construction of an instance of the problem from any instance
of the Partition Problem, as follows.

Assume that we have only one resource type on the inter-
faces available(K = 1). Let each element in the set of the PP
be a service of the SIA problem instance and the value of each
element be the resource demanddj of the correspondingj-th
service. Additionally, let there be just two interfaces(I = 2),
each with resource availabilitybi = S/2, ∀i ∈ {1, 2}. We set
the overhead coefficients to zeroαij = 0, ∀i ∈ {1, 2}, ∀j ∈
{1, . . . , J} and the utilization cost to zero likewisecij = 0,
while we fix the interface activation cost to one:Fij = 1.

The constructed SIA instance is feasible, because (i) by con-
struction the total resource availability on the two interfaces
suffices to serve the total demand and (ii) splitting service
demand on more than one interfaces is allowed.

Consider a solution of the constructed SIA instance where
no splits occur. If such a solution exists, then each service is
assigned to one interface and by (1) the cost will be equal toJ .
Furthermore, since any service split in two interfaces gives a
cost of two, if splits exist in a solution, the cost will be at least
J + 1. Hence, by the construction of the instance, it becomes
obvious that no value lower thanJ can be achieved. The
recognition version of the SIA instance is to answer whether
or not there is a solution for which the cost is at most some
value, in our caseJ .
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In any solution of the SIA the service demand assigned
on each interface will beS/2. If there is no split of services
in a solution, then their assignment to the two interfaces is
a partition of the integers in the PP with equal sum. Hence,
if the answer to the original PP instance is positive and we
map the services to the elements of the solution subsets, then
by assigning the services to the two interfaces, no splits will
exist and the cost will beJ . mapping to the elements of the
solution subsets Thus, the answer to the recognition version of
the SIA instance is yes. Conversely, if the answer to the SIA is
yes, then there cannot be a split service so the assignment of
services to the two interfaces is a valid PP solution. Therefore,
solving the constructed SIA instance is equivalent to solving
an arbitrary PP instance.

An example allocation has been depicted in Fig. 1. Two
services demand three different resources of an IoT device’s
interfaces. The network interfaces offer three different re-
sources with enough capacities in total to serve the resource
demands of both services in one round. Note that it is possible
that each resource type is not available in each interface and
that a service may not demand all resource types.

Although the search space for theSIA problem in practical
implementations will be small, meaning an MILP solver
would be able to provide the optimal answer in milliseconds,
the assumption of the functionality of such a solver on a
constrained IoT device points to the need for a fast sub-optimal
algorithm. To this end, we have devised a solution with two
variants that are described in Section III.

III. A LGORITHMIC SOLUTION

We have devised two algorithms which approximate the
optimal solution ofSIA. Both algorithms assign service de-
mands to interfaces’ capacities using interfaces’ utilization and
activation costsc andF respectively. They differ in the way
they choose which resource demand to serve first.

The main idea of the first algorithm, which we call RAND-
INIT-ALLOCATION, is to first serve the services that demand
the highest resource shares. Serving the highest demands first
will employ the largest amount of the least expensive interface
capacities. As a result, it is highly probable that the total cost
will be minimized. The algorithm then proceeds serving the
demands with lower resource shares and so on. The serving
order among equal resource shares is chosen randomly.

The first four lines of the algorithm (see Algorithm 1)
calculate the resource shares of every demand. They do so by
dividing each demand by the maximum resource demand of
its type. The result is a normalized demands arrayd

′

. Hence,
0 ≤ d

′

jk ≤ 1, ( ∀j ∈ J ), ( ∀k ∈ K).
Procedure RANDOM-INIT-EQUAL-SHARES in Line 5 of

the algorithm takesd
′

as input and finds which services
demand equal resource shares. For these services it randomly
chooses the order by which they will be served. The result is
a vector (ds) with the order by which the demands will be
served.

Since there is now a data structure (ds) with the ordering of
the demands, RAND-INIT-ALLOCATION can proceed with
each demand ofds beginning from the first one, and allocate

it to the available interface resources. The initialization of
two auxiliary variables follows in Lines6− 7. The total cost
is saved into variabletotalCost. Initially, the 2D array A
consists ofI ∗J zero elements. Later, elementAij will be set
to one if servicej has activated interfacei.

The block of Lines8 − 23 allocates each service demand
ds to the interfaces, beginning by serving the most demanding
one first. In the beginning, the algorithm locates which service
j requested resourcek (Line 9) mapping the vectords to the
2D coordinates ofdjk. Then, it searches for the two interfaces
with the lowest utilization costs per unit. The corresponding
indices are saved into variablesi′ and i′′ (Lines 10 and 11).
Next, it tries to allocate the demand to the most inexpensive
— by utilization cost per unit — interface. If the interface
capacities are enough (Line12), then the allocation happens
by the ALLOCATE procedure: the capacities are decreased
appropriately by the requested demand, thetotalCost is
updated, and the binary variableA(i′, j) is set to one to
denote that servicej has activated interfacei′. If the lowest-
cost interface (i′) cannot serveds, then the algorithm tries to
allocate it to the interface with the next lowest utilization cost
per unit (i

′′

), following the appropriate allocation steps (Lines
14− 15).

In the event both of these attempts fail, RAND-INIT-
ALLOCATION investigates the possibility of splitting the
requested service demands into two or more interfaces (Lines
16− 22). Two costs are calculated in this case. NON-SPLIT-
COST calculates the cost of allocating the demands to the
interface that can serve them fully with the lowest possible
cost (Line17). SPLIT-COST calculates the cost of splitting
the demands among interfaces with available resources in
descending order of cost (Line18). In case that the two
lowest-cost interfaces can only partially serve the demand,
the third most inexpensive interface is engaged and so forth.
Subsequently, the minimum of these two costs (Line19)
specifies the demand allocation (Lines19− 22). Finally, after
every demand has been served, the activation cost is added to
the totalCost, so that this variable stores the actual total cost
of the resulting allocations (Line23).

To evaluate the effect of the randomized selection of Lines
1− 5, we also introduced a sophisticated ordering taking into
account the average cost of the requested demands in deciding
which resource demand to serve first. Algorithm 2 presents this
variant, which we named AVERAGE-COST-ALLOCATION.

The new algorithm differs in the order it serves the requested
resource demands. After performing demand normalization as
RAND-INIT-ALLOCATION (Lines 1 − 4), the AVERAGE-
COST-ALLOCATION calculates the average cost of each
resource type by producing the dot product of (column) vectors
ck and bk, which representk-th resource’s utilization cost
(per unit) and capacities over all interfaces respectively (Lines
5 − 7). Afterwards, element(j, k) of matrix C will hold the
average cost of resourcek; therefore for a fixedk, the value
of Cjk is the same for eachj.

Line 8 produces the element-wise (Hadamard) product of
matricesd

′

andC. The resulting elementsdjk of matrixd will
hold the average cost of the demanded resourcek of service
j. As a consequence, we can use the information of matrix
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Algorithm 1 RAND-INIT-ALLOCATION
Input: Services demandsd, interfaces utilization costs.c,
activation costsF, and interfaces capacitiesb.
Output: Services allocation to minimize utilization and
activation cost of interfaces, while all services demands are
satisfied.

1: for k = 1 . . .K do
2: m = max

j∈J
djk;

3: for j = 1 . . . J do
4: d

′

jk = djk/m;

5: ds = RANDOM-INIT-EQUAL-SHARES(d′);
6: totalCost = 0;
7: A = 0IXJ ;
8: for s := 1 . . . J ∗K do
9: Let djk be the demand that corresponds tods.

10: i
′

= min
i∈I

cik;

11: i
′′

= min
i∈I,i6=i

′

cik;

12: if djk ≤ b(i′ )k then
13: [totalCost, A] =ALLOCATE(djk, b(i′ )k);
14: else if djk ≤ b(i′′ )k then
15: [totalCost, A] =ALLOCATE(djk, b(i′′ )k);
16: else
17: [nonSplitCost, l] =

NON-SPLIT-COST(djk, b, c, F,A);
18: [splitCost, l

′

] =SPLIT-COST(djk, b, c, F,A);
19: if nonSplitCost ≤ splitCost then
20: [totalCost, A] =ALLOCATE(djk, blk);
21: else
22: [totalCost, A] =ALLOCATE(djk, b(l′)k);

23: totalCost = totalCost+
∑

i∈I

∑

j∈J FiAij ;

d to infer the most demanding resources. This is done by
reshaping the latter2D matrix to a vectords and sorting it
by descending order (Line9).

From there, the remaining part of the algorithm is the same
as RAND-INIT-ALLOCATION, which sequentially processes
ds elements and allocates them to the interfaces (Lines6−23
of Algorithm 1).

Regarding the required computational steps, the RAND-
INIT-ALLOCATION algorithm needs2|K||J | steps to calcu-
late the resource shares (Lines1 − 4), where|.| is the cardi-
nality of the included set. RANDOM-INIT-EQUAL-SHARES
(Line 5) requires at most|K||J |log(|K||J |). Line 7 needs
|I||J | steps and lines9− 22 require2|I|+ 2+ |I|+ |I|+ 1
steps, since lines 10 and 11 require|I| steps each, ALLOCATE
is constant (1 step), and both NON-SPLIT-COST and SPLIT-
COST require at most|I| steps. Finally, the summation in
line 23 requires|I||J | steps. Therefore, lines6 − 23, which
are common to both algorithms, require at most|I||J | +
|J ||K|(4|I|+ 3) + |I||J | steps.

Lines 5− 7 of the AVERAGE-COST-ALLOCATION algo-
rithm require|K||J ||I| steps, and line8 of the same algorithm
needs |J ||K| steps to calculate the element-wise product.
Moreover, line9 requires|K||J |(1 + log(|K||J |)) steps to

Algorithm 2 AVERAGE-COST-ALLOCATION
Input: Services demandsd, interfaces utilization costs.c,
activation costsF, and interfaces capacitiesb.
Output: Services allocation to minimize utilization and
activation cost of interfaces, while all services demands are
satisfied.

1: for k = 1 . . .K do
2: m = max

j∈J
djk;

3: for j = 1 . . . J do
4: d

′

jk = djk/m;

5: for k = 1 . . .K do
6: for j = 1 . . . J do
7: Cjk = (ck · bk)/100;

8: d = d
′

◦ C;
9: Reshaped to vectords and sort it by descending order.

10: Same as Lines6− 23 of Algorithm 1.

reshape and sort the given matrix.
As a result, the first algorithm requires at most

|K||J |(4|I|+log(|K||J |)+5)+2|I||J | steps in total, whereas
the second one requires at most|K||J |(5|I|+ log(|K||J |) +
7)+2|I||J | steps to terminate. To conclude, both algorithmns
areO(|I||K||J |+ |K||J |log(|K||J |)).

IV. A LLOCATION OVER MULTIPLE ROUNDS

In this section, we lift the assumption of feasibility in a
single round. If the allocation of all demands cannot take
place in a single shot (or round), we consider that we will
utilize the same interface capacities for more than one round
to handle the remaining resource demands. Therefore, in the
first round we make an incomplete allocation (that will not
serve all demands) and when these demands have been served
we again employ the same interfaces’ resources for a new
round to serve the remaining demands repeating this process
for as many rounds as necessary.

This simple solution can be implemented by introducing an
integerR > 1 that will be the number of rounds to serve all
demands with the available capacities. We call this problem
multi-round SIAand the difference fromSIA is only in (3),
which now becomes:

∑

j∈J

(1 + aijk)xijk ≤ Rbik, ∀i ∈ I, ∀k ∈ K. (6)

The selection ofR depends on the system designer’s goal.
The number of rounds are affected by the following two
factors: user flexibility versus cost of the solution, and user
flexibility versus duration of the solution (i.e., number of
rounds). Specifically, if a designer is insensitive to the number
of rounds, then in each round the lowest-cost resource will
be allocated. Conversely, if the completion time is of utter
importance, then fewer rounds are necessary, but the resulting
cost is likely to be higher.



2327-4662 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2016.2535163, IEEE Internet of
Things Journal

6

A. Upper and lower bounds for the required number of rounds

The minimum number of rounds,Rmin, to achieve (re-
source demands) feasibility is given by the lower bound
needed to allocate the whole set of demands. If only one
round is enough, the model reduces to that of Section II. In
order to calculate the lower bound, we chooseR such that the
minimum possible number of rounds to allocate the whole set
of demands is used. We find how many rounds are required
to fully serve each resource type’s demands and choose the
maximum of these rounds. Therefore,Rmin = max

k∈K

⌈

Dk

Bk

⌉

,

where Dk ,
∑

j∈J

djk are the total service demands for

resourcek, Bk ,
∑

i∈I

bik are the total capacities of resource

k, and⌈.⌉ is used to denote the ceiling function. Using fewer
rounds thanRmin is not enough to satisfy every demand
constraint and hence the problem becomes infeasible. Lower
interface capacities yield more rounds to serve the requested
resource demands.

If the system designer is interested in the lowest possible
total allocation cost, only the lowest-cost interfaces should be
used in each round. This allocation policy clearly results in
a lower total cost in comparison to the aforementioned one.
However, more rounds may be used. The necessary number of
rounds for this allocation policy,Rmax, is given by choosing
the number of rounds such that in each round we utilize
only the lowest-cost resource and wait until it again becomes
available.

Thus:Rmax = max
k∈K

⌈

Dk

b
(i

′

k
)k

⌉

, wherei
′

k , argmin
i∈I

(cikDk+

Fi).
More thanRmax number of rounds can be used, but the

total allocation cost will not be further decreased, since using
this policy already uses all the available lowest-cost resources
in each round.

The previous analysis leads to the following claim.

Proposition. The number of roundsR for the multi-round SIA
satisfies:

Rmin ≤ R ≤ Rmax (7)

Proof. AssumeDk, Bk, and i
′

k, as defined previously. If (3)
cannot be satisfied, then theSIA is not feasible. In this case,
a workaround is to allow the allocation to take place in more
than one round. In each round all the resources are available
for allocation. Hence, assume there is a positive integerRk >
1 such thatbik < Rkbik, (∀i ∈ I), (∀k ∈ K) is true and
therefore (6) holds, which means that themulti-round SIAis
feasible. Settingaijk = 0 in (6) and decomposing thei′s in
the last inequality yields:

∑

j∈J

∑

i∈I

xijk ≤ Rk

∑

i∈I

bik, (∀k ∈ K)
(2)
⇔

∑

j∈J

djk

∑

i∈I

bik
≤ Rk, (∀k ∈ K) ⇔

Dk

Bk

≤ Rk, (∀k ∈ K). (8)

Letting Rk = ⌈Dk

Bk

⌉ is enough to make (8) hold. Clearly,
the maximum of thoseRk ’s will satisfy (8) as well. Thus,

taking Rmin = max
k∈K

Rk will make (8) hold andmulti-round

SIA become feasible.
For the right-hand side of (7), we will only use the most

inexpensive interface for each resource in each round. Indexi
′

k

calculates which interface offers the most inexpensive cost for
the total demands of resourcek. Therefore, onlyb(i′

k
)k of every

resourcek will be used in each round. Consequently,⌈ Dk

b
(i

′

k
)k

⌉

rounds are required to serve the whole demands (Dk) for
resourcek, using the most inexpensive interface in each round.
From (8) and considering the fact thatb(i′

k
)k ≤

∑

i∈I

bik =

Bk, (∀k ∈ K), we have:

Dk

Bk

≤
Dk

b(i′
k
)k

≤ R
′

k, (∀k ∈ K). (9)

SettingR
′

k = ⌈ Dk

b
(i

′

k
)k

⌉ makes (9) hold i.e., themulti-round

SIA is feasible. The maximum ofR
′

k ’s, which is Rmax =
max
k∈K

R
′

k, makes (6) true andRmin ≤ Rmax.

Next, we will give an example to clarify the previous
concepts.

Example: Consider an IoT device with two interfaces and
Dk, Bk, andi

′

k, as previously defined. The first and the second
interface offerb1 = (20, 25) and b2 = (25, 30) units of (Re-
source1, Resource2) respectively. Hence, the total interfaces’
capacities for the two resources are:(B1, B2) = (45, 55).
Let service demands be(D1, D2) = (

∑

j∈J

dj1,
∑

j∈J

dj2) =

(100, 80) units of these resources in total. Obviously, the total
service demands cannot be accommodated in one round.

Then, the minimum number of rounds to serve the
requested demands are:Rmin = max(⌈D1

B1
⌉, ⌈D2

B2
⌉) =

max(⌈ 100
45 ⌉, ⌈ 80

55⌉) = 3. Note that the calculation ofRmin does
not take into consideration interfaces’ costs.

Now, consider the utilization cost of the first interface for
each unit of (Resource1, Resource2) to be c1 = (35, 45).
Similarly, the utilization cost per unit of the second interface is
c2 = (30, 50). Additionally, the interfaces activation costs are
F1 = 100 andF2 = 210 for the first and the second interface
respectively.

Then, i
′

1 = argmin
i∈I

(ci1D1 + Fi) = argmin
i∈I

(3500 +

100, 3000 + 210) = argmin
i∈I

(3600, 3210) = 2 and i
′

2 =

argmin
i∈I

(ci2D2+Fi) = argmin
i∈I

(45∗80+100, 50∗80+210) =

argmin
i∈I

(3700, 4210) = 1.

Therefore, Rmax = max(⌈ D1

b
(i

′

1)1

⌉, ⌈ D2

b
(i

′

2)2

⌉) =

max(⌈D1

b21
⌉, ⌈D2

b12
⌉) = max(⌈ 100

25 ⌉, ⌈ 80
25⌉) = 4.

Note that in this example and in general the resulting
allocations forR = Rmin may leave fewer leftover capacities
in comparison toR = Rmax, but produce a higher total
cost since many demands are forced to be served from more
expensive interfaces in order to keepR as low as possible.

V. RESULTS

In this section, we first present the simulation results for
the system model we described in Section II. Recall that the
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system model in that section accounts for theSIA in one
round. Scenarios with different sets of services and activation
costs were simulated to comprehend the behavior of the
system under various circumstances. These scenarios act as
benchmarks to evaluate the performance of the algorithms we
presented in Section III. The corresponding results can be
found in subsection V-B. In the next and last subsection, we
present the simulation results ofmulti-round SIA. Therein, we
devise a new set of simulation configurations (services and
activation costs) to demonstrate the effect of the number of
rounds to the total cost of the problem.

A. One Round Allocation

We performed several sets of simulations to assess the total
cost and the number of splits per service for configurations of
three to ten services using different interface activation costs,
and services’ demands. Note that in this caseSIA is always
taken to be feasible i.e., the whole set of demands is satisfied
in one allocation round (

∑

j∈J

∑

k∈K

djk ≤
∑

i∈I

∑

k∈K

bik, ∀k ∈ K).

When this assumption doesn’t hold, the problem will entail
service allocation over multiple rounds (i.e., (6) withR > 1).
Such cases are considered in Section V-C.

Interfaces’ utilization costs (cik ’s) have been set to be
constant throughout the experiments and chosen such that they
are not uniform among interfaces to model practical scenarios.
Additionally, the activation costs of the interfaces (Fi’s) were
tuned in order to reflect the effect they may have on forcing
the services to split among several interfaces.

Five sets of simulation setups were considered. Using a
set of three different demand classes, we produced a set
of services, which we callRandom Services, by choosing
randomly from one of these classes with equal probability. We
combined theRandom Servicesset with three different values
of activation costs to mimic actual scenarios: aHigh (RSH),
a Mixed (RSM)and a Low (RSL)activation cost. The first
two values were chosen to be an order of magnitude higher
per resource type than the last one. We ran the solver 1000
times for each differentRandomconfiguration and averaged to
obtain the optimal total cost and the average number of splits
per service. Two more service sets consisted ofHigh (HDL)
and Low (LDL) demands services along withLow activation
cost. TABLE II summarizes the setups we tested.

More services produce a total cost with a wide spread
around the mean, since moreHigh (RSH) and Low (RSL)
services lead to additional corresponding utilization and ac-
tivation costs to the total sum. As a result, the total cost may
vary significantly depending on the arrival and the hetero-
geneity of the services. The plots of Fig. 2 presents the total
cost concerning theRandom Services (RSH, RSM, and RSL)
demands scenario (forHigh, Mixed, and Low activation cost
respectively). The box-plots show the linearity of the total cost
in relation to the number of services and the spread between
the higher and lower value of the 1000 runs.

The maximum total cost ofRandomservices is higher than
HDL services due to the higher demands of the demand classes
from which Randomservices were produced. In Fig. 3 the
total cost forRSL, HDL, andLDL services is provided. The

TABLE II
SERVICES TESTED IN OUREXPERIMENTS

Services Configuration Activation Cost
Random Services, High Activation Cost (RSH) Fi = [500, 500, 500]
Random Services, Mixed Activation Cost (RSM) Fi = [300, 100, 200]
Random Services, Low Activation Cost (RSL) Fi = [20, 20, 20]
High Demands, Low Activation Cost (HDL) Fi = [20, 20, 20]
Low Demands, Low Activation Cost (LDL) Fi = [20, 20, 20]
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Fig. 2. Total Cost vs Number ofRandomServices. The figure shows the box-
plots of the total allocation cost for a set of three to tenRandom Services. The
reflection on the cost for three different values of activation cost is depicted.
High (red), Mixed (black), andLow (blue) activation cost is denoted with H,
M, and L respectively.

linearity of the cost is evident. Moreover, comparing to the
previous figure, if the activation cost is much higher than the
utilization cost, then the total cost is higher forRSLservices
than forHDL services. The average total cost forRSLservices
lies between the total cost ofHDL andLDL demands services.

In Fig. 4 splits per service are presented for the same sets of
services and activation costs we used previously (TABLE II).
When no services are split, the number of splits per service
is one. Overall, when interfaces have aHigh activation (in
comparison to the utilization or lower activation) cost, split-
ting is not advantageous, since engaging additional interfaces
results in paying a much higher total cost. An example can
be seen in Fig. 4 whereRandom Serviceswith High or Mixed
activation cost, which is one order of magnitude higher than
Low activation cost, do not split on average.

Conversely, keeping the activation costLow (compared to
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Fig. 3. Total Cost vs Number ofRandom, High, and Low Services. The
figure shows the total allocation cost of three to ten services with interfaces
havingLow activation cost. Maximum, Average, and Minimum total costs for
Random Servicesare depicted.
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Fig. 4. Splits per Service vs Number of Services for sets of services and
activation costs of TABLE II.

the utilization one) yields more splits per service — especially
when the utilization cost per unit is low. For instance, consider
Random Serviceswith Low activation cost. Such services split
more to derive a benefit from interfaces with lower utilization
cost per unit. Obviously, these interfaces’ exploitation would
not be beneficial to the total cost, if a higher activation cost
was charged as well.

Furthermore, splits per service do not demonstrate a mono-
tonic behavior in the number of services, assuming all used
parameters are fixed except for the number of services. Con-
sider, for instance,High or Low demand services in the same
figure. When a relatively low number ofHigh demand services
are used, more splits happen to exploit low utilization cost
interfaces along withLow activation cost. However, when
moreHigh demand services are added and low utilization cost
interfaces are depleted, then fewer splits per service occur. This
behavior is attributed to the fact that low cost capacities are
no more available and hence it is disadvantageous to split
resources to interfaces with higher utilization cost (and be
charged the corresponding activation cost as well).

B. Algorithms’ Performance

The results of Fig. 5 reveal that when the activation cost
is low (Fi = [20, 20, 20]) compared with the utilization cost
(top plots), the proposed algorithms closely approximate the
optimal solution. On the other hand, when the activation cost
becomes one order of magnitude higher, as in the bottom plots
of the figure, the algorithms’ approximation is not as good.

This behavior can be attributed to the algorithms’ allocation
policy. Both algorithms initially attempt to fit the chosen
demand to the two interfaces that are the least expensive ones,
in terms of the utilization cost (see Lines 16-19 of Algorithm
2). Namely, if there are enough capacities on one of them, the
algorithms will not take into consideration the corresponding
activation cost. Hence, in case the chosen interface is not yet
activated, a substantial extra cost may be charged.

Note that in this case the optimal allocation may be another
one: a service split may have proven more beneficial though
the algorithms do not consider it. There is a significant com-
putational advantage of this allocation policy, however. The
algorithms do not search exhaustively for the best (i.e., lowest-
cost) combination of allocations; two checks are enough on
average.

Plots in Fig. 5 also present the fact that neither of the
two algorithms clearly outperforms the other. The RAND-
INIT-ALLOCATION algorithm approaches the optimal cost
better when relatively high activation cost interfaces are op-
erating (bottom figures). Therefore, from an implementation
perspective, the algorithm with the faster initialization should
be preferred (recall that the two methods differ only in that
step — not the allocation policy they use).

C. Allocation over Multiple Rounds

We performed several sets of simulations in Matlab to gain
insight into the multi-round solution we discussed through
the multi-round SIAproblem formulation. We performed the
following setup: we considered an IoT device of two interfaces
with ten units of Resource1and eight units ofResource2
each. The per unit utilization cost for the first interface was
c1 = (22, 20) for (Resource1, Resource2) respectively. The
corresponding per unit cost for the second interface was set
at c2 = (20, 8). Additionally, the activation costs of the two
interfaces wereF1 = 100 andF2 = 110.

We configured our simulator to allocate three, six, and
nine services requiring different resource demands of great
heterogeneity in a random manner. For example, one service’s
dominant share may beResource1, another’s dominant share
may beResource2, whilst a third one may demand the same
share of both resources.

We varied the number of roundsR to gain insight into
the cost sensitivity. The results can be found in Fig. 6. The
necessity for more than one round is evident. For instance, the
demands of nine services need at least five rounds to be fully
served (hence in this caseRmin = 5).

As expected, as we increase the number of rounds over
which SIA takes place, the total cost is decreased. The
maximum total cost for a specific configuration is incurred
whenRmin is used. As we explained, this is anticipated since
by increasingR, lower cost resources become available and
hence used. As a result, the total cost is decreased as we add
more rounds.

Furthermore, using more thanRmax rounds is not benefi-
cial, since we have already exploited the lowest-cost interface
for each resource in each round. For example, it is clear in
Fig. 6 that it makes no sense using four or more rounds to
serve three services; no decrease in cost will be observed.

On the contrary, if we aim to reduce the total leftover
capacities to exploit the interfaces’ available resources and
serve the demands in fewer rounds, we would rather use the
smallest possible number of rounds (Rmin). In this case we
increase resource utilization in each round and the total cost
becomes the highest possible at the same time.

VI. CONCLUSION

We have introduced a solution to the problem of assigning
services with heterogeneous and non-interchangeable resource
demands to multiple network interfaces of an Internet of
Things (IoT) device, while simultaneously minimizing the cost
of using the interfaces. The total cost consists of the utilization
cost that is charged for each served resource unit as well as the
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activation cost of each interface that is the cost of engaging an
interface to serve a resource demand. We call this theService-
to-Interface Assignment (SIA)problem.

The solution we suggest is a precise mathematical for-
mulation, which we have proved is NP-Complete. We have
devised twoSIA versions. In the first one, the interfaces’
available resources can serve the whole set of demands in one
round. We find the solver’s optimal solution to the proposed
formulation, which acts as a benchmark for the two algorithms
we developed and presented to approximate the optimal solu-
tion. We have evaluated the proposed algorithms and shown
under which circumstances they can approximate the optimal

solution well. In the secondSIA version, when the resource
demands exceed the IoT device’s available resources in one
round, we suggest formulatingSIA in multiple rounds. We
use an appropriate number of rounds to optimize the resource
allocations, while obtaining the minimum total cost of using
the IoT device’s interfaces at the same time. We call this the
multi-round SIAproblem.

The numerical results show the role of the activation cost
in the services’ splits and distribution among the interfaces.
Therefore, they can act as a guide for the design and im-
plementation of real IoT applications and parameters e.g., to
simulate the power drain of a battery-operated IoT device or
change an applications’ scheduling policy on-the-fly. A further
contribution can be found in themulti-round SIA’s results
which demonstrate the effect of the number of rounds on the
total cost, depending on the used policy. The difference of
the cost between the policies of the two bounds (minimum
rounds vs minimum cost) is more prominent when the number
of services is increased.
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