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Abstract—In this paper, secure communication over a broad-
cast channel with multiple legitimate receivers and an external
eavesdropper is investigated. Two different secrecy measures are
considered: The first criterion is a conservative one known as
joint secrecy, where the mutual leakage of all confidential mes-
sages must be small. The second criterion is a less conservative
constraint known as individual secrecy, where the individual
leakage of each confidential message must be small. At first, we
consider the degraded multi-receiver wiretap broadcast channel
and manage to establish the individual secrecy capacity region.
Our encoding scheme applies a careful combination of the
standard techniques of wiretap random coding and Shannon’s
one time pad encoding, where the confidential messages of
the weak receivers are used as secret keys for the stronger
ones. The validity of this technique is due to the properties of
the degraded broadcast channel and the secrecy requirements
of the individual secrecy criterion. Our result indicates that,
the individual secrecy capacity region is in fact larger than
the joint one established in earlier literature. The established
capacity region is then used to derive the individual secrecy
capacity regions of the Gaussian SISO and degraded Gaussian
MIMO multi-receiver wiretap broadcast channels. Furthermore,
we present an achievable rate region for the general two-receiver
wiretap broadcast channel under both the joint and the individual
secrecy criterion. Comparing these two rate regions suggests that
even for the general case, the individual secrecy criterion might
be able to provide a larger rate region compared to the joint
one.

Index Terms—multi-receiver wiretap channel, joint secrecy,
individual secrecy, degraded broadcast channel, secrecy capacity
region, Gaussian SISO, degraded Gaussian MIMO.

I. INTRODUCTION

Nowadays wireless systems are required to provide both
reliable and secure communication. However, due to the open
nature of the wireless medium, transmitted signals are not
only received by legitimate receivers but eavesdroppers as
well. In order to overcome this problem and guarantee a
secure information transmission, different secrecy techniques
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are used either on the physical layer or on higher layers.
Recently, physical layer security also known as information
theoretic security has become increasingly attractive because it
does not impose any assumptions on the computational power
of the eavesdroppers. Information theoretic security was first
introduced by Shannon in [3], where he showed that secure
communication between the transmitter and the receiver can
be achieved using a shared secret key, whose entropy must
be greater than or equal to the entropy of the message to be
transmitted, as a one-time pad. In [4], Wyner showed that
secure communication is still achievable in the absence of
a secret key by exploiting the noisiness of the channel. He
considered a secure communication scenario, in which the
eavesdropper receives a degraded version of the legitimate
receiver’s observation. He named this setup the degraded
wiretap channel and managed to establish its secrecy capacity.
In [5] Wyner’s result was extended to the Gaussian scalar
wiretap channel, while in [6], it was extended to the general
–not necessarily degraded– wiretap channel. In [7], secure
communication over a wiretap channel in the presence of a
shared secret key was investigated. The authors established the
secrecy capacity region by combining Wyner’s wiretap coding
technique along with Shannon’s one time pad principle. Due to
the rapid growth in the area of networks security, the problem
of secure communication over wiretap channels has become
of high significance, see for example recent textbooks [8–10],
where the last one in particular highlights the main results and
various unsolved issues.

Recently, the problem of secure communication over a
wiretap broadcast channel (BC) with more than one legit-
imate receiver has captured a lot of attention. In spite of
the tremendous efforts, the secrecy capacity region of the
general multi-receiver wiretap BC is still unknown. It is worth
mentioning that even the capacity region of the general BC
without any secrecy constraints is still an open problem.
Nevertheless, researchers managed to establish the secrecy
capacity of some special cases. One of the main special cases
that has been investigated by many researchers is the degraded
multi-receiver wiretap BC. The class of degraded BCs is very
important in particular for wireless communication, because
the Gaussian single-input single-output (SISO) BC is inher-
ently degraded. Also since the class of degraded BC contains
the degraded Gaussian multiple-input multiple-output (MIMO)
BC as well. In [11], the degraded two-receiver wiretap BC was
investigated, where the authors succeeded in establishing the
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secrecy capacity region. This result played an important role in
establishing the secrecy capacity region for the Gaussian SISO
two-receiver wiretap BC in [12] and the degraded Gaussian
MIMO two-receiver wiretap BC in [13]. In [14], Ekrem and
Ulukus extended the secrecy capacity region in [11] to the
degraded wiretap BC with an arbitrary number of receivers.
Finally, in [12], the secrecy capacity regions for both Gaussian
SISO and Gaussian MIMO –not necessarily degraded– multi-
receiver wiretap BCs were established. However, all these
works only considered the so-called joint secrecy criterion.

The joint secrecy criterion is a very conservative secrecy
constraint, in which each legitimate receiver makes sure that
its confidential message is protected even if the confidential
messages of the other legitimate receivers are compromised.
This implies that the legitimate receivers do not trust each
other. Differently from the joint secrecy criterion, we will con-
sider a less conservative secrecy criterion known as individual
secrecy. This criterion is based on the mutual trust among
the legitimate receivers, such that they can cooperate together
to protect their confidential messages against eavesdropping.
The effect of relaxing the secrecy constraint –from the joint
secrecy criterion to the individual one– on the secrecy capacity
region was previously investigated for the wiretap BC with
receiver side information in [15–18] and with some slight
differences for the wiretap multiple access channel in [19].
In particular, it was shown in [18] that the individual secrecy
capacity region for some classes of the wiretap BC with
receiver side information is larger than the joint secrecy one.
This increase in the capacity region arises from the fact that
under the individual secrecy criterion the confidential message
of one receiver, which is available as side information at
the other receiver, can be considered as a secret key shared
between the transmitter and the receiver. Thus, instead of only
using wiretap random coding as in the joint secrecy case,
the individual secrecy approach combines the two encoding
techniques: wiretap random coding and secret key encoding,
which consequently leads to a larger capacity region.

In this paper we will study the multi-receiver wiretap BC
under the individual secrecy criterion. During our investiga-
tion, we will compare the newly established individual secrecy
capacity regions versus the joint secrecy ones established in
previous literature. It is important to note that, the capability
of the individual secrecy to provide a larger secrecy capacity
region for wiretap BC with receiver side information relies on
the usage of the available side information to impose secret key
encoding. This means that, it is not obvious whether individual
secrecy can provide a larger capacity region in the absence of
this side information as in the general multi-receiver wiretap
BC or not. However, we will show that even in the absence
of the receiver side information, individual secrecy is still
capable of providing a larger capacity region. In a parallel
and independent work [20, 21], individual secrecy for two-
user wiretap BC were investigated, where different achievable
rate regions are established and compared to the corresponding
joint secrecy regions.

The rest of this paper is organized as follows: In Section II,
we describe the model of the general multi-receiver wiretap
channel and discuss in detail the differences between the joint

and the individual secrecy criteria, by comparing their secrecy
capacity regions for some special cases. In Section III, we
establish the individual secrecy capacity region of the class of
degraded multi-receiver wiretap BC. The results presented in
this section are related to our conference paper [1]. We then
use the established capacity region to derive the individual
secrecy capacity regions of the Gaussian SISO and degraded
Gaussian MIMO multi-receiver wiretap BC in Section IV and
Section V respectively. These two sections contain the same
results established in [2] and are presented here for the sake of
completeness. Finally, in Section VI, we derive an achievable
rate region for the general two-receiver wiretap BC under both
the joint and the individual secrecy criteria, using the principle
of Marton coding with superposition variable.

Notation

In this paper, random variables are denoted by capital letters
and their realizations by the corresponding lower case letters,
while calligraphic letters are used to denote sets. Xn denotes
the sequence of variables (X1, . . . ,Xn), where Xi is the ith

variable in the sequence. Additionally, we use X̃i to denote
the sequence (Xi, . . . ,Xn). A probability distribution for the
random variable X is denoted by Q(x). U−V −X denotes
a Markov chain of the random variables U, V and X in this
order. Bold letters are used to denote matrices, where A �
0 indicates that A is a positive definite matrix and A � 0
implies that A is a positive semi-definite matrix. R+ is used
to denote the set of nonnegative real numbers. H(·) and I(·; ·)
are the traditional entropy and mutual information respectively,
while | · | is used to denote the determinant of a matrix. The
probability of an event is given by P[·]. Moreover, Ja; bK is used
to represent the set of natural numbers between a and b. We
further use f(x) to indicate a scaled and shifted logarithmic
function, such that f(x) = 1

2 log(1 + x) also known as the
capacity function.

II. SECRECY IN MULTI-RECEIVER WIRETAP BC

In this section, we will investigate the multi-receiver wiretap
BC under two different secrecy constraints: Joint secrecy
and individual secrecy. We compare these two criteria and
show that the individual secrecy can provide a larger secrecy
capacity region compared to the joint one.

A. System Model and Secrecy Criteria

The multi-receiver wiretap BC consists of a transmitter
with an input alphabet X , k legitimate receivers with output
alphabets Yj , where j ∈ J1; kK1 and an external eavesdropper
with output alphabet Z . We consider the standard model of a
block code of arbitrary but fixed length n with input and output
sequences xn, ynj and zn, such that the discrete memoryless
multi-receiver wiretap BC is defined as:

Qn(xn, yn1 , . . . , y
n
k , z

n) =
n∏
i=1

Q(xi, y1i, . . . , yki, zi). (1)

1Through the whole paper j is taken to be in J1; kK, unless stated otherwise.
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We assume that the transmitter and all receivers have perfect
channel knowledge and all our results are limited to this case.
For a short discussion, please refer to the discussion in the
last section.

Definition 1. A (2nR1 , . . . , 2nRk , n) code Cn for the multi-
receiver wiretap BC consists of: k independent message sets
Mj = J1, 2nRj K, a source of local randomnessR, a stochastic
encoder at the transmitter

E :M1 × · · · ×Mk ×R → Xn,

which maps the k confidential messages (m1, . . . ,mk) ∈
M1 × · · · × Mk and a realization of the local randomness
r ∈ R to a codeword xn(m1, . . . ,mk, r), and k decoders, one
for each legitimate receiver

ϕj : Ynj →Mj ∪ {?},

that maps each channel observation at the respective receiver
to the corresponding required message or an error message
{?}.

We assume that the messages M1, . . . , Mk are chosen
independently and uniformly at random. The reliability per-
formance of Cn is measured in terms of its average probability
of error given by

Pe(Cn) ,P
[
M̂1 6= M1 or . . . or M̂k 6= Mk

]
, (2)

where M̂j is the estimated message at the jth legitimate
receiver. On the other hand, the secrecy performance of Cn
is measured with respect to two different criteria as follows:

1. Joint Secrecy: This criterion requires the leakage of the
confidential message of one user to the eavesdropper given the
confidential messages of all other users to be small. For our
model, this requirement can be expressed as follows:

I(Mj ; Zn|M1 . . .Mj−1Mj+1 . . .Mk) ≤ τjn
where lim

n→∞
τjn = 0. (3)

This criterion guarantees that the information leaked to the
eavesdropper from one user is small even if all the other
confidential messages are compromised and known by the
eavesdropper. This implies that this criterion does not account
for the mutual trust between the legitimate receivers. In
most literature, the joint secrecy criterion is defined such
that, the mutual leakage of all confidential messages to the
eavesdropper is small as follows:

I(M1 . . .Mk; Zn) ≤ τn where lim
n→∞

τn = 0. (4)

Although this definition is simpler than the one in (3), and
it can be shown that both definitions are equivalent for some
τn ≥

∑k
j=1 τjn cf. [18], we prefer the one in (3). This is

because it provides a better understanding to the interpretation
of the relation between the legitimate receivers under the joint
secrecy criterion. It also highlights the reason that makes the
joint secrecy immune against compromised receivers.

2. Individual Secrecy: This criterion requires the leakage
of the confidential message of each user to the eavesdropper
to be small without conditioning on the confidential messages

of the others users. This requirement can be formulated as
follows:

I(Mj ; Zn) ≤ τjn (5)

and the τjn are defined as before. Differently from the con-
servative joint secrecy constraint in (3), the individual secrecy
constraint takes the mutual trust between the legitimate re-
ceivers into consideration. This allows the legitimate receivers
to cooperate in protecting their messages against eavesdrop-
ping. It is important to note that, for τn as defined before, the
conditions in (5) can be combined into one condition:

k∑
i=1

I(Mi; Zn) ≤ τn. (6)

Definition 2. A rate tuple (R1, . . . , Rk) ∈ Rk+ is achievable
for the multi-receiver wiretap BC, if there exists a sequence of
(2nR1 , . . . , 2nRk , n) codes Cn, a sequence εn and k sequences
τjn, where n is large enough, such that:

Pe(Cn) ≤ εn, and lim
n→∞

εn, τjn = 0. (7)

Depending on the selected secrecy criterion, the conditions in
(3) or (5) are fulfilled.

Remark 1. It is worth mentioning that the joint and individual
secrecy constraints are defined according to the notation of
strong secrecy criterion [22, 23], in which the total amount of
information leaked to the eavesdropper should be small.

B. Secrecy Capacity Regions: Joint Vs Individual

In this subsection, we will highlight the differences between
the joint and the individual secrecy criterion. To do so, we
will compare the secrecy capacity regions of both criteria for
the degraded two-receiver wiretap BC and the Gaussian two-
receiver wiretap BC.

Proposition 1. Consider a degraded two-receiver wiretap BC,
i.e. X−Y1 −Y2 − Z forms a Markov chain. Then the joint
secrecy capacity region is given by the set of all rate pairs
(R1, R2) ∈ R2

+, that satisfy

R2 ≤ I(U; Y2)− I(U; Z) (8a)
R1 ≤ I(X; Y1|U)− I(X; Z|U) (8b)

where the union is taken over all random variables (U,X),
such that U−X−Y1 −Y2 − Z forms a Markov chain. Fur-
ther it suffices to have |U| ≤ |X |+ 3.

Proof: This region was first established in [11]. The
achievability follows from the technique of random coding
with product structure as in [6]. A detailed achievability proof
for a more general case from which this result follows as a
special case will be provided in Section VI-A. On the other
hand, the converse follows using the standard techniques and
procedures for degraded BC in [24], and will be provided
for the multi-receiver case in Section III-A. The cardinal-
ity bound follows by the Fenchel-Bunt strengthening of the
Carathéodory’s theorem [25, Appendix C].

Proposition 2. Consider a degraded two-receiver wiretap BC
as in the previous proposition. The individual secrecy capacity
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region is given by the set of all rate pairs (R1, R2) ∈ R2
+ that

satisfy

R2 ≤ I(U; Y2)− I(U; Z) (9a)
R1 ≤ I(X; Y1|U) + I(U; Z) (9b)
R1 ≤ I(X; Y1|U)− I(X; Z|U) +R2 (9c)

where the union is taken over all random variables (U,X),
such that U−X−Y1 −Y2 − Z forms a Markov chain. Fur-
ther it suffices to have |U| ≤ |X |+ 3.

Proof: The achievability combines the techniques of
wiretap random coding [6] along with Shannon’s one time pad
cipher system introduced in [3] as follows: Wiretap random
coding is used to protect the message of the weaker receiver
from eavesdropping, while the message of the stronger receiver
is protected by a combination of wiretap random coding
and Shannon’s secret key encoding as in [7]. A detailed
achievability proof for a more general case from which this
result follows as a special case will be provided in Section
VI-B. On the other hand, the converse follows by adapting
the standard techniques and procedures for degraded BC in
[24] to the individual secrecy constraint. The detailed steps of
the converse for the multi-receiver case will be presented in
Section III-A.

Proposition 3. Consider a Gaussian two-receiver wiretap
BC, i.e. Y1 = X + N1, Y2 = X + N2 and Z = X+NZ , where
the channel input X is under a power constraint such that,
E[X2] ≤ P and the variances of the Gaussian noises are of
the following order σ2

1 ≤ σ2
2 ≤ σ2

Z . The joint secrecy capacity
is given by the union of all rate pairs (R1, R2) ∈ R2

+ that
satisfy

R2 ≤ f
(

ᾱP

αP + σ2
2

)
− f

(
ᾱP

αP + σ2
Z

)
(10a)

R1 ≤ f
(
αP

σ2
1

)
− f

(
αP

σ2
Z

)
(10b)

where the union is taken over all values of α ∈ [0, 1], such
that ᾱ = 1− α.

Proof: This region was first established in [12]. The
achievability follows by selecting (U,X) to be jointly Gaus-
sian in Proposition 1, where X = U + V can be viewed as the
summation of two independent zero-mean Gaussian random
variables U and V, with respective variances ᾱP and αP . On
the other hand, the converse follows due to the optimality
of Gaussian signaling. This optimality was proved in [12]
by adapting the relation between the MMSE and the mutual
information established in [26] and [27], to the situation
with secrecy constraints. For further information regarding
the properties and behaviors of the capacity achieving codes,
please refer to [28].

Proposition 4. Consider a Gaussian two-receiver wiretap BC
as in the previous proposition. The individual secrecy capacity
region is given by the union of all rate pairs (R1, R2) ∈ R2

+

that satisfy

R2 ≤ f
(

ᾱP

αP + σ2
2

)
− f

(
ᾱP

αP + σ2
Z

)
(11a)

R1 ≤ f
(
αP

σ2
1

)
+ f

(
ᾱP

αP + σ2
Z

)
(11b)

R1 ≤ f
(
αP

σ2
1

)
− f

(
αP

σ2
Z

)
+R2 (11c)

where the union is taken over all values of α ∈ [0, 1], such
that ᾱ = 1− α.

Proof: The achievability follows by selecting (U,X) to
be jointly Gaussian in Proposition 2, where the total power
is divided among two Gaussian variables U and V as in
the previous proposition. The weak receiver decodes his own
message from the variable U while considering V as noise.
On the other hand, the strong receiver can decode both
messages and thus the message of the weak receiver can be
used as a shared secret key between the transmitter and the
strong receiver. Finally, the converse follows by adapting the
techniques used in [12] to the individual secrecy constraint.
A detailed proof for a more general case will be provided in
Section IV.

In order to visualize the difference between the joint and
individual secrecy capacity region for Gaussian two-receiver
wiretap BC given by (10) and (11) respectively, we calculate
the secrecy rates R1 and R2 at different values of α. In this
calculation, we set the other parameters as follow: P = 1,
σ2
1 = 0.05, σ2

2 = 0.1 and σ2
Z = 0.15. The normalized rates

are plotted in Figure 1.
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Fig. 1. Joint and Individual secrecy capacity regions of a Gaussian BC.

C. Discussion

The previous results for the two-receiver wiretap BC are
very helpful for understanding the differences between the
joint and individual secrecy criteria. It also helps to capture
the advantages and disadvantages of each criterion. This can
be summarized in the following points:

1. Individual secrecy is a less conservative secrecy measure
as compared to the joint one. This implies that, any code
that fulfils the joint secrecy constraint should also satisfy
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the individual secrecy constraint as well. This is because the
condition in (4) implies the one in (6), but not vise versa.

2. The individual secrecy criterion provides a larger capacity
region as compared to the joint one. This result can be
illustrated by comparing the rate constraint for R1 in (10b)
versus the ones in (11b) and (11c) as shown in Figure 1. This
comparison shows that there is an increase in the rate R1

accompanied with the individual secrecy criterion. The value
of this increase is directly proportional with R2, i.e. the size
of the message of the weaker user used as secret key or the
size of the total randomization index.

3. The joint secrecy criterion is a very conservative secrecy
measure. Even if one of the confidential messages is revealed
to the eavesdropper in a genie-aided way –because this receiver
is compromised–, the other message is still protected which
can be shown as follows:

I(M1; ZnM2) = I(M1; M2) + I(M1; Zn|M2)

(a)
= I(M1; Zn|M2) ≤ τn, (12)

where (a) follows because M1 and M2 are independent.
The previous equation shows that the leakage of M1 to the
eavesdropper when M2 is revealed to it is still small.

4. On the other hand, the individual secrecy criterion is
based on the mutual trust between the legitimate receivers.
Thus, if one of the receivers is compromised such that, its full
message or part of it is revealed to the eavesdropper, this might
also affects the secrecy of the other one. In order to understand
this property, imagine that in the previous example, M2 was
revealed to the eavesdropper as follows:

I(M1; ZnM2) = H(M1)−H(M1|ZnM2). (13)

The term H(M1|ZnM2) is related to the amount of information
about M1 that is still kept hidden from the eavesdropper Zn,
when the message M2 is given to the eavesdropper. Under
the individual secrecy constraint there is no guarantee that
the value of this term is equal to H(M1). In particular, since
conditioning decreases entropy, it might be strictly less than
H(M1). This means that a part of M1 might be leaked to the
eavesdropper upon revealing M2.

5. The preference in choosing among these two secrecy
criteria is a trade-off between a conservative secrecy measure
and a larger capacity region and the decision should always be
based on whether the legitimate receivers can trust each other
or not.

III. DEGRADED MULTI-RECEIVER WIRETAP BC

In this section, we investigate the degraded multi-receiver
wiretap BC under the joint and individual secrecy constraints.
Secrecy in degraded wiretap BC was investigated in [11],
where the authors establish the joint secrecy capacity region
for the degraded two-receiver wiretap BC. This result was
then extended to an arbitrary number of receivers in [14]. We
present this result and in particular, provide a simpler proof
for the converse, that will help us in deriving the converse for
the individual secrecy case. We then establish the individual
secrecy capacity region of the degraded multi-receiver wiretap

BC, showing that it is bigger than the joint secrecy capacity
region. Finally, we show that the established characterizations
of the capacity regions under both secrecy criteria are valid
for any degraded wiretap BC regardless of the degradedness
order of the eavesdropper.

Before we present our results, we need to give a quick
introduction about degraded multi-receiver wiretap BC and its
main properties. A degraded multi-receiver wiretap BC is a
class of multi-receiver wiretap BC, such that

X−Y1 −Y2 − · · ·−Yk − Z. (14)

The previous Markov chain is the main feature of a degraded
multi-receiver wiretap BC. It implies that each legitimate
receiver is capable of not only decoding its own message, but
also the messages of all the receivers degraded from it.

A. Joint Secrecy Capacity Region

Theorem 1. The joint secrecy capacity region of the degraded
multi-receiver wiretap BC is given by the union of all rate
tuples (R1, . . . , Rk) ∈ Rk+ that satisfy

Rj ≤ I(Uj ; Yj |Uj+1)− I(Uj ; Z|Uj+1), (15)

where U1 = X, Uk+1 = ∅ and the union is taken over all
random variables (Uk, . . . ,U2,X) such that, Uk−· · ·−U2−
X−Y1 −Y2 − · · ·−Yk − Z forms a Markov chain. Further,
it suffices to have |Uj | ≤ UB(|Uj+1|)(|X | + 2j − 1), where
UB(|A|) is the upper-bound of the cardinality of the set A
and UB(|Uk+1|) = 1.

Remark 2. It is worth mentioning that the previous theorem
generalizes the joint secrecy capacity region of the degraded
two-receiver wiretap BC given in Proposition 1.

Proof: This capacity region was established in [14] under
the weak secrecy criterion by combining Cover’s superposition
coding scheme [29] for the degraded multi-receiver BC as in
[30] and the principle of wiretap random coding introduced
in [4]. Using the strong secrecy techniques introduced in [31–
33], one can show that the previous region is also achievable
under the strong secrecy criterion.

For the converse, we present a simpler proof than the one
given in [14]. Our new proof is based on standard converse
techniques in addition to the properties of the degraded BC,
in particular the Markov chain in (14). We start by using
Fano’s inequality [34] to derive an upper-bound for a reliable
transmission. We use M̈j+1 , (Mj+1, . . . ,Mk), thus we have

Rj =
1

n
H(Mj) =

1

n
H(Mj |M̈j+1)

≤ 1

n

[
H(Mj |M̈j+1)−H(Mj |Yn

j M̈j+1)
]

+ γ̃j(εn)

=
1

n
I(Mj ; Yn

j |M̈j+1) + γ̃j(εn), (16)

where γ̃j(εn) = 1/n + εnRj . We then consider the secrecy
constraint and let Uji , (Mj ,Y

i−1
j−1, Z̃

i+1,U(j+1)i), where
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Yi−1
0 = U(k+1)i = ∅ and Z̃i+1 = (Zi+1, . . . ,Zn). We have

Rj
(a)

≤ 1

n

[
I(Mj ; Yn

j |M̈j+1)−I(Mj ; Zn|M̈j+1)
]

+ γj(εn, τn)

(b)
=

1

n

n∑
i=1

[
I(Mj ; Yji|M̈j+1Yi−1

j Z̃i+1)

− I(Mj ; Zi|M̈j+1Yi−1
j Z̃i+1)

]
+ γj(εn, τn)

(c)
=

1

n

n∑
i=1

[
I(Mj ; Yji|M̈j+1Yi−1

j . . .Yi−1
k−1Z̃i+1)

− I(Mj ; Zi|M̈j+1Yi−1
j . . .Yi−1

k−1Z̃i+1)
]
+γj(εn, τn)

(d)

≤ 1

n

n∑
i=1

[
I(Uji; Yji|U(j+1)i)− I(Uji; Zi|U(j+1)i)

]
+ γj(εn, τn) (17)

where (a) follows from (3) and (16) as γj(εn, τn) = τn/n+
γ̃j(εn); (b) follows from the Csiszár sum identity [6, Lemma
7]; (c) follows because (Yj+1, . . . ,Yk) are degraded from Yj ,
while (d) follows because Zi is degraded from Yji, which
implies that I(Yi−1

j+1; Yji|U(j+1)i) ≥ I(Yi−1
j+1; Zi|U(j+1)i).

Now, If we introduce an independent and uniformly dis-
tributed time sharing random variable to (17), then take the
limit as n → ∞, which implies that γj(εn, τn) → 0, our
converse is complete. The cardinality bounds follow by the
Fenchel-Bunt strengthening of the Carathéodory’s theorem as
in [25, Appendix C].

Remark 3. It is worth mentioning, that the following Markov
chain Uk − · · · − U2 − X can be validated in the converse
using the principle of functional dependence graph [9].

B. Individual Secrecy Capacity Region

Theorem 2. The individual secrecy capacity region of the
degraded multi-receiver wiretap BC is given by the union of
all rate tuples (R1, . . . , Rk) ∈ Rk+ that satisfy

Rj ≤ I(Uj ; Yj |Uj+1)− I(Uj ; Z|Uj+1) +
k∑

l=j+1

Rl (18a)

Rj ≤ I(Uj ; Yj |Uj+1) + I(Uj+1; Z) (18b)
k∑
l=j

Rl ≤
k∑
l=j

I(Ul; Yl|Ul+1) (18c)

where U1 = X, Uk+1 = ∅ and the union runs over all ran-
dom variables (Uk, . . . ,U2,X) such that, Uk − · · · − U2 −
X−Y1 −Y2 − · · ·−Yk − Z forms a Markov chain. Further,
it suffices to have |Uj | ≤ UB(|Uj+1|)(|X | + 2j − 1), where
UB(|A|) is the upper-bound of the cardinality of the set A
and UB(|Uk+1|) = 1.

Before we present our proof, we need to explain what
each bound represents. The bound in (18a) implies that the
individual secrecy rate of any receiver is bounded by the
summation of the randomly encoded rate and the secret key
encoded rate, where the secret key encoded rate is bounded
by the rates of the weaker receivers. On the other hand, the
bound in (18b) enforces another restriction on the secret key

encoded rate by assuring that it is less than the randomization
rate that can be decoded by each receiver . Finally, the bound
in (18c) guarantees two different requirements. The first is a
secrecy one, that assures that any randomization rate that is
used to carry a secret key encoded message for a certain user
can only be used once. The second requirement is a reliability
one, which implies that the total sum rate is bounded by the
summation of the information encoded in each layer for the
corresponding receiver.

Proof: The achievability follows by combining the super-
position coding technique used for the degraded multi-receiver
BC in [30] and the mixture of wiretap random coding [4] and
Shannon one time pad secret encoding [3] used for wiretap
channel with secret key in [7], along with the strong secrecy
techniques introduced in [31–33].

The coding scheme is as follows: the messages of the
weak receivers are encoded as cloud centers for the satellite
codewords that carry the messages of the stronger ones.
Further, the Shannon’s ciphered messages are constructed by
Xoring the messages of the weak receivers that act as secret
keys with the messages of the stronger receivers. Finally, those
Xored messages are used as part of the randomization indexes
needed to confuse the eavesdropper in both the cloud centers
and the satellite codewords. A detailed achievability proof will
be provided for a more general case in Section VI.

For the converse, we start by letting Uji , (Mj ,Y
i−1
j−1,

Z̃i+1,U(j+1)i), where Yi−1
0 = ∅ and U(k+1)i = ∅. We

also use M̈j+1 to represent the following random variable
M̈j+1 , (Mj+1, . . . ,Mk). We have

Rj
(a)

≤ 1

n

[
I(Mj ; Yn

j )− I(Mj ; Zn)
]

+ γj(εn, τn)

(b)

≤ 1

n

[
I(Mj ; Yn

j |M̈j+1)− I(Mj ; Zn|M̈j+1)

+ I(M̈j+1; Zn|Mj)
]

+ γj(εn, τn)

(c)

≤ 1

n

[
I(Mj ; Yn

j |M̈j+1)− I(Mj ; Zn|M̈j+1)
]

+
k∑

l=j+1

Rl

+ γj(εn, τn)

(d)

≤ 1

n

n∑
i=1

[
I(Uji; Yji|U(j+1)i)−I(Uji; Zi|U(j+1)i)

]
+

k∑
l=j+1

Rl + γj(εn, τn), (19)

where (a) follows by using Fano’s inequality as in (16), in
addition to the individual secrecy constraint in (5); (b) follows
because I(Mj ; Zn) ≥ I(Mj ; Zn|M̈j+1)− I(M̈j+1; Zn|Mj); (c)

follows because n
∑k
l=j+1Rl ≥ I(M̈j+1; Zn|Mj); while (d)

follows as in (17). Now, if we use Eq. (16) in addition to the
individual secrecy constraint in (5), we have

Rj ≤
1

n

[
I(Mj ; Yn

j |M̈j+1) + I(M̈j+1; Zn)
]

+ γ̃j(εn)

≤ 1

n

n∑
i=1

[
I(Mj ; Yji|M̈j+1Yi−1

j Z̃i+1) + I(M̈j+1; Zi|Z̃i+1)
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+ I(Z̃i+1; Yji|M̈j+1Yi−1
j )

]
+ γ̃j(εn)

(a)
=

1

n

n∑
i=1

[
I(Mj ; Yji|U(j+1)i) + I(M̈j+1Yi−1

j ; Zi|Z̃i+1)
]

+ γ̃j(εn)

≤ 1

n

n∑
i=1

[
I(Uji; Yji|U(j+1)i) + I(U(j+1)i; Zi)

]
+ γ̃j(εn)

(20)

where (a) follows from the Csiszár sum identity [6, Lemma 7]
as I(Z̃i+1; Yji|M̈j+1Yi−1

j ) = I(Yi−1
j ; Zi|M̈j+1Z̃i+1). Finally,

for the sum rate, we have
k∑
l=j

Rl
(a)

≤ 1

n

[ k∑
l=j+1

[
I(Ml; Yn

l |M̈l+1)−I(Ml; Zn|M̈l+1)
]

+I(M̈j+1; Zn)+I(Mj ; Yn
j |M̈j+1)

]
+

k∑
l=j

γ̃l(εn)

(b)
=

1

n

n∑
i=1

[ k∑
l=j+1

[
I(Uli; Yli|U(l+1)i)−I(Uli; Zi|U(l+1)i)

]

+I(Uji; Yji|U(j+1)i)+I(U(j+1)i; Zi)

]
+

k∑
l=j

γ̃l(εn)

(c)
=

1

n

n∑
i=1

k∑
l=j

I(Uli; Yli|U(l+1)i)+
k∑
l=j

γ̃l(εn) (21)

where γ̃l(εn) = 1/n + εnRl. (a) follows from Eq. (16)
and the fact that I(M̈j+1; Zn) =

∑k
l=j+1 I(Ml; Zn|M̈l+1);

(b) follows as in (17) and (20); while (c) follows because∑k
l=j+1 I(Uli; Zi|U(l+1)i) = I(U(j+1)i; Zi). Now, if we intro-

duce an independent and uniformly distributed randomization
index to the bounds in (19), (20) and (21), then take the limit
as n→∞ such that γj(εn, τn) and γ̃j(εn)→ 0; our converse
is complete.

C. Eavesdropper Degradedness Order

Theorems 1 and 2 were derived for degraded multi-receiver
wiretap BCs in which the eavesdropper is the weakest receiver.
In general, any degraded wiretap BC –whether it is physically
or statistically degraded– is characterized by a Markov chain
with a certain degradedness order among the legitimate re-
ceivers and the eavesdropper. This degradedness order plays
an important role in proving the converse of the secrecy
capacity region. It was shown in [15, Theorem 3] that changing
this order affects the individual secrecy capacity region of
the wiretap BC with receiver side information. Thus, it is
important to investigate how changing the degradedness order
of the eavesdropper affects the joint and individual secrecy
capacity regions established in Theorems 1 and 2 respectively.

We start by dividing the k legitimate receivers into two
groups. The first group contains the legitimate receivers de-
graded from the eavesdropper, i.e. the eavesdropper is stronger
than those receivers. This group contains the legitimate re-
ceivers numbered from d to k, where d ∈ J1; kK. On the
other hand, the second group contains the remaining legiti-
mate receivers from which the eavesdropper is degraded. The

receivers of this group are numbered from 1 to d− 1.

1. Joint Secrecy Capacity Region (15): Although this re-
gion was established under the condition of having the eaves-
dropper as the weakest receiver, it can be shown that it is valid
for the other scenarios as well.
• Achievability: Since the randomization needed to con-

fuse the eavesdropper is bigger than the decoding capa-
bility of the legitimate receivers of the first group, i.e.
I(Uj ; Yj |Uj+1) ≤ I(Uj ; Z|Uj+1) for j ∈ Jd; kK, the achiev-
able joint secrecy rates for the legitimate receivers in this
group are zeros. However, for the second group of receivers,
nothing changes. Thus, the region in (15) can be reformulated
as follows:

Rj = 0 j ∈ Jd; kK
Rj ≤ I(Uj ; Yj |Uj+1)−I(Uj ; Z|Uj+1) j ∈ J1; d− 1K.

• Converse: It was shown in [9, Proposition 3.4] that
the joint secrecy capacity vanishes if the legitimate receiver
is degraded from the eavesdropper. This implies that, for the
confidential rate of any legitimate receiver that belongs to the
first group is upper bounded by zero. On the other hand, the
converse of the confidential rates of the legitimate receivers
of the second group follows as in (17), where k is replaced
by d− 1.

2. Individual Secrecy Capacity Region (18): Like the
joint secrecy case, this region was established under the
condition of having the eavesdropper as the weakest receiver.
The main challenge is that, in [17, Lemma 2], it was shown
for the BC with receiver side information that the optimum
coding technique for the individual secrecy criterion depends
on the degradedness order of the eavesdropper. However, this
result has not been generalized for other channels so far. So
in order to prove that the region in (18) is valid regardless
of the degradedness order of the eavesdropper, we need to
modify our achievability and converse proofs.
• Achievability: Since the following condition

I(Uj ; Yj |Uj+1) ≤ I(Uj ; Z|Uj+1) for j ∈ Jd; kK still
holds, the individual secrecy achievable rates for the
legitimate receivers of the first group vanish. This implies
that, we need just to modify our coding scheme as if we
only have a degraded (d− 1)-receiver wiretap BC instead of
k-receiver. Thus, for j ∈ Jd; kK, we have Rj = 0, while for
j ∈ J1; d− 1K, the region in (18) implies:

Rj ≤ I(Uj ; Yj |Uj+1)− I(Uj ; Z|Uj+1) +
d−1∑
l=j+1

Rl

Rj ≤ I(Uj ; Yj |Uj+1) + I(Uj+1; Z)
d−1∑
l=j

Rl ≤
d−1∑
l=j

I(Ul; Yl|Ul+1).

• Converse: We start by the first group of legitimate
receivers. It was shown in [15, Proposition 1], that if Y
is degraded from Z, then I(M; Yn) ≤ I(M; Zn). Since the
subtraction of these two terms is the first step in (19), thus
Rj is upper-bounded by zero for j ∈ Jd, kK. On the other
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hand, the converse of the confidential rates of the legitimate
receivers of the second group follows as in (19), (20) and (21),
where k is replaced by d− 1.

The previous argument advocates that Theorems 1 and 2
establish a characterization of the joint and individual secrecy
capacity regions for any degraded multi-receiver wiretap BC
regardless of the degradedness order of the eavesdropper.

IV. GAUSSIAN SISO MULTI-RECEIVER WIRETAP BC

In this section, we study the Gaussian SISO multi-receiver
wiretap BC under the joint and individual secrecy constraints.
We present the joint secrecy capacity region established in
[12], then establish the individual secrecy capacity region. We
start by defining the Gaussian SISO multi-receiver wiretap BC:

Yj = X + Nj (22a)
Z = X + NZ , (22b)

where the channel input X is subject to a power constraint
E[X2] ≤ P . The Nj and NZ are zero-mean Gaussian random
variables, whose variances are given by σ2

j and σ2
Z respec-

tively.
The Gaussian SISO multi-receiver wiretap BC belongs to

the class of degraded multi-receiver wiretap BCs, where the
variances (power) of the Gaussian noises Nj and NZ define
the degradedness order of the channel. We will assume without
loss of generality that the variances of the Gaussian noises
satisfy the following order:

σ2
1 ≤ σ2

2 ≤ · · · ≤ σ2
k ≤ σ2

Z . (23)

It was shown at the end of the previous section that the
capacity regions in (15) and (18) establishes the joint and indi-
vidual secrecy capacity of any degraded multi-receiver wiretap
BC respectively, regardless of the degradedness order of the
eavesdropper. Thus, we can use Theorem 1 and Theorem 2
to derive the joint and individual secrecy capacity for the
Gaussian SISO multi-receiver wiretap BC.

Theorem 3. Consider a Gaussian SISO multi-receiver wiretap
BC, then the joint secrecy capacity region is given by the union
of all rate tuples (R1, . . . , Rk) ∈ Rk+ that satisfy

Rj ≤ f

(
αjP∑j−1

i=1 αiP + σ2
j

)
−f

(
αjP∑j−1

i=1 αiP + σ2
Z

)
, (24)

while the individual secrecy capacity region is given by the
union of all rate tuples (R1, . . . , Rk) ∈ Rk+ that satisfy

Rj ≤f

(
αjP∑j−1

i=1 αiP + σ2
j

)
− f

(
αjP∑j−1

i=1 αiP + σ2
Z

)

+
k∑

l=j+1

Rl (25a)

Rj ≤f

(
αjP∑j−1

i=1 αiP + σ2
j

)
+ f

( ∑k
i=j+1 αiP∑j

i=1 αiP + σ2
Z

)
(25b)

k∑
l=j

Rl ≤
k∑
l=j

f

(
αlP∑l−1

i=1 αiP + σ2
l

)
(25c)

where the unions are taken over all values of αj ∈ [0, 1] such
that

∑k
i=1 αi ≤ 1.

Before we present our proof, we need to highlight the
following lemma as it will play a vital role in establishing
our converse.

Lemma 1. Consider a Gaussian SISO multi-receiver wiretap
channel as defined in (22), where E[X2] ≤ P and the
variances of the Gaussian noises satisfy the order in (23).
If the following inequality holds

I(Uj ; Yj |Uj+1)− I(Uj ; Z|Uj+1) ≤

f

(
αjP∑j−1

i=1 αiP + σ2
j

)
− f

(
αjP∑j−1

i=1 αiP + σ2
Z

)
, (26)

where Uk+1 = ∅, U1 = X, Uk − · · · − U2 −
X−Y1 −Y2 − · · ·−Yk − Z forms a Markov chain and∑k
i=1 αi = 1, then E[U2

j ] ≤
∑k
i=j αiP .

Proof: We start by letting Uk be a Gaussian random
variable such that, E[U2

k] = (αk + γ)P because according
to [12], the expression in (27) is maximized by Gaussian
signalling. Now, if we let X = Uk + V̄k, where V̄k is a
Gaussian random variable independent from Uk, we have

I(Uk; Yk)−I(Uk; Z) = f

(
(αk+γ)P

(
∑k−1
i=1 αi−γ)P+σ2

k

)

− f

(
(αk+γ)P

(
∑k−1
i=1 αi−γ)P+σ2

Z

)
. (27)

This conditions contradicts the one in (26) at j = k, unless
γ ≤ 0 which consequently implies that E[U2

k] ≤ αkP . Now,
repeating the previous steps recursively until we reach Uj , we
can show that E[U2

j ] ≤
∑k
i=j αiP .

Proof of Theorem 3: The achievability of the two regions
follows by choosing Uj = Uj+1 + Vj , where the Vj are
independent Gaussian random variables with variance αj and
Uk+1 = 0. The decoder at a certain receiver Yi, where
i ∈ J1, kK, can decode all Vj for j ≥ i because of the
order of the variances of the Gaussian noises in (23), while
handling the remaining Vj for j < i as interfering noise.
The previous coding structure implies that, (Uk, . . . ,U2,X)
are characterized by a joint Gaussian distribution. This implies
that the rates in (24) and (25) are achievable.

Now, for the converse, we focus mainly on the individual
secrecy case as the joint secrecy converse can be established
using the same steps. We start with the bound in (18a) and
consider the kth user first. We have

Rk ≤ I(Uk; Yk)− I(Uk; Z)

(a)
=
[
I(X; Yk)−I(X; Z)

]
−
[
I(X; Yk|Uk)−I(X; Z|Uk)

]
(b)

≤
[
f

(
P

σ2
k

)
−f
(
P

σ2
Z

)]
−
[
I(X; Yk|Uk)−I(X; Z|Uk)

]
(c)
=

[
f

(
P

σ2
k

)
−f
(
P

σ2
Z

)]
−
[
f

(
ᾱkP

σ2
k

)
−f
(
ᾱkP

σ2
Z

)]
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(d)
= f

(
αkP∑k−1

i=1 αiP+σ2
k

)
−f

(
αkP∑k−1

i=1 αiP+σ2
Z

)
, (28)

where (a) follows by using the chain rule and the Markov
chain Uk−X−(Yk,Z); (b) follows because I(X; Yk)−I(X; Z)
is maximized by a Gaussian X [5]; (c) follows because 0 ≤
I(X; Yk|Uk)−I(X; Z|Uk) ≤ f(P/σ2

k)−f(P/σ2
Z), which im-

plies that for any pair (Uk,X), there exists an ᾱk ∈ [0, 1] such
that, I(X; Yk|Uk)−I(X; Z|Uk) = f(ᾱkP/σ

2
k)−f(ᾱkP/σ

2
Z);

and (d) follows by letting αk = 1 − ᾱk and ᾱk =
∑k−1
i=1 αi.

Now, we consider the (k − 1)th user under the same bound,
we have

Rk−1 ≤ I(Uk−1; Yk−1|Uk)− I(Uk−1; Z|Uk) +Rk
(a)
=
[
I(X; Yk−1|Uk)−I(X; Z|Uk)

]
−
[
I(X; Yk−1|Uk−1)−I(X; Z|Uk−1)

]
+Rk

(b)

≤
[
f

(
ᾱkP

σ2
k−1

)
−f
(
ᾱkP

σ2
Z

)]
−
[
I(X; Yk−1|Uk−1)−I(X; Z|Uk−1)

]
+Rk

(c)
=

[
f

(
ᾱkP

σ2
k−1

)
− f

(
ᾱkP

σ2
Z

)]
−
[
f

(
ᾱk−1P

σ2
k

)
−f
(
ᾱk−1P

σ2
Z

)]
+Rk

(d)
= f

(
αk−1P∑k−2

i=1 αiP+σ2
k

)
−f

(
αk−1P∑k−2

i=1 αiP+σ2
Z

)
+Rk,

(29)

where (a) follows by using the chain rule and the Markov
chain Uk−Uk−1−X− (Yk−1,Z); (b) follows because under
the constraint I(X; Yk|Uk) − I(X; Z|Uk) = f(ᾱkP/σ

2
k) −

f(ᾱkP/σ
2
Z), the expression I(X; Yk−1|Uk) − I(X; Z|Uk) is

maximized by a joint Gaussian distribution on the pair
(Uk,X) [12]; (c) follows because 0 ≤ I(X; Yk−1|Uk−1) −
I(X; Z|Uk−1) ≤ f(ᾱkP/σ

2
k−1) − f(ᾱkP/σ

2
Z), which im-

plies that for any triple (Uk,Uk−1,X), there exists an
ᾱk−1 ∈ [0, ᾱk] such that, I(X; Yk−1|Uk−1)−I(X; Z|Uk−1) =
f(ᾱk−1P/σ

2
k−1)− f(ᾱk−1P/σ

2
Z); and (d) follows by letting

αk−1 = ᾱk − ᾱk−1 and ᾱk−1 =
∑k−2
i=1 αi.

Now, if we apply the same steps in (29) to the remaining
users, we can show that the bound in (25a) holds. These
calculations establish two additional constraints: the first is∑k
i=1 αi = 1, while the second is the bound in (26) and

its consequence E[U2
j ] ≤

∑k
i=j αiP which follows from

Lemma 1. We now consider the bound in (18b) as follows:

Rj ≤ I(Uj ; Yj |Uj+1) + I(Uj+1; Z)

(a)
= I(Uj ; Yj |Uj+1)− I(Uj ; Z|Uj+1) + I(Uj ; Z)

(b)

≤ f

(
αjP∑j−1

i=1 αiP+σ2
j

)
−f

(
αjP∑j−1

i=1 αiP+σ2
Z

)
+ I(Uj ; Z)

(c)

≤ f

(
αjP∑j−1

i=1 αiP+σ2
j

)
−f

(
αjP∑j−1

i=1 αiP+σ2
Z

)

+ f

( ∑k
i=j αiP∑j−1

i=1 αiP + σ2
Z

)

= f

(
αjP∑j−1

i=1 αiP+σ2
j

)
+f

( ∑k
i=j+1 αiP∑j
i=1 αiP+σ2

Z

)
, (30)

where (a) follows by using the chain rule and the Markov
chain Uj+1 − Uj − Z; (b) follows by the same steps used
to establish (25a); while (c) follows because under the power
constraint on Uj and X, in addition to the Markov chain Uj−
X−Z, I(Uj ; Z) is maximized by a joint Gaussian distribution
on the pair (Uj ,X). Finally, we consider the bound in (18c),
for which we have
k∑
l=j

Rl ≤
k∑
l=j

I(Ul; Yl|Ul+1)

(a)
=

k∑
l=j

[
I(Ul; Yl|Ul+1)− I(Ul; Z|Ul+1)

]
+ I(Uj ; Z)

(b)

≤
k∑
l=j

[
f

(
αlP∑l−1

i=1 αiP+σ2
l

)
−f

(
αlP∑l−1

i=1 αiP+σ2
Z

)]
+ I(Uj ; Z)

(c)

≤
k∑
l=j

[
f

(
αlP∑l−1

i=1 αiP+σ2
l

)
−f

(
αlP∑l−1

i=1 αiP+σ2
Z

)]

+ f

( ∑k
i=j αiP∑j−1

i=1 αiP + σ2
Z

)

=

k∑
l=j

f

(
αlP∑l−1

i=1 αiP + σ2
l

)
, (31)

where (a) follows by using the chain rule and the Markov
chain Uk − Uk−1 − · · · − Uj − Z; while (b) and (c) follows
as in (30). Now, our converse is complete.

V. DEGRADED GAUSSIAN MIMO MULTI-RECIEVER
WIRETAP CHANNEL

In this section, we will study the degraded Gaussian MIMO
multi-receiver wiretap BC under the joint and individual
secrecy criteria and present the joint and individual secrecy
capacity regions. We start by defining the degraded Gaussian
MIMO multi-receiver wiretap BC as:

Yj = X + Nj (32a)
Z = X + NZ , (32b)

where X, Yj , Nj , Z and NZ are column vectors of length
m, where m is the number of antennas available at the
transmitter and each receiver. The channel input X is subject
to a covariance constraint E[XX>] � S, where S is a positive
definite matrix, i.e. S � 0. Nj and NZ are zero-mean
Gaussian random vectors, whose covariance matrices are given
by Σj and ΣZ , such that

0 ≺ Σ1 � Σ2 � · · · � Σk � ΣZ . (33)

The semi-definite ordering of the noise covariance matrices
in (33) implies that X−Y1 − · · · −Yk −Z forms a Markov
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chain, where changing the order of the covariance matrix
will change the position of the receiver in the Markov chain.
This implies that, the degraded Gaussian MIMO wiretap BC
belongs to the class of degraded wiretap BCs and its joint
and individual secrecy capacity regions can be computed by
finding the optimal joint distribution on (Uk, . . . ,U2,X) that
traces the boundary of the capacity regions in (15) and (18)
respectively.

Theorem 4. Consider a degraded Gaussian MIMO multi-
receiver wiretap BC, then the joint secrecy capacity region
is given by the union of all rate tuples (R1, . . . , Rk) ∈ Rk+
that satisfy

Rj ≤
1

2
log

∣∣∣∑j
i=1 Ki+Σj

∣∣∣∣∣∣∑j−1
i=1 Ki+Σj

∣∣∣−1

2
log

∣∣∣∑j
i=1 Ki+ΣZ

∣∣∣∣∣∣∑j−1
i=1 Ki+ΣZ

∣∣∣ (34)

while the individual secrecy capacity region is given by the
union of all rate tuples (R1, . . . , Rk) ∈ Rk+ that satisfy

Rj ≤
1

2
log

∣∣∣∑j
i=1 Ki+Σj

∣∣∣∣∣∣∑j−1
i=1 Ki+Σj

∣∣∣−1

2
log

∣∣∣∑j
i=1 Ki+ΣZ

∣∣∣∣∣∣∑j−1
i=1 Ki+ΣZ

∣∣∣
+

k∑
l=j+1

Rl (35a)

Rj ≤
1

2
log

∣∣∣∑j
i=1 Ki+Σj

∣∣∣∣∣∣∑j−1
i=1 Ki+Σj

∣∣∣+1

2
log

∣∣∣∑k
i=1 Ki+ΣZ

∣∣∣∣∣∣∑j
i=1 Ki+ΣZ

∣∣∣ (35b)

k∑
l=j

Rl ≤
k∑
l=j

1

2
log

∣∣∣∑l
i=1 Ki + Σl

∣∣∣∣∣∣∑l−1
i=1 Ki + Σl

∣∣∣ (35c)

where the unions are taken over all positive semi-definite
matrices Kj � 0, such that

∑k
i=1 Ki � S.

Proof: The achievablity of the previous regions follows
by using a Gaussian random vector realization for the auxiliary
random variables in Theorem 1 and Theorem 2 respectively.
These vectors are constructed recursively as follows: Uj =
Uj+1 + Vj , where Vj are independent Gaussian random
vectors with covariance matrices Kj and Uk+1 is a zero
vector.

Now, for the converse, we start by highlighting the upper-
bound established in [12] for the degraded Gaussian MIMO
wiretap BC under the joint secrecy constraint

I(Uj ; Yj |Uj+1)− I(Uj ; Z|Uj+1) ≤

1

2
log

∣∣∣∑j
i=1 Ki + Σj

∣∣∣∣∣∣∑j−1
i=1 Ki + Σj

∣∣∣ − 1

2
log

∣∣∣∑j
i=1 Ki + ΣZ

∣∣∣∣∣∣∑j−1
i=1 Ki + ΣZ

∣∣∣ . (36)

Using the previous bound and adapting the technique used in
deriving the converse of the Gaussian SISO case in Theorem
3 to the degraded MIMO case, the converse can be shown
accordingly.

VI. GENERAL ACHIEVABLE RATE REGIONS

In this section, we derive achievable rate regions for the
general two-receiver wiretap BC under both the joint secrecy

criterion and the individual secrecy criterion. We then highlight
that the established regions recover the capacity regions of the
degraded two-receiver wiretap BC for both secrecy criteria.
Finally, we compare the two established rate regions under
the joint and individual secrecy constraints showing that there
are some scenarios, in which the individual secrecy rate region
outperforms the joint secrecy one.

A. The Joint Secrecy Rate Region

The general two-receiver wiretap BC was first investigated
under the joint secrecy constraint in [11]. The authors estab-
lished a general rate region in [11, Theorem 1] by adapting
the classical technique of Marton coding introduced in [35] to
the two-receiver wiretap BC. The main issue of the region
given therein is that it fails to recover the joint secrecy
capacity region of the degraded two-receiver wiretap BC,
where the optimal coding strategy is superposition encoding.
This implies that in order to provide a better achievable rate
region for the general two-receiver wiretap BC, we need to
use a coding scheme that combines both Marton coding and
superposition encoding. This agrees with the result presented
in [36, 37] that, Marton coding is in general not optimal
without a superposition variable. With this in mind, we provide
the following rate region:

Theorem 5. An achievable joint secrecy rate region for the
two-receiver wiretap BC is given by the set of all rate pairs
(R1, R2) ∈ R2

+ that satisfy

R1 ≤ I(V0V1; Y1)− I(V0V1; Z)

R2 ≤ I(V0V2; Y2)− I(V0V2; Z)

R1 +R2 ≤ I(V0V1; Y1) + I(V0V2; Y2)− I(V0; Z)−RCE

R1 +R2 ≤ I(V0V1; Y1) + I(V2; Y2|V0)−RCE

R1 +R2 ≤ I(V1; Y1|V0) + I(V0V2; Y2)−RCE (37)

where RCE = max
[
I(V0V1; Z) + I(V2; Z|V0), I(V0V2; Z)+

I(V1; Z|V0), I(V0V1V2; Z) + I(V1; V2|V0)
]
. The random

variables that define the previous region are characterized by
the following joint distribution Q(v0) Q(v1, v2|v0) Q(x|v1, v2)
Q(y1, y2, z|x), i.e., V0 − (V1,V2)−X− (Y1,Y2,Z).

Remark 4. One can show that, the rate constraints in
(37) simplify to the ones in (8), if we let V0 = V2 = U
and V1 = X. This implies that the joint secrecy rate region
established in Theorem 5 recovers the joint secrecy capacity
region of the two-receiver degraded wiretap BC given in
Proposition 1

Proof: The proof combines the principle of Marton cod-
ing with a superposition variable for wiretap encoding as in
[38], in addition to the usage of strong secrecy techniques
described in [31–33].

1. Message sets: We consider the following sets: Two sets
of confidential messages M1 and M2, three sets of random-
ization messages for secrecy Mr, Mr1 and Mr2 , and finally
two additional setsMt1 andMt2 needed for the construction
of Marton coding, where any message set is of the form
Ma = J1, 2nRaK. Additionally we divide each confidential
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message into two parts as follows: M1 = M11 ×M12 and
M2 =M21 ×M22. Based up on this structure, we have

R1 = R11 +R12 and R2 = R21 +R22. (38)

The aim of this division is to use M11 and M21 to play the
role of a common confidential message, which both legitimate
receivers have to decode, while M12 and M22 are the actual
individual confidential messages which are only decoded by
the intended receiver. This principle is motivated by the
combination of Marton coding and superposition encoding.

2. Random Codebook CJn : Fix an input distribution
Q(v0, v1, v2, x). Construct the codewords vn0 (m0), where
m0 = (m11,m21,mr) by generating the symbols v0i(m0)
independently at random according to Q(v0). Next, for each
vn0 (m0) generate the codewords vn1 (m0,m12,mr1 ,mt1) and
vn2 (m0,m22,mr2 ,mt2) by generating symbols v1i(m0,m12,
mr1 ,mt1) and v2i(m0,m22,mr2 ,mt2) independently at ran-
dom according to Q(v1|v0i(m0)) and Q(v2|v0i(m0)) respec-
tively. This agrees with the fact that (m11,m21) simulate a
common confidential message, so they are encoded in the
superposition variable v0. On the other hand, m12 and m22

are encoded in the Marton coding variables v1 and v2 as they
represent the individual confidential messages for the first and
second legitimate receivers respectively.

3. Encoder E: Given a message pair (m1,m2), where
m1 = (m11,m12) and m2 = (m21,m22), the transmitter
chooses three randomization messages mr, mr1 and mr2

uniformly at random from the setsMr,Mr1 andMr2 respec-
tively. Then, it finds a pair (mt1 ,mt2) such that vn1 (m0,m12,
mr1 ,mt1) and vn2 (m0,m22,mr2 ,mt2) are jointly typical. Ac-
cording to Marton coding technique [35], with high probability
such pair exists if

Rt1 +Rt2 > I(V1; V2|V0). (39)

Finally, the encoder generates a codeword xn independently
at random according to

∏n
i=1Q(xi|v1i, v2i) and transmits it.

4. First Legitimate Decoder ϕ1: Given yn1 , it outputs
m̂1 = (m̂11, m̂12) by finding the unique messages (m̂0, m̂12,
m̂r1 , m̂t1), where m̂0 = (m̂11, m̂21, m̂r) such that, vn0 (m̂0),
vn1 (m̂0, m̂12, m̂r1 , m̂t1) and yn1 are jointly typical. Otherwise
declares an error.

5. Second Legitimate Decoder ϕ2: Given yn2 , it outputs
m̃2 = (m̃21, m̃22) by finding the unique messages (m̃0, m̃22,
m̃r2 , m̃t2), where m̃0 = (m̃11, m̃21, m̃r) such that vn0 (m̃0),
vn2 (m̃0, m̃22, m̃r2 , m̃t2) and yn2 are jointly typical. Otherwise
declares an error.

7. Reliability Analysis: We define the average error prob-
ability of this scheme as

P̂e(CJn ) , P
[
(M̂11, M̂21, M̂12, M̂r, M̂r1 , M̂t1)

6= (M11,M21,M12,Mr,Mr1 ,Mt1)

or (M̃11, M̃21, M̃22, M̃r, M̃r2 , M̃t2)

6= (M11,M21,M22,Mr,Mr2 ,Mt2)
]
.

We then observe that P̂e(CJn ) ≥ Pe(Cn), cf. (2). Now ac-
cording to our encoding and decoding procedure, the average
error probability P̂e(CJn ) can be expressed as the union of the
following error events:

a) E11 :(M̂11, M̂21, M̂r) 6= (M11,M21,Mr),

(M̂12, M̂r1 , M̂t1) = (M12,Mr1 ,Mt1).

b) E12 :(M̂11, M̂21, M̂r) = (M11,M21,Mr),

(M̂12, M̂r1 , M̂t1) 6= (M12,Mr1 ,Mt1).

c) E13 :(M̂11, M̂21, M̂r) 6= (M11,M21,Mr),

(M̂12, M̂r1 , M̂t1) 6= (M12,Mr1 ,Mt1).

d) E21 :(M̃11, M̃21, M̃r) 6= (M11,M21,Mr),

(M̃22, M̃r2 , M̃t2) = (M22,Mr2 ,Mt2).

e) E22 :(M̃11, M̃21, M̃r) = (M11,M21,Mr),

(M̃22, M̃r2 , M̃t2) 6= (M22,Mr2 ,Mt2).

f) E23 :(M̃11, M̃21, M̃r) 6= (M11,M21,Mr),

(M̃22, M̃r2 , M̃t2) 6= (M22,Mr2 ,Mt2).

Let us consider the first error event E11 and assume that the
following messages (m11,m21,mr,m12,mr1 ,mt1) were se-
lected for transmission. Based on the structure of the codebook
in addition to the definitions of the encoder and first legitimate
decoder, this error event will happen if one of the following
conditions occurs:

1. The sequences vn0 (m11,m21,mr) and vn1 (m11,m21,mr,
m12,mr1 ,mt1) produced by the encoder are not jointly typical
with the received yn1 .
2. There exists a message tuple (m̄11, m̄21, m̄r) 6=
(m11, m21,mr), such that vn0 (m̄11, m̄21, m̄r), vn1 (m̄11, m̄21,
m̄r,m12,mr1 ,mt1) and yn1 are jointly typical.

According to the properties of typical sequences, for a suffi-
ciently large n and some constant α > 0 such that, εn = 2−αn,
the probability of the first condition is always less than εn. On
the other hand, the probability of the second condition is less
than εn, if the condition in (40a) holds.

Now, applying this error analysis procedure to all the
previous error events, we can show that for a sufficiently large
n , the probability of each of these events is less than εn, if

R11+R21+Rr ≤ I(V0V1; Y1)− δn(εn) (40a)
R12+Rr1+Rt1 ≤ I(V1; Y1|V0)− δn(εn) (40b)

R1+R21+Rr+Rr1+Rt1 ≤ I(V0V1; Y1)− δn(εn) (40c)
R11+R21+Rr ≤ I(V0V2; Y2)− δn(εn) (40d)
R22+Rr2+Rt2 ≤ I(V2; Y2|V0)− δn(εn) (40e)

R2+R11+Rr+Rr2+Rt2 ≤ I(V0V2; Y2)− δn(εn), (40f)

where δn(εn) → 0 as n → ∞. Each rate constraint in (40)
guarantees that the probability of a corresponding error event
is less than εn. It is important to note that the constraints
in (40a) and (40d) can be ignored as they are included
in the ones in (40c) and (40f). Another important point is
that in calculating the average error probability P̂e(CJn ), we
ignored the events where the sequences vn0 , vn1 , vn2 and xn

being atypical sequences, because according to the properties
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of typical sequences, the probability of such events for a
sufficiently large n is small as well.

8. Secrecy Analysis: For our secrecy analysis, we adapted
some of the strong secrecy techniques in [31–33], which are
related to the concept of resolvability to the Marton coding
technique as in [39]. We start by identifying all the virtual
channels that exist between the confidential messages and
the eavesdropper. Based on the codebook structure, we can
define six possible channels as follow: Q1 : V0 → P(Z),
Q2 : V0 × V1 → P(Z), Q3 : V1 → P(Z), Q4 : V0 × V2 →
P(Z), Q5 : V2 → P(Z), and Q6 : V0 × V1 × V2 → P(Z).
According to [32, 33], in order to fulfill the joint strong secrecy
criterion in (4), we need to make sure that the randomization
rate in the input sequence to each of these virtual channels
is at least equivalent to the mutual information between the
channel input and the eavesdropper. Thus, for a sufficiently
large n and some constant β > 0 such that, τn = 2−βn, the
joint secrecy constraints given in (4) are with high probability
smaller than τn, if

Rr ≥ I(V0; Z) + δn(τn)

Rr +Rr1 +Rt1 ≥ I(V0V1; Z) + δn(τn)

Rr1 +Rt1 ≥ I(V1; Z|V0) + δn(τn)

Rr +Rr2 +Rt2 ≥ I(V0V2; Z) + δn(τn)

Rr2 +Rt2 ≥ I(V2; Z|V0) + δn(τn)

Rr +Rr1 +Rr2 ≥ I(V0V1V2; Z) + δn(τn). (41)

It is important to note that, although Rt1 is considered as
part of the randomization index for channels (Q2,Q3), and
Rt2 is considered as part of the randomization index for
channels (Q4,Q5), neither Rt1 nor Rt2 plays a role in the
randomization index of channel Q6. This is due to the structure
of Marton coding.

Now, if we combine (39), (40) and (41), and let
R11 = R21 = 0, then apply the Fourier-Motzkin elimination
procedure, followed by taking the limit as n→∞, which im-
plies that δn(εn) and δn(τn)→ 0, we prove the achievability
of any rate pair (R1, R2) satisfying (37).

Marton coding with a superposition variable was first in-
troduced in [40] to establish an achievable rate region for
the two-receiver BC with a common message and two private
messages. The idea was to use the superposition variable V0 to
encode the common message, while the two private messages
are encoded using the classical Marton coding in V1 and
V2. In [36], it was shown that even for the two-receiver BC
without a common message, V0 is still needed to provide a
more general coding scheme than the classical Marton coding.
This result also holds to our scenario as follows: Although we
let R11 = R21 = 0, which implies that V0 does not carry
any information, we still need V0 and without it we can not
show that the rate region established in Theorem 5 includes
the joint secrecy capacity region of the degraded two-receiver
wiretap BC. This implies that V0 can be interpreted as a virtual
common layer that assures the optimality of our coding scheme
for the scenarios, where superposition encoding is needed.

B. The Individual Secrecy Rate Region

In order to establish an achievable rate region for the general
two-receiver wiretap BC under the individual secrecy criterion,
we need to make use of the fact that individual secrecy allows
the usage of the whole or a part of the individual message of
one user as a secret key for the other user. Since secret key
encoding requires that the key is secretly shared between the
transmitter and the receiver, the first user must find a way to
acquire a full knowledge about the part of the message of the
second user used as secret key. This can be done by possessing
a prior knowledge about the second user’s message as in BC
with receiver side information [15–18] or by obtaining this
information from its channel observation. Since, we do not
have any prior side information at the receivers, we need to
use the second method. With this in mind, we present the
following rate region:

Theorem 6. An achievable individual secrecy rate region for
the two-receiver wiretap BC is given by the set of all rate
pairs (R1 = R11 +R12, R2 = R21 +R22) ∈ R2

+ that satisfy

R1 +R21 ≤ I(V0V1; Y1)− I(V0V1; Z)

+ min
[
R21, I(V0V1; Z)

]
R2 +R11 ≤ I(V0V2; Y2)− I(V0V2; Z)

+ min
[
R11, I(V0V2; Z)

]
R1 +R2 ≤ I(V0V1; Y1) + I(V2; Y2|V0)−RCE

+ min
[
RCE − I(V1; V2|V0), R11 +R12

]
R1 +R2 ≤ I(V1; Y1|V0) + I(V0V2; Y2)−RCE

+ min
[
RCE − I(V1; V2|V0), R11 +R12

]
R1 +R2+R11 +R12 ≤ I(V0V1; Y1)+I(V0V2; Y2)−RCE

−I(V0; Z) + min
[
RCE − I(V1; V2|V0), R11 +R12

]
(42)

where RCE is as defined in Theorem 5. The random vari-
ables that define the previous region are characterized by the
following joint distribution Q(v0) Q(v1, v2|v0) Q(x|v1, v2)
Q(y1, y2, z|x), i.e., V0 − (V1,V2)−X− (Y1,Y2,Z).

Remark 5. It can be shown that, the rate constraints in (42)
simplify to the ones in (9), if we set R11 = 0, V0 = V2 = U
and V1 = X. This implies that the individual secrecy rate re-
gion established in Theorem 6 recovers the individual secrecy
capacity region of the two-receiver degraded wiretap BC given
in Proposition 2

Proof: The proof combines the techniques used in estab-
lishing the achievable joint secrecy region, in addition to one
time pad encoding for Shannon’s cipher system [3].

1. Message sets: We consider the same message sets used
in the proof of Theorem 5. However, we divide each confi-
dential message into three parts as follows: M1 = M11 ×
M12×M13 andM2 =M21×M22×M23. In this division,
we force M13 and M21 to be of the same size and use them
to construct M⊗1 by Xoring the corresponding elements of
both sets. We also forceM23 andM11 to be of the same size
and use them to construct M⊗2

using the same procedure.
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Finally we divide the two Xored message sets into two parts as
follows:M⊗1 =M⊗11×M⊗12 andM⊗2 =M⊗21×M⊗22 .
Based on this structure, we have

R1 = R11 +R12 +R13 and R2 = R21 +R22 +R23

R⊗1
= R13 = R21 = R⊗11

+R⊗12

R⊗2
= R23 = R11 = R⊗21

+R⊗22
. (43)

The previous message structure serves our coding scheme as
follows: As in Theorem 5,M11 andM21 represent a common
confidential message. However, in this theorem, they play an
additional role as well. M21 acts as secret keys for the first
legitimate receiver, while M11 acts as secret keys for the
second legitimate receiver. On the other hand, M12 and M13

represent the individual confidential message intended for the
first legitimate receiver, whereM12 is the part of the message
protected by wiretap random coding, whileM13 is the part of
the message protected by secret key encoding. The same holds
forM22 andM23, which represent the individual confidential
message intended for the second legitimate receiver.

2. Random Codebook CIn: Fix an input distribution
Q(v0, v1, v2, x). Construct the codewords vn0 (m0), where
m0 = (m11,m21,mr,m⊗11

,m⊗21
) by generating the sym-

bols v0i(m0) independently at random according to Q(v0).
Next, for each vn0 (m0) generate the codewords vn1 (m0,m12,
mr1 ,m⊗12

,mt1) and vn2 (m0,m22, mr2 ,m⊗22
,mt2) by gen-

erating the symbols v1i(m0,m12,mr1 ,m⊗12
,mt1) and v2i

(m0,m22,mr2 ,m⊗22
,mt2) independently at random accord-

ing to Q(v1|v0i(m0)) and Q(v2|v0i(m0)) respectively.

3. Encoder E: Given a message pair (m1,m2), where
m1 = (m11,m12,m13) and m2 = (m21,m22,m23), it first
calculates the Xored messages (m⊗11

,m⊗21
, m⊗12

,m⊗22
),

then chooses three randomization messages mr, mr1 and
mr2 uniformly at random from the sets Mr, Mr1 and
Mr2 respectively. Then, it finds a pair (mt1 ,mt2), such that
vn1 (m0,m12,mr1 ,m⊗12 ,mt1) and vn2 (m0,m22,mr2 ,m⊗21 ,
mt2) are jointly typical. According to Marton coding tech-
nique [35], with high probability such pair exists if

Rt1 +Rt2 > I(V1; V2|V0). (44)

Finally, it generates a codeword xn independently at random
according to

∏n
i=1Q(xi|v1i, v2i) and transmits it.

4. First Legitimate Decoder ϕ1: Given yn1 , it outputs
m̂1 = (m̂11, m̂12, m̂13). First, it finds the unique messages
(m̂0, m̂12, m̂r1 , m̂⊗12

, m̂t1), where m̂0 = (m̂11, m̂21, m̂r,
m̂⊗11

, m̂⊗21
) such that, vn0 (m̂0), vn1 (m̂0, m̂12, m̂r1 , m̂⊗12

,
m̂t1) and yn1 are jointly typical. Then, it estimates m̂13 by
Xoring m̂21 and m̂⊗1 = (m̂⊗11 , m̂⊗12). If one of the previous
two steps fails, it declares an error.

5. Second Legitimate Decoder ϕ2: Given yn2 , it outputs
m̃2 = (m̃21, m̃22, m̃23). First, it finds the unique messages
(m̃0, m̃22, m̃r2 , m̃⊗22

, m̃t2), where m̃0 = (m̃11, m̃21, m̃r,
m̃⊗11 , m̃⊗21) such that vn0 (m̃0), vn2 (m̃0, m̃22, m̃r2 , m̃⊗22 ,
m̃t2) and yn2 are jointly typical. Then, it estimates m̃23 by
Xoring m̃11 and m̃⊗2

= (m̃⊗21
, m̃⊗22

). If one of the previous
two steps fails, it declares an error.

7. Reliability Analysis: We define the average error prob-
ability of this scheme as

P̈e(CIn) , P
[
(M̂11, M̂12, M̂21, M̂⊗1 , M̂⊗21 , M̂r, M̂r1 , M̂t1)

6= (M11,M12,M21,M⊗1 ,M⊗21 ,Mr,Mr1 ,Mt1)

or (M̃11, M̃21, M̃22, M̃⊗11
, M̃⊗2

, M̃r, M̃r2 , M̃t2)

6= (M11,M21,M22,M⊗11 ,M⊗2 ,Mr,Mr2 ,Mt2)
]
.

We then observe that P̈e(CIn) ≥ Pe(Cn), cf. (2). Now according
to our encoding and decoding procedure, the average error
probability P̈e(CIn) can be expressed as the union of the
following error events:

a) E11 : (M̂12, M̂r1 , M̂⊗12 , M̂t1) = (M12,Mr1 ,M⊗12 ,Mt1),

(M̂11, M̂21, M̂r, M̂⊗11
, M̂⊗21

) 6= (M11,M21,Mr,M⊗11
,M⊗21

)

b) E12 : (M̂12, M̂r1 , M̂⊗12
, M̂t1) 6= (M12,Mr1 ,M⊗12

,Mt1),

(M̂11, M̂21, M̂r, M̂⊗11
, M̂⊗21

) = (M11,M21,Mr,M⊗11
,M⊗21

)

c) E13 : (M̂12, M̂r1 , M̂⊗12 , M̂t1) 6= (M12,Mr1 ,M⊗12 ,Mt1),

(M̂11, M̂21, M̂r, M̂⊗11
, M̂⊗21

) 6= (M11,M21,Mr,M⊗11
,M⊗21

)

d) E21 : (M̃22, M̃r2 , M̃⊗22
, M̃t2) = (M22,Mr2 ,M⊗22

,Mt2),

(M̃11, M̃21, M̃r, M̃⊗11 , M̃⊗21) 6= (M11,M21,Mr,M⊗11 ,M⊗21)

e) E22 : (M̃22, M̃r2 , M̃⊗22
, M̃t2) 6= (M22,Mr2 ,M⊗22

,Mt2),

(M̃11, M̃21, M̃r, M̃⊗11
, M̃⊗21

) = (M11,M21,Mr,M⊗11
,M⊗21

)

f) E23 : (M̃22, M̃r2 , M̃⊗22 , M̃t2) 6= (M22,Mr2 ,M⊗22 ,Mt2),

(M̃11, M̃21, M̃r, M̃⊗11
, M̃⊗21

) 6= (M11,M21,Mr,M⊗11
,M⊗21

)

Using the same error analysis procedure highlighted in the
proof of Theorem 5, we can show that for a sufficiently large n
and some constant α > 0 such that, εn = 2−αn, the probability
of each of the previous events is less than εn if

R0 ≤ I(V0V1; Y1)− δn(εn) (45a)
R12 +Rr1 +R⊗12

+Rt1 ≤ I(V1; Y1|V0)− δn(εn) (45b)
R0+R12+R⊗12

+Rr1+Rt1 ≤ I(V0V1; Y1)− δn(εn) (45c)
R0 ≤ I(V0V2; Y2)− δn(εn) (45d)

R22 +Rr2 +R⊗22
+Rt2 ≤ I(V2; Y2|V0)− δn(εn) (45e)

R0+R22+R⊗22
+Rr2+Rt2 ≤ I(V0V2; Y2)− δn(εn), (45f)

where R0 = R11 +R21 +Rr +R⊗11
+R⊗21

and δn(εn)→ 0
as n → ∞. Each rate constraint in (45) guarantees that the
probability of the corresponding error event is less than εn. It
is also obvious that the constraints in (45a) and (45d) can be
ignored because the ones in (40c) and (40f) are tighter.

8. Secrecy Analysis: Because of the new message sets
structure, the random variable M1 is identified as the product
of three independent and uniformly distributed random vari-
ables M11, M12 and M13. This also applies to M2 which is
the product of the three independent and uniformly distributed
random variables M21, M22 and M23. Thus, the individual
secrecy constraint given by (5) can be reformulated as follows:

I(M11M12; Zn) + I(M13; Zn|M11M12) ≤ τ1n
I(M21M22; Zn) + I(M23; Zn|M21M22) ≤ τ2n. (46)
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Using the strong secrecy approaches in [31–33] as we did for
the joint secrecy criterion, we can show that for a sufficiently
large n and some constant β > 0 such that, τn = 2−βn ≥
max(τ1n, τ2n), the term I(M11M12M21M22; Zn) is with high
probability smaller than τn, if

Rr +R⊗11
+R⊗21

≥ I(V0; Z) + δn(τn)

Rr+R⊗1
+R⊗21

+Rr1+Rt1 ≥ I(V0V1; Z) + δn(τn)

Rr1 +R⊗12
+Rt1 ≥ I(V1; Z|V0) + δn(τn)

Rr+R⊗11
+R⊗2

+Rr2+Rt2 ≥ I(V0V2; Z) + δn(τn)

Rr2 +R⊗22
+Rt2 ≥ I(V2; Z|V0) + δn(τn)

Rr+R⊗1
+R⊗2

+Rr1+Rr2 ≥ I(V0V1V2; Z) + δn(τn),
(47)

where the Xored messages are considered part of the
randomization index in each virtual channel between the
confidential messages and the eavesdropper identified in
the secrecy analysis of the joint secrecy region. Since the
rate constraints in (47) guarantee that with high probability
I(M11M12M21M22; Zn) ≤ τn, this implies that both
I(M11M12; Zn) and I(M21M22; Zn) are with high probability
smaller than τn.
On the other hand, one can show that the term
I(M13; Zn|M11M12) which represents the leakage of
M13 to the eavesdropper given M11 and M12 vanishes as
follows:

I(M13; Zn|M11M12)
(a)
= H(M13)−H(M13|ZnM11M12)

(b)

≤ H(M13)−H(M13|M⊗1
)
(c)
= 0, (48)

where (a) follows because M13, M11 and M12 are indepen-
dent; (b) follows because the best the eavesdropper can do is to
decode M⊗1

; while (c) follows because of the principle of one
time pad in Shannon’s cipher system where the entropy of the
secret key H(M21) is equal to the entropy of the transmitted
message H(M13). It is important to highlight here the idea that
supports our analysis. In order for the eavesdropper to extract
any information about M13, it must possess information about
both the Xored message M⊗1

and the secret key M21. In our
analysis, we assumed that the eavesdropper will be able to
decode M⊗1

correctly from its channel observation. However,
Eq. (47) assures that the eavesdropper can not extract any
information about M21. This implies that the eavesdropper will
not be able to extract any information about M13 as well.
Now, using the same steps, we can proof that the term
I(M23; Zn|M21M22) which represents the leakage of M23 to
the eavesdropper given M21 and M22 also vanishes. This
implies that under the previous constraints, the leakage terms
in (46) are with high probability smaller than τn.

Now in order to finalize our proof, we need to define the
bounds of the Shannon ciphered messages (secret key encoded
messages) i.e R⊗1

and R⊗2
. In addition to Eq. (43), we

have another upper-bound for the ciphered messages which is
the randomization index needed to confuse the eavesdropper
in each layer (virtual channel). It is important to note that,
although mt1 and mt2 are used to confuse the eavesdropper
in some sense, they can not be a part of the secret key encoded
message. This is because mt1 and mt2 are chosen such that

the generated pair (vn1 , v
n
2 ) is jointly typical. Thus they can

not be preselected by the encoder based on the value of the
ciphered message. With this in mind we have the following
bounds:

R⊗1
≤ I(V0V1; Z)

R⊗2
≤ I(V0V2; Z)

R⊗1
+R⊗2

≤ I(V0V1; Z) + I(V2; Z|V0)− I(V1; V2|V0)

R⊗1
+R⊗2

≤ I(V0V2; Z) + I(V1; Z|V0)− I(V1; V2|V0)

R⊗1
+R⊗2

≤ I(V0V1V2; Z) (49)

If we combine the bounds in (44) (45), (47), (43) and
(49), then apply the Fourier-Motzkin elimination procedure,
followed by taking the limit as n → ∞, which implies that
δn(εn) and δn(τn)→ 0, we prove the achievability of any rate
pair (R1 = R11 +R12, R2 = R21 +R22) satisfying (42).

C. General Rate Region: Joint Vs Individual

In the previous sections, it has been shown that the individ-
ual secrecy criterion can provide a bigger rate region compared
to the joint secrecy criterion for the degraded, Gaussian SISO
and degraded Gaussian MIMO multi-receiver wiretap BC. This
result was established by comparing the individual and joint
secrecy capacity regions for these channels. Although, we can
not establish a similar result for the general multi-receiver
wiretap BC, we can still provide some intuitions by comparing
the joint secrecy rate region in (37) and the individual secrecy
rate region in (42).

Now, consider an encoding scheme for the individual se-
crecy criterion that divides the confidential messages setsM1

andM2 such that, R11 ≤ I(V0V1; Z), R12 ≤ I(V0V2; Z) and
R11 + R12 ≤ RCE − I(V1; V2|V0). For this scheme the rate
region in (42) simplifies to:

R1 ≤ I(V0V1; Y1)− I(V0V1; Z)

R2 ≤ I(V0V2; Y2)− I(V0V2; Z)

R1 +R2 ≤ I(V0V1; Y1)+I(V0V2; Y2)−I(V0; Z)−RCE

R1 +R2 ≤ I(V0V1; Y1)+I(V2; Y2|V0)−RCE+R11+R12

R1 +R2 ≤ I(V1; Y1|V0)+I(V0V2; Y2)−RCE+R11+R12.

It is obvious that the first three constraints in the previous
region are identical to the first three constraints of the joint
secrecy rate region in (37). On the other hand, the last two
constraints in the previous region are bigger than the last two
constraints in (37). Thus, although the joint and individual
secrecy rate regions established in Theorem 5 and Theorem
6 are based on the same coding scheme (Marton coding with
superposition variable), there exists some scenarios where the
individual secrecy rate region can be bigger than the joint
secrecy one. This gives us some intuitions that, in general the
individual secrecy criterion might be able to provide a rate
region bigger than the joint one.

VII. CONCLUSION AND OPEN PROBLEMS

We studied secure broadcasting over the multi-receiver wire-
tap BC with respect to two secrecy criteria: joint secrecy and
individual secrecy. For both criteria, we presented a general
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achievable rate region showing that for some scenarios the
individual secrecy can provide a larger rate region as compared
to the joint secrecy rate region. We then considered the class
of degraded multi-receiver wiretap BC. For this class we
established the individual secrecy capacity region and showed
that it is in fact larger than the joint secrecy capacity region
established in previous literature. This increase is because
coding under the individual secrecy criterion combines wiretap
random coding with secret key encoding by using the mes-
sages of the weak receivers as secret keys for the stronger ones.
Further, we extended our results by establishing the individual
secrecy capacity region for the Gaussian SISO and degraded
Gaussian MIMO multi-receiver wiretap BCs.

It is important to highlight that all the results established
in this paper were derived under two main assumptions: We
assumed that the transmitter has a perfect channel state infor-
mation about the channels to the legitimate receivers channel
and the eavesdropper channel as well. We also assume that
only a passive eavesdropper exists and ignored the existence
of an active one. Although these assumptions might seem
too ideal, without them it is very hard to establish significant
results for the multi-user scenarios. These assumptions are also
a necessary step before investigating a more general scenarios.

This have also been the case for the single-user scenarios,
where at first the wiretap channel was investigated under
perfect channel state information and passive eavesdropper
only [4]. The channel uncertainty problem was then inves-
tigated in [41, 42] from a compound channel perspective,
where the latter further considers the strong secrecy criterion.
Following this, wiretap channels with both passive and active
eavesdroppers were studied in [43, 44]. This line of research
not only helped us to have a better understanding for secure
communication under more practical scenarios, but it has also
shown that some completely new behaviour can occur for
communication scenarios under secrecy constraints [45]. An
interesting example of this new behaviour is super-activation,
which implies that a communication system consisting of two
orthogonal channels, each of them have a zero capacity, can
have an overall capacity greater than zero. Super-activation
has remained a distinct phenomena for quantum information
theory, until it has been shown that it can also happen in the
classical non-quantum world [46]. It would be very interesting
to investigate how the uncertainty of the transmitter about the
state of the channels and the existence of active eavesdroppers
will affect the results established in this paper.
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[43] M. Wiese, J. Nötzel, and H. Boche, “The arbitrarily varying wiretap
channel - deterministic and correlated random coding capacities under
the strong secrecy criterion,” CoRR, vol. abs/1410.8078, 2014. [Online].
Available: http://arxiv.org/abs/1410.8078
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