
1556-6013 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2016.2585093, IEEE
Transactions on Information Forensics and Security

Secure, Fast, and Energy-Efficient
Outsourced Authentication for Smartphones

Paolo Gasti
NYIT

Jaroslav Šeděnka
Masaryk University

Qing Yang
College of William and Mary

Gang Zhou
College of William and Mary

Kiran S. Balagani
NYIT

Abstract—Common smartphone authentication mechanisms
(e.g., PINs, graphical passwords, and fingerprint scans) are not
designed to offer security post-login. Multi-modal continuous
authentication addresses this issue by frequently and unobtru-
sively authenticating the user via behavioral biometric signals,
such as touchscreen interaction and hand movements. Because
smartphones can easily fall into the hands of the adversary, it
is critical that the behavioral biometric information collected
and processed on these devices is secured. This can be done by
offloading encrypted template information to a remote server, and
then performing authentication via privacy-preserving protocols.

In this paper we demonstrate that the energy overhead of cur-
rent privacy-preserving protocols for continuous authentication
is unsustainable on smartphones. To reduce energy consumption,
we design a technique that leverages characteristics unique to the
authentication setting in order to securely outsource computation
to an untrusted Cloud. Our approach is secure against a colluding
smartphone and Cloud, thus making it well suited for authentica-
tion. We performed extensive experimental evaluation. With our
technique, the energy requirement for running an authentication
instance that computes Manhattan distance is 0.2 mWh, which
corresponds to a negligible fraction of the smartphone’s battery
capacity. Additionally, for Manhattan distance, our protocol runs
in 0.72s and 2s for 8 and 28 biometric features, respectively.
We were also able to compute Hamming distance in 3.29s,
compared to 95.57s achieved with the previous fastest outsourced
computation protocol (Whitewash). These results demonstrate
that ours is presently the only technique suitable for low-latency
continuous authentication (e.g., with authentication scan windows
of 60 seconds or shorter).

I. INTRODUCTION

The need for usable, reliable, and secure smartphone user
authentication mechanisms is increasing because smartphones
routinely access, generate, store, and process users’ private
information, and because portability and mobility of smart-
phones intrinsically increases risks of theft and loss. Common
smartphone authentication mechanisms offer limited security—
simple PINs are easy to guess [11], while strong alphanumeric
passwords and swipe patterns are susceptible to attacks from
reflections [52], video capture [49], and smudges [2]. Another
fundamental limitation of these mechanisms is that they are
designed for login-time authentication, and offer no protection
against theft or coercion post-login. Although, in principle, it is
possible to repeatedly activate the above mechanisms beyond
login point, each activation could potentially distract the user,
thereby raising usability concerns.

Continuous (or active) authentication mechanisms aim to ad-
dress post-login authentication by frequently and unobtrusively
verifying the user’s identity via behavioral biometric signals,
such as touchscreen interaction [13], hand movements and

gait [12], [50], voice [30], and phone location [48]. However,
authenticating smartphone users via behavioral biometric
signals raises security and privacy concerns. These signals
carry personal identifiable data (who is the user?), and expose
user information and behavior (what app is the user accessing?
what is the user saying? what is the user’s location?).

Because smartphones can easily fall into the hands of
the adversary, it is critical that behavioral biometric signals
collected or stored on these devices are secured. Traditionally,
biometric signals have been secured using one of the following
two approaches: (1) on-device, in which a transformed version
of the template is stored on the smartphone, either using
cancelable biometrics [41] or fuzzy commitments [20]; and
(2) off-device, in which the smartphone authenticates to a
remote server [51], [50], thereby not storing the template or
any biometric information on the device.

At first blush, on-device approaches sound appealing for
smartphones because they require limited computation, and no
communication with external parties. However, the assumptions
on which these approaches base their security guarantees are not
compatible with smartphones. Cancelable biometrics assume
that the transformation applied to the biometric is secret—
which is questionable when the adversary can obtain physical
access to the smartphone through theft, loss, or coercion. When
this assumption fails, these techniques are susceptible to simple
correlation and impersonation attacks [34]. Further, cancelable
biometrics and fuzzy commitments assume that the underlying
biometric has high guessing entropy [4], which is not true in
practice [3], [31], [32].

Off-device approaches sidestep these problems by not having
to store biometric information on the smartphone. Matching
is performed on a remote server, which can additionally
implement rate-limiting to mitigate the effects of low guessing
entropy. However, in off-device approaches, the server must
have access to the biometric template and to the authentication
signal in order to authenticate the user. This raises numerous
privacy and security issues [19]. The standard way to address
these issues is to use a privacy-preserving protocol (e.g., [6],
[42], [36]). The inputs to the protocol are the template from
the server and a biometric sample from the smartphone. The
output is the distance (or the similarity) between the two
inputs. Privacy-preserving protocols faithfully (without loss of
accuracy) implement the biometric computation, and provably
guarantee that no additional information is revealed to the
server or the smartphone.

Privacy-preserving protocols for authentication must provide

1556-6013 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2016.2585093, IEEE
Transactions on Information Forensics and Security

provable security against malicious parties, i.e., both server and
smartphone can arbitrarily deviate from the correct execution
of the protocol. In this setting, our experiments (presented in
Section IX) show that privacy-preserving authentication adds
substantial energy overhead to the authentication pipeline, when
implemented using standard protocol construction techniques.
In our case, each privacy-preserving authentication attempt (im-
plementing Manhattan distance matching) consumed 275 mWh
using garbled circuits [53] with cut-and-choose [17]. At this
rate, the battery of a commodity Android smartphone—a
Samsung Galaxy S4, in our experiments—can sustain about 35
authentication attempts before being depleted. This means that
if the user is authenticated every 60 seconds, the smartphone
will run out of battery in approximately half hour, which is
clearly unacceptable. In comparison, the energy overhead of
continuously collecting behavioral signals for authentication
is negligible: accelerometer and gyroscope accounted for
a mere 1.6 mWh for 60-second scans, while extracting
touchscreen-based features of [44] and [13] used 0.1 mWh.
Thus, to make secure privacy-preserving active authentication
viable on smartphones, we need new energy-efficient protocol
construction techniques.

Contributions. In this paper, we present a new protocol
construction technique for reducing energy cost, computation,
and communication of privacy-preserving protocols for active
authentication on smartphones. Our design offloads most of the
smartphone computation to an untrusted outsourcing party (the
Cloud), such as Amazon S3 or Microsoft Azure. This leads
to both substantial energy savings for the smartphone, and
to a dramatic reduction of protocol execution time. Although
both garbled circuits and offloading of computation are known
techniques, this work brings them together and enhances them
in a novel way that results in over 30-fold decrease in protocol
execution cost. To our knowledge, this is the first work that
implements garbled circuits secure against malicious parties
and does not use cut-and-choose.

In order to measure the performance and power consumption
of our approach, we implement our protocol on an Android
smartphone. Our technique reduces the energy consumption
for computation of Manhattan distance to less than 0.2 mWh,
and thus has negligible impact on the smartphone’s battery
life. Our protocol is substantially faster than the state-of-the-art
Cloud-aided computation techniques such as Whitewash [8].
For instance, computing the Hamming distance on 1600-bit
vectors takes 3.29s with our approach in comparison to 95.57s
with Whitewash.

We provide formal proof of security of our construction.
Our protocol guarantees privacy (i.e., the parties cannot learn
more than what can be inferred from their input and from the
protocol’s output, regardless of their behavior), and correctness
(the protocol either produces a correct output, or it produces no
output). To further strengthen the privacy of our approach, the
user’s biometric template is stored on the server in encrypted
form, and the server has no accesses to the decryption key.

Our protocol is secure against a malicious Cloud, even when

it colludes with the smartphone. This is important because the
Cloud is used to reduce protocol overhead for the smartphone,
and is therefore assumed to be paid for and controlled by
the party in possession of the smartphone. Therefore, any
protocol that assumes non-collusion between the Cloud and
the smartphone is potentially vulnerable to attacks.

Organization. We start by presenting the related work in
Section II. We review the cryptographic tools used in our
construction in Section III. Our system and security models are
defined in Section IV. We discuss our approach in Section V,
and present a detailed protocol description in Section VI.
Formal security proofs of our protocol are presented in
Section VII. We compare our protocol to current techniques
in Section VIII. Energy, bandwidth, and execution time of
our approach are evaluated in Section IX. We conclude in
Section X.

II. BACKGROUND AND RELATED WORK

Garbled Circuits. Since the seminal work on garbled circuit
evaluation [53], it has been shown that any function can be se-
curely evaluated by representing it as a boolean circuit. Similar
results exist for secure evaluation of any function using secret
sharing techniques [39], or homomorphic encryption [10].

Recent literature provides optimizations that reduce com-
putation and communication overhead associated with circuit
construction and evaluation. Kolesnikov et al. [25] describe
a modification that permits XOR gates to be evaluated for
free, i.e., there is no communication overhead associated with
XOR gates, and their evaluation does not involve cryptographic
functions. Pinkas et al. [37] additionally give a mechanism for
reducing communication complexity of binary gates by 25%.
Their work allows each gate to be specified by encoding only
three outcomes instead of four. Finally, Kolesnikov et al. [24]
improve the complexity of certain commonly used operations
such as addition, multiplication, and comparison, by reducing
the number of non-XOR gates.

Zahur et al. [54] introduce a technique that allows them
to encode AND gates using only two ciphertexts, while still
allowing the use of free-XOR [25]. While the size of the
resulting garbled circuit decreases by up to 33%, the use of
this technique leads to doubling the amount of computation
required to evaluate each AND gate. The authors show that
this technique leads to a reduction in energy consumption on
a desktop computer. However, it is not clear if this translates
to a similar reduction on a smartphone device.

Garbled circuits offer security in the semi-honest model.
However, a technique called cut-and-choose [17] can be used
to construct protocols based on garbled circuits, secure in the
malicious model. With cut-and-choose, the circuit constructor
creates multiple garblings of a circuit. The circuit evaluator
randomly selects a subset of these garblings, and asks the server
to reveal these circuits’ input keys. The circuit evaluator verifies
that all circuits are constructed properly, and evaluates the
remaining circuits to obtain the result of the computation. Then,
both parties switch roles and repeat this process. There are

2

1556-6013 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2016.2585093, IEEE
Transactions on Information Forensics and Security

several approaches to implement cut-and-choose, each requiring
a different number of circuits to achieve a given level of security
(see, e.g., [17], [18], [28], and [27]).

Lindell et al. [29] show that it is possible to reduce the
cost of cut-and-choose by evaluating multiple circuits in batch.
In order to have a probability of undetected errors of 2−40,
their technique requires an average of 7.06 circuits when
performing 210 evaluations of the same circuit. This is a
substantial improvement compared to [27], which requires
40 circuits to achieve the same level of security. Unfortunately,
batching cannot be leveraged with active authentication because,
for each user, thousands of authentication attempts never occur
at once.

Another approach to privacy-preserving computation is fully
homomorphic encryption (FHE), first constructed by Gen-
try [14]. FHE allows computation of arbitrary ring operations in
the encrypted domain. Despite advancements in FHE, current
implementations are still far too expensive for smartphones
(see, for example, [15] and [38]).

Outsourced Computation. Outsourcing computation to an
untrusted third party, such as the Cloud, is an effective way
to reduce the computation load of one or more protocol
participants. This approach is often referred to as Cloud/server-
aided computation, or server-assisted cryptography [5]. There
exist Cloud-aided protocols designed for specific functionalities
(e.g., server-aided private set intersection [21]), as well as
generic protocols, which offer security in the presence of
malicious adversaries [22], [9], [8]. Next, we provide an
overview of three such Cloud-aided protocols that are closely
related to our work.

Kamara et al. [22] introduce Salus, a system which includes
two server-aided secure function evaluation protocols. Salus
efficiently supports an arbitrary number of protocol participants,
and is designed to trade computation for communication. In
particular, the authors assume that the participants have access
to large bandwidth capabilities. This is clearly not the case
for smartphones, for which high-bandwidth wireless communi-
cation translates to high energy costs. In addition, Salus uses
a fair coin tossing protocol to allow the participants to share
a random secret key. This further increases communication
overhead between the parties. Finally, Salus is secure against
malicious server, smartphone, and Cloud, but only as long as at
most one party at a time is malicious. This prevents two parties
(e.g., the smartphone and the Cloud) to work together against
the third (the server), and is therefore known as non-collusion
assumption.

Carter et al. [9] developed an outsourcing protocol based
on the garbled circuit protocol of Kreuter et al. [26]. Similar
to Salus, their protocol relies on the Cloud for evaluating
garbled circuit. The protocol of Carter et al. is based on
outsourced oblivious transfer, which is used to send circuit input
labels to the Cloud. Because of lower bandwidth requirements
compared to Salus, the protocol is well suited for mobile
devices. However, as with Salus, the overall execution time
of [9] is still prohibitively long. Moreover, the protocol is

secure in the same adversary model as Salus, i.e., it assumes
that the parties do not collude.

More recently, Carter et al. [8] introduced Whitewash, a novel
secure function evaluation protocol. In contrast to previous
work, Whitewash reverses the roles of the parties. In particular,
the Cloud is in charge of generating the garbled circuit, while
the smartphone simply garbles its own input. Circuit evaluation
is performed by the server. The result of this modification is
a protocol that is more efficient than previous work, in terms
of both execution time and bandwidth. Moreover, Whitewash
does not rely on the non-collusion assumption. In fact, it is
secure when a malicious smartphone and a malicious Cloud
collude—in which case, the security of the protocol is the same
as the underlying garbled circuit technique, which is based on
Shelat and Shen’s protocol [46]. However, because the protocol
is based on cut-and-choose, the execution time is very high,
even for relatively simple functionalities.

III. CRYPTOGRAPHIC PRELIMINARIES

Garbled Circuit Evaluation. Garbled circuits allow two
parties (a circuit constructor, and a circuit evaluator) to securely
evaluate any function represented as a boolean circuit. Let κ
be the security parameter. Given a circuit composed of gates
connected by wires, the circuit constructor “garbles” the circuit
by assigning two randomly chosen encryption keys of length κ,
denoted as ωj,0 and ωj,1, to each wire j. These keys represent,
respectively, 0 and 1. (In the garbled circuits literature, keys are
usually referred to as labels.) The circuit constructor encrypts
each entry of the truth table corresponding to each gate. Values
in the truth table are also represented using labels, and each
label is encrypted with two keys, ωj,bj and ωl,bl , corresponding
to the values on the gate’s input wires. Therefore, computing
the output label of each gate requires knowing two of its input
labels, one for each input wire of the gate.

The output of the circuit is encoded in its output labels,
constructed and interpreted as follows. Let ωi,b be the label of
output wire i corresponding to output bit b, and s the number
of output wires. The circuit constructor selects a pair of random
labels ωi,0, ωi,1 for each output wire i, 1 ≤ i ≤ `. Then, it
builds a table T = ((ω1,0, ω1,1), (ω2,0, ω2,1), . . . , (ωs,0, ω`,1))
and sends it to the circuit evaluator as part of the circuit.
The circuit evaluator uses T to interpret the output of the
circuit: at the end of the circuit evaluation, it learns ` labels
w1,b1 , . . . , w`,b` , and determines their bit value by comparing
them with the values in T .

In this paper, we build on the modified garbled circuit
construction of Šeděnka et al. [51]. The construction differs
from “traditional” garbled circuit evaluation in three ways:
(1) output labels are selected independently, even when they
are computed as the output of XOR gates; (2) T is not revealed
to the circuit evaluator; and (3) the circuit constructor aborts if
any of the label returned by the evaluator is not in T , if not all
labels are returned, or if two labels for the same bit are returned.
These modifications guarantee that the resulting protocol is
secure against a malicious evaluator, which is unable to alter
the result of the circuit computation.

3

1556-6013 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2016.2585093, IEEE
Transactions on Information Forensics and Security

Oblivious Transfer. In order to learn the labels corresponding
to its input wires, the circuit evaluator executes several instances
of 1-out-of-2 oblivious transfer (OT) protocols with the circuit
constructor. In 1-out-of-2 Oblivious Transfer (OT2

1), one party
(the sender) has two strings m0,m1, and the other party
(the receiver) has one bit (b) as its input. At the end of the
protocol, the receiver learns mb while the sender learns nothing.
Similarly, in 1-out-of-N OT the receiver obtains one of the N
strings held by the sender.

In this paper we use an efficient implementation of OT2
1

from [35] as well as techniques from [1] that reduce a large
number of OT protocol executions to O(κ) executions.

IV. MODEL AND DEFINITIONS

A. Protocol Participants and Interactions

Our protocol involves three parties: the smartphone (owned
by the user), the Cloud, and the server. The parties interact in
two protocol phases: enrollment (typically executed once per
user), and authentication. During enrollment, the smartphone
collects and processes a user’s biometric template Y . Then, it
encrypts Y and sends the resulting vector Y to the server. The
server has no access to the template decryption key, and is
therefore unable to extract any information about the template.
The Cloud does not take part in the enrollment phase.

During the authentication phase, the smartphone and the
server interact with the Cloud in order to execute the protocol.
The smartphone’s protocol input is a biometric vector X
containing biometric features, and the template decryption
key. The server’s input is the user’s encrypted template Y . The
server’s output is the authentication score. The smartphone has
no output, and the Cloud has no input or output.

During the execution of the protocol, the server learns no
information about the user’s biometric template and authentica-
tion sample. Similarly, the Cloud learns no information about
any of the other parties’ input or output.

Our approach assumes that the smartphone has Internet
connectivity, which is a common expectation of modern
smartphone operating systems and apps. If the adversary
attempts to circumvent the proposed architecture by interrupting
network connectivity during authentication, the smartphone can
fall back to offline access control policies, such as activating
login-time password, or disabling access to local data. We
consider offline policies to be outside the scope of this work.

B. Security Model

Many privacy-preserving protocols and protocol construc-
tion techniques are secure against semi-honest (or honest-
but-curious) adversaries. Informally, semi-honest adversaries
faithfully execute all protocol steps, and try to learn additional
information from the transcripts of the protocol execution. This
setting is appropriate when the parties can be safely assumed to
behave properly, e.g., when the execution of the protocol can be
audited, or when the parties have strong external incentives to
not have access to any information besides the protocol output.
In contrast to semi-honest parties, malicious adversaries are

assumed to deviate from the intended protocol execution, and
are therefore much more powerful than semi-honest adversaries.

We argue that, in the context of authentication performed
on user-controlled devices, security against semi-honest ad-
versaries is not sufficient. The adversary should, in fact, be
assumed to be willing (and able) to arbitrarily deviate from
the protocol if this provides any advantage when performing
authentication. For example, if the adversary can successfully
authenticate without knowledge of the authentication secret by
sending maliciously crafted messages, then we must consider
this a viable adversarial strategy. If a protocol is secure against
malicious adversaries, then attacks that rely on deviating from
the protocol are ineffective: security in the malicious model
implies that all parties will either receive the correct output
with respect to all participants’ input, or receive no output.

Because our scenario involves three parties (the smartphone,
the Cloud, and the server), we must assume that any two of
them can collude. Next, we comment on the validity of each
of the collusion scenario.

We envision that the smartphone will have some level
of control over the Cloud (possibly because the Cloud is a
laptop or a virtual machine owned by the user), and therefore
security against colluding Cloud and smartphone is a natural
requirement.

Collusion of server and smartphone is not meaningful
because the Cloud has no input and no output in the protocol.

Finally, the Cloud and the server might collude. Our model
does not consider this scenario. It is still an open problem
whether collusion between the Cloud and the server can be
addressed efficiently, and without the use of fully homomorphic
encryption [22]. However, we believe that assuming non-
collusion between these two parties is reasonable: our protocol
imposes no restrictions on where the Cloud should be hosted,
and it is therefore safe to assume that the user will choose a
hosting facility that is not under the server’s control.

Our model assumes that the smartphone is not compromised
while it is in the hands of its legitimate user. This means that,
for example, the smartphone is not running malicious software
while the legitimate user is enrolling or authenticating. We
model this by providing all decryption keys and signing keys
stored on the smartphone to the adversary post-enrollment,
and by not explicitly disclosing the user’s biometric template
to the adversary. This assumption is required not only by
our approach, but by any authentication mechanism: if the
adversary is able to run arbitrary code on the user’s device
during enrollment or authentication then it can, for example,
capture all passwords, keystrokes, and behavioral biometric
traits. This information could then be used to impersonate the
user (see, e.g., [43], [40], [45]).

C. Security Definitions

We follow the security definitions of Carter et al. [8] and
Kamara et al. [22], which are based on the ideal world/real
world paradigm [16]. In the ideal world, there are three protocol
participants, denoted as P1, P2, and P3, who interact with a
trusted third party (TTP). The TTP is in charge of evaluating

4

1556-6013 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2016.2585093, IEEE
Transactions on Information Forensics and Security

function f on the participants’ input. At the beginning of the
protocol execution, all parties receive their input. One party,
which represents the Cloud, has no input, and receives no
output from the TTP. Each protocol participant sends its inputs
to the trusted third party via secure channels. The trusted third
party then sends each protocol participant the respective output
on the same channels.

Some subset of these parties, indicated as {Ai}i≤3 are
corrupted, and can deviate arbitrarily from the protocol. For all
parties, let OUTi be the output of Pi. The i-th partial output
of an ideal protocol execution with input X is defined as:

IDEAL(i)(κ,X; r) , {OUTj : j ∈ H} ∪OUTi

where H is the set of honest parties, r is all random coins of
all participants, and κ is the security parameter.

In the real world, each party provides the same inputs
as in the ideal world, and is additionally given access to
random coins. For the i-th party, let OUTi be its output.
Then, the i-th partial output of an ideal protocol execution
in the presence of m ≤ 3 independent malicious simulators
S = (Sim1,Sim2,Sim3) is defined as:

REAL(i)(κ,X; r) , {OUTj : j ∈ H} ∪OUTi

where H , r, and κ are defined as before. Given this model,
security is formally defined as:

Definition 1: An outsourced protocol securely computes the
function f if there exists a set of probabilistic polynomial-time
simulators {Sim1,Sim2,Sim3} such that for all probabilistic
polynomial time adversaries (A1, A2, A3), inputs X , auxiliary
inputs, and for all i ∈ {1, 2, 3}:

{REAL(i)(κ,X; r)} c≡ {IDEAL(i)(κ,X; r)}

where Simi is the simulator for Ai, and r is uniformly random.

V. OUR APPROACH

The goal of our protocol is to minimize the amount of
computation performed by the smartphone, while also reducing
the protocol execution time. This is done by outsourcing almost
all the computation associated with garbled circuit evaluation
to an untrusted Cloud, and by removing cut-and-choose, while
guaranteeing security against malicious parties.

Our protocol does not rely on cut-and-choose because both
parties with input (i.e., the smartphone and the server) are
guaranteed to use a circuit that has been constructed correctly.
Similarly, if either the server or the smartphone are semi-honest,
then the Cloud is also guaranteed to be evaluating the correct
circuit. To achieve this, we use a strategy that, although not
applicable in general, is well suited for authentication. In our
protocol, the smartphone acts as circuit constructor, and the
Cloud as circuit evaluator. The server verifies the correctness
of the circuit. During enrollment, and after each successful
authentication, the smartphone constructs and signs a garbled
circuit that implements the verifier. The circuit, together with
its input keys, is sent to the server. The server decrypts all
gates and verifies circuit correctness. If at least one of the two

parties is semi-honest, the circuit to be evaluated is correct.
The smartphone then deletes all information related to the
circuit. Evaluation of the circuit, including oblivious transfer,
is performed by the Cloud, which must prove to the smartphone
and to the server that it has faithfully followed the protocol.

A malicious (or even semi-honest) smartphone can decide not
to delete the circuit’s input keys after sending them to the server.
By retaining the input keys, the smartphone can reconstruct
the server’s input by comparing the server’s input labels with
the values generated during circuit construction. (This requires
collusion between the smartphone and the Cloud, which is
allowed in our model.) We argue that this is not a problem
for authentication. In fact, a malicious smartphone can send a
new circuit only after a successful authentication. Successful
authentication requires knowledge of a faithful representation
of the user’s template. Therefore, learning the value of the
template after successful authentication is arguably of no use
for a malicious smartphone. Similarly, one could assume that
when the smartphone is in the hands of its legitimate user, it
might decide not to delete circuit information, and later use this
information to authenticate without user action. However, it can
as well decide to maintain a copy of the user’s biometric data
post-authentication. This will render any authentication protocol
insecure, and therefore deletion of transient information after
login is a common implicit assumption.

Because our protocol does not rely on cut-and-choose, its
execution time, power consumption, and design complexity
are significantly lower than with current outsourcing tech-
niques [22], [9], [8]. This simplification allows us to offload
the oblivious transfer and the circuit evaluation to the Cloud
and the server, except for a small number of inexpensive checks
that the smartphone performs during protocol execution.

As confirmed by our experiments, circuit construction on the
smartphone is inexpensive for even relatively complex functions.
Moreover, the smartphone can construct the garbled circuit
offline (e.g., overnight while charging). This optimization
further reduces computation and communication performed
by the smartphone during protocol execution, bringing the
smartphone’s energy consumption to a negligible level.

A. Protocol Overview

In this section, we describe a simplified version of the en-
rollment and authentication phases of our protocol, and discuss
the protocol design rationale. Detailed protocol description is
presented in Section VI.

Enrollment Phase. During enrollment, the smartphone collects
a set of biometric samples from the user, and uses them to
construct the template Y . Each feature of the template is
then encrypted by adding a random vector R of appropriate
length to Y . R is then stored on the smartphone. Let Y be the
resulting encrypted template, i.e., Y = Y +R. The smartphone
then constructs a set of garbled circuits that implement the
authentication function, and signs them using the user’s private
key. Let n be the number of biometric features used for
authentication, and v the bit-length of the features. In order

5

Server
input

Smartphone
input

Verification
labels (to

smartphone)

Output of the
distance function

(to server)

Distance
function
circuit

Verification
circuit

(identity)

Fig. 1. High-level overview of the authentication circuit.

to later allow the smartphone to verify the correctness of the
circuit’s input, each circuit is augmented with n · v output
wires, which are connected directly to the smartphone’s input
wires. In other words, these output wires correspond to the
output of the identity function computed on the smartphone’s
input (indicated as “verification circuit” in Figure 1). Finally,
the circuits are sent to the server, together with all the circuits’
decryption keys. The server verifies the correctness of the
circuits, and stores them. At the end of the enrollment process,
the smartphone deletes all information, except for R and the
user’s private (signing) key.

Authentication Phase. The steps performed during authenti-
cation are depicted in Figure 2, and can be summarized as
follows. The server sends one signed circuit to the Cloud. The
Cloud verifies the signature, and aborts if the verification fails.

The smartphone collects a biometric sample, constructs an
authentication vector X , and encrypts it by adding R to it. Let
X be the resulting ciphertext, i.e., X = X+R. The smartphone
sends Z to the server, and X ⊕ Z to the Cloud. Neither the
Cloud nor the server can reconstruct the smartphone’s input,
because Z carries no information on X , and X⊕Z is effectively
a one-time pad encryption of X .

The Cloud then engages in an instance of OT with the server,
in which it acts as receiver, while the server acts as sender.
The Cloud uses X ⊕Z as its input for the OT protocol, while
the server’s input is composed of the circuit’s input labels.
However, for each bit set to 1 in Z, the server swaps the label
corresponding to 0 with the label corresponding to 1. This way,
the server effectively “removes” Z from X ⊕ Z via OT, and
therefore the Cloud learns the input keys corresponding to X .

As soon as the server sends the input labels corresponding
to Y to the Cloud, the Cloud has access to all the information
needed to evaluate the garbled circuit. The Cloud first computes
the output labels of the verification circuit, and sends their
hash to the smartphone. At the same time, the server sends
all verification labels to the smartphone, together with the
corresponding signature generated by the smartphone during
enrollment. The smartphone computes the hash of the verifica-
tion labels from the server corresponding to X , and verifies
that it matches with the hash received from the Cloud. The
verification result is reported to both the Cloud and the server.

At this stage, the Cloud evaluates the rest of the circuit
(i.e., the Distance function circuit in Figure 1). At the end of

the evaluation, the Cloud releases the output of the distance
function sub-circuit (but not the verification labels) to the server,
which is now able to determine the distance between Y and
X . In fact, the distance between X and Y is the same as the
distance between Y and X . If the distance is below a pre-
define threshold, the server accepts the user’s identity claim
and requests one or more signed circuits from the smartphone.

Design Rationale. The verification gates guarantee that neither
the server nor the Cloud have tampered with the smartphone’s
input during the protocol. Without these gates, a malicious
Cloud could undetectably flip any of the bits of X⊕Z, therefore
altering one or more bits of X . Similarly, the server could flip
any bit of Z, leading to the same outcome.

The same input values are used as input to the distance
function sub-circuit and to the verification sub-circuit (i.e., the
identity circuit). A valid signature on the circuit guarantees to
the Cloud that both sub-circuits are correct, because an honest
smartphone would construct a correct circuit, and an honest
server would not accept an incorrect circuit. Therefore, a correct
output of the verification circuits guarantees that the values
of the input gates faithfully represent the smartphone’s input,
either because the Cloud and the server followed the protocol,
or because they independently flipped the same bits in Z and
X ⊕ Z—which also leads to a correct protocol execution.

Although it might look like the same result could be obtained
by removing the identity circuit and simply comparing the
circuit’s input with the expected input labels, this would not
lead to a secure construction. In fact, doing so requires the
smartphone to keep a copy of all input labels corresponding
to its input. This allows colluding Cloud and smartphone to
evaluate the circuit multiple times using different input values,
without any interaction with the server. This will likely lead to
the disclosure of a significant portion of the server’s input bits.
Instead, with our approach, the smartphone does not learn any
of the input gates, and learning the output of the verification
gates is not useful towards the evaluation of the circuit on
different inputs.

From the energy standpoint, sending information via WiFi or
cellular is expensive. In order to minimize energy consumption,
in our protocol the smartphone sends a small seed s (e.g.,
s ← {0, 1}κ) to the server, instead of the entire circuit. The
seed is then used by the server to deterministically generate
the garbled circuit, thus reducing communication overhead.

VI. PROTOCOL DESCRIPTION

The notation used in the rest of the paper is summarized in
Table I. We refer to the output labels of the identity sub-circuit,
depicted in Figure 1, as “verification labels”. A garbled circuit
Cir i, together with all its input and output labels, is constructed
via a deterministic algorithm that takes in input the circuit’s
topology and a seed si, with |si| = κ. Therefore, two parties
can construct identical garbled circuits, including all input and
output labels, given the same circuit topology and si.

6

1556-6013 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2016.2585093, IEEE
Transactions on Information Forensics and Security

TABLE I
SYMBOLS USED IN THIS PAPER

κ Security parameter (sku, pku) User’s signing keypair. sku is available only to the smartphone
Cir i Garbled circuit i δi Signature computed on Cir i using the smartphone’s signing key
m Number of circuits being created for evaluation si Random seed of length κ used to select all randomness associated with Cir i
ri Encryption/decryption key of i-th feature v Length of feature representation
x[j] j-th bit of x n Number of biometric features for authentication
ωj,b Label corresponding to bit b on wire j T Table matching output labels with their bit value
Y , X User template (Y) and authentication sample (X) T2 Subset of T from Cir corresponding to the outputs of the verification gates
Z Vector of random bits (z1, . . . , zn·v) R Vector of random values r1, . . . , rn, with 0 ≤ ri ≤ 2v

Y Encrypted template (Y = Y +R) X Encrypted authentication sample (X = X +R)
` Number of circuit output wires zi Encryption/decryption key for the i-th bit of the authentication sample
γ Signature on T2

Server Cloud Smartphone

Construct biometric
vector X , and set
X = X +R

(Cir , δ)

Verify δ

Generate Z

Z

X ⊕ Z

Oblivous transfer

Server’s input labels

Setup and Oblivious Transfer

(T2, γ)

Verify γ

h = H(ωver

1,b1
||...)

Verify h

Confirmation of input correctness

Input Verification

Evaluate Cir

Circuit output

Authentication
decision

Circuit Evaluation

Generate and sign new
circuit(s) (Cir i, δi, γi)

(Cir i, δi, γi)

Post-Authentication Circuit Generation

Authentication Phase

Fig. 2. Overview of our outsourced authentication protocol.

A. Enrollment Phase

Common inputs: security parameter κ, user’s public key pku,
n, v, function description f(X,Y), m.

Private inputs: smartphone: Y , user’s signing key sku; server
and Cloud: none.

Outputs: server: Y ; smartphone and Cloud: none.

During enrollment, the smartphone selects a set of m
short seeds s1, . . . , sm. Each si is used to construct garbled

circuit Cir i, 1 ≤ i ≤ m. Each circuit implements the same
distance function (e.g., scaled Manhattan distance, or any
other translation-invariant metric), and is signed using the
user’s signing key sku. In particular, the smartphone signs
the garbled representation of the circuit (without including
input and output keys) as δ1, . . . , δm. It also signs all tables
T 1
2 , . . . , T

m
2 (i.e., the table which associates verification output

labels with their meaning) as γ1, . . . , γm. Signatures δi-s and
γi-s are sent to the server, together with s1, . . . , sm. The
smartphone immediately discards all the information about
the circuits (i.e., it deletes all si-s, input keys, output wires,
garbled gates values, and intermediate keys). After receiving
si-s and δi-s, the server constructs Cir1, . . . ,Cirm and verifies
the signatures computed on the circuits using the user’s public
key pku. If the verification is successful, the server accepts the
circuits. After constructing a feature vector Y = (yi, . . . , yn)
representing the user’s template, the smartphone selects n
independent random values ri such that 0 ≤ ri ≤ 2v for
some v that represents the length of the features. It then sends
Y = ((y1 + r1 mod 2v), . . . , (yn + rn mod 2v)) to the server.
The smartphone stores R = (r1, . . . , rn) locally, and deletes
Y and Y .

B. Authentication Phase

Common inputs: security parameter κ, user’s public key pku,
n, v, function description f(X,Y), m.

Private inputs: smartphone: X , R, user’s signing key sku;
server: Y , {(Cir i, δi, γi)}i∈[1,m]; Cloud: none.

Outputs: server: f(X,Y); smartphone and Cloud: none.

Authentication—Phase 1: Setup and Oblivious Transfer.
The server selects (Cir , δ, γ) ∈ {(Cir i, δi, γi)}i∈[1,m], and
removes it from the set of available signed circuits. Then, it
sends (Cir , δ) to the Cloud. The Cloud verifies δ using the
smartphone’s public key. If the verification fails, the Cloud
aborts protocol execution and alerts the smartphone.

The smartphone computes X = X+R, selects n ·v random
bits Z = (z1, . . . , zn·v), and computes X ⊕ Z as the bit-wise
XOR of z1, . . . , zn·v with X . The smartphone then sends X⊕Z
to the Cloud, and Z to the server. Because the Cloud does not
know any of the zi, it cannot extract any information from X .
Similarly, in this stage the server learns n · v random bits (i.e.,
Z), which reveal no information about the smartphone’s input.

7

1556-6013 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2016.2585093, IEEE
Transactions on Information Forensics and Security

The Cloud and the server engage in the OT protocol, where
the server acts as sender and the Cloud acts as receiver. The
Cloud’s input is X⊕Z, while the server’s is the circuit’s input
labels. The server’s input, however, is modified as follows.
For each OT2

1, the inputs of the server are “swapped” if the
corresponding zi is 1. Let ωi,0 and ωi,1 be the labels for the
i-th input wire of the garbled circuit. If zi = 1, then the values
of ωi,0 and ωi,1 are swapped. This way, at the end of the
execution of the OT protocol, the Cloud learns the input labels
corresponding to X , rather than to X⊕Z. However, because the
labels are computed independently from their corresponding
bit value, the Cloud does not learn the smartphone’s input.
Finally, the server sends the input labels corresponding to Y
to the Cloud.

Authentication—Phase 2: Input Verification. The Cloud
uses the circuit input labels obtained in the previous phase to
evaluate the verification sub-circuit. This amounts to decrypting
the verification sub-circuit output gates using the input labels
as decryption keys. The output labels are then determinis-
tically encoded as a single string (e.g., via concatenation
as ω1,b1 || . . . ||ω(n·v),b(n·v)

), which is hashed and sent to the
smartphone.

The server sends the table T2 corresponding to
Cir to the smartphone, together with γ. Let T2 =
((ωver

1,0 , ω
ver
1,1), . . . , (ω

ver
(n·v),0, ω

ver
(n·v),1)). The smartphone verifies

γ, then computes H(ωver
1,b1,
|| . . . ||ωver

(n·v),b(n·v)
) where bi is the

i-th bit of X , and compares it to the hash received from the
Cloud. If the two values are not equal, then the smartphone
aborts protocol execution. Otherwise, it notifies the Cloud and
the server that the verification completed successfully.

Authentication—Phase 3: Circuit Evaluation. The Cloud
evaluates the distance function sub-circuit of Cir (see Figure 1),
then sends the corresponding output labels (and withholds the
verification output labels) to the server. The server checks that
the values received from the Cloud are correct by verifying
that: (1) the Cloud returned exactly one value per output wire;
and (2) each value corresponds to one of the output wire values.
Then, the server interprets the output labels to reconstruct the
protocol output. The server makes an authentication decision
based on this output.

Authentication—Phase 4: Post-Authentication Circuit Gen-
eration. If the authentication is successful, the server asks the
smartphone to send one more signed garbled circuit. Otherwise,
the server rejects the smartphone, and possibly repeats the
authentication process with another circuit that has not been
evaluated before.

C. Protocol Correctness

In this section, we show that if all parties faithfully follow
all protocol steps, the protocol outputs the correct result.
Correctness of the protocol in presence of malicious adversaries
is addressed in Section VII.

Enrollment Phase. During enrollment, the smartphone gen-
erates m circuits using seeds s1, . . . , sm, and signs them

and the corresponding tables T 1
2 , . . . , T

m
2 . Because generating

garbled circuit representations and the tables from each seed
is a deterministic process, the server generates the same
circuit representations as the smartphone. Therefore signatures
δ1, . . . , δm and γ1, . . . , γm are valid.

Authentication Phase. During Setup and Oblivious Transfer
(Authentication—Phase 1), the Cloud uses X ⊕ Z as its input
to the OT protocol. The server’s input consists in the circuit
labels; for each zi = 1, the server swaps the corresponding
input labels as detailed in Section VI-B. In particular, for each
zi = 0, label ωi,bi corresponds to input bit bi, and for each
zi = 1, label ωi,bi corresponds to input bit 1 − bi. In other
words, the label associated by the server to bit bi is ωi,(bi⊕zi).
For each zi = 0, the Cloud requests ωi,bi-s corresponding to
X⊕Z to the server via OT. The i-th bit of X⊕Z is the XOR
of zi with bit bi of X , and therefore, the Cloud effectively
requests labels corresponding to bi ⊕ zi to the server via OT.
Hence, the Cloud receives labels ωi,(bi⊕zi)⊕zi = ωi,bi , and
at the end of the protocol the Cloud learns the input labels
corresponding to X .

During the input verification phase (Authentication—
Phase 2), the hash value received by the smartphone from the
Cloud is equal to the hash of the verification sub-circuit’s output
labels corresponding to X , because (1) the Cloud obtained the
correct input labels from the server via OT; (2) the garbled
circuit is constructed correctly; and (3) the smartphone and the
Cloud use the same (deterministic) encoding and hash function.

The verification circuit computes a translation-invariant
distance (e.g., Manhattan or Euclidean distance) between
X = X+R and Y = Y +R, which is the same as the distance
between X and Y . For example, with Manhattan distance,
f(X,Y) =

∑n
i=1 |(xi + ri) − (yi + ri)| =

∑n
i=1 |xi − yi| =

f(X,Y). Therefore, the protocol computes the correct distance
between the template and the biometric sample.

D. Smartphone Output

With the protocol presented in this section, the server is
the only party with output. The protocol can be modified to
provide independent outputs to the smartphone and the server
as follows. Let OA be the subset of the circuit’s output wires
that correspond to the server’s output, and OB the subset
corresponding to the smartphone’s output. The server reveals
the portion of T corresponding to OB (denoted as TB) to
the smartphone, together with the signature on TB computed
by the smartphone during circuit construction, and withholds
the part corresponding to OA \OB . At the end of the circuit
evaluation, the Cloud reveals OA to the server and OB to the
smartphone.

E. Cost of Our Approach

Server. For each protocol execution, the server verifies one
circuit received from the smartphone, which entails performing
three encryptions for each non-XOR gate and verifying two
signatures, computed on the entire circuit and on the verification
output labels. The server also acts as sender in the instance

8

1556-6013 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2016.2585093, IEEE
Transactions on Information Forensics and Security

run with the Cloud, where it encrypts the receiver’s OT input
using one-time pad with the key provided by the smartphone.
Therefore, the cost for the server is O(n · v) + O(|Cir|),
where |Cir| indicates the size of the garbled circuit. In
terms of communication, the server’s cost is n · v bits from
the smartphone (corresponding to the OT decryption keys),
O(κ2) +O(n · v) (OT with the Cloud), O(|Cir|) (sending the
circuit to the Cloud) and O(|f(X,Y)|) (receiving the output
of the protocol from the Cloud).

Smartphone. The smartphone constructs a garbled circuit and
signs it, which entails three encryptions for each non-XOR
gate and two instances of signature generation. During the
authentication phase, the smartphone computes a one-time
pad encryption of its input, and verifies that the result of the
input verification from the Cloud is correct (this requires one
invocation of a hash function). The communication cost on
the smartphone is n · v bits sent to the server, O(|T2|) +O(κ)
from the server, n · v bits sent to the Cloud, and O(κ) to the
server post-authentication.

Cloud. During authentication, the Cloud acts as receiver in
the OT protocol executed with the server. It then evaluates
the circuit. The cost for the Cloud is therefore O(n · v) +
O(|Cir |) + O(κ). The communication cost for the Cloud is
n·v bits from the smartphone for the OT input, O(κ2)+O(n·v)
for performing OT with the server, O(|Cir|) for receiving a
circuit from the server, O(n · v) for sending the verification
gates to the smartphone, and O(|f(X,Y)|) for sending the
output of the computation to the server.

In terms of storage, the server has a copy of the encrypted
biometric template, one or more circuits from the smartphone,
and the user’s public key. The smartphone stores the template
decryption key and the signing keypair. The Cloud needs to
store only the user’s public key in order to verify the signature
on the circuits.

F. Evaluating Arbitrary Functionalities

If we assume that the Cloud and the smartphone do not
collude (as in Kamara et al. [22] and Carter et al. [9]), our
protocol is suitable for evaluating arbitrary functionalities, and
is therefore not limited to authentication. However, we believe
that assuming non-collusion is unrealistic in most scenarios.
It is still an open problem how to evaluate arbitrary functions
in presence of malicious and colluding Cloud and smartphone,
without using cut-and-choose.

VII. SECURITY PROOFS

In this section, we show that our approach is secure: (1) when
then Cloud is malicious, and the smartphone and the server are
semi-honest (Theorem 1); (2) when the Cloud and the server
are semi-honest, and the smartphone is malicious (Theorem 2);
(3) when the Cloud and the smartphone are semi-honest, and the
server is malicious (Theorem 3); and (4) when the smartphone
and the Cloud are malicious and colluding (Theorem 4).

Throughout this section, we assume that the OT protocol
used in our construction is secure in the malicious model,

and therefore simulatable. Further, we assume that the garbled
circuit construction of Šeděnka [51] is secure against malicious
clients and semi-honest servers. Finally, the signature scheme
used in our protocol is existentially unforgeable, and hash
function H(·) is modeled as a random oracle.

A. Security Against a Malicious Cloud

We start by showing that a malicious Cloud cannot learn
any information about the inputs or outputs of the protocol
besides their size (privacy), nor it can affect the result of the
computation except with negligible probability (correctness).

To prove that our protocol provides privacy to the smartphone
and the server, we need to show that the Cloud either cannot
distinguish correct protocol messages from random values, or
that correctly distributed messages can be constructed without
knowledge of the inputs. Informally, this is true because of the
following reasons. During authentication, the Cloud receives:
(1) Cir and δ—because Cir is constructed independently from
the parties’ private inputs, it reveals no information on them;
(2) X ⊕ Z corresponds to the one-time-pad encryption of X ,
and therefore appears to be random and uniformly distributed to
the Cloud; (3) the messages exchanged during the OT protocol—
because the underlying OT protocol is secure in the malicious
model, the Cloud learns nothing from the execution besides
the protocol’s outputs; and (4) the outputs of the OT protocol,
which is a set of random strings corresponding to the circuit
input labels.

To show that the protocol enforces correctness, we prove
that any deviation from the intended protocol steps which
affects the protocol output can always be identified by the
smartphone and/or the server. Clearly, the Cloud can abort
at any time. However, both the server and the smartphone
will notice it. If the Cloud does not abort, it can deviate from
the correct execution of the protocol as follows: (1) it can
use S 6= X ⊕ Z as input to the OT protocol—this adversarial
strategy is identified by the smartphone by checking the outputs
of the verification sub-circuit; (2) it can alter the hash value
sent to the smartphone—however, this strategy can be trivially
identified by the smartphone, because the Cloud cannot forge
output labels corresponding to inputs to the OT protocol other
than the one used; and (3) it can alter the output labels sent
to the server—this is identified by the server because the
Cloud cannot reconstruct any label that does not correspond
to the circuit’s correct output, and the server knows the list of
all output labels. (Because the OT protocol is secure against
malicious adversaries, no efficient adversarial strategy can cause
the OT protocol to output the incorrect result.)

Next, we formalize this intuitive security argument.

Theorem 1: The protocol in Section VI securely computes
a function f according to Definition 1 when the Cloud is
malicious, while the smartphone and the server are semi-honest.

Proof: To prove Theorem 1, we show that it is possible
to construct two simulators, Sim1 and Sim2, that act as the
simulator for the smartphone and the simulator for the server,
respectively (the two simulators share their internal state).

9

1556-6013 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2016.2585093, IEEE
Transactions on Information Forensics and Security

The two simulators interact with the malicious Cloud (the
adversary), and act as follows.

During enrollment: The Cloud does not exchange any mes-
sage with the other parties during enrollment, and therefore
the simulators do not interact with the adversary in this stage.

During authentication, Phase 1-4: Sim1 selects a uniform
random value V from {1, . . . , 2v}n and sends it to the
adversary. From the adversary’s point of view, V follows the
same distribution as X ⊕ Z: in our protocol, Z is uniformly
distributed in {1, . . . , 2v}n, as is therefore X ⊕ Z. Sim1 then
selects a random seed s1, and uses it to generate circuit Cir
according to the protocol. Then Sim1 signs Cir , generating
signature δ1. Sim2 then sends (Cir , δ) to the adversary.

Sim2 and the adversary engage in OT. Sim2 acts as OT
simulator for the underlying OT protocol, using input labels
from Cir . (Sim2 successfully acts as OT simulator iff the
underlying OT protocol is secure against malicious adversaries.)
At the end of the protocol, Sim2 obtains the adversary’s
input S. Sim2 then sends Cir to the adversary, together
with a subset of the server’s input labels corresponding to
a uniformly distributed random input. The labels are generated
independently from the parties’ inputs, and therefore the
adversary cannot tell the input labels it obtains are a related
to the protocol inputs.

Eventually, the adversary sends hAdv to Sim1. Sim1 com-
putes h = H(ωver

1,b1
|| . . . ||ωver

(n·v),b(n·v)
), where bi is the i-th

bit of V . If hAdv 6= h, then Sim1 aborts. Because of the
security of the underlying OT and garbled circuit construction,
and because H(·) is a random oracle, the adversary can send
hAdv = h iff its input to the OT protocol is S = V . In fact,
let bj be the first bit of S that differs from the corresponding
bit in V . At the end of the OT, the adversary learns the input
label corresponding to bj , which does allows it to decrypt
the verification output label corresponding to 1− bj , which is
needed to calculate h.

The adversary then sends the output of the circuit evaluation
to Sim2, which checks output correctness against T , and aborts
if the adversary’s output is incorrect.

Therefore, Sim1 and Sim2 can be constructed in such a
way that the adversary cannot distinguish them from honest
protocol participants. This proves Theorem 1.

B. Security Against a Malicious Smartphone

To prove that a malicious smartphone cannot learn any
information on the template, nor can cause the protocol
to output an authentication score that is different from the
score correctly computed from its inputs, we need to show
that all messages received by the smartphone are either
indistinguishable from random, or can be computed without
knowledge of the protocol inputs. Further, we need to show that
deviating from the protocol does not give any advantage to the
adversary. We address this by showing that, for each protocol
deviation, there is an equivalent protocol input modification
that the smartphone can compute with no knowledge of the
template.

Informally, all messages received by the smartphone during
the protocol reveal no information on the template because:
(1) T2 and γ are generated by the smartphone during the
enrollment phase independently from the user’s template; and
(2) hash h from the Cloud is computed on a subset of the
elements of T2 selected by the adversary using X and Z.

The smartphone can alter the following messages: (1) Z,
sent to the server, and X ⊕ Z, sent to the Cloud—the
two modifications are equivalent, and for any two strings
S1, S2 used to replace Z and X ⊕ Z, the adversary could
have computed the equivalent X as (S1 ⊕ S2) − R; (2) the
confirmation of input correctness, sent to the Cloud and the
server—altering this value will causes the protocol to abort for
either the Cloud, the server, or both, and does not otherwise
affect the protocol outputs.

This informal security argument is formalized next. In the
proof, the simulators run the protocol in the ideal world with
the TTP, and in the real world with the adversary [16].

Theorem 2: The authentication phase of the protocol in
Section VI securely computes a function f according to
Definition 1 when the smartphone is malicious, and both the
server and the Cloud are semi-honest.

Proof: We prove Theorem 2 by constructing two algo-
rithms, henceforth Sim1 and Sim2, which act as the simulator
for the Cloud and the simulator for the server, respectively
(the two simulators share their internal state). Sim1 and Sim2

interact with the malicious smartphone (the adversary), and
extract the smartphone’s input as follows.

During the enrollment: Because the smartphone is not
compromised during enrollment (see Section IV-B), Sim2

receives the user’s encrypted template Y , seeds s1, . . . , sm,
and signatures δ1, . . . , δm and γ1, . . . , γm. If the signatures are
correct, then Sim2 forwards Y to the TTP.

During authentication, Phases 1-4: The adversary receives
R and sku. Then, it sends Z to Sim2, and X

∗
to Sim1. Sim2

recovers the adversary’s input as X
∗ ⊕ Z, and sends it to the

TTP. In the remainder of the protocol, Sim1 and Sim2 faithfully
follow all protocol steps. In particular, the adversary’s view
includes (T2, γ), which is independent from the party’s inputs,
and h, which corresponds to the subset of T2 identified by
X
∗⊕Z. Because all messages received by the adversary during

the protocol are computed consistently with the adversary’s
input, the adversary cannot distinguish between interacting
with the simulators, and interacting with the honest Cloud
and server. Therefore, the simulation is undetectable, and this
proves Theorem 2.

C. Security Against a Malicious Server

Because the smartphone and the Cloud have no output, to
prove that our protocol is secure against a malicious server we
need to show that the adversary cannot distinguish protocol
messages from random values, or that protocol messages can
be generated without knowledge of the smartphone’s input.
Further, we need to show that a simulator interacting with the

10

1556-6013 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2016.2585093, IEEE
Transactions on Information Forensics and Security

server can extract the server’s protocol input, and use in in the
ideal world with the TTP.

Theorem 3: The protocol in Section VI securely computes
a function f according to Definition 1 when the server is
malicious, and both the smartphone and the Cloud are semi-
honest.

Proof: In order to prove Theorem 3, we show that it
is possible to construct two algorithms, Sim1 and Sim2,
which act as the simulator for the smartphone and for the
Cloud, respectively, and extract the adversary’s inputs. The
two simulators act as follows.

During the enrollment: In the ideal world, the server has no
input, and Sim1 receives an encrypted template Y

Ideal
from

the TTP.
Sim1 executes the same protocols steps as the smartphone,

except that Y = Y
Ideal

. Sim1 generates (sk∗u, pk
∗
u), faithfully

constructs Cir1, . . . ,Cirm from random seeds s1, . . . , sm, and
signs each circuit and circuit verification gates as δ1, . . . , δm
and γ1, . . . , γm respectively. Then, it sends pk∗u, s1, . . . , sm,
δ1, . . . , δm, γ1, . . . , γm, and Y to the server. The adversary
cannot distinguish Sim1 from the smartphone because pk∗u,
s1, . . . , sm, δ1, . . . , δm, γ1, . . . , γm, and Y all follow the same
distribution as the corresponding values from the smartphone.

During authentication, Phase 1: Sim1 selects n · v random
bits z1, . . . , zn·v and sends them to the adversary.

Sim2 engages in the OT with the adversary. The input
of Sim2 to the OT protocol is n · v uniformly random bits
w1, . . . , wn·v. Because of the security of the underlying OT
protocol, the adversary cannot distinguish between Sim2 and
the Cloud. Then, Sim2 receives the adversary’s input labels.

During authentication, Phase 2: The adversary sends Cir ,
δ, T2, and γ to Sim2. If the signatures do not verify, Sim2

aborts. Also, if the signature on Cir is valid, but Cir is not
among the circuits generated in the enrollment phase by Sim1,
then Sim2 aborts. The latter abort happens with negligible
probability, since the adversary is not able to return a valid
signature on a circuit that was not previously signed by Sim1.
Sim2 “decodes” the adversary’s input labels to their cor-

responding input bits as Y
∗
, using all input gates of Cir

(which can be reconstructed from the corresponding seed,
generated during enrollment). Sim2 then verifies that the input
labels received from the adversary via OT correspond to the
subset of the smartphone’s input label from T2 selected by bits
(z1 ⊕ w1), . . . , (zn·v ⊕ wn·v), and aborts if they do not. Sim2

sends Y
∗

to the TTP.

During authentication, Phase 3: Sim2 receives d = f(X,Y)
from the TTP. It encodes d using the the appropriate output
labels form Cir , and sends the resulting labels to the adversary.
Because f(X,Y) = f(X,Y), the labels corresponding to d
are distributed as expected by the adversary.

During authentication, Phase 4: If the value corresponds to
a correct authentication decision, then Sim1 generates a new
circuit, signs it, and sends the seed and the signature to the

adversary. The messages corresponding to the circuit and its
signature are distributed as expected by the adversary.

This proves Theorem 3.

D. Security Against Colluding Smartphone and Cloud

In this section, we show that even if the smartphone and the
Cloud are simultaneously malicious and colluding, they still
cannot learn any information on the server’s input, nor trick
the server to authenticate correctly without knowing the user’s
biometric template.

To model collusion, in this scenario the smartphone and the
Cloud act as a single malicious adversary. Informally, when the
smartphone and the Cloud act as a single entity, our protocol
falls back to the protocol of Šeděnka et al. [51]. Because
the protocol in [51] is secure against malicious clients, our
protocol is secure against malicious and colluding smartphone
and Cloud. In particular, we need to show that it is possible to
build a simulator that successfully extracts the adversary’s input,
and that all messages from the simulator are indistinguishable
from correct protocol messages.

Theorem 4: The protocol in Section VI securely computes
a function f(X,Y) according to Definition 1 when the Cloud
and the smartphone are malicious and colluding, and the server
is semi-honest.

Proof: The security of our protocol when the Cloud and the
smartphone collude falls back to the security of the underlying
garbled circuit protocol. We prove Theorem 4 by constructing
simulator Sim1, which simulates the server. Sim1 interacts
with the malicious adversary, which controls the smartphone
and the Cloud, and act as follows.
During the enrollment: Because the smartphone is not
compromised during enrollment, Sim1 receives an encrypted
template Y , seeds s1, . . . , sm, and signatures δ1, . . . , δm and
γ1, . . . , γm from the legitimate user, while the adversary
receives R and sku. Sim1 verifies the correctness of the
circuits and the signatures, and aborts if verification fails. This
guarantees that the circuits compute the correct functionality.
During authentication, Phases 1-4: Sim1 sends (Cir , δ) to
the adversary, where Cir is constructed from one of the seeds
obtained during enrollment and δ is the corresponding signature.
Therefore, these two values are correctly distributed. It then
receives Z from the adversary (acting as the smartphone),
and interacts with the adversary acting as Cloud in the OT
protocol. Because the OT protocol is secure in the malicious
model, and therefore simulatable, Sim1 uses it to extract the
adversary’s input X

∗
. Then, Sim1 sends X

∗ ⊕ Z to the TTP,
and a random subset of its input labels to the adversary. The
labels are generated independently from the parties’ inputs,
and therefore the adversary cannot tell whether they are the
correct labels for Y .

Because there is no further protocol message sent from the
server to the smartphone or to the Cloud, Sim1 simply verifies
that the adversary confirms the correctness of the input (Phase
2), and that it then returns a valid instance of circuit output
(Phase 3).

11

1556-6013 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2016.2585093, IEEE
Transactions on Information Forensics and Security

The adversary cannot distinguish between interacting with
the simulator, and interacting with an honest server. Therefore,
this proves Theorem 4.

VIII. COMPARISON WITH OTHER CLOUD-AIDED CIRCUIT
EVALUATION PROTOCOLS

In this section, we compare our approach in terms of
complexity and security properties to three Cloud-aided garbled
circuit evaluation techniques: Salus [22], Carter et al. [9]
(CMTB hereafter), and Whitewash [8].

There are two aspects in which our protocol differs from
all three Cloud-aided techniques: (1) our approach does not
rely on cut-and-choose. This leads to a dramatic reduction in
execution time compared to current protocols (between 30 and
130 times, depending on the protocol, functionality, and input
size) and bandwidth usage (50 to 90 times); and (2) to achieve
this performance efficiency, our technique sacrifices generality.
In fact, if we allow collusion between the Cloud and the
smartphone, our approach is suitable only for authentication.

Comparison of the asymptotic complexity of outsourcing
protocols is presented in Table II. Next, we provide a brief
overview of specific differences between our approach and
Salus, CMTB, and Whitewash.

Comparison to Salus. Salus guarantees security only in
presence of non-colluding adversaries. This is a substantially
weaker model than the one addressed in our work, because we
assume that the Cloud and the smartphone can collude. This
limitation makes Salus unsuitable for outsourcing authentication
protocols, where the smartphone owner is also the owner of
the Cloud instance. With Salus [22], the smartphone generates
circuit randomness and garbles its own inputs. In contrast, in
our approach the smartphone also generates the circuit. Salus
can implement functions which compute a single shared output
value. Our protocol supports functions that compute different
outputs for each protocol participant. Salus requires the use
of a fair coin-flipping algorithm, executed by all participants.
This is not needed in our protocol.

Comparison to CMTB. As in Salus, and in contrast to our
approach, CMTB assumes that none of the parties collude
with the Cloud, therefore making the protocol unsuitable for
authentication. In CMTB and our approach, OT and input
verification are outsourced to the Cloud. However, in CMTB,
part of the OT protocol is executed by the smartphone, which
therefore incurs substantial computation overhead. Finally,
CMTB requires the smartphone to run a two-party fair coin
toss protocol, which is not required in our protocol.

Comparison to Whitewash. Whitewash is the closest protocol
to ours in terms of security model and cost for the smartphone.
Both our protocol and Whitewash are secure malicious adver-
saries, and against colluding malicious Cloud and smartphone.

While in our approach the smartphone constructs the circuit,
circuit generation is offloaded to the Cloud and the server in
Whitewash. Depending on the authentication distance function,
our protocol requires the smartphone to perform significantly
more symmetric operations than with Whitewash. In fact,

while with Whitewash the smartphone performs a number
of operations that depend only on the size of its own input,
with our approach the smartphone constructs the entire circuit.
However, because our protocol does not rely on cut-and-choose,
the cost of constructing a single circuit is, in practice, very
small (see results in Section IX-C). This allows our protocol
to have a better time/energy tradeoff than Whitewash. For
example, our protocol computes Hamming distance with 1,600-
bit input in 3.29s, compared to the computation time of 95.57s
of Whitewash. In this setting, the smartphone energy cost of
our protocol is 1.23 mWh, which corresponds to 0.01% of the
battery of a Samsung Galaxy S4.

As with Whitewash, our approach can evaluate functionalities
where the smartphone and the server obtain different outputs.

IX. EVALUATION

We conducted a detailed performance and energy charac-
terization of our technique using a commodity smartphone.
We compared our approach with traditional garbled circuits
(i.e., non-Cloud-aided, with and without cut-and-choose), and
with the performance results reported by Carter et al. [8].
Our evaluation is performed using two circuits: the first
implements scaled Manhattan distance, while the second
computes Hamming distance. The former was chosen because
previous work on behavioral authentication has shown that
scaled Manhattan is among the top performers (see, e.g., [23],
[51]). The latter, because it is used in iris matching [6], and it is
a standard benchmark for garbled circuit implementations [8].

A. Experiment Setting

We used a Samsung Galaxy S4 smartphone running Android
4.3. The smartphone’s CPU is a 4-Core 1.9GHz Qualcomm
Snapdragon, and is combined with 2GB RAM. The battery
capacity is 9,880 mWh. To measure the phone’s power con-
sumption, we connected it to a Monsoon power monitor [33],
which acted as a power supply and as a data acquisition device.
To obtain accurate measurements, we bypassed the battery,
and powered the smartphone solely via the power monitor.
To provide a realistic assessment of the cost of the various
protocols, we report energy consumption for the entire system,
including the screen (which was set at medium brightness),
WiFi, and standard OS background processes. To evaluate the
cost of the protocols on the server and the Cloud, we deployed
two Dell PowerEdge R320 rack servers with Intel Xeon E5-
2430L v2 6-Core 2.4GHz CPU and 64GB RAM. The servers
were running Ubuntu Linux 14.04 LTS with kernel 3.16.

We performed experiments in a controlled network envi-
ronment. The smartphone, the server, and the Cloud were
connected to the same broadcast domain via a single access-
point/switch. We used an Apple Airport Extreme Base Station,
which has three Gigabit Ethernet LAN ports and 802.11ac WiFi.
The smartphone was connected to the access point network
through WiFi. The server and Cloud were connected to the
switch through Gigabit Ethernet ports. Because the amount of
data exchanged by the smartphone with our protocol is very
small (between 5 KB and 780 KB), especially compared to

12

1556-6013 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2016.2585093, IEEE
Transactions on Information Forensics and Security

TABLE II
OPERATIONS PERFORMED BY THE PARTIES. c REPRESENTS THE NUMBER OF CIRCUITS GENERATED FOR CUT-AND-CHOOSE.

Smartphone Server/Cloud
Protocol Symmetric ops. Asymmetric/group ops. OT-s Fair coin toss Circuits evaluated

CMTB [9] |X| 2/5c · (|Y |+ 1) κ yes 2/5c
Salus [22] 2/5c · (|X|+ |Y |+ |f(x, y)|) – 0 (performed by server/Cloud) yes 2/5c

Whitewash [8] c · (|X|+ 2/5 · |fb(X,Y)|) – 0 (performed by server/Cloud) no 2/5c
This work |Cir|+ |X| 2 0 (performed by server/Cloud) no 1

TABLE III
INPUT SIZE AND CIRCUIT SIZE USED IN OUR EVALUATION. NUMBERS

REPORTED IN BRACKETS INCLUDE VERIFICATION GATES.

Input Size
(each party, bits) Gates Non-XOR Gates

Manhattan distance 96 (8·12) 2,026 [2,122] 955 [1,051]
336 (28·12) 7,516 [7,852] 3,545 [3,881]

Hamming distance 1,600 25,215 [26,815] 15,589 [17,189]
16,384 212,912 [229,296] 114,669 [131,053]

the current state of the art (see Section IX-C), we expect that
performing communication over cellular network would not
meaningfully affect our results.

B. Implementation Details

The OT protocol used for the two non-Cloud-aided garbled
circuit implementations (i.e., semi-honest and malicious) is
from [47]. Our protocol uses the OT protocol from [1]. This
led to a small reduction in terms of communication cost for
our protocol (in the order of 600KB to a few MB, depending
on the protocol and input size), compared to the semi-honest
construction.

On the smartphone, we developed an Android application
that implements our protocol, as well as semi-honest garbled
circuits, and malicious cut-and-choose circuits based on the
code of Kreuter et al. [26]. Code in [26] uses pipelining to
reduce protocol execution time. Our implementation aims to
offer 80-bit (equivalent) security (κ = 80). Therefore, the
number of circuits used for cut-and-choose is c = 256.1

Communication and authentication code on the smartphone
were implemented in C++ as an Android NDK library. The
code on the server and the Cloud was written in C++.

The scaled Manhattan distance circuit was instantiated with
8 and 28 features, represented using 12 bits (v = 12). These
values have been shown to lead to the lowest authentication
errors in [51] and in [50]. For Hamming distance, we used
1600- and 16384-bit inputs to be able to compare with [8]. We
generated all signatures using the RSA_sign() function of
OpenSSL 1.0.1, with 1024-bit RSA keys and SHA-256. We
used SHA-256 to combine the output of the verification gates
sent by the Cloud to the smartphone. Number of gates and
approximate circuit size is presented in Table III. Comparisons
between techniques presented in this paper and [8] are
conservative, because the number of gates used in our Hamming
distance circuit can be further reduced [7]. Relative performance

1Although there are techniques that require a smaller number of circuits
during cut-and-choose (e.g., c = 40 in [27]), the speedup resulting from
reducing c does not affect the conclusions presented in this section.

improvements of our technique reported in Table IV are largely
independent of circuit design.

We divide the smartphone’s portion of the protocol into
online and offline computation. In our implementation, circuit
construction and signing is performed offline, while the rest of
the protocol (including all communication) is executed online.

We did not use multi-threading to implement our technique.
Likewise, the code for the two non-Cloud-based garbled circuit
protocols was implemented as a single thread. This is in contrast
with the implementation of Whitewash, which used MPI to
divide protocol load across 64 CPU cores [8].

C. Results

Our results are summarized in tables IV and V. We report the
cost of all steps within each protocol in terms of computation,
communication, and energy consumption. For communication
and computation, we report both the overall protocol time
and the portion performed by the smartphone. We also report
how many authentication attempts can be performed with each
protocol before the smartphone runs out of battery, assuming
that the phone is not running any other program.

The performance figures for Whitewash and CMTB listed in
Table V were obtained by Carter et al. [8] using two servers with
dual four-core eight-thread Intel Xeon E5620, and a Samsung
Galaxy Note II smartphone with a 1.6GHz CPU. Our servers
are about 1% faster than those used in [8] in single-threaded
applications.2

As the results in tables IV and V indicate, our protocol
is substantially faster than current approaches secure in the
malicious model. Even though our approach is the only one
in which the smartphone constructs the circuit, the resulting
protocol is still considerably faster because our technique does
not require cut-and-choose.

Our protocol is also faster than the garbled circuit protocol
implementation secure in the semi-honest model. At first, this
might seem counter-intuitive, because our approach involves
more computation than its semi-honest counterpart. However,
the reason we were able to achieve this result is that OT,
which accounts for a substantial portion of the protocol cost,
is entirely offloaded to the Cloud and the server, which are
equipped with faster CPUs than the smartphone.

As reported in Table V, our approach is significantly faster
than both Whitewash and CMTB. Because of its performance
advantage, our protocol is presently the only one suitable for
low-latency authentication windows (i.e., our protocol is the

2Based on the results from https://www.cpubenchmark.net/singleThread.html

13

https://www.cpubenchmark.net/singleThread.html

1556-6013 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2016.2585093, IEEE
Transactions on Information Forensics and Security

TABLE IV
EXPERIMENT RESULTS FOR SCALED MANHATTAN AND HAMMING DISTANCE. THE “# OF PROTOCOL RUNS” COLUMN INDICATES HOW MANY

AUTHENTICATION ATTEMPTS CAN BE PERFORMED BEFORE EXHAUSTING A FULLY CHARGED 9,880 mWh BATTERY, WITHOUT OFFLINE PRE-COMPUTATION.

Protocol Time on Smartphone (s) Total Time (s) Bandwidth on Total Energy on # of Protocol
Smartphone (MB) Bandwidth (MB) Smartphone (mWh) Runs

Scaled Manhattan Distance, 8 features:
GC (semi-honest) 0.61 0.72 0.04 0.04 0.17 >56k
GC (malicious) 110.05 114.72 6.16 6.16 80.04 123
This work (malicious) 0.04 (online) + 0.18 (offline) 0.35 0.005 0.06 <0.01 (online) + 0.05 (offline) >1.7M

Scaled Manhattan Distance, 28 features:
GC (semi-honest) 1.80 2.00 0.15 0.15 0.76 1,300
GC (malicious) 378.69 393.29 21.78 21.78 274.87 35
This work (malicious) 0.18 (online) + 0.42 (offline) 0.93 0.02 0.14 0.05 (online) + 0.15 (offline) >48k

Hamming Distance, 1,600 bits:
GC (semi-honest) 7.38 9.92 0.64 0.64 5.51 1,793
GC (malicious) 1,701.30 1,753.90 95.86 95.86 1,299.19 7
This work (malicious) 1.13 (online) + 1.15 (offline) 3.29 0.08 0.49 0.64 (online) + 0.59 (offline) 7,943

Hamming Distance, 16,384 bits:
GC (semi-honest) 70.89 105.31 6.16 6.16 64.77 152
GC (malicious) 18,125.81 19,653.31 937.66 937.66 14,758.19 0
This work (malicious) 10.22 (online) + 9.39 (offline) 24.97 0.78 4.24 6.86 (online) + 5.67 (offline) 788

TABLE V
COMPARISON WITH CURRENT CLOUD-AIDED PROTOCOLS ON HAMMING

DISTANCE WITH 1,600 BIT AND 16,384 BIT INPUT.

1,600-bit Input 16,384-bit Input
Circuit Time (s) Bandwitdh (MB) Time (s) Bandwitdh (MB)
Whitewash 95.57 23.56 941.15 241.02
CMTB 453.36 41.05 1,335.75 374.03
This work 3.29 0.49 24.97 4.24

only one that allows authentication every 60 seconds or less).
The results in tables IV and V also indicate that our approach
leads to a substantial reduction in terms of bandwidth usage
compared to the state of the art. Our protocol reduces the
overall amount of data exchanged between the parties by one
to two orders of magnitude, and requires between 0.06MB and
4.24MB depending on the circuit. Moreover, the amount of
data exchanged by the smartphone is very small, accounting
for just a fraction of the overall communication.

In terms of energy, the cost of traditional garbled circuits
secure in the malicious model is clearly unsustainable on
smartphones (see Table IV). With scaled Manhattan distance
computation, the smartphone is able to run between 35 and
123 authentication attempts before exhausting the battery. This
corresponds to half-hour to two hours of smartphone usage
with 60-second authentication windows, and assuming that the
smartphone is not performing any other task. Similarly, when
using Hamming distance, the energy provided by the battery is
sufficient for performing up to 7 authentication attempts with
1,600 bits of input, and none using 16,384 bits.

In comparison, the energy cost of our approach is very small.
Our technique requires less than 0.2 mWh for computing scaled
Manhattan distance, and between 1.23 mWh and 12.53 mWh
for Hamming distance. Moreover, if the smartphone is allowed
to perform some pre-computation (indicated as “offline” in
Table IV), the energy cost of scaled Manhattan distance is
below 0.05 mWh, and that of Hamming distance is between

0.64 mWh to 6.86 mWh. This corresponds to a negligible
impact on the battery life of the device, which allows the user
to perform a large number of authentication attempts (from
788 with Hamming distance, to over 1.7M with Manhattan
distance) on a single charge.3

X. CONCLUSION

In this paper, we presented the first practical energy-efficient
outsourced privacy-preserving authentication protocol. Our
approach is unique, because it provides security against
malicious and possibly colluding adversaries without using cut-
and-choose. With our protocol, user authentication is performed
in less than one second with scaled Manhattan distance,
and in 3.29-24.97 seconds with Hamming distance, which is
significantly faster than previous protocols. As a consequence,
our technique is currently the only one suitable for continuous
smartphone user authentication with windows of 60 seconds
or shorter.

Because our protocol targets continuous authentication of
smartphone users, we measured energy consumption and
reported the overhead of our technique. Our experiments
show that the impact on the smartphone’s battery life is very
small (between 0.05 mWh and 12.53 mWh), and negligible
if circuit construction is performed offline, e.g., while the
smartphone is charging. Our proposal makes privacy-preserving
continuous authentication on smartphones eminently feasible
from a computational and energy consumption standpoint.

3It is possible that our protocol uses more energy than Whitewash if both
online and offline stages are performed on battery power. However: (1) the
energy consumption of our protocol is negligible; (2) the energy cost can be
further reduced by constructing the circuit offline as reported in Table IV;
and (3) the protocol execution time for Whitewash is 95.57-941.15 seconds
(compared to 3.29-24.97 seconds), which makes it unsuitable for low-latency
authentication. For the aforementioned reasons, we believe that the energy
comparison between our protocol and Whitewash is not necessary.

14

1556-6013 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2016.2585093, IEEE
Transactions on Information Forensics and Security

REFERENCES

[1] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner. More efficient
oblivious transfer extensions with security for malicious adversaries. In
EUROCRYPT 2015, pages 673–701, 2015.

[2] A. J. Aviv, K. Gibson, E. Mossop, M. Blaze, and J. M. Smith. Smudge
attacks on smartphone touch screens. In 4th USENIX Workshop on
Offensive Technologies, WOOT ’10, 2010.

[3] L. Ballard, S. Kamara, F. Monrose, and M. Reiter. Towards practical
biometric key generation with randomized biometric templates. In CCS,
2008.

[4] L. Ballard, S. Kamara, and M. Reiter. The practical subtleties of biometric
key generation. In USENIX Security Symposium, 2008.

[5] D. Beaver. Server-assisted cryptography. In Proceedings of the 1998
Workshop on New Security Paradigms, pages 92–106, 1998.

[6] M. Blanton and P. Gasti. Secure and efficient protocols for iris and
fingerprint identification. In ESORICS, pages 190–209, 2011.

[7] J. Boyar and R. Peralta. The exact multiplicative complexity of the
hamming weight function. 2003.

[8] H. Carter, C. Lever, and P. Traynor. Whitewash: outsourcing garbled
circuit generation for mobile devices. In Proceedings of the 30th Annual
Computer Security Applications Conference, ACSAC, 2014.

[9] H. Carter, B. Mood, P. Traynor, and K. Butler. Secure outsourced garbled
circuit evaluation for mobile devices. In USENIX Security, 2013.

[10] R. Cramer, I. Damgård, and J. Nielsen. Multiparty computation from
threshold homomorphic encryption. In Proc. of the Intl. Conf. on the
Theory and Application of Cryptographic Techniques, 2001.

[11] Data genetics: Pin analysis. http://www.datagenetics.com/blog/
september32012/. Accessed: 2015-01-08.

[12] M. Derawi, C. Nickel, P. Bours, and C. Busch. Unobtrusive user-
authentication on mobile phones using biometric gait recognition. In
Intelligent Information Hiding and Multimedia Signal Processing, 2010.

[13] M. Frank, R. Biedert, E. Ma, I. Martinovic, and D.Song. Touchalytics:
On the applicability of touchscreen input as a behavioral biometric for
continuous authentication. TIFS, 8(1), 2013.

[14] C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC,
2009.

[15] C. Gentry and S. Halevi. Implementing gentry’s fully-homomorphic
encryption scheme. In EUROCRYPT, 2011.

[16] O. Goldreich. Foundations of Cryptography: Volume 2, Basic Applica-
tions. Cambridge University Press, 2004.

[17] V. Goyal, P. Mohassel, and A. Smith. Efficient two party and multi party
computation against covert adversaries. In EUROCRYPT, 2008.

[18] Y. Huang, J. Katz, and D. Evans. Efficient secure two-party computation
using symmetric cut-and-choose. In CRYPTO, 2013.

[19] A. K. Jain, R. Bolle, and S. Pankanti. Biometrics: personal identification
in networked society. Springer, 1999.

[20] A. Juels and M. Wattenberg. A fuzzy commitment scheme. In CCS,
1999.

[21] S. Kamara, P. Mohassel, M. Raykova, and S. S. Sadeghian. Scaling
private set intersection to billion-element sets. In Financial Cryptography
and Data Security, pages 195–215, 2014.

[22] S. Kamara, P. Mohassel, and B. Riva. Salus: a system for server-aided
secure function evaluation. In ACM CCS’12,, pages 797–808, 2012.

[23] K. Killourhy and R. Maxion. Comparing anomaly-detection algorithms
for keystroke dynamics. In Proc. of the Annual IEEE/IFIP Intl. Conf.
on Dependable Systems and Networks, 2009.

[24] V. Kolesnikov, A.-R. Sadeghi, and T. Schneider. Improved garbled circuit
building blocks and applications to auctions and computing minima. In
CANS, 2009.

[25] V. Kolesnikov and T. Schneider. Improved garbled circuit: Free XOR
gates and applications. In International Colloquium on Automata,
Languages and Programming, 2008.

[26] B. Kreuter, A. Shelat, and C. Shen. Billion-gate secure computation
with malicious adversaries. In USENIX Security, pages 285–300, 2012.

[27] Y. Lindell. Fast cut-and-choose based protocols for malicious and covert
adversaries. In CRYPTO 2013, pages 1–17. Springer, 2013.

[28] Y. Lindell and B. Pinkas. Secure two-party computation via cut-and-
choose oblivious transfer. Journal of cryptology, 25(4), 2012.

[29] Y. Lindell and B. Riva. Cut-and-choose yao-based secure computation in
the online/offline and batch settings. In Advances in Cryptology–CRYPTO
2014, pages 476–494. Springer, 2014.

[30] H. Lu, A. J. B. Brush, B. Priyantha, A. K. Karlson, and J. Liu.
Speakersense: Energy efficient unobtrusive speaker identification on
mobile phones. In Pervasive Computing 2011,, pages 188–205, 2011.

[31] F. Monrose, M. Reiter, Q. Li, and S. Wetzel. Cryptographic key generation
from voice. In IEEE S&P, 2001.

[32] F. Monrose, M. Reiter, and S. Wetzel. Password hardening based on
keystroke dynamics. Int. J. Inf. Sec., 1(2):69–83, 2002.

[33] Monsoon power monitor. http://www.msoon.com/LabEquipment/
PowerMonitor/. Accessed: 2015-08-14.

[34] A. Nagar, K. Nandakumar, and A. K. Jain. Biometric template
transformation: a security analysis. In Media Forensics and Security II,
IS&T-SPIE Electronic Imaging Symposium, page 75410, 2010.

[35] M. Naor and B. Pinkas. Efficient oblivious transfer protocols. In ACM-
SIAM Symposium On Discrete Algorithms (SODA), 2001.

[36] M. Osadchy, B. Pinkas, A. Jarrous, and B. Moskovich. SCiFI – A system
for secure face identification. In IEEE S&P, 2010.

[37] B. Pinkas, T. Schneider, N. Smart, and S. Williams. Secure two-party
computation is practical. In ASIACRYPT, 2009.

[38] T. Plantard, W. Susilo, and Z. Zhang. Fully homomorphic encryption
using hidden ideal lattice. TIFS, 8(12), 2013.

[39] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty
protocols with honest majority. In STOC, 1989.

[40] K. A. Rahman, K. S. Balagani, and V. V. Phoha. Snoop-forge-replay
attacks on continuous verification with keystrokes. TIFS, 8(3), 2013.

[41] N. K. Ratha, J. H. Connell, and R. M. Bolle. Enhancing security and
privacy in biometrics-based authentication systems. IBM Systems Journal,
40(3):614–634, 2001.

[42] A.-R. Sadeghi, T. Schneider, and I. Wehrenberg. Efficient privacy-
preserving face recognition. In Intl. Conf. on Information Security and
Cryptology, 2009.

[43] A. Serwadda and V. Phoha. When kids toys breach mobile phone security.
In ACM CCS, 2013.

[44] A. Serwadda, V. Phoha, and Z. Wang. Which verifiers work?: A
benchmark evaluation of touch based authentication algorithms. In
BTAS, 2013.

[45] A. Serwadda and V. V. Phoha. Examining a large keystroke biometrics
dataset for statistical-attack openings. ACM Trans. Inf. Syst. Secur.,
16(2):8, 2013.

[46] A. Shelat and C. Shen. Fast two-party secure computation with minimal
assumptions. In 2013 ACM CCS’13, pages 523–534, 2013.

[47] A. shelat and C.-h. Shen. Two-output secure computation with malicious
adversaries. In EUROCRYPT, volume 6632, pages 386–405. 2011.

[48] E. Shi, Y. Niu, M. Jakobsson, and R. Chow. Implicit authentication
through learning user behavior. In Info. Security Conference, 2010.

[49] D. Shukla, R. Kumar, A. Serwadda, and V. V. Phoha. Beware, your
hands reveal your secrets! In ACM CCS, pages 904–917, 2014.

[50] Z. Sitová, J. Šeděnka, Q. Yang, G. Peng, G. Zhou, P. Gasti, and
K. Balagani. HMOG: A New Biometric Modality for Continuous
Authentication of Smartphone Users. In TIFS, 2015.

[51] J. Šeděnka, S. Govindarajan, P. Gasti, and K. Balagani. Secure outsourced
biometric authentication with performance evaluation on smartphones.
TIFS, 8(1), 2014.

[52] Y. Xu, J. Heinly, A. M. White, F. Monrose, and J. Frahm. Seeing
double: reconstructing obscured typed input from repeated compromising
reflections. In 2013 ACM CCS’13, pages 1063–1074, 2013.

[53] A. Yao. How to generate and exchange secrets. In FOCS, 1986.
[54] S. Zahur, M. Rosulek, and D. Evans. Two halves make a whole: Reducing

data transfer in garbled circuits using half gates. In EUROCRYPT. 2015.

15

http://www.datagenetics.com/blog/september32012/
http://www.datagenetics.com/blog/september32012/
http://www.msoon.com/LabEquipment/PowerMonitor/
http://www.msoon.com/LabEquipment/PowerMonitor/

