Towards a No-Reference Image Quality Assessment Using Statistics of Perceptual Color Descriptors

Dohyoung Lee, Student Member, IEEE, Konstantinos N. Plataniotis, Fellow, IEEE

Abstract—Analysis of the statistical properties of natural images has played a vital role in the design of no-reference (NR) image quality assessment (IQA) techniques. In this paper, we propose parametric models describing the general characteristics of chromatic data in natural images. They provide informative cues for quantifying visual discomfort caused by the presence of chromatic image distortions. The established models capture the correlation of chromatic data between spatially adjacent pixels by means of color invariance descriptors. The use of color invariance descriptors is inspired by their relevance to visual perception since they provide less sensitive descriptions of image scenes against viewing geometry and illumination variations than luminances. In order to approximate the visual quality perception of chromatic distortions, we devise four parametric models derived from invariance descriptors representing independent aspects of color perception: 1) hue; 2) saturation; 3) opponent angle; and 4) spherical angle. The practical utility of the proposed models is examined by deploying them in our new general-purpose NR IQA metric. The metric initially estimates the parameters of the proposed chromatic models from an input image to constitute a collection of quality-aware features (QAF). Thereafter, a machine learning technique is applied to predict visual quality given a set of extracted QAFs. Experimentation performed on large-scale image databases demonstrates that the proposed metric correlates well with the provided subjective ratings of image quality over commonly encountered achromatic and chromatic distortions, indicating that it can be deployed on a wide variety of color image processing problems as a generalized IQA solution.

Index Terms—No-reference (NR) image quality assessment (IQA), chromatic information, color invariance descriptors, circular distribution models.

I. INTRODUCTION

Quality assessment of visual data plays a central role in various sectors of image processing technologies, e.g., the evaluation of image acquisition/reproduction systems, the quality monitoring of multimedia visual data and the optimization of visual processing algorithms. Although subjective assessment is the most reliable means to measure visual quality, it is not always feasible in practical applications, e.g., real-time quality control systems. Therefore, automated solutions that can precisely predict the subjective opinions of human observers, e.g., Mean Opinion Scores (MOS), have gained considerable research attentions in recent years. To this end, a plethora of image quality assessment (IQA) metrics has been proposed and successfully deployed in applications such as image/video coding [1], information hiding [2], image rendering [3], tone mapping [4] and color gamut mapping [5]. Depending on the availability of a reference image, existing IQA metrics can be classified into full-reference (FR), reduced-reference (RR), and no-reference (NR) approaches [6]. Since the accessibility of reference data allows for the accurate prediction of perceived quality, there have been several well-established FR IQA metrics, such as the Structural SIMilarity (SSIM) index [7]. However, reference images are rarely available in real-world visual communication environments. Therefore, NR IQA metrics, which are more easily deployable in broader applications, have been considered as practical alternatives to FR IQA solutions.

Existing NR metrics can be categorized into distortion-specific and general-purpose approaches. Early NR metrics are developed to handle a pre-defined type of distortions, e.g., blurriness [8] or blockiness/ringing artifacts introduced by compression solutions [9]. Despite their simplicity, distortion-specific metrics have limited applicability as information about the distortion type is not always well defined for practical scenarios. Hence, general-purpose metrics which are designed to consistently work well across multiple classes of distortions have become pervasive recently. Almost all these metrics estimate perceived visual quality by quantifying the deviation of distorted image statistics from statistical models that majority of natural images1 conform to, often referred to as Natural Scene Statistics (NSS). They generally consist of two processing stages: feature extraction followed by quality score prediction. Initially, general-purpose metrics extract Quality-Aware Features (QAF) from an input image, which are features conveying relevant information for inferring the perceived image quality. As shown in Table I, commonly employed QAFs in existing metrics are derived from the statistical distributions of image coefficients in frequency domain (e.g., wavelet or discrete cosine transforms) [10]–[12], normalized luminance coefficients [13], [14] or local contrast features (e.g., gradient magnitude) [15]. The majority of NR metrics, then apply machine learning techniques to predict image quality from the extracted QAFs. The accuracy of a NR metric is largely determined by the relevance of utilized QAFs to visual quality perception; thus, identifying a representative set of QAFs that properly mimics the characteristics of the human visual system (HVS) is crucial for the design of NR metrics.

However, most NR metrics in literature only emphasize the statistical aspects of luminance in color images while disregarding ones of chromatic data. It is mainly because luminance

1The “natural images” are the ones captured by an optical camera which can include scenes of natural indoor/outdoor environments, as well as man-made subjects taken under photopic or scotopic viewing conditions. They are pristine images that have not been subjected to artificial processing [10].
has been considered as a dominant factor for understanding the human visual perception [6]. Nevertheless, NR IQA solely based on luminance can be suboptimal since it underestimates the visual disturbance caused by chromatic distortions unless they influence luminance statistics. Consider Fig. 1 which demonstrates the distributions of luminance-based features, known as the Mean Subtracted Contrast Normalized (MSCN) coefficients [13], for two pristine images and their degraded versions. The marginal histograms of the pairwise products of adjacent MSCN coefficients effectively capture distortion-relevant information for additive white Gaussian noise (AWGN) and JPEG2000 distortions. For instance, one can identify distortion types and quantify discomfort levels by analyzing the tail behavior of histograms (i.e., kurtosis) for such achromatic-structural distortions [13]. However, Fig. 1 clearly visualizes that their distribution patterns for a representative chromatic distortion, saturation change, are nearly identical to those of pristine images regardless of varying distortion levels. This suggests that existing luminance-based QAFs may not be reliable to handle distortions that primarily involve chromatic components.

Our previous work [20] highlighted the significance of chromatic data for FR IQA by exploiting local features of hue and chroma channels for quantifying the color similarities between reference and distorted images. In this work, we advocate the use of chromatic data for NR IQA since the intrinsic performance degradation of NR metrics (compared to FR metrics) due to the absence of reference data can be minimized by utilizing complementary chromatic information. To this end, we introduce a novel set of chromatic QAFs tailored for NR IQA tasks.

The proposed QAFs are parameters of four parametric models that characterize the statistical distributions of low-level color information of natural images. Two models are derived from the zeroth-order (RGB value-based) image representations that are highly relevant to color perception, i.e., hue and saturation, whereas the remaining two are derived from the first-order (derivative-based) representations, i.e., opponent angle and spherical angle. The aforementioned representations encode independent descriptions of color images while sharing the common property that they are computed using color invariance descriptors [21], [22]. Contrary to luminances,
these descriptors provide robust pixel-level descriptions of image scenes which are less influenced by scene-accidental factors, e.g., viewing geometry and illumination variations. Incorporation of them along with luminance allows for a closer approximation of human color perception as the HVS is naturally able to discount scene-accidental effects. Given that human eyes are highly adapted for extracting structural information from viewing field [7], we postulate that establishing statistical models relevant to the spatial correlation of robust color representation will lead us to develop an accurate NR metric. We make following contributions in this article:

1) We devise parametric models based on color invariance descriptors describing the general characteristics of chromatic data in natural images. The proposed models characterize the spatial dependence of chromatic data by analyzing the empirical distributions of differences between invariance descriptor values obtained from spatially adjacent pixels. We demonstrate that the parameters of established models provide reliable cues for quantifying visual discomfort caused by the presence of image distortions (mainly for chromatic ones). To our knowledge, there exists no previous studies that investigate the relationship between the image statistics of color invariance descriptors and the human judgment of image quality.

2) We propose a general-purpose NR IQA framework, namely the Invariance DEscriptor-based ALgorithm (IDEAL), that augments the parameters of the proposed models of color statistics with existing luminance-based QAFs. We experimentally validate that by exploiting chromatic data, the proposed metric accords well with the human perception of visual quality against a wide range of traditional and chromatic distortions commonly occurred in practical applications.

This manuscript is organized as follows. Section II presents preliminary color theories related to image formation and color invariance descriptors. Section III introduces new parametric models that represent the statistical characteristics of chromatic data in natural images using color invariance descriptors. Section IV demonstrates the proposed NR IQA metric using the derived statistical models. Section V is devoted to experimental results and conclusions are drawn in Section VI.

II. COLOR INVARIANT REPRESENTATIONS

A. Color Image Formation

Color conveys rich information that allows for the extraction of image descriptors providing more robust structural information (i.e., less influenced by viewing geometry and illumination variations) of image scenes than its luminance counterpart [23]. The Dichromatic Reflection Model (DRM) [24] provides a simple physical model to describe how recorded RGB values are affected by various viewing conditions. According to the DRM, the measured color value, \(C \in \{ R, G, B \} \), at the spatial coordinate \(x \in \mathbb{R}^2 \) is represented by a linear combination of the body reflection (intrinsic object color) and the interface reflection (highlight) as follows:

\[
C(x) = m^b(x) b^C(x) e^C + m^i(x) e^C
\]

where \(e \) is the color of the light source (assumed constant throughout the scene), \(b \) is the surface albedo, \(m^b \) and \(m^i \) are the scale factors of the body and the interface reflections, respectively, whose values are depending on the geometric structure at \(x \), e.g., camera viewpoint, light source direction, and object orientation. For matte surfaces, the model in (1) further simplifies by ignoring the second term as there is no interface reflection, i.e., \(m^i = 0 \).

The spatial derivatives of the image provide information related to object boundaries. The spatial derivative of the RGB color values \(C_x \) can be derived from (1) as follows [22]:

\[
C_x(x) = m^b_x(x) b^C(x) e^C + m^i(x) b^C_x(x) e^C + m^i_x(x) e^C
\]

where the subscript \(x \) is used to indicate spatial differentiation.

B. Color Invariance Descriptors

The DRM in (1) has been applied in the derivation of various invariance descriptors that provide robust color representation of scene objects against scene-accidental effects [23]. For instance, invariance against highlights can be obtained by representations that cancel out the term \(m^i \), while invariance against viewing geometry can be obtained by removing the term \(m^b \). Invariance against illumination intensity, such as those caused by shadows and shading, can be achieved by canceling out the light intensity \(e \).

We first present two color invariance descriptors based on the zeroth-order image representation (i.e., RGB value-based), the saturation \(S \) and the hue \(H \). These descriptors are known to correlate well with how humans perceive the color information. Although there exist several different ways to define them from RGB values, we consider the ones that possess invariance properties in this work. The saturation \(S \), an attribute of the purity of a color, is given by:

\[
S = 1 - \left[3 \times \min(R, G, B) \right] / (R + G + B)
\]

The opponent color space is known to provide decorrelated effects for RGB color channels. Two opponent channels in the opponent color space [23] are computed by: \(\text{opp}_1 = (R - G) / \sqrt{2} \) and \(\text{opp}_2 = (R + G - 2B) / \sqrt{6} \), where \(\text{opp}_1 \) and \(\text{opp}_2 \) corresponds to the red-green and the yellow-blue channels. The hue \(H \), an attribute related to the dominant wavelength of color signal, is defined as follows [25]:

\[
H = \tan^{-1} (\text{opp}_1 / \text{opp}_2) = \tan^{-1} \left(\sqrt{3}(R - G) / (R + G - 2B) \right)
\]

Subsequently, we present two color invariance descriptors based on the first-order image representations (i.e., derivative-based) [22], the opponent angle \(O \) and the spherical angle \(S \). The computation of these two angular descriptors requires the transformation of color derivatives \(C_x \) to a color space which is uncorrelated with respect to photometric events [26]. The derivatives of the opponent colors are obtained by transforming color derivatives \(C_x \) using an opponent color transformation as follows: \(\text{opp}_{1,x} = (R_x - G_x) / \sqrt{2} \) and \(\text{opp}_{2,x} = (R_x + G_x - 2B_x) / \sqrt{6} \). The opponent angle \(O \) is defined as a ratio of \(\text{opp}_{1,x} \) and \(\text{opp}_{2,x} \) as follows:

\[
O = \tan^{-1} (\text{opp}_{1,x} / \text{opp}_{2,x})
\]
The spherical angle A is defined as a ratio of image derivatives in the spherical color space as follows:

$$A = \tan^{-1}(\frac{\text{sph}_1}{\text{sph}_2})$$ (6)

where the derivatives of spherical channels sph_1 and sph_2 are obtained by transforming color derivatives C_x using a spherical transformation [26]:

$$\text{sph}_1 = \frac{G_xR - R_xG}{\sqrt{R^2 + G^2}}$$ and $$\text{sph}_2 = \frac{R_xGB + G_xR - B_xG^2}{\sqrt{(R^2 + G^2)(R^2 + G^2 + B^2)}}$$ (7)

Table II summarizes the invariant characteristics of the incorporated color invariance descriptors. Please refer to the Supplementary Material for the detailed proof of invariant properties. Note that the luminance Y is computed by:

$$Y = 0.299R + 0.587G + 0.114B$$ (8)

and is sensitive to aforementioned scene-accidental effects. The color invariance descriptors presented in this section were originally introduced for matching and retrieval applications, since their robustness against accidental imaging conditions allows for more accurate performance in vision tasks [22]. However, their effectiveness in visual quality prediction is largely uninvestigated, and it is the main focus of this paper.

For the convenience of discussion, we clarify three frequently used terminologies throughout the paper — descriptor, feature, and model — in Table III.

III. STATISTICAL MODELING OF NATURAL IMAGES

Using Color Invariant Representations

The research on the statistical modeling of natural images hypothesizes that visual quality perception is highly adapted to NSS models conformation to general characteristics of natural images [27], [28]. Although such general characteristics have been analyzed in different image domains (e.g., frequency or spatial), the spatial correlation between image pixels has shown to convey meaningful information for understanding the HVS properties [29]. In addition, spatial domain approaches have demonstrated their efficiency and accuracy in practical NR IQA metrics [13], [14]; hence, we mainly focus on spatial domain NSS models in this paper.

Natural images are highly structured in the sense that there are strong dependencies between luminance values of adjacent pixels [28]. The derivation of NSS models in spatial domain can be seen as an operation to eliminate spatial image redundancies and to reveal the contents-independent cues of perceived quality [13]. It has been shown that an operation of local mean subtraction followed by divisive variance normalization on image luminances, i.e., MSCN coefficients, has a spatial-decorrelating effect. The NSS models related to the spatial arrangement of MSCN coefficients have been exploited in existing NR metrics and shown their effectiveness in differentiating between traditional distortions and quantifying visual discomfort [13], [14]. However, as exemplified in Fig. 1, such luminance-based NSS models are suboptimal in dealing with chromatic distortions; hence, it necessitates complementary NSS models to characterize the statistics of chromatic components.

Only few works can be found in literature pertaining to the statistical modeling of chromatic data in natural images. Su et al. [30] proposed NSS models of the mean and standard deviation of the Gabor magnitude responses against spatial frequency and orientation using two chrominance components a^* and b^* of CIELAB color space. The authors exploited the proposed models into a stereoscopic vision application and demonstrated their effectiveness in predicting human binocular perception. However, these models are not spatial domain NSS models, nor are they comprehensively validated on IQA of general color images. Ruderman et al. [31] showed that the distributions of logarithmic-scale opponent color response of natural images can be well modelled using a Gaussian distribution. Recently, Ruderman’s models have been deployed in the IL-NIQE [17], one of the few general-purpose NR metric explicitly making use of chromatic data. The authors confirmed that a marginal performance gain is achieved by integrating Ruderman’s models with luminance-based models.

In this section, we develop new parametric NSS models of chromatic data in natural images, providing reliable cues for IQA in the forms of model parameters. Four spatial domain NSS models are derived from color representations discounting viewing geometry and illumination variations; thus, are well correlated with how human perceive structural information from color images. The first two models capture the statistical properties of intuitive color attributes, hue and saturation; whereas the remaining two models capture the ones of color derivative information, opponent angle and spherical angle. The proposed spatial domain NSS models of chromatic

2They rely on computationally expensive 2D Gabor transform.
3The use of logarithm was motivated by psychophysical principles (the Weber-Fechner law). These responses are obtained in two stages. Initially, the mean subtracted logarithmic signals of individual RGB channels are obtained; followed by the opponent color transformation onto the resultant signals.
4The weighted-average SRCC over four image databases, e.g., TID2013 DB, LIVE DB, and CSIQ DB, are slightly increased from 0.6369 to 0.6448.
data complement existing luminance models since fine details of image data are best detected in the luminance whereas the chromatic channels preserve coarse details [23]. Also, recall from Table II that each representations are systematically chosen to emphasize different physical aspects of color descriptions. We postulate that the structural information of image data captured by individual invariance descriptors has a distinctive influence on the perceived image quality. As will be discussed in Section V-C, combining QAFs from the proposed NSS models along with the ones from existing luminance-based NSS models allows for devising an effective NR metric that generalizes well against a wide variety of image contents and distortions.

A. Statistical Model for Hue Component

The hue plays a central role in IQA; visible hue distortions often result in unnatural/unrealistic reproduction of color data, having a strong visual impact [32]. Therefore, establishing a hue-based NSS model is important in applications involving adjustments of chromatic components, e.g., gamut mapping and tone mapping. In Fig. 2, the joint distributions of hue values of neighboring pixels for two natural images are demonstrated. The joint densities are highly concentrated in a main diagonal axis, indicating hue values of two adjacent pixels are highly correlated. With the presence of a specific image distortion, the joint hue distributions of two natural images are altered in a characteristic manner. For instance, additive white Gaussian noise (AWGN) produces more scattered distributions, while chromatic aberration introduces an asymmetry along the diagonal axis. These observations reveal that the spatial correlation of hues between neighbor pixels provides distortion-relevant information. In order to investigate general characteristics of hue data in terms of their spatial correlations, we consider the hue differences between adjacent pixels, i.e., relative hue.

A relative hue ΔH at a spatial location (i,j) of a color image is defined as the angular difference of two adjacent hue values. Given that the values of H lie in the range $[0, 2\pi)$, the relative hue in horizontal orientation is defined as:

$$\Delta H_{\theta \rightarrow \theta'}(i,j) = \Psi(H(i+1,j), H(i,j))$$

(9)

where the angular difference operator $\Psi(\cdot)$ produces value in the range $[-\pi, \pi]$:

$$\Psi(\theta_1, \theta_2) = \begin{cases}
\theta_1 - \theta_2, & -\pi \leq \theta_1 - \theta_2 \leq \pi \\
\theta_1 - \theta_2 + 2\pi, & -2\pi \leq \theta_1 - \theta_2 < -\pi \\
\theta_1 - \theta_2 - 2\pi, & \pi < \theta_1 - \theta_2 \leq 2\pi
\end{cases}$$

(10)

Fig. 3 shows the empirical histograms of ΔH samples for two pristine images in Fig. 1. To formulate more reliable model, ΔH samples are obtained from 1.5K images from COREL DB, a large collection of natural images containing a wide range of scene complexity and color variations.

As depicted in Fig. 3, the ΔH histograms for natural images exhibit unimodal circular distributions; thus, can be modeled through

$$\log L_{\text{VMD}} = -5.45e+06$$

$$\log L_{\text{WCD}} = 4.40e+06$$

with

$$\text{VMD fit (}$\mu_{\text{VMD}} = -0.0007$, $\kappa = 7.790$)$

$$\text{WCD fit (}$\mu_{\text{WCD}} = -0.0003$, $\rho = 0.950$)$

as circular distribution models for COREL DB images are also illustrated with the associated log likelihood values.
with circular distribution models. We examined the suitability of two representative circular distributions for fitting the ΔH histogram of COREL DB images, the von Mises (VMD) and the wrapped Cauchy distributions (WCD). It is evident from the visual inspection of Fig. 3 that the WCD model produces more accurately fitted curve with the ΔH histogram than the VMD model. The numerical comparisons between the empirical histogram and the fitted models using log-likelihood values also produced the same results (i.e., the WCD model results in higher log-likelihood value). The reason behind this is that the WCD model fits well with a peaky and heavy-tailed circular distribution compared to the VMD model.

Consequently, we model the probability density function (pdf) of the relative hue, denoted by a random variable R_h, using the following WCD model:

$$f_{R_h}(r_h; \mu_h, \rho_h) = \frac{1}{2\pi} \frac{1 - \rho_h^2}{1 + \rho_h^2 - 2\rho_h \cos(r_h - \mu_h)}$$ \hspace{1cm} (11)

where μ_h is the location parameter indicating the axis of symmetry and ρ_h is the scale parameter ($0 \leq \rho_h < 1$). The larger the value of ρ_h, the denser the clustering around the μ_h.

In Fig. 4, we plot the empirical histograms of ΔH for TID2013 DB images impaired by eight types of distortions with varying severity levels. It is observed that the shape of ΔH distribution provides an informative cue pertaining to the type of distortions as well as their severity. For instance, the ΔH histograms for colored AWGN exhibit more wider distributions than the ones of pristine images; the ones for JPEG lossy encoding exhibit denser distributions; the ones for chromatic aberration produces asymmetric distributions. Therefore, the ρ_h and μ_h parameters of (11) are effective QAFs for handling the aforementioned chromatic distortions. Conversely, for traditional distortions such as GB and JPEG2000, they are not reliable standalone indicators for identifying distortions; hence, complementary QAFs from other color attributes are required for accurate quality prediction.

B. Statistical Model for Saturation Component

The saturation of color stimuli is related to the sensation of colorfulness. Increased colorfulness typically leads to an enhanced perceived quality since images of low colorfulness appear to be washed-out, whereas images of extremely high colorfulness may appear unrealistic [34]. This observation leads us to focus on spatial dependencies between saturation values of adjacent pixels which can be altered by the presence of distortions rather than directly assessing the level of colorfulness. It is noteworthy that visual impairments caused by changes in spatial structure of saturation can arise by a gamut mapping process, or a severe color quantization in JPEG compression. In order to capture the spatial correlation in saturation component, we remove image redundancies by computing the relative saturation ΔS as follows:

$$\Delta S^{\text{rel}}(i,j) = S(i+1,j) - S(i,j)$$ \hspace{1cm} (12)

The empirical histograms of ΔS samples in natural images (Fig. 5) exhibit generally symmetrical distributions around zero. The probability histograms of ΔS can be well fitted using a generalized Gaussian distribution (GGD), and thus we model the pdf of relative saturation, denoted by a random variable...
R_s, using the following GGD model:

$$f_{R_s}(r_s; \alpha_s, \sigma_s^2) = \frac{2\alpha_s}{\beta \Gamma(\frac{1}{\alpha_s})} \exp \left(- \frac{(r_s \beta)^{\alpha_s}}{\Gamma(1/\alpha_s)} \right)$$

(13)

where $\beta = \sigma_s \Gamma(\frac{1}{\alpha_s})/\Gamma(\frac{2}{\alpha_s})$ and $\Gamma(\cdot)$ denotes the gamma function: $\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} \, dt$. The α_s of (13) controls the shape of distributions while the σ_s^2 controls the variance.

The GGD model is found to be versatile enough to represent the ΔS histograms of images affected by various distortion types (Fig. 4). For instance, as quantization noise gets more visually distracting, the distribution gets denser around zero. Since the ΔS histograms of different distortion types and severity levels exhibit varying levels of peakedness and spread, two GGD parameters (α_s, σ_s^2) are effective QAFs.

C. Statistical Model for Derivative-based Color Descriptors

Image derivatives convey crucial information for local image structures (e.g., edges, textures) and have correspondences with the center-surround mechanism of the HVS [23]. Therefore, prior studies have suggested that derivative-based image features should be combined with zeroth-order (RGB pixel-based) features to devise accurate perceptual models of color saliency [26] or color constancy [35]. To this end, we further investigate the general characteristics of natural images by means of derivative-based descriptors, opponent angle O and spherical angle A. Contrary to hue H and saturation S which are directly related to artists’ intuition of color mixing, these derivative-based descriptors are less intuitive. However, they are physically meaningful in the sense that they provide invariant representation to scene-accidental effects (see Table II), extracted from perceptually significant image derivatives. It is noteworthy that the local structural information extracted by O and A descriptors is distinguished from the one extracted based on luminance Y. For instance, the image boundary information captured by MSCN coefficients [13] may contain both the boundaries generated by scene-accidental factors (e.g., edges caused by the shape or position of an object with respect to light sources) and perceptually more significant boundaries (e.g., edges between two objects or the transitions between objects and background), whereas the O and A emphasizes the latter.

Both O and A are defined as angular quantities; again, we define the relative terms, ΔO and ΔA, by computing the angular difference of descriptor values between adjacent pixels as follows (to remove spatial dependencies):

$$\Delta O^\alpha_o(i, j) = \Psi(O(i+1, j), O(i, j))$$

$$\Delta A^\alpha_o(i, j) = \Psi(A(i+1, j), A(i, j))$$

(14)

In Fig. 6, the ΔO and ΔA histograms of COREL DB images are fitted with the VMD and WCD models, and the latter is observed to be suitable to represent them. Hence, we model the pdfs of ΔO and ΔA, denoted by two random variables R_o and R_s, using the WCD models as follows:

$$f_{R_o}(r_o; \mu_o, \rho_o) = \frac{1}{2\pi} \frac{1}{1 + \rho_o^2 - 2\rho_o \cos(r_o - \mu_o)}$$

$$f_{R_s}(r_s; \mu_s, \rho_s) = \frac{1}{2\pi} \frac{1}{1 + \rho_s^2 - 2\rho_s \cos(r_s - \mu_s)}$$

(15)

where μ_o and μ_s are the location of symmetry parameters; ρ_o and ρ_s are the scale parameters.

The empirical histograms of ΔO and ΔA for “bike” and “lighthouse” images in Fig. 1 as well as for 1.5K images from COREL DB. The fitted circular distribution models for 1.5K COREL DB images are also shown.

IV. APPLICATION OF THE STATISTICAL MODELS OF INVARIANT DESCRIPTORS IN IMAGE QUALITY METRIC

In Section III, we have developed parametric NSS models of chromatic data in natural images and have shown that the presence of image distortions leads to the deviation of image statistics from such models. In this section, the practical utility of proposed NSS models are validated by unifying them within a general-purpose NR IQA framework, namely, the Invariance DEscriptor-based ALgorithm (IDEAL). It is composed of two main stages: feature extraction followed by quality score prediction as illustrated in Fig. 7. Initially, five descriptor maps are retrieved from an input RGB image representing independent aspects of color perception (as in Table II). From individual maps, we extract QAFs which can be viewed as a process of removing redundancies to reveal the low dimensional statistical description of input image data for IQA task. The set of QAFs is systematically chosen to precisely approximate the quality perception mechanism (i.e., the predicted quality scores correlates well with human judgments across various image scenes and distortion types). Apart from the proposed chromatic QAFs in Section III, the luminance-based QAFs [13] are adopted since they have proven effective in dealing with achromatic structural distortions.

The extracted QAFs are then gathered together to form a vector, denoted by z, which becomes an input to a quality pre-
The AGGD parameters \((\sigma_d, \sigma_r, \gamma, \eta)\) for paired products of four orientations are extracted as QAFs in the proposed metric due to their relevance to quality perception. They can be efficiently estimated by means of the moment-matching approach [36].

The AGGD parameters are estimated for two spatial resolutions since the multi-scale extraction of luminance QAFs improves the accuracy of quality prediction when dealing with changes in the image resolution or variations in viewing distance [13]. In other word, the feature extraction is repeated after low-pass filtering the image and subsampling it by a factor of 2. Consequently, 32 features — \(\{\sigma_i^d, \sigma_i^r, \gamma_i^d, \gamma_i^r\}\) — where \(i \in \{1, 2\}\) is the index for the multi-scale extraction and \(d \in \{ho, ve, d1, d2\}\) is the orientation index (Fig. 8) — constitutes the luminance-based QAF vector \(v_Y\).

A. Luminance Quality-Aware Feature Extraction

The statistics of MSCN coefficients have been widely deployed in NR metrics [13, 14, 17] since the presence of achromatic structural distortions changes the statistics of MSCN coefficients, and the degree of these changes becomes a reliable basis for IQA. Hence, we adopt QAFs based on MSCN coefficients in the proposed metric. The MSCN coefficients \(Y\) are extracted from the luminance \(Y\) of image data as follows:

\[
\hat{Y}(i, j) = \frac{Y(i, j) - \mu_Y(i, j)}{\sigma_Y(i, j) + 1} \quad (16)
\]

where \((i, j)\) is the spatial location, \(\mu_Y\) is the local luminance mean and \(\sigma_Y\) is the local luminance variance.\(^7\)

The histograms of pairwise products of neighboring MSCN coefficients along four orientations, i.e., \(M^{ho}(i, j) = \hat{Y}(i, j)\hat{Y}(i+1, j), M^{ve}(i, j) = \hat{Y}(i, j)\hat{Y}(i+1, j-1), M^{d1}(i, j) = \hat{Y}(i, j)\hat{Y}(i, j-1),\) and \(M^{d2}(i, j) = \hat{Y}(i, j)\hat{Y}(i-1, j-1),\) are observed to follow a zero mode asymmetric generalized Gaussian distribution (AGGD) given by [13]:

\[
f_{AGGD}(m; \sigma_1, \sigma_r, \gamma) = \begin{cases} \frac{\gamma}{(\beta_1 + \beta_r)^{(1+\gamma)}} \exp \left[-\frac{(m - \mu_r)^\gamma}{\beta_1 + \beta_r} \right], & m < 0 \\ \frac{\gamma}{(\beta_1 + \beta_r)^{(1+\gamma)}} \exp \left[-\frac{(m - \mu_r)^\gamma}{\beta_1 + \beta_r} \right], & m \geq 0 \end{cases} \quad (17)
\]

where \(\beta_1 = \sigma_1 \sqrt{\Gamma(\frac{\gamma}{2})/\Gamma(\frac{\gamma}{2})}\) and \(\beta_r = \sigma_r \sqrt{\Gamma(\frac{\gamma}{2})/\Gamma(\frac{\gamma}{2})}\). The parameter \(\gamma\) adjusts the shape of the distribution and the scale parameters \(\sigma_1\) and \(\sigma_r\) control the spread of the AGGD to the left and right of the origin. The mean parameter \(\eta\) of the best AGGD fit is computed as follows:

\[
\eta = (\beta_r - \beta_1 \Gamma(2/\gamma))/\Gamma(1/\gamma) \quad (18)
\]

\(^7\)Inheriting the authors' recommendation [13], \(\mu_Y\) and \(\sigma_Y\) at each pixel are computed by taking a 7 x 7 local window with a 2D circularly-symmetric Gaussian weighting functions sampled out to 3 standard deviations and re-scaled to unit volume.

B. Chromatic Quality-Aware Feature Extraction

In this section, we present chromatic QAFs to be used in the proposed IDEAL metric. This process begins with the extraction of relative quantities \((\Delta H, \Delta S, \Delta AO\) and \(\Delta A)\) from a given distorted image. Regarding the number of orientations for extracting relative quantities, having more than two primary orientations does not substantially increase the correlation between the metric scores and subjective ratings; thus we only consider orientations \(d \in \{ho, ve\}\). This is consistent with a physiological phenomenon called the oblique effect that the sensitivity for a majority of vision tasks is superior for stimuli aligned in horizontal or vertical orientations, as compared to stimuli in oblique orientations [37]. The chromatic QAFs are extracted only from a full-scale image as there is no prominent gain in performance by having more than one scale.

1) Hue-based QAFs: For the extraction of hue-based QAFs, we compute \(\Delta H\) along primary orientations as follows:

\[
\begin{align*}
\Delta H^{ho}(i, j) &= \Psi(H(i+1, j), H(i, j)) \\
\Delta H^{ve}(i, j) &= \Psi(H(i, j+1), H(i, j)) \quad (19)
\end{align*}
\]

Then, two parameters of the WCD model \((\mu_h, \rho_h)\) in (11) fitted to the empirical histograms of \(\Delta H\) are extracted as QAFs using the recursive estimation method in [38].

We found that the circular kurtosis \(k_h\) of \(\Delta H\) samples provides additional gain for accurate quality prediction. It is because the \(k_h\) provides reliable information about the central tendency of circular distribution when the empirical distribution deviates largely from the fitted WCD curve. The \(k_h\) is also estimated for two orientations. Consequently, we obtain the hue-based QAF vector \(v_H\) of six elements:

\[
v_H = [\mu_h^{ho}, \rho_h^{ho}, k_h^{ho}, \mu_h^{ve}, \rho_h^{ve}, k_h^{ve}] \quad (20)
\]
TABLE IV
THE EXTRACTED QAFS AND FEATURE IDS OF THE PROPOSED METRIC.
(NUMBERS IN PARENTHESIS INDICATE THE INDEX OF FORMULA)

<table>
<thead>
<tr>
<th>Descriptor</th>
<th>Model</th>
<th>Feature ID</th>
<th>Feature elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>AGGD</td>
<td>(17)</td>
<td>$a_{o,s}^2, a_{o,s}^{2,ve}, a_{o,s}^{2,v}$</td>
</tr>
<tr>
<td>S</td>
<td>GGD</td>
<td>(13)</td>
<td>$a_{o,s}^2, a_{o,s}^{2,ve}$</td>
</tr>
<tr>
<td>H</td>
<td>WCD</td>
<td>(11)</td>
<td>$a_{o,s}^2, a_{o,s}^{2,ve}$</td>
</tr>
<tr>
<td>O</td>
<td>WCD</td>
<td>(15)</td>
<td>$a_{o,s}^2, a_{o,s}^{2,ve}$</td>
</tr>
<tr>
<td>A</td>
<td>WCD</td>
<td>(15)</td>
<td>$a_{o,s}^2, a_{o,s}^{2,ve}$</td>
</tr>
</tbody>
</table>

2) Saturation-based QAFs: Initially, we compute the ΔS for two primary orientations as follows: $\Delta S^{ho}(i,j) = S(i + 1, j) - S(i, j)$, $\Delta S^{ve}(i,j) = S(i, j + 1) - S(i, j)$. Subsequently, two parameters (α_h, σ_h^2) are attained from the GGD fits on the histograms of ΔS^{ho} and ΔS^{ve} using the estimation approach in [39]. It results in the saturation-based QAF vector v_S of four elements:

$$v_S = [a_h, a_h^2, a_h^{2,ve}, a_h^{2,ve}]$$ (21)

3) Opponent / Spherical Angle-based QAFs: The retrieval of the descriptor maps of opponent angle O and spherical angle A requires the computation of image derivatives, e.g., R_x, G_x and B_x. Please note they are computed by convolving individual RGB channels with Gaussian derivative filters with a standard deviation $\sigma = 1$ [40]. Subsequently, the ΔO and ΔA are computed for two primary orientations analogous to (19). Then, the model parameters (μ, ρ) of the fitted WCD models in (15) as well as the circular kurtosis are extracted as QAFs from the histograms of ΔO^{ho}, ΔO^{ve}, ΔA^{ho}, and ΔA^{ve}. Consequently, we obtain the opponent angle- and spherical angle-based QAF vectors, denoted by v_O and v_A, as follows:

$$v_O = [\mu_h, \rho_h, \mu_h^{ve}, \rho_h^{ve}, \mu_h^{ve,ve}, \rho_h^{ve,ve}]$$

$$v_A = [\mu_h, \rho_h, \mu_h^{ve}, \rho_h^{ve}, \mu_h^{ve,ve}, \rho_h^{ve,ve}]$$ (22)

C. Prediction of Quality from Quality-Aware Features

Let $z = \{v_i\}_{i=1}^{N}$ be the concatenated vector of all extracted QAFs, where individual QAFs are summarized in Table IV. The quality score Q can be represented as a function of z:

$$Q = f(z)$$ (23)

where $f(\cdot)$ is an operator relating the elements of z to the final quality score. Explicit modeling of the $f(\cdot)$ is nontrivial because the interactions between a set of QAFs and perceptual quality is complex and highly nonlinear. In this work, we use the Support Vector Regression (SVR) to estimate $f(\cdot)$ since it is a well-established machine learning solution for handling high dimensional data [43]. In particular, the kernel-based SVR is adopted since it allows for mapping of input data into high dimensional feature space so that nonlinear problem can be solved as a simpler linear regression problem.

Suppose that the training data $\{\{z_i, s_i\}, \cdots, \{z_N, s_N\}\}$ is presented to the SVR module, where N is the number of training images, z_i and s_i are the extracted feature vector and the subjective rating associated with the i-th training image. For the kernel-based SVR, the $f(\cdot)$ to be learned is given by:

$$f(z) = \sum_{i=1}^{N} (a_i - a_i^*) K(z_i, z) + b$$ (24)

where $K(z_i, z)$ is the kernel function; a_i, a_i^* and b are the variables to be optimized during the training. The SVR finds a $f(\cdot)$ that has the deviation of at most ϵ from the target s_i for all the training data and at the same time is as flat as possible. This can be formulated as a following optimization problem:

maximize: $- \frac{1}{2} \sum_{i,j=1}^{N} (a_i - a_i^*) (a_j - a_j^*) K(z_i, z_j) - \epsilon \sum_{i=1}^{N} (a_i + a_i^*) + \sum_{i=1}^{N} s_i (a_i - a_i^*)$ (25)

subject to: $\sum_{i=1}^{N} (a_i - a_i^*) = 0$ and $a_i, a_i^* \in [0, C]$ where $C > 0$ is the tradeoff parameter (a larger value of C leads to over-fitting).

For SVR solutions, selecting an appropriate kernel function $K(\cdot)$ is of vital importance to ensure good performance. We use the Radial Basis Function (RBF) as $K(\cdot)$ because it requires less number of parameters to estimate than other alternatives, e.g., polynomial or sigmoid, while producing competitive performance in many scenarios [44]. The RBF kernel is given by: $K(z, z) = \exp(-\gamma \|z - z\|^2)$, where $\gamma > 0$ is a parameter controlling the radius of kernel.

During the training phase, the unknown terms in (24) are estimated. In the test phase, the trained system is presented with the test feature vector z and predicts the final quality score Q. There are two parameters (C, γ) to configure for the RBF kernel-based SVR. Adopting the recommendation from [44], the optimal values of (C, γ) are identified for individual tests by performing a grid-search, i.e., examining various combinations of (C, γ) and choosing the one that yields the highest performance (i.e., high SRCC/PLCC values).

V. PERFORMANCE EVALUATION

A. Databases and Evaluation Criteria

We incorporate four publicly available databases in Table V to evaluate the performance of the proposed metric, e.g., TID2013 DB [19], LIVE DB [45], CSIQ DB [46] and CID2013 DB [47]. They provide a comprehensive ground for evaluation as they contain diversifying visual scenes and distortion types. In particular, the TID2013 DB is useful for our analysis as it contains a balanced mixture of chromatic and achromatic distortion types. The recently introduced CID2013...
DB [47] provides the images of eight types of scenes captured by different digital devices (ranging from low to high quality cameras, including mobile phones, compact cameras, and SLR cameras); thus, it offers photographs of more real-world scenarios with many concurrent distortion sources.

In order to evaluate whether a metric is statistically consistent with visual perception, predicted metric scores are compared with subjective ratings using three evaluation criteria suggested by the Video Quality Experts Group (VQEG) [48]: i) Pearson Linear Correlation Coefficient (PLCC), ii) Spearman Rank-order Correlation Coefficient (SRCC) and iii) Root Mean Squared Error (RMSE). The PLCC measures the prediction accuracy of a metric, i.e., the ability of predicting the subjective ratings with low error, whereas the SRCC measures the prediction monotonicity, i.e., the degree to which a metric agrees with the rank of the subjective ratings. The RMSE is defined as the root mean square difference of predicted metric scores and subjective scores. In order to remove the non-linearity of subjective rating process, the PLCC and RMSE are measured after applying a non-linear regression using the logistic function \(f \) [45].

\[
\hat{p} = f(p) = \beta_0 + \beta_4 p + \beta_5 \left(\frac{1}{2} - \frac{1}{1 + \exp(\beta_2 (p - \beta_3))} \right)
\]

where \(p \) is the metric score, \(\hat{p} \) is the mapped score, and \(\{\beta_i\}_{i=1}^{5} \) are the parameters to be determined by minimizing the sum of squared differences between \(\hat{p} \) and subjective score. Please note that the SRCC is not affected by the non-linear regression.

A metric correlates well with subjective human scores if SRCC and PLCC are close to 1 and RMSE is close to 0.

B. Metric Configuration

Since the proposed approach requires a training process to calibrate a SVR module, we divide each SVR database into two randomly chosen non-overlapping subsets: 80 % training and 20 % testing adopting the general practice in NR metric validation [10], [13], [15] (See Section V-D for the influence of varying training/testing partition sizes on performance). To ensure that the results generalize across different training/test sets, we repeat this test procedure 1000 times and the medians of the performance indicators, i.e., SRCC, PLCC or RMSE, across 1000 trials are reported.

C. Importance of Individual Quality-Aware Feature Types

The single and joint contributions of QAF types on the quality prediction accuracy are investigated in this section.

The subsets of QAFs are selectively chosen and trained on the individual databases via the protocol described in Section V-B. Note that the two subsets of TID2013 DB are considered in this analysis, one containing images of six chromatic distortions and the other containing images of eleven commonly encountered achromatic-structural distortions, referred as TID2013(C) and TID2013(A), respectively (denoted by “color” and “actual” subsets by original authors [19]). We use SRCC as a performance indicator but PLCC and RMSE yield very similar results.

Fig. 9 shows that the most effective QAF type is \(v_Y \) in the most evaluation databases. This indicates that when dealing with the entire database, i.e., mixture of distortion types, the luminance statistics contributes the most for quality prediction, which is consistent with the fact that the HVS is generally more sensitive to achromatic than to chromatic signal [49]. However, \(v_A \) is slightly superior to \(v_Y \) for TID2013(C), indicating the enhanced significance of chromatic data against chromatic distortions. It is notable that the luminance QAF \(v_Y \) performs favorably on the LIVE DB by yielding nearly the maximum achievable SRCC. One possible explanation is that the distortions in the LIVE DB are traditional types where solely luminance-based statistics are sufficient to precisely predict the visual quality perception. This result is in accordance with the observations in [20], where luminance-based similarity measures yield high correlation with subjective ratings for
the LIVE DB in FR IQA.10 Conversely, complementary effects of chromatic QAFs are relatively significant for remaining databases, i.e., the SRCC gain of a complete set of QAFs compared to solely luminance QAF is approximately 0.1. The results imply that different distortions manifest by modifying different image statistics; hence, we need to combine all proposed QAFs to properly estimate quality when different types of distortions are examined together.

D. Performance Dependency on Training Set Size

In order to demonstrate the performance dependency of the proposed metric on training set size, we report the performance of the metric for a varying ratio of train/test sets split \(R_t \) from 0.1 to 0.9 for individual databases in Fig. 10. For this experiment, all five types of QAFs are considered. It is notable that the metric performance does not deteriorate substantially along with the reduction of the training set size (i.e., the SRCC reduction caused by decreasing \(R_t \) from 0.8 to 0.5 are less than 0.05 for all three databases), indicating the robustness of the metric against the small sample problem.

E. Metric Performance on Individual Databases

In this section, we compare the performance of the proposed metric with representative general-purpose IQA metrics in literature. The NR metrics in consideration are: i) BRISQUE [13], ii) GM-LOG [15], iii) BLINDS-II [11], iv) DIVINE [10], v) C-DIVINE [12], vi) NIQE [14] and vii) IL-NIQE [17]. Implementations of these metrics are publicly available.

10Note that seemingly insignificant difference of median SRCC values in Fig. 9 may have a statistically significant meaning. For instance, as will be discussed in Table VII, the result of one-sided t-test indicates that the improvement of SRCC performance achieved by YSHOA over \(Y \) (denoted as “V3” and “V1” in Table VII, respectively) is statistically significant even though the gain of median SRCC in Fig. 9 is insignificant.

All compared NR metrics are luminance-based except for IL-NIQE. For DIVINE and C-DIVINE, the one-stage version, i.e., employing SVR to train a regression module which directly maps the feature vector to a final quality score, is used. For a fair evaluation, we used the default parameters configured by the original authors, and optimized the SVR parameters \((C, \gamma)\) for the SVR-based metrics by means of a grid-search. Although direct comparisons between FR and NR metrics are not fair, the performance of the two competitive FR solutions, the SSIM [7] and the DSCSI [20], is also reported for a reference purpose; where the former is a luminance-based while the latter is a color-based approach. Please note that NIQE, IL-NIQE, SSIM and DSCSI metrics do not require a partition of training and testing sets as other metrics; for a consistent evaluation, the correlations of metric scores with subjective ratings are only reported on the test set.

We consider three variations of the proposed metric by varying the feature vector \(z \) in (23): i) \(V_1 \): solely luminance-based QAFs, i.e., \(z = \{ v_i \}_{i=1}^{32} \); ii) \(V_2 \): the combination of luminance-, hue- and saturation-based QAFs, i.e., \(z = \{ v_i \}_{i=1}^{42} \); and iii) \(V_3 \): the combination of all QAFs, i.e., \(z = \{ v_i \}_{i=1}^{54} \).

Experimental results show that the \(V_3 \) consistently remain competitive with existing NR metrics on most databases: yielding higher median SRCC/PLCC and lower median RMSE values (Table VI), as well as more compact distributions around the median SRCC values (Fig. 11). In particular, the observed high correlation of the \(V_3 \) with human subjective ratings on CID2013 DB implies that the proposed chromatic QAFs are reliable in terms of accurately predicting perceived image quality for realistic distortion types.11 One exceptional case is observed for LIVE DB where the GM-LOG slightly

11Again, recall that CID2013 DB offers images acquired from more real-world scenarios with concurrent distortion sources while other databases mainly contain images contaminated by single simulated distortions.
The SRCC values of FR IQA metrics, i.e., SSIM and DSCSI, for CID2013 DB are not reported since reference images are not provided in CID2013 DB.

Table VII

<table>
<thead>
<tr>
<th>Metric</th>
<th>LIVE DB</th>
<th>CSIQ DB</th>
<th>CID2013 DB</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSIM</td>
<td>1. BRIQUE</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>DSCSI</td>
<td>2. GM-LOG</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>BRISQUE</td>
<td>3. BLINDS-II</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>DIIVINE</td>
<td>4. DIVINE</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>IL-NIQE</td>
<td>5. C-DIIVINE</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>GM-LOG</td>
<td>6. NOQ</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>BRISQUE</td>
<td>7. IL-NIQE</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>DIIVINE</td>
<td>8. V1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>IL-NIQE</td>
<td>9. V2</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>V3</td>
<td>10. V3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Fig. 11. The box plots of SRCC for IQA metrics across 1000 train-test trials on databases. The left and right edges of the blue box indicate the first quartile (Q1) and third quartile (Q3), respectively. The red vertical line inside the blue box is the median SRCC of 1000 trials. The left and right ends of the whiskers represent the lowest SRCC within 1.5 interquartile range (IQR: distance between Q1 and Q3) of the Q1 and the highest SRCC within 1.5 IQR of the Q3. The SRCC values of FR IQA metrics, i.e., SSIM and DSCSI, for CID2013 DB are not reported since reference images are not provided in CID2013 DB.

An interesting observation is that the V3 outperforms the SSIM on the TID2013(C) in terms of prediction accuracy. Given that our metric does not require a reference image to compare with, this is a meaningful improvement; indicating that a NR metric with a carefully chosen set of QAFs could even outperform a well-established FR metric. Considering the metric variation, it is found that the V3 performs better than the V1 and V2 in most databases. The solid performance of the V3 can be attributed to the combinatorial use of QAFs based on perceptually relevant color representations. For instance, the S or H descriptor-based QAFs capture statistical regularities of color attributes highly correlated with color perception, which led the V2 more effective than the V1. The A-based and O-based QAFs complement other QAFs by considering the statistics of image derivatives, which serve as more reliable quality indicators for highly textured image contents and artifacts involving structural distortions (e.g., damaged image edges).
In order to evaluate the statistical significance of metric performance, we perform one-sided t-test with a 95% confidence level between SRCC values generated by metrics across 1000 train-test trials. The null hypothesis of this analysis assumes that the SRCC values of the metrics in comparison are drawn from populations with equal means. Table VII validates the aforementioned observations: the V_3 outperforms the V_1 and V_2 in terms of a statistical sense; and overall, the proposed metric is highly competitive with all considered NR metrics. These results indicate that the proposed IDEAL metric has a good potential as a general-purpose NR metric because of its stable performance over databases of commonly encountered distortion types.

F. Robustness of the Metric against Distortion Types

The proposed metric is further validated on individual distortion types since maintaining stable performance on any specific distortion is a necessary condition for a general-purpose metric. We made use of the TID2013 DB since it contains a wide variety of chromatic and achromatic distortions. It is evident from Fig. 12 that the V_3 maintains consistently stable prediction accuracy across distortions; it shows the highest number of times that it remains on top three among compared metrics. In should be also emphasized that the V_3 do not fail severely on any specific distortions as it is rarely ranked as bottom three metrics. The IL-NIQE slightly outperforms the proposed metric in terms of the number of times that it achieves larger SRCC than 0.8; however, such enhancement can be achieved at the cost of large computational overhead (see Section V-H).

The result shows that the proposed chromatic QAFs not only provide a performance gain for chromatic distortions (e.g., colored AWGN, quantization, JPEG and saturation variation); they also improve accuracy on achromatic-structural distortions (e.g., JPG2K and block distortions), indicating that they are effective for approximating quality perception over a wide variety of distortions. This observation is consistent with Table VI, Fig. 11 and Table VII, where the V_3 is ranked as the best performer on TID2013(C) and TID2013(A).

G. Cross-Database Metric Performance

In order to demonstrate that the metric performance is not bounded to a specific database, a cross-database validation is performed. The metrics are trained on images of training database, then are tested on images on separated testing database. We only considered test images of distortion categories that are covered in the training database for this experiment. Note that the performance of the NIQE and IL-NIQE are reported for a reference purpose, although they do not require subjective ratings for training. CID2013 DB is disregarded as the types of distortions covered in CID2013 DB are fundamentally different from remaining databases.

Although most examined metrics perform fairly well in this analysis, it is clear from Table VIII that the proposed...
metric is not database-dependent as the \(V_3 \) achieves the highest number of times that it is ranked on top three performers along with the BRISQUE and GM-LOG. Overall, the cross-database validation confirms that the proposed IDEAL is effective in terms of the generalization ability.

H. Computational Complexity

Having evaluated the correlation of metric scores with subjective ratings, we now demonstrate that the proposed metric does not introduce substantial computational overhead to achieve high prediction accuracy. The computational complexity is analyzed in terms of MATLAB execution delay for QAF extraction on a 2.90-GHz Inter Core i7 CPU with 4GM RAM system running Window 7 OS. Table IX indicates that the complexity of the proposed metric lies between the spatial domain-based metrics, e.g., BRISQUE, NIQE and GM-LOG, and the frequency domain-based metrics, e.g., DIIVINE and BLINDS-II. One can also see that the IDEAL is an efficient color-based metric as it is much faster than an existing color-domain-based metrics, e.g., BRISQUE, NIQE, and GM-LOG. Overall, the proposed metric is not database-dependent as the \(V_3 \) achieves the highest number of times that it is ranked on top three performers along with the BRISQUE and GM-LOG. Overall, the cross-database validation confirms that the proposed IDEAL is effective in terms of the generalization ability.

VI. Conclusion

We introduce parametric models capable of describing general characteristics of color information in undistorted natural images. The proposed models characterize the correlation of chromatic information between spatially adjacent pixels using the parameters of distribution models and statistical descriptors. A set of color invariance descriptors is incorporated for the derivation of parametric models to extract fundamental structural information of image scenes which is well correlated with human color perception while less sensitive to viewing geometry and illumination variations than image luminances.

To demonstrate the efficacy of the proposed models, we unify them within a general-purpose NR IQA metric, namely the IDEAL. The proposed metric, to our knowledge, is the first attempt to incorporate color invariance descriptors in NR IQA and to demonstrate their effectiveness in quantifying visual disturbance caused by image distortions. Comprehensive validation performed on large-scale databases demonstrates that the IDEAL is competitive with the state of the art NR metrics in terms of its prediction accuracy and generalization ability. The superior performance of the proposed metric to existing luminance-only solutions supports the psychological evidence that chromatic information provides complementary information to luminance in IQA. Experimental results indicate that the proposed metric can be used for general-purpose in a broad range of color image processing applications due to its superior accuracy and reasonable computational complexity.

References

