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Abstract—Fingerprint features can be divided into three major
categories based on the granularity at which they are extracted:
level 1, level 2 and level 3 features. Orientation field, ridge fre-
quency field and minutiae set are three fundamental components
of fingerprint, where the orientation field and ridge frequency
field are regarded as level 1 features and minutiae set as level 2
features. It is generally believed that level 1 features, especially
orientation field, can be reconstructed from level 2 features, i.e.,
minutiae. However, it is still a question that if minutiae can
be extracted from level 1 features. In this paper, we analyze
the relations between level 1 and level 2 features using the
FM model and propose an approach to extract minutiae from
level 1 features (i.e., orientation field and frequency field). The
proposed algorithm is evaluated on NIST SD27 and FVC2002
DB1 databases. The true detection rate (TDR) and false detection
rate (FDR) of minutiae detection on NIST SD27 and FVC2002
DB1 are about 45% and 30% compared to manually marked
minutiae, respectively, with level 1 features extracted at a block
size of 16 pixels. When pixel-wise orientation and frequency
fields are available, TDR and FDR can reach 70% and 25%,
respectively. With a smaller block size, the minutiae recovering
accuracy can be even higher. Our quantitative and experimental
results show the deep relationship between level 1 and level 2
features of a fingerprint.

Index Terms—Fingerprint reconstruction, orientation field,
ridge frequency field, minutiae, FM model

I. INTRODUCTION

A fingerprint is the ridge friction pattern on a fingertip. Due
to fingerprint’s high discriminability and persistence over time,
fingerprint-based person recognition systems have been widely
deployed. It is generally agreed that fingerprint recognition
systems have played a crucial role in various applications,
including law enforcement, forensics, physical and logical
access control, border crossing and civil registry.

Orientation field, ridge frequency field and minutiae set
are three fundamental components that constitute a fingerprint
image. Fingerprint features can be divided into three major
categories based on the granularity at which they are extracted:
level 1, level 2 and level 3 features. The orientation field
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and ridge frequency field are regarded as level 1 features and
minutiae set as level 2 features. In [1], the author proposed
a FM model that combines both level 1 and level 2 features
under a unified framework.

It is generally believed that level 1 features, especially
orientation field, can be reconstructed from level 2 features,
i.e., minutiae. Hence the corresponding fingerprint image can
be further reconstructed [3],[4],[5],[6],[7],[8]. However, it is
still a question that if minutiae can be inferred from level 1
features. Minutiae are generally considered as a type of higher
level of fingerprint features because it contains both locations
and directions of feature points. In this paper, we are interested
in the relationship between level 1 and level 2 features of a
fingerprint and how well the level 2 features (i.e., minutiae)
can be inferred from level 1 features.

Various features in a fingerprint image are not independent
of each other. These dependencies are not well studied in
the literatures. We observed that the locations of minutiae
in a fingerprint are highly related to its level 1 features.
Fig. 1 illustrates this relationship between level 1 features and
level 2 features. Even though the central part of a portion
of fingerprint images are covered by a white box, we can
still guess whether there is a minutia within the box or not.
In Fig. 1(a), there are four ridges (in white color) emanating
from the left side of box, but five ridges coming out from the
right side of the box. So, we can guess there is a minutia with
direction pointing to the right side in the white box. On the
other hand, in Fig. 1(b), the ridges are going through the white
box in an opposite way and we can infer there is a minutia
in the white box with direction pointing to the left side. In
Fig. 1(c), there are four ridges coming in from the left side
and four ridges coming out from the right side. This enables
us to infer that there may be either no minutia within the white
box or there may be two minutiae with opposite directions.

In this paper, we study the theoretical relationship between
level 1 and level 2 features and show that the minutiae features
can also be inferred from level 1 features of a fingerprint.
According to the FM model [1], an ideal fingerprint F can
be represented as F = cos(Φ) = cos(C + S), where C is
the continuous phase image without any global spirals, S is
the spiral phase image constructed by minutiae, and Φ is a
composite phase that can be uniquely decomposed into C and
S according to the Helmholtz Decomposition Theorem [10].
The ridge orientation of fingerprint F is perpendicular to the
angle of gradient field of composite phase Φ, and the ridge
frequency is the magnitude of local instantaneous frequency.
With given orientation field and ridge frequency field (level 1
features) as inputs, we propose to use curve integral on the
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(a) (b) (c) 

Fig. 1. Illustration of relationship between level 1 and level 2 features. Only
small portions of fingerprints are shown here. Examples of ridge pattern where
(a) there is a minutia whose direction is pointing to the right in the white box;
(b) there is a minutia whose direction is pointing to the left in the white box;
(c) there may be no minutia in the white box or two minutiae with opposite
directions.

gradient field of composite phase to first detect the minutiae
location map. Each minutia appears as a blob like feature in the
minutiae location map. Then, a blob feature detector, SURF
keypoint detector [11], is applied on the minutiae location
map to localize the blobs. After a series of post processing
operations on the detected blobs, minutiae features can be
successfully recovered. With the detected minutiae, and the
given orientation field and ridge frequency field, we also
show that the fingerprint image can be further reconstructed
by applying the FM model based fingerprint reconstruction
algorithm proposed in [5] (see Fig. 5). Our study reveals the
deep relation between level 1 and level 2 features and is helpful
in better understanding the nature of fingerprint model and
relations among feature components.

The rest of this paper is organized as follows. In section II,
the relationship between level 1 and level 2 features and
the detailed implementation of the proposed fingerprint re-
construction algorithm are presented. Experimental results are
described and discussed in section IV and the conclusions are
drawn in section V.

II. RELATIONSHIP BETWEEN LEVEL 1 AND LEVEL 2
FEATURES

A. Fingerprint Representation

According to the FM model [1], an ideal fingerprint I(x, y)
can be represented as 1

I(x, y) = cos (Φ(x, y)) . (1)

According to the Helmholtz Decomposition Theorem [10], the
phase Φ(x, y) can be uniquely decomposed into a continuous
phase C(x, y) and a spiral phase S(x, y)

Φ(x, y) = C(x, y) + S(x, y). (2)

Thus, phase Φ(x, y) is also termed as composite phase. Fig. 2
shows an example of a fingerprint with its continuous phase
and spiral phase. While the continuous phase image is smooth
and changes slightly, the spiral phase image contains many
singular points that appear at the locations of minutiae points.

1The level 3 fingerprint features are not considered in the FM model.

B. Orientation field and ridge frequency field

The gradient field (Ix, Iy) of fingerprint image I(x, y) is

Ix = − sin (Φ(x, y))
∂Φ(x, y)

∂x
= − sin (Φ(x, y))ωx, (3)

Iy = − sin (Φ(x, y))
∂Φ(x, y)

∂y
= − sin (Φ(x, y))ωy. (4)

The orientation field o(x, y) can be computed as

o(x, y) = arctan

(
Ix
Iy

)
= arctan

(
ωx
ωy

)
. (5)

Thus, the gradient field (ωx, ωy) of composite phase Φ(x, y)
can uniquely determine the orientation field o(x, y). It should
be noted that the ridge orientation is in range [−π2 ,

π
2 ), or the

wrapped direction plus π
2 of gradient field (ωx, ωy).

The local ridge frequency of fingerprint is simply the
amplitude of gradient field of composite phase Φ(x, y). That
is
√
ω2
x + ω2

y .

C. Curve Integral on Gradient Field of Φ(x, y)

Now, we consider the curve integral on gradient field
(ωx, ωy) along a closed path l

P =

∮
l

(ωx, ωy)d~l =

∮
l

OΦ(x, y)d~l (6)

=

∮
l

(OC(x, y) + OS(x, y)) d~l (7)

=

∮
l

OC(x, y)d~l +

∮
l

OS(x, y)d~l, (8)

where O is the gradient operator. Since the continuous phase
C(x, y) is a smooth function (or with 2π difference) according
to Helmholtz Decomposition Theorem (see Fig. 2(b)), we have∮

l

OC(x, y)d~l = 0. (9)

The spiral phase S(x, y) can be represented by minutiae set
as

S(x, y) =
N∑
i=1

pi arctan

(
y − yi
x− xi

)
, (10)

where N is the number of minutiae in the fingerprint I and
pi ∈ {1,−1} denotes the polarity of the minutia at (xi, yi).
So, ∮

l

OS(x, y)d~l =

∮
l

O
N∑
i=1

pi arctan

(
y − yi
x− xi

)
d~l (11)

=
N∑
i=1

pi

∮
l

O arctan

(
y − yi
x− xi

)
d~l. (12)

When the minutia (xi, yi) is outside of the closed path l, the
integral ∮

l

O arctan

(
y − yi
x− xi

)
d~l = 0. (13)

Thus, the overall integral P =
∮
l
OΦ(x, y)d~l = 0, if all the

minutiae are outside of the closed path l.
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(a) (b) (c) 

Fig. 2. An example of a fingerprint and its phase images; (a) a plain fingerprint in FVC2002 DB1 [2]; (b) continuous phase C(x, y), and (c) spiral phase
S(x, y) of fingerprint image shown in (a).

Otherwise, let F = (Sx, Sy) = OSij(x, y) be the gradient
field of spiral phase Sij(x, y) = arctan

(
y−yi
x−xi

)
of minutia at

(xi, yi), we have

Sx =
∂Sij
∂x

=
−(y − yi)

(x− xi)2 + (y − yi)2
, (14)

Sy =
∂Sij
∂y

=
(x− xi)

(x− xi)2 + (y − yi)2
. (15)

Then, ∮
l

Sij(x, y)d~l =

∮
l

O arctan

(
y − yi
x− xi

)
d~l (16)

=

∮
l

(Sx, Sy)d~l (17)

= 2π. (18)

With Eqs. (9), (12) and (18), we have the overall integral

P =

∮
l

OΦ(x, y)d~l =

∮
l

OS(x, y)d~l = 2π
∑
k∈µ

pk, (19)

where µ is the set of index numbers of minutiae which are
located within the closed path l.

When there is only one minutia, say (xi, yi), within l, we
have

P =

∮
l

OΦ(x, y)d~l = 2πpi. (20)

The curve integral along a closed path is essentially com-
puting the phase change along this path. Since a spiral phase
adds or reduces one period of phase (i.e., 2π) on the composite
phase Φ(x, y), an additional ridge will appear or disappear
around this minutia. However, from the curve integral value,
we cannot infer the exact number of minutiae because the
minutiae of different polarities within closed path l will cancel
each other in Eq. (19) . This explains the phenomenon shown
in Fig. 1.

D. Minutiae Direction

The minutiae direction is determined by the direction of
phase gradient and minutiae polarity. In [5], the authors
demonstrated the relationship between minutiae direction and

polarity. Here, we further investigate how the local phase gra-
dient of continuous phase affects the minutiae direction. Fig. 3
shows some examples of synthetic local ridge patterns with
different combinations of local phase gradient and minutiae
polarity.

The relationship among minutiae direction, minutiae polar-
ity and the angle of local phase gradient can be derived from
these examples

β = θ − pπ

2
, (21)

where β is the minutia direction, θ is the direction of phase
gradient and p ∈ {−1, 1} is the minutia polarity. The direction
of phase gradient θ can be estimated by orientation field o ∈
[−π2 ,

π
2 ): θ = o ± π

2 . Without any loss of generality, we use
θ = o− π

2 .
Fig. 4 shows some examples of curve integral values in

different synthetic local regions of ridge patterns.

III. IMPLEMENTATION OF MINUTIAE INFERENCE

The flowchart of the proposed fingerprint reconstruction
algorithm from given orientation field and ridge frequency
field is shown in Fig. 5. Based on the theoretical analysis
in the previous section, we discretize the curve integral of
Eq. (19) for recovering minutiae from the given orientation
field and ridge frequency field. Since the curve integral value
is independent of the shape of the closed path l, we use a
circle of radius R as the integral path for simplicity.

A. Minutiae Location Map
The circle l is uniformly divided into K segments in

clockwise direction, with each segment of length around
|l|
K pixels, where |l| = 2πR is the total length of l. Let
{(ui, vi)|i = 1, · · · ,K+1} be the K+1 points used to divide
l, where (u1, v1) is the starting point of l and (uK+1, vK+1)
is the ending point of l 2.

In Eq. (6), the circle integral can be approximated as∮
l

OΦ(x, y)d~l ≈
K∑
i=1

~ω(i) · 4~l(i), (22)

2Note that (uK+1, vK+1) is the same as (u1, v1) for a closed path. So,
there are actually only K points dividing the circle.
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(a) 0 (b) -2π (c) 2π (d) 0 (e) -4π (f) 4π 

Fig. 4. Examples of curve integral in different synthetically generated local regions of ridge patterns. Red circles indicate the closed integral path.

+ 

Orientation field Frequency field Minutiae location map 

Blob feature detection Reconstructed minutiae Reconstructed fingerprint 

Fig. 5. Flowchart of the proposed fingerprint reconstruction algorithm from given orientation field and ridge frequency field.

where ~ω(i) is the instantaneous frequency (or gradient vector)
of composite phase Φ at the center of the ith segment on circle
l; it can be estimated as

~ω(i) = |~ω(i)|(sin θ(i), cos θ(i)), (23)

where |~ω(i)| is the magnitude of vector ~ω(i) and θ(i) is the
angle of gradient vector ~ω(i). Although the gradient vector,
~ω(i), is normal to the local ridge orientation field, we cannot
simply add or subtract π

2 to the ridge orientation to obtain
the angle of gradient vector because the ridge orientation is
wrapped to range [−π2 ,

π
2 ). To resolve the ambiguity, we need

to unwrap the orientation field so as to obtain the angle of
gradient vector. Without lack of generality, we set the angle
θ(0) of gradient vector at the center point of circle l as the
ridge orientation minus π

2 (i.e., o(0) − π
2 ). For each segment

on l, its initial angle θ(i) of gradient vector is set to (o(i)− π
2 ).

Then, the unwrapped angle of phase gradient of each segment
can be determined from the initial angle recursively as

θ(i) =


θ(i) − π, if θ(i) − θ(i−1) > π

2 ,
θ(i) + π, if θ(i−1) − θ(i) > π

2 ,
θ(i), otherwise.

(24)

The vector 4~l(i) in Eq. (22) is the vector of the ith line
segment from (ui, vi) to (ui+1, vi+1) and can be represented
as

4~l(i) = (ui+1 − ui, vi+1 − vi) (25)

=
|l|
K

(sinα(i), cosα(i)), (26)

where α(i) is the angle of vector 4~l(i). Suppose the center
point (u1+u2

2 , v1+v22 ) of the first line segment is on the right
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(a) 

(b) 

(c) 

(d) 

Continuous  
phase 

Spiral  
phase 

Synthetic ridge 
pattern 

Fig. 3. Illustration of the relationships among minutiae direction, phase
gradient and minutiae polarity.

side of circle l and v1+v2
2 = yc, where (xc, yc) is the center

of circle l, the angle α(i) can be obtained by

α(i) = (i− 1)
2π

K
+
π

2
, i = 1, 2, · · · ,K. (27)

So, Eq. (22) can be rewritten as

P =

∮
l

OΦ(x, y)d~l

≈
K∑
i=1

|ω(i)|(sin θ(i), cos θ(i)) · |l|
K

(sinα(i), cosα(i))

=
|l|
K

K∑
i=1

|ω(i)| cos
(
θ(i) − α(i)

)
(28)

=
2π|l|
K

K∑
i=1

f (i) cos
(
θ(i) − α(i)

)
, (29)

where f (i) = ω(i)

2π is the ridge frequency at the center of the
ith line segment on l.

For each pixel in the fingerprint image, we perform a curve
integral to obtain a minutiae location map value P . A Gaussian
filter of size 7 × 7 with σ = 1 is then applied to P . On the
minutiae location map P , a large absolute value of integral
value denotes a high possibility there is a minutia.

It should be noted that the radius R of circle l has an effect
on the minutiae location map (see Fig. 6). A smaller circle can

provide a more accurate estimation of minutiae location, but
requires a more accurate orientation field and ridge frequency
field; on the other hand, a large circle may miss some minutiae
when the minutiae are very close to each other. In general, the
radius can be set to around local ridge period. In this paper, we
set the radius R to different values depending on the inputs. If
both orientation field and ridge frequency field are available,
the radius R is set to 8 pixels. When only the orientation field
is available, the radius R is set to 10 pixels for robustness.

B. Minutiae Localization

As we analyzed previously, the curve integral value is ±2π
around a closed path enclosing a minutia. Since we use a
circle of radius R as the integral path, ideally there is a sharp
white (+2π) or black (−2π) circular spot (or blob) around
each minutia on the minutiae location map, with the rest of
region being 0. However, due to the present of noise, the spots
boundaries are blurred (see Fig. 7(a)).

SIFT is a classic scale invariant keypoint detector and
feature descriptor which detects scale-space local extrema [9].
Each extrema point represents the center of blob in image. This
property is very suitable for our task of detecting minutiae in
minutiae location map.

We adopt the SURF keypoint detector 3 (a speed-up version
of SIFT) proposed in [11] to detect the blob features in |P |,
where |P | is the absolute value of P . Let B = {(xi, yi, si)}
be the set of detected blobs, where xi and yi are the blob
coordinates, and si is the scale of the blob. A large scale value
si corresponds to a large blob size. In the initially detected
blob set B, there are many falsely detected minutiae (see
Fig. 7(b)). A set of additional constraints is applied on B for
refining the blob features so as to recover the minutiae set:

1) The absolute value of curve integral P (xi, yi) at (xi, yi)
should be greater than a threshold value TP .

2) The scale si of each blob should be within the range
[smin, smax].

3) If the distance disij between two blobs is less than a
threshold Tdis, then remove both blobs.

4) If the (si + sj − disij) > Ts, where Ts is a predefined
threshold, then keep the blob with smaller scale.

After applying the above conditions, many falsely detected
blobs are removed, and the locations of final minutiae are
determined as the blob locations. Let {(x′i, y′i, βi)} be the
set of detected minutiae. According to Eq. (21), the minutia
direction βi can be determined as

βi =

{
o(x′i, y

′
i), if P (x′i, y

′
i) < 0,

o(x′i, y
′
i)− π, otherwise,

(30)

where o(x′i, y
′
i) is the ridge orientation field at (x′i, y

′
i).

Fig. 7(c) shows the refined blob features in minutiae location
map, and Fig. 7(d) shows the detected minutiae in the skeleton
image.

3In this paper, the implementation of SURF detector in OpenCV library [13]
is used to detect blobs.
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(a) (b) (e) (f) (c) (d) 

Fig. 6. Illustration of minutiae location map obtained with different areas of circle integral; (a) orientation field; (b) ridge frequency field; (c) R = 2; (d)
R = 6; (e) R = 10; (f) R = 14. The unit of radii is in pixels and the level 1 features shown in (a) and (b) are extracted in pixel-wise.

(a) (b) (c) (d) 

Fig. 7. Illustration of minutiae localization by blob feature detection and refinement. (a) Minutiae location map; (b) initial detected blobs shown as circles;
(c) refined blobs; (d) detected minutiae overlaid on the skeleton image.

IV. EXPERIMENTAL RESULTS

A. Databases

The proposed minutiae recovering algorithm is evaluated
on FVC2002 DB1, FVC2002 DB2 [17] and NIST SD27 [12]
databases. In FVC2002 DB1 and NIST SD27, the manually
marked minutiae are available as ground truth for comparison
purpose [16].

B. Minutiae Detection Accuracy

In an operational fingerprint recognition system, the level 1
features may be computed in block-wise manner as opposed to
pixel-wise manner. For example, in [15], the orientation field
and ridge frequency are estimated for every non-overlapping
block of size 16× 16 pixels. To investigate how the minutiae
detection accuracy is affected by block size, we compute the
orientation field and ridge frequency at different block sizes.

A manually marked minutia m(x, y, β) is deemed as de-
tected correctly if there is a minutia m′(x′, y′, β′) in the ex-
tracted minutiae set that satisfies the following two conditions:√

(x− x′)2 + (y − y′)2 < d, (31)
φ(β, β′) < ∆β, (32)

where d and ∆β are two thresholds set to 20 pixels and 20
degree, respectively; φ(β, β′) denotes the minimum angle that
rotates β to β′, either clockwise or counter-clockwise.

Two measures are used to evaluate the minutiae detection
accuracy. The first measure is called the False Detection Rate

(FDR), which is defined as

FDR =
Number of falsely detected minutiae
Total number of detected minutiae

. (33)

The second measure is called the True Detection Rate (TDR),
which is defined as

TDR =
Number of truly restored minutiae

Total number of ground truth minutiae
. (34)

On NIST SD27 rolled fingerprints, only the minutiae above
the first knuckle were marked, however, the proposed algo-
rithm detects minutiae on the whole image. To reduce the
side effect of region below the first knuckle, we only use the
extracted minutiae within the convex hull of manually marked
minutiae for measuring minutiae detection accuracy on the
NIST SD27 rolled print database.

Fig. 8 shows the FDR and TDR for FVC2002 DB1 and
NIST SD27 (rolled and latent) databases under different block
sizes. Figs. 8 (a) and (b) are FDR and TDR using both
orientation and ridge frequency field, while in Figs. 8 (c) and
(d) only orientation fields were used in minutiae detection
and the ridge frequency was fixed to a constant number (i.e.,
0.125 in this experiment). The results show that when pixel-
wise orientation and ridge frequency fields were used, we
can have about a TDR of 70% at a FDR of about 25%. As
we increase the block size, as expected, the TDR decreases
accordingly; FDR is stable initially (or decreases slightly)
and then increases rapidly when block size is greater than
16 pixels. In Figs. 8 (c) and (d), we observe a similar trend
in TDR and FDR with increasing block size. However, as
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Fig. 8. Minutiae detection accuracy for different block sizes; (a) and (b) true detection rate and false detection rate, respectively, using reconstruction images
from orientation field and ridge frequency field; (c) and (d) true detection rate and false detection rate, respectively, using reconstructed images from orientation
field alone.

expected, the minutiae detection accuracy based on orientation
field alone is much lower than that based on both orientation
and ridge frequency fields.

From Fig. 8, we can also observe that the fingerprint image
quality is a critical factor that affects the FDR. The FDRs on
NIST SD27 latent prints are much higher than those on the
other two datasets.

As a comparison with traditional minutiae detectors which
detect minutiae from the original grayscale images, we com-
pare the FDR and TDR of Verifinger SDK 6.5 [14] and the
proposed algorithm on FVC2002 DB1 and NIST SD27 where
the manually marked minutiae are available (see Table I). The
results of block size 8 and 16 pixels of our algorithm are
reported. It should be noted that we are not intent to improve
the minutiae extraction accuracy over traditional ones. The
main focus of this paper is to investigate the relationships
between level 1 and level 2 features.

C. Matching Results

With the extracted minutiae, the fingerprint image can be
reconstructed together with level 1 features by [5]. To further
evaluate the accuracy of minutiae extraction, we conducted
two types of matching experiments on FVC2002 DB1 and
DB2 databases under the attack models in [5], where the
type-I attack refers to matching the reconstructed fingerprint
image against the original grayscale image and the type-II
attack refers to matching the reconstructed fingerprint image
against the grayscale image of the same finger but a different
impression. The fingerprint image is reconstructed either from
orientation and frequency fields (Ori + Fre) or from orientation
field alone (Ori alone). The matching results under different
block sizes are reported in Fig. 9, where TAR is true accep-
tance rate and FAR is false acceptance rate. We see that the
TAR in Type-II attack is much higher than that in Type-I attack
as expected, and combining orientation field and frequency
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TABLE I
COMPARISON OF MINUTIAE EXTRACTION ACCURACY (TDR AND FDR) OF PROPOSED METHOD AND VERIFINGER SDK 6.5 ON FVC2002 DB1 AND

NIST SD27.

FVC02 DB1 NIST27 Rolled NIST27 Latent
TDR FDR TDR FDR TDR FDR

Verifinger SDK 0.7928 0.0944 0.814 0.2393 0.663 0.6524
Proposed (Block size: 8) 0.5979 0.2273 0.7138 0.2722 0.5577 0.6516
Proposed (Block size: 16) 0.3781 0.2712 0.4653 0.2987 0.3628 0.6576
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Fig. 9. (a) Type-I and (b) Type-II attack on FVC2002 DB1 and DB2 databases.
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Fig. 10. Fusion experiments on (a) FVC2002 DB1 and (b) FVC2002 DB2.

field is much better than orientation field alone. However, with
orientation field alone, the TAR is still very high in Type-
I attack when block size less than 20, indicating the high
correlation between the extracted minutiae set from level 1
features and the original minutiae set.

To further investigate the feature correlations, we conduct
fusion experiments on FVC2002 DB1 and DB2 databases
with Verifinger matcher. In this experiment, we fuse the

match scores, i.e., sum fusion, from original images and the
reconstructed images together. The images are reconstructed
from orientation and ridge frequency fields with block size
of 4 pixels. Figure 10 shows the ROC curves. We see the
performance of reconstructed image is inferior to that of
original image. However, the fusion can help further improve
the performance of using original image.

Fig. 11 compares the reconstructed fingerprint and minutiae
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(a) (b) (c) 

(d) (e) (f) 

Fig. 11. An example showing (a) fingerprint image; (b) orientation field extracted from (a) with a block size of 16 pixels; (c) ridge frequency field extracted
from (a) with a block size of 16 pixels; (d) manually marked minutiae (in red); (e) reconstructed minutiae (in green) and reconstructed fingerprint from (b)
and (c) (FDR = 9.1% and TDR = 56.4%); and (f) reconstructed minutiae (in green) and reconstructed fingerprint from (b) alone (FDR = 30.4% and TDR =
43.6%). The red minutiae shown in (e) and (f) are manually marked from the original fingerprint.

with original fingerprint and manually marked minutiae, where
the level 1 features are extracted at block size 16 pixels. We
can see that minutiae extraction from orientation field and
ridge frequency field are much more accurate than that from
orientation field alone, and the reconstructed fingerprint is very
similar to the original fingerprint. The spurious minutiae in
the reconstructed fingerprint from orientation field alone are
mainly located in regions where ridge frequency varies a lot,
for example, in the region close to delta and core points. This
is because, in the absence of ridge frequency field, a fixed ridge
frequency value was used in reconstructing the fingerprint.

V. DISCUSSION AND CONCLUSIONS

We have studied the relationship between level 1 (orienta-
tion field and ridge frequency field) and level 2 (minutiae set)
features and proposed a minutiae detection algorithm given
only from level 1 features. The detection is based on the FM
model, where a fingerprint can be ideally decomposed into a
continuous phase and a spiral phase. The curve integral along
a closed path is zero in the continuous phase, but the curve
integral along a closed path containing a minutia in the spiral
phase is ±2π. Based on these properties, we propose to infer
minutiae from the given level 1 features by local curve integral.

It is generally believed that minutiae feature is a type of
higher level of fingerprint feature than orientation and ridge

frequency. However, our experimental results show that given
just the level 1 features, we can recover most of the minutiae.
Further, the original fingerprint image can be reconstructed
with a high accuracy. We evaluated the reconstructed finger-
prints obtained from 1) orientation field and ridge frequency,
and from 2) orientation field alone under different block sizes
in computing the level 1 features. Both scenarios show the
strong correlations between minutiae coordinates and orienta-
tion field. The current definition of fingerprint level 1 feature
is ambiguity. Based on our results, the level 1 features also
contain level 2 features.

The minutiae detection algorithm could be further improved
in the following aspects: 1) One possibility to improve the
performance is to use an adaptive integral circle. Currently,
we are using a circle of fixed radius as the integral path.
This may lead to missing minutiae in the circle with opposite
polarities because the integral value is zero in this region; 2)
For minutiae detection, detecting blobs on the positive and
negative minutiae location map separately instead of on the
absolute minutiae location map |P | may further improve the
performance.

There are still some additional relationships and depen-
dencies among the different fingerprint features that are yet
to be discovered. Research on uncovering these relationships
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and dependencies will help us further understand fingerprint
models and design more powerful fingerprint recognition
systems. In our future work, we will focus on how to remove
these dependencies between features in the hope of generating
independent feature components of a fingerprint. This will help
in synthesizing more realistic fingerprints for creating large
fingerprint databases for large scale evaluation.
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