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Abstract—In the hierarchical control paradigm of a smart
grid cyber-physical system, decentralized local agents (LAs)
can potentially be compromised by opportunistic attackers to
manipulate electricity prices for illicit financial gains. In this
paper, to address such opportunistic attacks, we propose a
Dirichlet-based detection scheme (DDOA), where a Dirichlet-
based probabilistic model is built to assess the reputation levels
of LAs. Initial reputation levels of the LAs are first trained
using the proposed model, based on their historical operating
observations. An adaptive detection algorithm with reputation
incentive mechanism is then employed to detect opportunistic
attackers. We demonstrate the utility of our proposed scheme
using data collected from the IEEE 39-bus power system with
the PowerWorld simulator.
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portunistic attack, intrusion detection, smart electricity market,
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I. INTRODUCTION

W ITH the increasing connectivity of society and ad-
vancement of information and communications tech-

nologies (ICT), smart grid cyber-physical system is increasing-
ly commonplace. Smart grid cyber-physical system is a large-
scale interconnected power infrastructure spanning across one
or more jurisdictions. To guarantee high reliability and ro-
bustness of the underlying critical infrastructure, real-time
monitoring, data analytics, and control are highly critical.
Empirically, data analytics is generally performed by the state
estimator at the system control center (CC) [1]–[3]. However,
with the increasing number of interconnections, nonlinearity,
and dynamics, real-time data analytics will inevitably impose
significant computational burden and complexity on CC [4].
If this is not well-managed, CC’s operating efficiency will
be adversely affected, resulting in cascading effects - e.g.
affecting the reliability and the robustness of the power grid
and eventually crippling the power grid. One of the potential
solutions to address the exacting computational requirements
on the CC identified in the literature is the hierarchical control
framework. In such a framework, decentralized local agents
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(LAs) perform real-time data analytics activities in their local
region [5], [6].

While hierarchical framework can effectively reduce the
computational burden of the CC, it may result in unintended
security consequences [4]. For example, in the current central-
ized power system, it is easier to devote efforts and resources
to secure a central entity (i.e. CC); thus, CC is generally
regarded as a fully trusted party. In a hierarchical framework,
however, it is not realistic to expect that all decentralized LAs
can be secured to the same level as the CC.

The upward trend in Internet-of-Things and integration of
power grids with ICT have also resulted in an increased attack
vector. For example, vulnerabilities in existing power system,
or connected devices and/or entry points can be exploited
by cybercriminals. According to the monitor newsletter of
Industrial Control Systems Cyber Emergency Response Team
(ICS-CERT), in Fiscal Year 2015 (i.e. 1 October 2014 to
30 September 2015), ICS-CERT of the U.S. Department of
Homeland Security has reportedly responded to 295 cyber-
security incidents involving critical infrastructures, and the
energy sector is the second most targeted critical infrastructure
sector [7]. The dangers of threats to cyber-physical systems
are evidenced by recent attacks (e.g. on a German steel
mill that destroyed a blast furnace [8]) and attempts (e.g.
ISIS attempted to hack U.S. electric power utilities to steal
confidential grid information and launch terrorist attacks [9]).
Successful attacks could potentially overwhelm and paralyse
the country’s interconnected critical infrastructure sectors and,
consequently, cause severe social unrest.

Unsurprisingly, security of smart electricity markets has
attracted the attention of security researchers [10]–[12]. How-
ever, we observe existing efforts appear to focus on mitigating
data integrity attacks (i.e. attackers falsify measurement data
to “blind” the system in order to manipulate electricity prices
[13]). Generally, it is assumed that attackers have access to the
system configuration, and are able to simultaneously falsify a
set of measurement data at several phasor measurement units
(PMUs) at will.

In addition to criminally-, politically-, and ideologically-
motivated attacks, cybercriminals may be interested in com-
promising smart grids by manipulating smart electricity mar-
kets for illicit financial gains [13]–[15]. Opportunistic attacks
[1], [16] are one such example. Specifically, rather than
seeking to falsify measurement data by compromising a set
of PMUs, opportunistic attackers attempt to manipulate elec-
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Fig. 1. Three-tier hierarchical flocking-based framework for future smart grids.

tricity prices by only compromising the intelligent electronic
device which is responsible for determining the real-time
electricity prices, say the LA. The compromised LA can
issue fake commands to the local generators, distributors,
and transformers to shift the normal demand-supply relations,
which will further influence the electricity price at each local
bus. If colluded with other participants in smart electricity
markets (e.g. power suppliers and utilities), the attackers can
make a great amount of illicit financial profits through the wide
fluctuations of the electricity prices [14]. This is the focus of
this paper.

Since opportunistic attacks are unlikely to result in any
physical damages to the power system, it is a challenging
task for conventional intrusion detection system (IDS) to
identify. Moreover, opportunistic attackers can flexibly adjust
their attack strategies (e.g. probability to launch an attack
when there is a chance) based on system noise level to evade
detection or scrutiny [1]. Hence, to identify the abnormality of
any possible compromised LA, an effective way is to observe
and assess their behaviors (i.e. operations and corresponding
variable states) over a long period of time. In this paper,
we seek to mitigate opportunistic attacks by presenting a
novel Dirichlet-based detection scheme (hereafter referred to
as DDOA). The scheme allows CC to effectively identify
compromised LAs by observing their operating behaviors. We
regard the contributions of this paper to be three-fold:

• We first divide the smart grid infrastructure into a three-
tier hierarchical framework, which is designed to ef-
fectively reduce the computational burden on the CC.
This framework also makes it possible to guarantee high
reliability and robustness of future smart grids.

• We pioneer to study the opportunistic attacks in smart
electricity market, and build up a Dirichlet-based reputa-
tion model to monitor and assess the performance of the
LAs by observing their behaviors over a long period of

time.
• Lastly, we propose and evaluate an adaptive detection

scheme with reputation incentive mechanism, which can
effectively and accurately identify potential opportunistic
attackers hidden in the smart electricity market and
prevent them from manipulating electricity prices. In
addition, two-level detection thresholds are also employed
in our DDOA scheme, which can effectively differentiate
malicious activities from common system faults in smart
grids.

The remainder of this paper is organized as follows. In
Section II, we present the system model, the threat model,
and our design goals. Section III introduces the preliminaries
required in the understanding of this paper. Our proposed
Dirichlet-based reputation model and detection scheme is
detailed in Section IV, and the performance evaluation is
presented in Section V. Section VI reviews related work, and
Section VII concludes the paper.

II. MODELS AND DESIGN GOALS

In this section, we formalize both system and threat models,
as well as describe the design goals.

A. System Model

As shown in Fig. 1, we consider a hierarchical flocking-
based framework for future smart grids as our system model.
This model comprises three tiers, namely: the lowermost tier
of PMU, the intermediate tier of LA, and the uppermost tier of
CC. Their roles and responsibilities are illustrated as follows:

• PMUs, deployed at each bus and generator across the
whole power system, are geographically flocked, forming
several flockings. They collect real-time measurement
data of system status in each flocking area (e.g. power
generations G, power loads L, and line power flows F ),
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and report collected data to the phasor data concentrator
(PDC) located in the upper tier LA area.

• The LA (formed by PDC, state estimator, and local
controller) in the flocking area analyzes the real-time
system status of its monitored local area with the reported
data, and transforms the data to the uppermost tier of
CC as required. Specifically, the PDC collects reported
measurement data from PMUs; the state estimator is
utilized to estimate actual system status in the flocking
area; and the local controller then analyzes the estimated
data, determines the locational marginal price (LMP),
and issues feedback commands to local generators, dis-
tributers, transformers, etc.

• The CC stores and analyzes the measurement data for
various applications (e.g. state estimation, contingencies
analysis, and event diagnostics). In addition, in our model,
CC is also responsible for monitoring and assessing
the reputation levels of the subordinate LAs to identify
abnormal LA behavior.

In this work, we assume that both CC and LAs make use
of state estimation to analyze the system status of either the
entire region or local regions. Particularly, CC carries out
state estimation with a low frequency to reduce computational
requirements (see Section IV-C).

B. Threat Model

Unlike traditional power systems, future smart grids will
delegate real-time monitoring, data analytics, and control tasks
from CC to its subordinate LAs. As aforementioned, it is
natural to assume that only CC is a fully trusted party,
while LAs are more likely to be compromised by malicious
attackers. In our model, PMUs are assumed to be honest (i.e.
data reported by PMUs to PDC are assumed to be without
falsification).

By successfully compromising an LA, attackers can issue
fake control commands to local generators, distributers, and
transformers to manipulate normal demand-supply relations
in a specific flocking area. Such actions could result in
changes of the LMP in the area. As this is a premeditated
activity, attackers can exploit the price fluctuations/changes
for financial gains. For example, attackers can collude with
other players in the smart electricity markets and purchase
a significant amount of electricity at a low price prior to the
attacks. Once the price has been artificially jacked up, attackers
will seek to sell the pre-purchased electricity to users in the
grid.

Fig. 2 presents an example of the contouring map of the
distribution of electricity prices under normal conditions on
the IEEE 39-bus power system. Areas covered by various
colors reflect different demand-supply relations. In case of
occurrence of malicious attacks, these normal relations and
consequently, electricity prices will be intentionally altered.
These attacks can be broadly categorized into random attacks,
reckless attacks, and opportunistic attacks.

1) Random attacks are conducted with a definite attack
probability Pa ∈ [0, 1]. Since such attacks are carried out

Fig. 2. The contouring map of electricity price distribution on IEEE 39-bus
power system.

in a regular mode, it is easier to identify the attacks using
traditional IDS or intrusion prevention systems (IPS).

2) Reckless attacks are launched on an ad-hoc basis.
Specifically, once an opportunity appears, attackers will
launch an attack without hesitation and planning. Con-
sequently, reckless attackers are usually the easiest to be
identified.

3) Opportunistic attacks are carried out based on the system
noise with an attack probability Pa = C · Pnε, where
C is a constant coefficient, and ε denotes a scalar of
the system noise Pn. Particularly, ε > 1 indicates con-
servative opportunistic attackers, while ε < 1 indicates
aggressive ones. Therefore, the larger the system noise
is, the higher the attack probability will be.

It is widely believed that opportunistic attackers are the
most cunning attackers, as they adapt their attack probabilities
according to the system noise. Therefore, it is significant-
ly challenging to identify such attackers using traditional
detection schemes (e.g. IDS and IPS). In this paper, we
aim to propose an effective scheme to identify and detect
opportunistic attackers.

C. Design Goals

The key objective of the proposed DDOA scheme is to
provide an effective approach to accurately identify and detect
opportunistic insider attacks in smart electricity markets. Our
design goals are as follows:

1) Future smart grids are expected to be a hierarchical
system, due to their capability to ensure efficiency,
stability, and reliability of power system in situations
with ever-increasing electricity demands, integration of
renewable energy resources, and various data analytical
applications. Thus, we employ a three-tier hierarchical
control framework for future smart grids to support these
critical requirements.

2) LAs play a prominent role in distributed flocking areas,
and it is important to ensure their functionality. Since
LAs cannot be fully trusted (unlike a CC), we need to be
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able to efficiently and accurately monitor and assess their
behaviors. Thus, we present a Dirichlet-based reputation
model to assess LA’s operating conditions.

3) To continuously monitor all LAs’ operating conditions,
we propose an effective detection scheme based on
our Dirichlet-based reputation model to identify LA
compromised by an opportunistic attacker. In addition,
we use collected real-time data in PowerWorld simulator
to validate the effectiveness of our proposed DDOA
scheme.

III. PRELIMINARIES

In this section, we briefly introduce preliminaries required
in the understanding of the remaining of this paper.

A. State Estimation

State estimation is usually used to estimate real-time op-
erating status of power systems [17]. Assuming that x =
[x1, x2, . . . , xn]T denotes the vector of the real variable s-
tates of a power system, which consists of power genera-
tions xG, power loads xL, line power flows xF , etc. z =
[z1, z2, . . . , zm]T denotes the vector of the measurement data
of these variable states collected from PMUs. n and m are
positive integers, and xi, zj ∈ R for i = 1, 2, . . . , n and
j = 1, 2, . . . ,m. In real-world applications, the state estimate
usually involves a linearized DC power flow model, which can
be expressed as

z = Hx+ η, (1)

where H is an m × n Jacobian matrix determined by the
system configurations, and η = [η1, η2, . . . , ηm]T ∼ N (0,R)
is an independent measurement error vector with zero-mean
and covariance R, which is a diagonal matrix of η [17].

Given the observation of measurements z, the maximum
likelihood estimate of the state variables is given by [18]

x̂ = [HTR−1H]−1HTR−1z. (2)

In particular, according to the invariance nature of maximum
likelihood estimation, the maximum likelihood estimates of
power generations xG, power loads xL, and line power flows
xF can be expressed as [13]x̂G

x̂L

x̂F

 = [HTR−1H]−1HTR−1

zGzL
zF

 (3)

B. Real-time LMP

In smart electricity markets, the real-time LMP within
an LA area is determined based on the estimated real-time
system states. LMP is defined as the cost to serve the next
unit increment of power load (say 1MWh) at each bus by
comprehensively taking into account actual power generations,
power loads, and line flows with respect to transmission line
limits [19].

Such calculations can be formulated as an incremental linear
optimization problem with state estimates as described in
Eq. (4). The objective is to minimize the cost function subject

to the power balance constraint, the generation megawatt
bounds, the transaction megawatt bounds and any transmission
constraints that currently exist on the system. This optimiza-
tion problem can be formulated as follows:

min J =
∑

Ci(∆Gi)−
∑

Cj(∆Lj)

s.t.
∑

∆Gi −
∑

∆Lj = 0

∆Gimin ≤ ∆Gi ≤ ∆Gimax

∆Limin ≤ ∆Li ≤ ∆Limax

Aik∆Gi +Djk∆Lj ≤ 0,

(4)

where Ci and Cj are calculated real-time offer for generator
i and real-time bid for load j, respectively [19]. Aik is a
matrix of shift factors for generation bus i (with respect to
the reference bus) on the binding transmission constraints (k),
and Djk is a matrix of shift factors for load bus j (with respect
to the reference bus) on the binding transmission constraints
(k ). The LMP values at each bus can be expressed as

LMPi = λ−
∑

Aik ∗ SPk, (5)

where λ is the marginal price of generation at the reference
bus [17]. Aik is a shift factor for bus i on binding constraint
k, and SPk is the shadow price of constraint k.

C. Dirichlet Distribution

Dirichlet distribution [20] is a family of continuous mul-
tivariate probability distributions, parameterized by a vector
α of positive reals. Let X = {x1, x2, . . . , xk} be a discrete
random variable, where xi > 0 for i = 1, 2, . . . , k and∑k
i=1 xi = 1. Suppose that α = [α1, α2, . . . , αk] with αi > 0

for all i from 1 to k, and let α0 =
∑k
i=1 αi. Then, X is

said to be a Dirichlet distribution with parameters α, which
is denoted by X ∼ Dir(α). Then, the probability density
function is expressed as

f (X;α) =
1

B(α)

k∏
i=1

xαi−1
i =

Γ(α0)∏k
i=1 Γ(αi)

k∏
i=1

xαi−1
i , (6)

where B(·) is a Beta function, and Γ(·) is a Gamma function.
The expectation and variance of X = xi are respectively

given by

E[xi] =
αi
α0
,Var[xi] =

αi(α0 − αi)
α2
0(α0 + 1)

. (7)

IV. PROPOSED DDOA SCHEME

In this section, we elaborate our proposed DDOA scheme,
which is composed of four parts: behavior rule specifications,
Dirichlet-based reputation model, detailed description of D-
DOA, and guarantee of data integrity with BLS short signature.

A. Behavior Rule Specifications

Smart grid is a large-scale interconnected cyber-physical
system. The behaviors (i.e. operations and variable status)
of the physical devices are an accurate reflection of their
responses to the feedback commands from the control unit.
Thus, assessing the behaviors of physical devices will be an
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TABLE I
RULE SPECIFICATIONS

Index Rule Description

R1 |Gti − Ĝti| ≤ τG The absolute difference of G between measured and expected values should be below a safe threshold τG

R2 |Lti − L̂ti| ≤ τL The absolute difference of L between measured and expected values should be below a safe threshold τL

R3 |F ti − F̂ ti | ≤ τF The absolute difference of F between measured and expected values should be below a safe threshold τF

R4 τPmin ≤ Gti ≤ τGmax The value of G itself should be limited within a specified safe range [τGmin, τGmax]

R5 τLmin ≤ Lti ≤ τLmax The value of L itself should be limited within a specified safe range [τLmin, τLmax]

R6 τFmin ≤ F ti ≤ τFmax The value of F itself should be limited within a specified safe range [τFmin, τFmax]

efficient and reliable way to detect abnormalities in the control
units. The complex interconnections within a smart grid result
in multiple inter-constraints between the state variables, which
can be utilized to specify a set of rule specifications for the
control units’ behaviors. Therefore, in this work, we define
several behavior rule specifications that LAs must follow under
normal operating conditions (see Table I). This will allow us
to identify any operating abnormality.

Let us take the first rule R1 as an example, Gti denotes
the measurement value of power generation at generator i at
time instant t, while Ĝti denotes the corresponding expected
value. R1 describes that the absolute difference between the
measured value and the expected value should be limited to
a specified safe threshold τG. In our scheme, the expected
values are defined by the values estimated by the CC (other
than by LAs) using state estimation, since CC is the fully
trusted party. Apart from R1, in real-world applications, the
value of Gti should also be constrained within a safe range, say
[τGmin, τGmax] as described in R4. Similarly, parallel rules
can also be specified for power loads L, power line flows F
as described in other rules.

Measurement values of the state variables are revealing of
the LA’s behavior. Thus, it is logical to infer that deviation of
these rule specifications imply abnormality. A single deviation
may not sufficiently indicate that an LA is compromised,
as the deviation may be due to system noise. Therefore, a
conjunctive form of these rules and long-term observation
of these conjunctive rules are employed in this work to
effectively and accurately assess LAs’ behaviors (and reduce
false positive rate).

R = R1 ∪R2 ∪R3 ∪R4 ∪R5 ∪R6 (8)

The conjunctive rule R is the combination of all specified
rules as shown in Eq. (8). To simply represent whether a rule
is compliant, we use “1” to denote non-compliance of a rule,
while “0” to denote compliance. As such, R can be repre-
sented as a binary sequence. For example, “100010” indicates
that R1 and R5 are non-compliant while the remaining rules
are compliant. Particularly, full compliance of the conjunctive
six rules is expressed as “000000”, which is our reference
sequence, seqref .

We now define the compliance level of each binary sequence
as follows:

ρ = 1− dist(seq, seqref ) (9)

where seqref is the binary sequence extracted from each piece
of measurement data, and dist function denotes the normalized
distance between each binary sequence and the seqref . Many
distance-based algorithms can be utilized in our scheme, like
Hamming distance, Euclidean distance, etc. In this work, we
use Euclidean distance to conduct our simulation experiments.

In real-word applications, multi-level systems (e.g. quan-
ternary, octonary) can be employed instead of binary system,
which will yield a more accurate compliance level of these
rules. In addition, different rules may have various significance
levels to the power system. Hence, distinguished weights
can be assigned to each rule to enhance the accuracy of
the compliance levels. However, either multi-level systems or
weighted rules can impose considerable computational burden
on CC and require a significant amount of storage for real-time
detection applications. Therefore, if multi-level systems and/or
weighted rules are to be integrated into our DDOA scheme,
efficient optimization algorithms or balancing mechanisms will
be required prior to deploying this enhanced scheme.

B. Dirichlet-based Reputation Model

In our system model, CC is responsible for monitoring and
assessing the behaviors of LAs, and determining whether any
LA has been compromised based on a series of historical
observations. As known to us, Bayesian statistics can be
used to measure the uncertainty of a decision and provide
future knowledge of such decision based on a set of historical
observations. In this way, a Bayesian statistics methodology
is employed in our work to assist CC in making correct
decisions of whether or not an LA has been compromised, and
provide CC with knowledge of LAs’ most possible behaviors
in the future. Specifically, of the statistical techniques, Beta
distribution is a viable method to determine whether a decision
is correct, while a Dirichlet distribution can determine at what
level a decision is correct [20]. In this paper, to obtain a more
accurate assessment of LAs’ behaviors and hence, a more
accurate decision, we consider a Dirichlet-based probabilistic
model.

Dirichlet distribution is grounded on initial beliefs regarding
an unknown event represented by a prior distribution. The
initial beliefs combined with a series of historical observations
can be represented by a posterior distribution. The posterior
distribution is best suited for our reputation model, as the
reputations are required to be updated based on historical
observations. Let X be a discrete random variable denoting
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the compliance level ρ of the measurement data for an LA. X
takes values in the set X = {x1, x2, . . . , xk}, where xi ∈ [0, 1]
and xi+1 > xi (i = 1, . . . , k). Usually, we have x1 = 0,
and xk = 1. Let p = [p1, p2, . . . , pk] with

∑k
i=1 pi = 1

be the probability distribution of X , i.e. p{X = xi} = pi.
In addition, let ζ = [ζ1, ζ2, . . . , ζk] denote the cumulative
historical observations and initial beliefs of X . Then, we can
model p with a posterior Dirichlet distribution as follows:

f(p|ζ) = Dir(p|ζ) =
1

B(ζ)

k∏
i=1

pζi−1
i

=
Γ(ζ0)∏k
i=1 Γ(ζi)

k∏
i=1

pζi−1
i ,

(10)

where B(·) is a Beta function, and Γ(·) is a Gamma function.
ζ0 =

∑k
i=1 ζi.

Given the historical statistics ζ, the expected value of the
probability of X to be xi is given by

E(pi|ζ) =
ζi
ζ0
. (11)

Let pji (t) denotes the probability that LAj behaves with an
compliance level xi at time instant t, where

∑k
i=1 p

j
i (t) = 1.

We model pji (t) using a posterior Dirichlet distribution as
shown in Eq. (10). We define a random variable Y j(t)
denoting the sum of the products of the grade and probability
of each compliance level in pj(t) = [pj1(t), pj2(t), . . . , pjk(t)]
for LAj , which is given by

Y j(t) = ωpj(t) =
k∑
i=1

ωip
j
i (t), (12)

where ω = [ω1, ω2, . . . , ωk] is the grade assignment for each
compliance level, measuring the different impacts on LAj’s
overall operating performance. This design will significantly
improve the accuracy of CC’s decisions.

To assess the overall status of an LA’s behaviors, we
leverage the reputation level in our scheme. Specifically, the
LA’s behaviors can be described using various compliance
levels. Thus, the reputation level of an LA can be defined
by the graded mean value of each compliance level at time
instant t as shown below:

Rj(t) = E[Y j(t)] =
k∑
i=1

ωiE[pji (t)] =
1

ζj0(t)

k∑
i=1

ωiζ
j
i (t),

(13)
where ζji (t) is the cumulative historical observations of LAj
at time instant t with compliance level xi. The variance of
Y j(t) is then given by

σ2[Y j(t)] =
k∑
i=1

k∑
l=1

ωiωlcov[pji (t), p
j
l (t)]. (14)

Notice that the covariance of pji (t) and pjl (t) is given by

cov[pji (t), p
j
l (t)] =

−ζji (t)ζjl (t)(
ζj0(t)

)2(
ζj0(t) + 1

) . (15)

C. Description of DDOA
In DDOA, CC first trains the initial reputation levels of the

LAs based on the collected historical observations, as shown
in Algorithm 1.

Algorithm 1 Reputation Level Training Algorithm
1: procedure DIRICHLET-BASED REPUTATION TRAINING
2: for j = 1 to M , CC do . M is the number of LAs
3: 1). Extracts N pieces of reported data from LAj ;
4: 2). Computes the compliance level of each piece of data ρj(t),
5: t ∈ [1, N ] with Eq. (9);
6: for t = 1 to N do
7: for i = 1 to k do
8: if ρj(t) = xi then
9: ζji (t)← ζji (t− 1) + 1;

10: break;
11: else
12: ζji (t)← ζji (t− 1);
13: end if
14: end for
15: a). ζj0(t) =

∑k
i=1 ζ

j
i (t);

16: b). Determines the reputation level of LAj by
17: Rj(t) = 1

ζ
j
0(t)

∑k
i=1 ωiζ

j
i (t).

18: end for
19: end for
20: end procedure

After the training phase, CC obtains the initial reputation
level of each LA. While, these initial reputation levels only
represent their historical performance. Recall that a smart grid
needs to provide near real-time monitoring and control of
the whole power system. As such, persistent observation and
assessment of LAs’ behaviors is always required to detect
whether any LA may have been compromised. In the detection
phase, we propose an adaptive algorithm with a reputation
incentive mechanism to update LAs’ reputation levels, whose
functionality is described in Algorithm 2.

Based on historical experiences, CC first specifies two
thresholds Hs and Hm for the reputation level as the detection
criteria, where Hs indicates suspicious threshold while Hm

indicates malicious threshold. In a real-world scenario, occa-
sional occurrence of system faults in smart grids is unavoidable
and consequently, causes wide fluctuations of state variables.
Such incidents impact (and reduce) both compliance and
reputation levels. If a single detection threshold is utilized,
we could possibly have a high false positive rate. However,
two levels of threshold can successfully tolerate these system
faults; thus, it can considerably reduce the false positive rate
and further improve the detection rate.

By comparing the current reputation levels with the two
specified thresholds, LAs can be classified into one of the three
distinct groups, namely: normal, suspicious, and malicious
group.

• normal group (N): for those who reside in the normal
group, we consider them as benign LAs. Thus, no further
actions will be taken.

• suspicious group (S): for those who fall into the sus-
picious group, reputation incentive mechanism will be
triggered to adjust the monitor frequency and grades for
different compliance levels.

• malicious group (M): for those who belong to the ma-
licious group, we consider them as malicious LAs that
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Algorithm 2 DDOA Algorithm
1: procedure REPUTATION UPDATING AND INTRUSION DETECTION
2: Initialization:
3: Tmax, Tmin, TS , TW , Hs > Hm, Ncount = 0,
4: µ1 > µ2 > · · · > µk, T1 = T2 = · · · = TM = Tmax,
5: ω1 = ω1, ω2 = ω2, . . . , ωk = ωk
6: for j = 1 to M , CC do with a frequency of 1/Tj
7: 1). Input: ρj(t), Rj(t− 1), ωj1, ω

j
2, . . . , ω

j
k

8: 2). Classification:

9: LAj ∈


N, if Rj(t− 1) > Hs
S, if Hs ≥ Rj(t− 1) ≥ Hm
M, if Rj(t− 1) < Hm

10: 3). Judgement:
11: switch LAj do
12: case: LAj ∈ N
13: a). LAj is benign;
14: b). ωjk ← min{ωjke

µk , 1};
15: c). ωji ← ωi, ∀ i = 1, 2, . . . , k − 1;
16: d). Tj ← Tmax;

17: case: LAj ∈ S
18: Tj ← max{Tj/2, Tmin};
19: if ρj(t) = xk then . xk = 1
20: ωjk ← min{ωjke

µk , 1};
21: Tcount ← Tcount + 1;
22: if Tcount > TS then
23: Tj ← min{Tj ∗ 2, Tmax};
24: Tcount ← 0;
25: end if
26: else
27: ωjk ← ωjke

−µk ;
28: if ρj(t) = xi (i 6= k) then
29: ωji ← ωji e

−µi ;
30: end if
31: Tcount ← 0;
32: end if
33: case: LAj ∈ M
34: LAj is compromised.
35: 4). Updates ζji for i = 1, 2, . . . , k with reference to Algorithm 1.
36: 5). Determines Rj(t) using Eq. (13) with observation window
37: TW .
38: end for
39: end procedure

have been compromised by opportunistic attackers.

From a social perspective, one needs to spend a considerable
amount of time performing good behaviors consistently in
order to build up a good reputation, and only a few instances of
bad behaviors will cause doubt on the individual’s personality
and result in a rapid fall in social reputation [21]. Similarly, for
LAs in the suspicious group, we employ a reputation incentive
mechanism to achieve adaptive assessment of their behaviors.
In this mechanism, we increase the grade ωk in response to an
input of xj(t) = xk (the full compliance level), and decrease
both ωk and ωi responding to an input of xj(t) = xi, i 6= k.
In addition, when LAj falls in the suspicious group S, CC
will increase the monitor frequency of LAj twofold (i.e.
Tj ← Tj/2) to pay closer attention to it. Under normal
circumstances, CC monitors LAj with a constant period Tmax.
If CC observes that LAj behaves perfectly with all full
compliance levels within a safe observation time period TS , the
monitor frequency will be reduced by half (say Tj ← Tj ∗ 2).
Particularly, in the case that any LA returns from group S to
the normal group N, the monitor frequency and all the grades,
with the exception of ωk, will be recovered to the initial values.

In this work, we observe LA’s behavior over a long period

of time, rather than their entire operating history, as the latter
will reduce the response speed of the reputation levels and
consequently reduce the detection accuracy. Hence, we employ
a relatively long observation window TW as our reference
observation period. In other words, CC only needs to assess
LA’s behavior within a time period of [t− TW , t].

This incentive mechanism is designed to encourage non-
malicious LAs, who reside in the normal group or may fall into
suspicious group due to system noise, to keep up with their
good behaviors in order to increase their reputation levels, as
well as rapidly decrease a suspicious LA’s reputation level due
to non-compliance behaviors.

D. Guarantee of Data Integrity with BLS Signature

We need to ensure that the measurement data received by
CC have not been falsified, in order to carry out genuine state
estimation. Thus, in DDOA, we employ BLS short signature
[22] to ensure data integrity during transmission as well as
improve the efficacy of our proposed scheme. The choice
of BLS short signature is due to its length (i.e. short) and
capability to efficiently support data aggregation.

V. PERFORMANCE EVALUATION

We conducted a set of experiments to evaluate the effec-
tiveness of our proposed scheme. First, we carried out Time
Step Simulation experiments using the PowerWorld simulator
to collect extensive real-time data from the IEEE 39-bus
power testing system [23]. Then, a series of simulations were
conducted in MATLAB 2014b to analyze the collected data.

A. Data Collection in PowerWorld

The IEEE 39-bus power system, used as our testing system
(see Fig. 3), is geographically partitioned into m areas (in
our simulations, m = 6), which we referred to as LAs. In
PowerWorld, we make use of Time Step Simulation to collect

LA1

LA6

LA4

LA5

LA3

LA2

Fig. 3. IEEE 39-bus power system.
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Fig. 4. Reputation level versus different ε
during training phase with Pn = 0.1.
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Fig. 5. Reputation level versus different Pn
during training phase with ε = 0.75.
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Fig. 6. Reputation level versus different ε
during training phase with daily dynamic Pn.
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Fig. 7. Reputation level with an aggregative
attacker during detection phase with ε = 0.75.
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Fig. 8. Reputation level with an inserted
temporal system fault during detection phase
with ε = 0.75.

Observation window length (min)
2000 3000 4000 5000 6000 7000

D
et

ec
tio

n 
ra

te

0

0.2

0.4

0.6

0.8

1

ǫ = 0.5
ǫ = 0.75
ǫ = 1
ǫ = 1.25

Fig. 9. Detection rate versus different length
of observation window with Pn = 0.1.

massive real-time data for around 20,000 minutes, including
power generations of each generator G, power loads of each
bus L, and line power flows of each transmission line F , etc.
The first 1,500 minutes of data is used for the training phase,
and the remaining data is used for the detection phase.

We randomly inserted fictitious data into the collected data
to simulate the behaviors of LAs under different scalar ε and
system noise Pn.

B. Data Analytics in MATLAB

With our proposed reputation level training algorithm, we
analyze the reputation levels using the collected data. In the
training phase, the effects of different ε and system noise
Pn are first evaluated. Fig. 4 plots the reputation levels with
respect to ε along the training period. It can be observed that
the reputation level converges to a constant value as time
progresses, and the higher the ε, the higher the reputation. This
is because, as explained in Section II-B, a higher ε indicates a
lower attack probability, hence leading to a higher reputation
level. The reputation levels under different system noise Pn
along the training period are plotted in Fig. 5. Similar to the
effect of ε, the reputation level asymptotically converges to a
constant value, while the lower the system noise, the higher
reputation level (recall lower system noise results in lower
attack probability).

In addition, to demonstrate how opportunistic attackers can
adapt their attack probabilities according to the system noise,

we profile the daily system noise level based on real-time daily
load pattern in Fig. 6. Chertkov et al. have demonstrated a
significant correlation between system noise and load pattern
in [24]. Under such circumstances, the reputation level versus
system noise level under different ε is also presented. From
this figure, we observe that the reputation level fluctuates
conversely with the system noise, due to the same reason (i.e.
system noise has inverse impacts on the reputation level).

In the detection phase, we study two scenarios to demon-
strate the effectiveness of our proposed scheme. In the first
scenario (see Fig. 7), we assume that at time instant 10,000
minutes, LA2 is compromised by a malicious attacker. Since
LA2 belongs to the normal group in the beginning, we observe
that after it is compromised, the reputation level decreases
slightly to the suspicious group threshold HS . With our rep-
utation incentive mechanism, once the reputation level drops
below HS , it is regarded as suspicious and the reputation level
decreases rapidly to the malicious group threshold HM with
respect to continuous non-compliance behaviors. Thus, the
compromised LA2 has been identified. By contrast, LA5 and
LA6 are designed to be compromised from the very beginning.
A notable difference is that LA6 suffers from a higher system
noise than LA5, and the reputation level of LA6 decreases
faster than LA5.

Modelling a different opportunistic attacker, we insert a
temporal system fault to LA3 at time instant 10,000 minutes
in scenario two to highlight the different performance between
attackers and system faults, and the corresponding reputation
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level variation is shown in Fig. 8. We observe that due to
the system fault, the reputation level of LA3 first decreases
from the normal group to the suspicious group with a low
decrease rate in normal group and a high decrease rate in
suspicious group. This is because the proposed reputation
incentive mechanism adaptively changes the decrease rate
accordingly. After that, the reputation level gradually recovers
and, finally, converges to a steady level. It is clear that the
system fault will not change the behavior of the LA, and
although the reputation decreases within a short period of time,
our scheme is able to recover the reputation.

Finally, the detection rate versus the length of the obser-
vation window TW is presented in Fig. 9. We observe that
within a specific period (say [2000, 4000]), the detection rate
increases with the growth of the observation window length, as
a longer observation window can provide additional evidence
to identify the hidden attackers. Compared with conservative
attackers (with ε > 1), it is quicker to identify the aggressive
attackers (with ε < 1) using our proposed scheme.

In summary, we have demonstrated that a potential class of
opportunistic attackers in smart grids can adapt their attack
probabilities according to the dynamic system noise level Pn,
and our proposed DDOA scheme can effectively detect and
identify these opportunistic attackers (e.g. state-sponsored ac-
tors). In addition, our scheme has been shown to accommodate
occasional system faults due to the two specified thresholds
Hs and Hm. We have also shown that our scheme achieves a
high detection rate with long observation windows. Therefore,
our proposal is an effective and promising solution to detect
opportunistic attackers in smart grid cyber-physical systems.

VI. RELATED WORK

In the increasing Internet-connected society (e.g. Internet-
of-Things), ensuring the security of smart grids and other
cyber-physical systems is crucial to the stability of a society
[1], [3], [25], [26]. One current line of research is detecting
and mitigating insider attacks in smart grids (see [1], [3], [11],
[27]–[29]). Liu [29] is, probably, the first to study a new class
of insider attacks, the false data injection (FDI) attacks. In FDI
attacks, attackers seek to circumvent conventional IDS or IPS
without triggering alarms in power grids. Kosut investigated
the various attack strategies and their countermeasures for
malicious data integrity attackers in smart grids [28]. Xie and
Esmalifalak et al. also examined FDI attacks in deregulated
electricity markets, which could be used to manipulate nodal
electricity prices [11], [14], [30].

These studies focused on the centralized power system mod-
el. With the increasing demands on interconnectivity between
systems in future smart grids, recent research focus have
shifted to security in hierarchical smart grids (see [4], [21],
[31], [32]). For example, Li [32] proposed a distributed quick
detection scheme for FDI attacks in smart grids. Vukovic [4]
analyzed the security issues in distributed power system and
proposed a methodology to detect and mitigate data integrity
attacks.

Unfortunately, most existing efforts were directed to the
insider data integrity attacks. There appears to be a lack of

attention to other types of insider attacks, which can have
devastating consequences on smart grids. One such example
of an understudied insider attacks is opportunistic attacks.
Opportunistic attackers were first introduced by Mitchell [16]
in a medical cyber-physical system context.

In this work, we have studied the problem of opportunistic
attacks in future hierarchical smart grids, where attackers seek
to profit from hierarchical electricity markets via compromised
LAs, rather falsifying measurement data. Existing mitigation
strategies are generally ineffective against such attackers. For
example, [33], [34] noted that inside attackers can evade
detection by hiding behind a typical system operation for a
long time, making observations on how the system works, etc;
thus, monitoring schemes are more effective and reliable in
addressing inside attackers. This observation is also supported
by findings from this paper, where we demonstrated that
our novel Dirichlet-based reputation scheme can reliably and
effectively identify and detect opportunistic attackers.

VII. CONCLUSION

In this work, we have presented a three-tier hierarchical
framework for future smart grids, and highlighted the impor-
tance of resilience against financially-motivated opportunistic
attackers (seeking to manipulate smart electricity prices). To
defend against opportunistic attacks, we have proposed a
Dirichlet-based detection scheme (DDOA) to identify and
detect potential attackers. Using simulations of extensive real-
time data collected from the IEEE 39-bus power testing sys-
tem, we demonstrated the practicality of DDOA simulations.

Future work includes deploying DDOA in a real-world envi-
ronment, with the aims of refining the scheme and improving
the efficiency and accuracy.
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