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Stock Selection with a Novel Sigmoid-based
Mixed Discrete-Continuous Differential Evolution
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Abstract—A stock selection model with both discrete and continuous decision variables is proposed, in which a novel sigmoid-based
mixed discrete-continuous differential evolution algorithm is especially developed for model optimization. In particular, a stock scoring
mechanism is first designed to evaluate candidate stocks based on their fundamental and technical features, and the top-ranked stocks
are selected to formulate an equal-weighted portfolio. Generally, the proposed model makes literature contributions from two main
perspectives. First, to determine the optimal solution in terms of feature selections (discrete variables) and the corresponding weights
(continuous variables), the original differential evolution algorithm focusing only on continuous problems is extended to a novel mixed
discrete-continuous variant based on sigmoid-based conversion for the discrete part. Second, the stock selection model also resolves
the gap of the application of differential evolution algorithm to stock selection. Using the Shanghai A share market of China as the study
sample, the empirical results show that the novel stock selection model can make a profitable portfolio and significantly outperform its
benchmarks (with other model designs and optimization algorithms used in the existing studies) in terms of both investment return and
model robustness.

Index Terms—Artificial intelligence, constrained optimization, evolutionary computing, portfolio analysis
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1 INTRODUCTION

QUANTITATIVE asset management involves a set of
processes, i.e., ideas proposal, returns forecast, portfo-

lios construction and performance evaluation [1]. Amongst
them, stock selection for further portfolio formulation may
be one of the most crucial but challenging issues, due to
the complexity of financial markets. Generally speaking, a
stock selection model includes two main steps, i.e., stock
scoring and stock ranking, the former of which may be the
core part. According to the existing literature, an abundance
of stock evaluation models (or stock scoring mechanisms)
have been developed, which can be mainly divided into
two categories: traditional statistical regression approaches
and computational intelligence (CI) techniques [2]. Both
of them have their respective strengths and weaknesses.
Traditional statistical regression models are relatively easy
to implement and understand due to their simple forms,
nevertheless they often appear relatively poor performance
[2], [3]. Some important works are as follows. Sharpe [4]
first published the capital asset pricing model (CAPM). Ross
[5] introduced his arbitrary pricing theory (APT). Fama and
French [6] formulated a three factor model.

However, due to the complexity in stock markets, the
CI models have fully been shown to be more efficient
than the traditional statistical models, though they might
be somewhat difficult to understand. In particular, diverse
CI models have been applied to stock evaluation, such as
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artificial neural networks (ANNs), support vector machines
(SVMs) and various optimization tools (e.g., differential
evolution (DE)). For ANNs, Quah and Srinivasan [7] uti-
lized ANNs to select stocks. Wang and Gupta [8] built a
stock trading and predicting system based on ANN and
wavelet. Despite of the wide application, ANNs often suffer
from over-fitting and local optimum problems. To avoid
such problems to some degree, SVMs were proposed based
on the principle of structural risk minimization and were
employed to model stock markets. For example, Yu et al. [9]
implemented SVM in stock market analysis and concluded
that SVM was a promising alternative in stock evalua-
tion. For model optimization, the DE algorithm, a typical
evolutionary algorithm (EA), has widely been applied to
financial market analysis. For example, Takahama et al. [10]
employed the DE algorithm to optimize the ANN model
and improved the prediction accuracy of stock prices. Nizar
et al. [11] applied the DE algorithm to the fuzzy set rule
exploration for modeling financial market dynamics. These
above studies all demonstrated that the CI techniques sig-
nificantly outperformed the traditional statistical regression
approaches in modeling financial markets.

Considering both the interpretation capability of tradi-
tional statistical regression models and the prediction accu-
racy of the CI techniques, this study tends to formulate a
CI-based linear stock scoring mechanism. In the proposed
model, the stock scores are estimated in term terms of a
linear combination of various fundamental and technical
features. Accordingly, choosing the appropriate features in a
stock market with highly rich information becomes the most
key task in a stock scoring mechanism [3]. Furthermore,
feature selection can also reduce computational complex-
ity and guarantee model generalization of stock scoring
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mechanisms [12], [13]. The related methods for feature s-
election can be mainly divided into three categories: filter,
wrapper and embedded approaches [14]. The filter methods
remove poorly informative features according to statistical
properties. The wrapper methods explore feature spaces to
score feature subsets based on prediction power [15]. The
embedded methods train models according to preliminary
known rules, which otherwise limits their applications due
to ignorance of the rules. Generally speaking, the wrapper
methods have been much more popularly used, because
they focus not only on reducing data dimensions but also
on improving prediction accuracy. The wrapper methods
usually couple with some powerful CI tools for model
optimization, e.g., genetic algorithm (GA) [16] and genetic
programming (GP) [3]. All the empirical studies observed
the effectiveness of such hybrid wapper-based feature selec-
tion models with CI optimization techniques.

Compared with the above CI optimization techniques,
the DE algorithm, which searches better solutions through
changing the current individuals based on the scaled differ-
ences of randomly selected and distinguished members [17],
has been shown to be a much simpler but more efficient
algorithm [18]. Accordingly, the DE algorithm has been
applied to various difficult optimization tasks, such as text
mining [19], clustering [20] and engineering [21]. Despite
of the successful application, there were few researches
introducing DE into stock selection models, to the best
of our knowledge. Under such a background, this study
especially incorporates the DE algorithm into the proposed
stock selection model for model optimization, which fills in
the gap of its application to stock selection. Furthermore,
as the proposed stock selection model is a mixed discrete-
continuous optimization problem with both discrete deci-
sion variables (feature selections) and continuous decision
variables (the corresponding weights), the typical DE algo-
rithm focusing only on continuous problems is especially
extended to a novel mixed discrete-continuous variant with
sigmoid-based conversion for the discrete part.

Generally, this paper attempts to propose a stock selec-
tion model by introducing and improving the DE algorithm
for model optimization. In particular, two main steps are
involved in this novel stock selection model: stock scoring
and stock ranking. First, a stock scoring mechanism is
designed, in which stocks are evaluated based on various
fundamental and technical features. Second, the top-ranked
stocks are selected to formulate an equal-weighted portfolio
as the model output. For choosing appropriate features
(discrete decision variables) and optimizing the correspond-
ing weights (continuous decision variables), the powerful
CI optimization technique of DE is especially introduced
and improved to a novel mixed discrete-continuous variant
with sigmoid-based conversion for the discrete part, i.e., the
novel sigmoid-based DE algorithm.

The main aim of this study is to propose a stock selec-
tion model with a novel sigmoid-based DE algorithm for
the mixed discrete-continuous optimization, and to verify
its superiority over benchmark models with other model
designs (in terms of different decision variables and fitness
functions) and other popular optimization techniques. The
rest of this paper is organized as follows. Section 2 pro-
vides a literature review on the DE algorithm. Section 3

formulates the novel stock selection model and the sigmoid-
based mixed discrete-continuous DE algorithm. Section 4
designs the experiment study, in terms of sample data,
benchmark models and evaluation criteria. Section 5 reports
the empirical results and verifies the effectiveness of the
proposed stock selection model and the novel sigmoid-
based DE algorithm. Section 6 concludes the paper and
notes the main directions for future research.

2 LITERATURE REVIEW ON DIFFERENTIAL EVOLU-
TION ALGORITHM

Since Price and Stone [17] proposed the DE algorithm in
1997, it has become one of the most popular optimization
tools due to the simple design and efficient performance
[18]. However, the original DE algorithm mainly focuses on
continuous problems but finds difficulty in solving discrete
problems, which largely limits its application.

To address such a problem, some works have been
conducted to extend the traditional DE algorithm to discrete
variants. Generally, DE was modified for discrete problems
mainly using indirect approaches and direct approaches
[22]. On the one hand, the indirect approaches used certain
posterior conversion operators to transform real solutions
in the original DE into integer, discrete and binary solutions
for discrete problems. For example, Lampinen and Zelinka
[23] proposed a discrete DE variant, in which real values
were rounded to the nearest integers (marked as Round-
DE). Angira and Babu [24] added an equality constraint
x(1 − x) = 0 in the typical DE to generate the binary
solution x. Pampara et al. [25] introduced a trigonometric
function into DE to map real spaces into binary spaces and
developed angle modulated DE (AMDE) algorithm. How-
ever, this indirect searching approach might carry a great
computational burden even with a high level of prediction
accuracy [25].

On the other hand, the direct DE variants work directly
with integer or binary encoded variables without posterior
conversion. For instance, Gong and Tuson [26] proposed a
new binary encoded DE algorithm (binDE) in which bina-
ry solutions were evolved according to the corresponding
difference of two randomly chosen solutions. In particu-
lar, using the restricted-change DE (Res-DE) mutation, a
variable in a solution has the chance to mutate based on
the corresponding difference of variables in two randomly
selected solutions. Using the any-change DE (Any-DE) mu-
tation, any variable in a solution has the same opportunity
to mutate depending on the hamming distance of the two
randomly selected solutions. Deng et al. [27] presented a
novel binary DE algorithm directly in binary space without
scale parameter. Wang et al. [28] proposed a modified binary
DE algorithm using a probability estimation operator to
manipulate binary solutions. Based on these improvements,
the DE algorithm has successfully addressed numerous
discrete problems, such as unit commitment [29], load dis-
patch [30] and knapsack problem [31]. However, the binary
DE-variants neglect the mutation operator in the typical
continuous DE algorithm, largely reducing the diversity of
population [26].

Recently, mixed discrete-continuous problems with both
discrete and continuous decision variables have become
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increasingly popular. For mixed discrete-continuous DE
variants, Lampinen and Zelinka [23], Lin et al. [32] and Kim
et al. [33] suggested simply rounding continuous values
to integers for the discrete parts of solutions. Datta and
Figueira [22] developed a binDE directly presenting discrete
parts in binary forms to avoid rounding errors. However,
these above mixed discrete-continuous DE variants were
applied to numerical examples rather than real problems,
and their effectiveness should be further verified in real
problems.

For the proposed stock selection model with both dis-
crete and continuous decision variables, this study proposes
a novel mixed discrete-continuous DE algorithm by intro-
ducing an efficient conversion operator, i.e., sigmoid-based
conversion, for discrete solutions. In particular, the sigmoid-
based conversion, which can generate discrete solutions by
following a logistic probability distribution, has widely been
considered as one of the most basic statistical approaches
in binary classification [34]. Actually, the sigmoid-based
conversion has already been employed in various CI op-
timization algorithms for discrete and discrete-continuous
problems, such as PSO [35] and FA [36]. However, to the best
of the knowledge, this efficient sigmoid-based conversion
has not been introduced into DE so far. Therefore, this paper
especially resolves such a literature gap by formulating
a sigmoid-based DE algorithm and further verifying its
effectiveness in stock selection.

Compared with the existing DE variants, the novel
sigmoid-based DE algorithm for mixed discrete-continuous
optimization makes contributions from two main perspec-
tives. First, it might be the first try to introduce the efficient
sigmoid-based conversion into the traditional DE algorithm
for mixed discrete-continuous optimization. Second, this
novel sigmoid-based DE algorithm is then incorporated into
the proposed stock selection model for feature selection and
weight optimization, which finely verifies the effectiveness
of the novel mixed discrete-continuous DE variant in stock
selection, different from the previous studies based on sim-
ple numerical examples.

3 METHODOLOGY FORMULATION

A novel stock selection model is formulated in this section
by employing and modifying the DE algorithm for mixed
discrete-continuous optimization based on sigmoid conver-
sion, i.e., the sigmoid-based DE algorithm. Subsection 3.1
first gives an overview of the novel stock selection model.
For model design, decision variables (i.e., feature selections
and their weights) and objective (i.e., fitness function) are
described in Subsection 3.2. For model optimization, the
sigmoid-based DE algorithm is formulated, as discussed in
Subsection 3.3.

3.1 Overall Framework

Generally speaking, a stock selection model mainly includes
two key steps, i.e., stock scoring and stock ranking. In the
first step, a stock scoring mechanism is proposed based on
various features. In the second step, stocks are ranked ac-
cording to their scores, and the top-ranked ones are selected
to formulate an equal-weighted portfolio. In particular, the

Fig. 1. General framework of the proposed stock selection model with
the novel sigmoid-based DE algorithm.

feature selection and weight optimization in the former step
may be the most crucial tasks in the stock selection model.
To address such tasks, the simple but efficient CI algorithm
of DE is introduced and modified into the novel sigmoid-
based DE algorithm to search the optimal mixed discrete-
continuous solution for the proposed stock selection model.
Fig. 1 illustrates the general framework of the proposed
model.

As shown in Fig. 1, the proposed stock selection model
is generally composed of the following two main steps:

1) Stock Scoring
A stock scoring mechanism is proposed to evalu-
ate all candidate stocks, including two main parts:
model design and model optimization. In model de-
sign, stocks are scored through various fundamental
and/or technical features, and the fitness function
of information coefficient (IC) helps capture the
relationship between features and future returns
of stocks, in terms of feature selections (discrete
decision variables) and the corresponding weight-
s (continuous decision variables). For this mixed
discrete-continuous problem, model optimization is
conducted via the novel sigmoid-based DE algorith-
m.

2) Stock Ranking
Candidate stocks are ranked according to their s-
cores generated by the stock scoring mechanism.
The m top-ranked stocks, with the highest potentials
of increases in future prices, are selected to formu-
late an equal-weighted portfolio, as the output of
the stock selection model.

Obviously, the stock scoring mechanism is the key part
in the novel stock selection model, with two main factors:
model design (for decision variables and fitness function)
and model optimization (for feature selection and weight
optimization). The following two subsections detail them,
respectively.
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3.2 Model Design

In general, a higher score of a stock refers to a higher
potential of increases in its future prices. To estimate stock
scores, various features including profitability, structure,
liquidity, efficiency, growth, momentum and others can be
used, as listed in Table 1. Based on these candidate features,
the performance of a given stock can be then quantitatively
evaluated in terms of a score, under the assumption that a
higher value implies a better performance in the near future.

Let Yi,j,t denote the score of stock i assigned by feature
j at time t, i.e., the Z-score normalization of Vi,j,t [37] where
Vi,j,t is the actual score by feature j. Especially, if feature j is
return on asset (ROA), a larger value implies that the assets
of the corresponding corporate might be more profitable in
generating revenues [38]. Accordingly, Yi,j,t can be defined
by:

Yi,j,t =
Vi,j,t − Vj,t

Dj,t
(1)

where Vj,t = 1
N

∑N
i=1 Vi,j,t is the average value of

feature j across all N stocks at time t, and Dj,t =√
1
N

∑N
i=1(Vi,j,t − Vj,t)2 is the standard deviation. If feature

j is a price-to-book ratio (P/B ratio), a small value indicates
that the market value of the related corporate is relatively
undervalued to its book value [39]. Therefore, Yi,j,t can be
calculated according to the following form:

Yi,j,t =
Vj,t − Vi,j,t

Dj,t
(2)

The score Yi,j,t is assumed to follow a normal distribu-
tion with mean zero and deviation one. It is worth noticing
that the directional indicator on each feature, i.e., ROA (+) or
P/B ratio (-) as labeled in Table 1, is determined according
to the existing studies.

As mentioned above, feature selection (i.e., whether a
feature is selected as a main feature) and the corresponding
weight optimization (i.e., the assignment of importance to
the selected feature) are the most crucial tasks in the stock
selection model. First, binary variable Fj = {0, 1} is utilized
to present whether feature j is used in stock evaluation
(Fj = 1) or not (Fj = 0). Moreover, let Wj denote the weight
on the jth feature, for capturing the relationship between
feature j and stock scores. Accordingly, the final score Si,t

of stock i at time t can be estimated in terms of a linear
combination of various features j = {1, 2, · · · , J} [40], [41]
(3).

Si,t =
J∑

j=1

FjWjYi,j,t (3)

As a higher score reflects a higher potential of increases
in stock prices, the candidate stocks can be ranked according
to their scores. Let ri,t = {1, 2, · · · , N} denote the ranking
of stock i at time t, i.e., ri,t ≤ rk,t if Si,t ≥ Sk,t, where
i,k ∈ {1, 2, · · · , N} represent any two different stocks. Thus,
a more highly ranked stock has a higher potential of price
increase, and an equal-weighted portfolio can be construct-
ed for the next period by selecting the stocks with the top
m rankings ri,t = {1, 2, · · · ,m} at the end of each period.
Accordingly, the performance of the formulated portfolio for

the next period can be evaluated as the average return of all
selected stocks.

Rp
t+1 =

1

m

m∑
ri,t=1

Rt+1(ri,t) (4)

where Rt+1(ri,t) is the next period return of the stock with
current ranking ri,t at time t, and Rp

t+1 is the next period
return of the portfolio constructed by the proposed model.

For effectively capturing the relationship between fea-
tures and future returns, IC is especially chosen as the
objective function (i.e., fitness function), due to its powerful
capability in judging stock rankings [1].

minF = − 1

T

T∑
t=1

ICt

ICt =
cov(ri,t, r′i,t+1)√

var(ri,t)var(r′i,t+1)

(5)

where ri,t is the score ranking of stock i by the proposed
model at time t, r′i,t+1 is the actual return ranking in the
next period, and T is the total number of training periods.
The functions cov(∗) and var(∗) are the covariance and
variance estimations, respectively. Obviously, ICt is actually
the Spearman correlation between the currently predicted
rankings of stocks ri,t and their actual return rankings r′i,t+1

in the next period.

3.3 Model Optimization
To determine the optimal solution in terms of feature selec-
tions Fj (discrete decision variables) and the corresponding
weights Wj (continuous decision variables), this study intro-
duces the powerful CI algorithm of DE for model optimiza-
tion. Since the original DE form focuses on solutions with
continuous values but otherwise finds difficulty in solving
discrete optimization problem, this paper improves it into
a mixed discrete-continuous variant for the proposed stock
selection model. This subsection first gives a description of
the original DE algorithm, and then formulates the novel
sigmoid-based DE algorithm.

3.3.1 Typical DE
The DE algorithm proposed by Storn and Price [17] has
been considered as a simple but efficient CI tool for global
optimization. As a population-based heuristic algorithm,
DE produces better optimal solutions iteratively through a
series of stages, i.e., initialization, mutation, crossover and
selection, until the stop criteria are met.

a) Initialization
For a D-dimension optimization problem, the DE algo-

rithm first randomly generates a population of P initial fea-
sible solutions in terms of chromosomes Xp,g=0 ∈ RD, p =
{1, 2, · · · , P}.

Xp,g=0 = XLB + Z · (XUB − XLB) (6)

where g ∈ {0, 1, · · · , G} is the step of iteration, XLB and
XUB ∈ RD are the lower boundary and upper boundary
of feasible domain, respectively, and Z ∈ RD is a random
vector with random components following a uniform distri-
bution between 0 and 1.
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b) Mutation
The mutation stage aims to create donor individuals

from the current ones. In the DE algorithm literature, the
parent chromosome at the current generation is marked as
a target vector, and a mutated one obtained through several
mutations is a donor vector. The offspring individual, i.e.,
a trial vector, can be obtained by recombining the target
vector and its donor vector [18]. In this study, a simple but
efficient approach for mutation is employed to create the
donor vector Vp,g ∈ RD for individual p.

Vp,g = Xrp1 ,g
+ β · (Xrp2 ,g

− Xrp3 ,g
) (7)

where Xrp1 ,g
, Xrp2 ,g

and Xrp3 ,g
∈ RD are randomly sampled

vectors form the current population excluding the indi-
vidual p at generation g. The random indices rp1 , rp2 and
rp3 ∈ {1, 2, · · · , p − 1, p + 1, · · · , P} are mutually exclusive
integers. β is a scaled factor typically set on the range of
(0, 1).

c) Crossover
The crossover operator is further to generate the trial

vector Up,g = {up,d,g} based on the target vector Xp,g =
{xp,d,g} and its donor vector Vp,g = {vp,d,g}, to enhance
the diversity of population:

up,d,g =

{
vp,d,g if rp,d ≤ Cr or rd = d

xp,d,g otherwise
(8)

where rp,d is a random term on the range of (0, 1), rd ∈
{1, 2, · · · , D} is a randomly chosen index, and Cr is the
crossover rate predefined between 0 and 1.

d) Selection
Selection is to finally determine whether the target vector

Xp,g or its trail vector Up,g can survive as the solution in the
next generation Xp,g+1.

Xp,g+1 =

{
Up,g if f(Up,g) ≤ f(Xp,g)

Xp,g otherwise
(9)

where f(∗) is the fitness function of optimization to be
minimized in general, e.g., IC in the proposed stock selection
model. Accordingly, if the trial vector Up,g can yield better
utility in terms of fitness function, the current solution, i.e.,
the target vector Xp,g , will be replaced, or otherwise the
target vector will remain to work.

3.3.2 Sigmoid-based Mixed Discrete-Continuous DE

The proposed stock selection model is obviously a mixed
discrete-continuous problem, in which the decision vari-
ables of feature selections Fj = {0, 1}, j = {1, 2, ..., J} are
binary variables whereas the weights Wj are continuous
ones. Accordingly, the decision variables can be divided
into two parts: discrete space for feature selection variables
Fj = {0, 1} and continuous space for their respective
weights Wj ∈ [0, 1], as shown in Fig. 2. In DE, the discrete
term Fp,j,g = {0, 1} represents the selection decision on
feature j in the pth solution at iteration g, and the contin-
uous term Wp,j,g ∈ [0, 1] is the corresponding weight. It is
worth noticing that if feature j is not selected in solution p at
iteration g, i.e., Fp,j,g = 0, the corresponding weight Wp,j,g

is accordingly set to 0.

Fig. 2. Encoding for decision variables in the proposed stock selection
model.

However, the typical DE form focuses on the solutions
with continuous values but otherwise finds difficulty in
solving discrete or mixed discrete-continuous optimization
problems. Therefore, the original DE algorithm should be
improved to a mixed discrete-continuous variant for the
novel model here, by adding a conversion operator after
the crossover step.

In conversion, the most popular binary classification
model, i.e., sigmoid function, is introduced to identify a can-
didate feature as a key factor for stock scoring (Fp,j,g = 1) or
a poorly informative one (Fp,j,g = 0). Based on the sigmoid
function, the conversion from the continuous variable xp,d,g

in the original DE to the binary form Fp,d,g is conducted ac-
cording to the probability P (xp,d,g) which follows a logistic
distribution [34].

Fp,d,g =

{
1 if rp,d,g ≤ P (xp,d,g)

0 otherwise

P (xp,d,g) =
1

1 + e−xp,d,g

(10)

where rp,d,g is a random term following a uniform distribu-
tion on the range of (0, 1). After adding such a conversion
operator for the discrete part after the crossover operator,
the traditional DE algorithm can be extended to the sigmoid-
based DE for mixed discrete-continuous problems.

4 EXPERIMENT DESIGN

For illustration and verification purposes, this study utilizes
the novel model to select stocks in the Shanghai A share
market of China. Subsection 4.1 gives a brief description to
the sample data, Subsection 4.2 formulates benchmark mod-
els for comparison, and Subsection 4.3 defines evaluation
criteria.

4.1 Data Descriptions

The Shanghai A share market is selected as the study sample
in this study due to two main reasons: the increasingly
important role of China’s stock market in global financial
market and the dominant role of the Shanghai A market in
China’s financial market. First, amongst international stock
markets, China has been the second largest market in terms
of trading volume, and the third largest market in terms
of capitalization (about 3.7 trillion in 2013) just behind the
U.S. and Japan [43]. Second, the Shanghai A share market is
the biggest stock market in China, in terms of both trading
volume and capitalization [44].

In particular, a total of 483 stocks are considered, ex-
cluding the stocks in financial industry due to the different
balance sheet structure [1], [3] and those ever labeled as
Special Treatment (ST) because they are unsteady and do not
deserve long-term investment [44]. The quarterly sample
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TABLE 1
Candidate Features Used for Stock Scoring

Category Index Feature Descriptions Indicator Reference

Price ratio
1 PE Price-to-earnings ratio = share price / earnings per share - [2]
2 PB Price-to-book ratio = share price / book value per share - [2], [39]
3 PS Price-to-sales ratio = share price / sales per share - [2], [38]

Profitability

4 ROE Return on equity (after tax) = net income after tax / shareholders’ equity + [2]
5 ROA Return on asset (after tax) = net income after tax / total assets + [2]
6 ROIC Return on investment capital = net income after tax / invested capital + [41]
7 EPS Earnings per share = profit preferred dividends / weighted average common shares + [41]
8 NPM Net profit margin = net income after tax / net sales + [41]
9 EBIT/IC Earnings before interest and tax to invested capital = earnings before interest and tax /

invested capital
+ [41]

Structure

10 DE ratio Debt-to-equity ratio = total liabilities / shareholders’ equity - [42]
11 AE ratio Asset-to-equity ratio = total assets / shareholders’ equity + [42]
12 D/IC Debt to invested capital = total debt/ invested capital - [41]
13 LD/OC Long-term debt to operating capital = total long-term debt / operating capital - [41]

Liquidity

14 CR Current ratio = current assets / current liabilities + [38], [42]
15 QR Quick ratio = quick assets / current liabilities + [38], [42]
16 SC Sales cash ratio = operating cash flow / sales + [41]
17 CFPS Cash flow per share = cash flow / number of shares + [41]
18 FCFPS Free cash flow per share = free cash flow / number of shares + [41]

Efficiency
19 ITR Inventory turnover rate = cost of goods sold / average inventory + [38], [42]
20 RTR Receivables turnover rate = net credit sales / average accounts receivable + [42]
21 AT Asset turnover rate = cost of goods sold / total asset + [42]

Growth 22 OPG Operating profit growth = (quarterly operating income / the corresponding quarterly
operating income last year)-1

+ [41]

23 NPG Net profit growth = quarterly net income after tax / the corresponding quarterly net
income after tax last year

+ [41]

Momentum 24 RSI Relative strength index = 100-100 / (1+RS), RS = average gain / average loss - [41]
25 RSV Raw stochastic value = (current price - 52 week low) / (52 week high - 52 week low) - [41]

data of stock prices and financial features are obtained from
Wind Database (http://www.wind.com.cn), covering the
period from the first quarter in the year 2005 to the fourth
quarter in 2012. Stock returns are calculated in terms of the
natural logarithm of price ratio (i.e., Ri,t = ln(Pi,t/Pi,t−1),
where Ri,t and Pi,t represent the return and price of stock i
at time t, respectively. The yearly Chinese demand deposit
rates are used as the risk free rates, due to data availability
[45].

Both fundamental and technical variables are chosen as
candidate features for stock evaluation, according to the
previous studies (e.g., [2], [40], [41], [42], [46]). In particular,
a total of 23 fundamental features and 2 technical features
are considered in this study, which can be grouped into
seven categories, as shown in Table 1.

All these time series data are divided into training sets
and testing sets, as presented in Table 2, with a total of
30 cases throughout the whole sample periods. Taking the
first sample (in the first row) for example, the grey area
(the first two quarters of 2005) indicates the training period
for model training, and the black area (the third quarter
of 2005) is the testing period for performance evaluation.
Similarly, for the second row, the training period is from
the first quarter of 2005 to the third quarter of 2005, and
the testing period is the fourth quarter of 2005. Notice that
this data splitting strategy, with a varying size of training
set across different periods, is somewhat different from the
regular sliding window procedure with a fixed training
sample size. This strategy used in this paper attempts to
utilize all available information that can be obtained in the
current period to train the model [47]. For example, in the
first case (t = 3), all historical observations, i.e., the data
in the first two quarters (t = 1, 2), are used as the training
dataset.

TABLE 2
Data Splitting Strategy: Training Periods (in Grey) and Testing Periods

(in Black)

Case 05Q1 05Q2 05Q3 05Q4 · · · 12Q3 12Q4
1
2
· · · · · ·
29
30

4.2 Benchmark models
The performance of stock selection models highly depends
on stock scoring mechanisms, with the key factors of deci-
sion variables, fitness functions and optimization methods.
Therefore, to verify the effectiveness of the novel stock
selection model, a set of benchmark models are formulated
for comparison, by introducing different decision variables,
fitness functions and optimization methods.

4.2.1 Benchmarks with Other Decision Variable Designs
In the proposed model, feature selection variables and their
weights are utilized as the decision variables. However,
some existing studies omitted one of them (e.g., [6], [41]),
and/or introduced some other variables such as directional
indicators for determining a feature as a ROA or P/B ratio
(e.g., [40]). Accordingly, Benchmarks A1-A4 with different
decision variables are designed, as listed in Table 3. Notably,
when the decision variables of feature selections are not
considered (e.g., in Benchmark A1), all candidate features
are used for stock scoring. If the variables of directional
indicators are ignored (e.g., in the proposed model A0 and
Benchmarks A1 and A2), features are labeled as ROA (+)
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TABLE 3
Benchmark Models with Different Decision Variables

Model
Feature Directional

Weights Reference
Selections Indicators

A0
√

−
√

This Study
A1 − − − [41]
A2

√
− −

A3
√ √

−
A4

√ √ √
[40]

Note: The symbol ”
√
” means that the corresponding decision

variables are considered in the model, whereas the symbol ” − ”
means that the corresponding variables are not selected.

or P/B (-) ratios according to the existing studies without
optimization, as presented in Table 1. When the weights are
not optimized (e.g., in Benchmarks A1-A3), an equal weight
is assigned on each feature to calculate stock scores.

4.2.2 Benchmarks with Other Fitness Functions
A proper fitness function is also important to guarantee
the efficiency of stock selection models [48]. To verify the
effectiveness of the IC fitness function in the proposed
model, benchmarks with other fitness functions popularly
used in the previous studies are formulated for comparison.

According to Kuhn and Johnson [49], a model using few-
er inputs is more efficient, under a given level of prediction
accuracy. Therefore, a positive penalty is introduced on the
number of selected features [49]:

F1 = −(1− α)IC + α
M

25
(11)

where M is the total number of selected features, and α is a
trade-off between the IC fitness function and the control on
the size of features. In this study, by changing α from 0.05
to 0.50 with a step length of 0.05, a total of 10 benchmark
models with different α in the form of F1 can be formulated,
to compare with the proposed model with α = 0.00.

Besides, various other popular fitness functions can be
also introduced for comparison, such as intra-fractile hit
rate (IFHR) [3] as designed in (12), spread (SPREAD) [3]
in (13) and cumulative return (CR) [40] in (14) and mean-to-
variance (MV) ratio [50] in (15).

F2 = − 1

T

T∑
t=1

IFHRt

IFHRt =

m∑
ri,t=1

sgn(Rt+1(ri,t)−Mt+1)

2m

+

N∑
ri,t=N−m+1

sgn(Mt+1 −Rt+1(ri,t))

2m

(12)

F3 = − 1

T

T∑
t=1

Spreadt

Spreadt =

m∑
ri,t=1

Rt+1(ri,t)−
N∑

ri,t=N−m+1

Rt+1(ri,t)

m

(13)

F4 = −CR = −
T∏

t=1

Rp
t+1, R

p
t+1 =

1

m

m∑
ri,t=1

Rt+1(ri,t) (14)

F5 = −MV = − 1

T

T∑
t=1

MVt+1

MVt+1 =
Rp

t+1
1

m−1

∑m
i=1(Rt+1(ri,t)−Rp

t+1)
2

(15)

where Mt denotes the average return of all candidate stocks
at time t, T is the total number of training periods, N is
the number of candidate stocks, m is the number of selected
stocks, and the indicator function sgn(x) is equal to 1 when
x ≥ 0 or 0 when x < 0. In particular, the fitness function
MV considers risks (i.e., the standard deviations of return
rates) of selected stocks.

4.2.3 Benchmarks with Other Optimization Algorithms

To test the performance of the novel sigmoid-based DE
algorithm, two categories of optimization algorithms are
introduced. First, as the proposed optimization algorithm
aims to select features for evaluating stocks, some typical
feature selection models should be considered. Second, oth-
er powerful CI-based optimization algorithms should be
also performed for comparison.

4.2.3.1 Typical Feature Selection Algorithms: The
proposed algorithm is to compute the optimal feature set
and the optimal feature weights. Therefore it should be
first compared with baselines and state-of-the-art feature
selection algorithms. In this study, the Pearson correlation
filter method [51] is introduced as a basic feature selec-
tion algorithm, which ranks the input features according
to the Pearson correlation coefficients. The least absolute
shrinkage and selection operator (LASSO), a state-of-the-art
feature selection method [52], is employed.

4.2.3.2 CI-based Benchmark Algorithms: Amongst
CI-based algorithms, other popular population-based opti-
mization algorithms are introduced, including four existing
DE variants and three other popular algorithms. The DE
variants refer to the improved DE forms for discrete prob-
lems in the previous studies, i.e., the Round-DE [23], AMDE
[25] and two binDEs (i.e., Res-DE and Any-DE) [26]. More-
over, three popular population-based tools are utilized, i.e.,
PSO, FA and GA. It is worth noticing that for consistency,
all these benchmark optimization tools use similar discrete-
continuous encoding to the proposed sigmoid-based DE
algorithm. In particular, the chromosomes of all CI-based
optimization tools are designed the same, including the dis-
crete part (for feature selection) and the continuous part (for
weight optimization). The principles and designs of PSO,
FA and GA can be found in [53], [54] and [55], respectively.

4.3 Evaluation Criteria

The main aim of stock selection models is to select promis-
ing stocks to formulate profitable portfolios with high in-
vestment returns. Therefore, this study evaluates the model
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TABLE 4
Parameters Settings of Model Optimization Algorithms

Algorithm Parameter Value Algorithm Parameter Value

DE variants
P 30

GA
P 50

Cr 0.5 cr 0.6

β 0.6 mr 0.5

FA

P 30

PSO

P 40

η 0.5 c1 1.495

λ 0.2 c2 1.495

γ 1 w [0.4, 0.9]

Note: For the DE family, Cr and β respectively refer to the crossover
rate and the scale factor. For GA, cr is the crossover rate and mr is
the mutation rate. For FA, η refers to the weight of randomness, λ
is the attractiveness factor, and γ is the absorption coefficient. For
PSO, c1 refers to the local exploration coefficient, c2 represents the
global exploration coefficient, and w is the intra weight declining
from 0.9 to 0.4.

performance in terms of the average return of the formulat-
ed portfolios over all testing periods:

MR =
1

T ′

T ′∑
t=1

Rp
t+1 (16)

where Rp
t+1 is the next period return of the portfolio formu-

lated at time t, and T ′ is the total number of testing periods.
Moreover, investment risk should also be considered

in stock selection, and a risk adjusted return, i.e., Sharpe
ratio, is adopted to assess the performance of a portfolio. In
particular, Sharpe ratio measures the excess return per unit
deviation of a given portfolio [56]:

SharpeRatio =
E[Rp

t −Rf
t ]

σp
(17)

where Rf
t is the return of risk free asset at time t, E[Rp

t −Rf
t ]

is the expected portfolio return beyond the risk free return,
and σp is the standard deviation of the excess return.

5 EMPIRICAL RESULTS

The proposed model is performed to select stocks in the
Shanghai A share stock market of China, and this section
discusses the corresponding empirical results. The param-
eter settings of the proposed model and diverse bench-
mark models are presented in Subsection 5.1. For a clear
discussion, the empirical results are analysed from two
perspectives. First, the effectiveness of the proposed model
is discussed to check whether it can obtain a significantly
higher investment return than market average performance
and Shanghai A share index, as presented in Subsection
5.2. Second, Subsection 5.3 further compares the proposed
model with various benchmark models with other decision
variable designs, fitness functions and model optimization
tools. Finally, Subsection 5.4 summarizes the empirical s-
tudy.

5.1 Parameters Settings
The parameters of the proposed method and diverse bench-
mark models mainly lie in model optimization algorithms.
For consistency, the DE family, including the proposed

sigmoid-based DE algorithm and four existing DE variants,
follow a similar path in parameter settings according to [17].
As for the other three CI benchmarks, FA, GA, and PSO, the
population size P is selected via the grid search method
on the range of [10,60], and other parameters are specified
according to the related studies (e.g., [57], [58], [59]). No-
ticeably, all algorithms will terminate when (1) Iterations
reach the given maximum G = 100 or (2) The difference
between the best objective value amongst all generations
and the average objective value of the latest 15 generations
can be controlled under the tolerance tol = 10−5 [60].

The novel stock selection model and its benchmarks
are performed to evaluate all sample stocks in terms of
scores, and then to select m top-ranked stocks to formulate
an equal-weighted portfolio. Here, m is set to 20% of the
number of all candidate stocks [41]. Moreover, due to the
randomicity stemming from initial solutions and some ran-
dom parameters, all models run thirty times for each case,
and the average values are calculated as the final results.
The empirical study is conducted via the software Matlab c⃝

R2010b on a computer with CPU 2.50GHz.

5.2 Model Effectiveness

The proposed model is employed to select stocks in the
Shanghai A share market of China for formulating equal-
weighted portfolios. Table 5 and Fig.3 give the correspond-
ing results of the portfolio returns and the accumulative
returns in percentage, where Rp

t denotes the portfolio return
of the proposed model in period t, and Std. is the standard
deviation of the proposed model (i.e., model deviation)
across thirty independent runs. To check the effectiveness
of the proposed model, the average return of all candidate
stocks (marked as R1) and the return of Shanghai A share
index (R2) are also calculated as the market performance
for comparison.

Table 5 and Fig.3 show that the portfolios formulated
by the novel method can obtain a very satisfactory result,
in terms of significantly higher returns and accumulative
returns compared with the market average returns R1
(without stock selection) and the returns of Shanghai A
share index R2. In particular, the proposed model defeats
the market average performance R1 in 26 out of 30 cases
(accounting for approximately 86.44%) and the Shanghai
A shares index R2 in 22 out of 30 cases (approximate-
ly 72.78%). Moreover, focusing on standard deviations of
portfolio returns, the maximum dropdown of the proposed
model is approximately 28.67%, much less than the figures
for R1 (35.68%) and R2 (41.58%), implying the robustness
of the proposed method. From Fig. 3, it is obvious that the
proposed model significantly outperforms both the market
average return and Shanghai A share index, in terms of
much larger accumulative returns across all testing periods.

To verify the effectiveness of the proposed model for
different industries, all sample stocks in the Shanghai A
share market are divided into different sectors according
to Wind Database, including health care (HC), informa-
tion technology (IT), consumer staples (CS), energy (E),
consumer discretionary (CD), financials (F), utilities (U),
industrials (I) and materials (M). Particularly, the stocks in
financial industry are also considered here. Fig. 4 displays
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TABLE 5
Comparison Results Between the Proposed Model and the Market

Performance in Terms of Portfolio Returns

Case Rp
t Std. R1 R2 Case Rp

t Std. R1 R2
1 10.87 0.58 9.24 6.72 16 20.22 0.84 15.56 22.10
2 -1.13 0.29 -2.40 0.57 17 4.15 0.50 -0.90 -6.31
3 15.50 1.04 13.03 10.88 18 30.04 0.63 26.35 16.43
4 45.99 1.18 36.16 25.58 19 2.93 0.62 5.62 -5.30
5 5.08 0.52 2.79 4.57 20 -25.95 1.49 -27.18 -25.98
6 13.91 0.30 10.57 42.51 21 29.01 1.43 25.18 10.12
7 50.89 1.34 50.47 17.29 22 7.71 0.99 4.94 5.53
8 26.85 1.70 18.51 18.09 23 9.55 0.89 4.94 4.19
9 45.33 1.76 33.65 37.38 24 -1.51 0.58 -7.95 -5.79
10 1.89 0.63 -0.58 -5.40 25 -15.51 0.80 -16.54 -15.78
11 -25.61 0.77 -22.31 -41.58 26 -14.25 0.94 -17.70 -7.00
12 -28.67 1.09 -35.68 -23.86 27 9.03 0.51 3.92 2.82
13 -23.44 1.15 -23.62 -17.51 28 5.18 0.65 0.07 -1.68
14 -13.24 1.88 -10.35 -23.11 29 -2.38 0.83 -7.57 -6.46
15 44.67 0.85 41.41 26.45 30 3.96 0.77 1.91 8.40
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Fig. 3. Comparison results between the proposed model and the market
performance in terms of accumulative returns.
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Fig. 4. Performance of the proposed model in different industries in
terms of MRs.

the returns of the proposed model, together with sectoral
average returns for comparison. From the results, it can
be seen that the returns of the proposed model are much
larger than the corresponding sectorial average returns in
all cases, which repeatedly indicates the effectiveness and
the robustness of the proposed model.

To explore the importance of features, Fig. 5a displays
the selecting frequencies of all candidate features. It can
be found that Feature 3 (price-to-sakes ratio, P/S), Feature
5 (return on asset, ROA), Feature 23 (net profit growth,
NPG) and Feature 25 (raw stochastic value, RSV) are the
most important features for stock evaluation in the case of
China’s stock market, with the highest frequencies to be
chosen in the proposed model. These four features analyse
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Fig. 5. Feature importance exploration in terms of selecting frequencies
(a) and weights (b).

stocks from different perspectives. In particular, P/S reflects
whether a stock is undervalued, ROA shows how profitable
the occupied assets of a company are, NPG gives a good
picture of stock profits, and RSV compares the current stock
price to its short-term range. Moreover, Fig. 5b provides
the box plots of feature weights. Similarly, NPG is tested as
the most important feature, with a relatively larger average
weight (approximately 0.674). The results further imply that
the movement of a stock price is closely dependent on its
profit growth, and the stock with a higher NPG value is
prone to higher potential of price increase.

5.3 Superiority over Benchmark Models
To statistically prove the superiority of the proposed model,
a set of benchmark models are performed for comparison,
with other decision variable designs, fitness functions, and
model optimization algorithms.

5.3.1 Comparisons with Benchmark Decision Variable De-
signs
To test the effectiveness of the model design for decision
variables, a series of benchmarks with other decision vari-
able designs have been formulated (see Table 3). It is worth
noticing that except decision variable design, other parts
of the models (including fitness function and optimization
tool) follow a similar path to the proposed model. Table
6 reports the corresponding comparison results, in which
model performance is evaluated via MR.

From Table 6, the proposed model (A0) can be shown to
be the best model with the highest MR and the least model
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TABLE 6
Comparison Results Amongst Stock Selection Models with Different Decision Variable Designs

Model Training Period Testing Period Statistical Tests (p-value)
MR(%) Std.(%) MR(%) Std.(%) SharpeRatio(%) Std.(%) Normality test One-tailed t test

A0 11.48 0.06 7.70 0.14 31.66 0.68 0.424 N.A.
A1 N.A. N.A. 6.51 0.00 19.82 0.00 N.A. <0.001
A2 9.99 0.06 6.59 0.24 20.33 0.20 0.500 <0.001
A3 10.02 0.07 6.55 0.25 20.42 0.28 0.305 <0.001
A4 11.00 0.08 7.10 0.30 21.38 0.42 0.500 <0.001
R1 N.A. N.A. 4.39 0.00 17.70 0.00 N.A. <0.001
R2 N.A. N.A. 2.46 0.00 9.14 0.00 N.A. <0.001

deviations (marked as Std.) for both training and testing
periods. The effectiveness of the proposed model implies
that both feature selections and the corresponding impacts
(in terms of weights) are the most important decision vari-
ables in stock evaluation, which should not be neglected.
Amongst benchmark models, Model A4 considering all de-
cision variables of feature selections, directional indicators
and weights ranks the best, whereas Model A1 with no
decision variable is the poorest model, which highlights
the importance of optimization process in stock selection.
When comparing Benchmarks A1 and A2, the results of
MR and SharpeRatio indicate that adding the variables
of feature selections can largely improve the performance of
stock selection models. However, the comparison result of
MR between Models A2 and A4 (or Models A0 and A4)
implies that the variables of directional indicators might
be otherwise unnecessary. The main reason lies in that the
directional indicator for a given feature is relatively stable
and invariable in the short term, and there is no need to tune
it too often. Finally, the results also show that the variables of
feature weights are indispensable, since the MRs of Model
A4 are much higher than those of Model A3. These above
results further arrive at the conclusion that both feature
selections and the corresponding weights are significantly
crucial factors in stock selection models. Unsurprisingly, the
proposed model using both of them performs the best of all.

Furthermore, a statistical test is conducted on the su-
periority of the proposed model (A0) over the benchmark
models, via a one-tailed t test with the null hypothesis that
the MRs of the proposed model are no larger than those
of other benchmarks. First, a normality test is conducted
for all MRs of different models with the null hypothesis
that the MRs follow a normal distribution, as the results
listed in Table 6. And the results show that all MR data can
pass the test at the confidence level of 99%, which meets the
basic assumption of t test [61]. The results of t test are listed
in the last column of Table 6, and the superiority of the
proposed model over all benchmarks with other decision
variable designs can be statistically confirmed under the
confidence level of 99%, with all p-values far below 1%.

5.3.2 Comparisons with Benchmark Fitness Functions
First, the fitness functions with different penalties on the
number of selected features (see (11)) are investigated. Fig.
6 illustrates the impacts of the penalty parameter α on the
number of selected features and portfolio return. From Fig.
6a, it can be obviously seen that the total number of selected
features monotonically decreases as the penalty α increases.
However, the penalty parameter α has a negative impact
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Fig. 6. Influence of penalty on the total number of selected features (a)
and model performance in terms of MR (b).

on the MR value, as shown in Fig. 6b. A linear regression
analysis is conducted to capture the relationship between
penalties and average returns, and the result presents an
obvious negative influence of α on MR, in terms of slope
(−0.026), R2 (0.880) and F -value (65.814). The results also
imply that the proposed method with α = 0 can not only
produce an informative feature subset but also obtain the
most satisfactory results in terms of investment returns, de-
feating all other benchmark models with positive penalties.

Second, other popular fitness functions are also intro-
duced, i.e., IFHR, SPREAD, CR and MV (see (12)-(15), re-
spectively). Panel A of Table 7 displays the performance of
different models with different fitness functions in terms of
MR, SharpeRatio and the corresponding standard devia-
tions (in bracket). The results show that the proposed model
with the IC fitness function performs the best, in terms of
the highest MR and SharpeRatio and the least correspond-
ing deviations. Moreover, all stock selection models with
different fitness functions can obtain higher returns than
the market average return without stock selection (R1) and
Shanghai A share index (R2).

To statistically prove the superiority of the IC fitness
function, one-tailed t tests are also conducted, with the
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TABLE 7
Comparison Results Amongst Stock Selection Models with Different

Fitness Functions

Panel A: Model Performance
Model IC SPREAD IFHR CR MV

MR(%)
7.70 7.47 7.22 7.21 7.15

(0.14) (0.29) (0.21) (0.22) (0.27)

SharpeRatio(%)
31.66 31.83 30.96 30.41 21.76
(0.68) (1.11) (0.93) (0.92) (0.39)

Panel B: Statistical Tests
Model IC SPREAD IFHR CR MV

Normality (p-value) 0.42 0.07 0.50 0.38 0.50

One-tailed t test t-value 10.24 3.83 10.53 9.81
H0:MRIC ≤ MRB p-value <0.001 <0.001 <0.001 <0.001

Note: MRIC indicates the MR of the proposed model with IC as
the fitness function, and MRB is the MR of the corresponding
benchmark model with other fitness function.

TABLE 8
Comparison Results between the Proposed Model and Linear Feature

Selection Algorithms

Model Sig-DE Pearson LASSO R1 R2
MR(%) 7.70 6.52 6.64 4.39 2.46

SharpRatio(%) 31.66 28.96 27.99 17.70 9.14

null hypothesis of the inferiority of the proposed model
to other benchmarks. Panel B of Table 7 reports the results
of statistical tests. First, the normality tests show that all
MR data follow a normal distribution at the significance
level of 1%. Furthermore, according to the results of one-
tailed t tests, the superiority of the proposed model can be
statistically proved under the confidence level of 99%. In
particular, the proposed model with the IC fitness function
can be proved statistically better than all benchmarks with
other popular fitness functions, as its p-values of one-tailed
t tests against the corresponding counterparts are all far less
than 1%.

5.3.3 Comparison with Benchmark Optimization Algorithm-
s

In this section, the proposed sigmoid-DE method is com-
pared with other optimization algorithms, including typical
feature selection algorithms and CI-based optimization al-
gorithms. As for typical feature selection selection methods,
the Pearson correlation method (a baseline) and LASSO
(a state-of-the-art algorithm) are performed. The CI-based
benchmark models are diverse DE-variants (e.g., Round-DE,
AMDE, Res-DE and Any-DE) and other popular optimiza-
tion algorithms (e.g., FA, PSO and GA).

Table 8 reports the comparison results between the pro-
posed sigmoid-based DE model (Sig-DE) and the two typ-
ical feature selection models of Pearson correlation method
(Pearson) and LASSO, in terms of MR and SharpRatio.
It can be obviously found from the table that the MR and
SharpRatio values of the novel sigmoid-based DE are much
higher than those of the Pearson correlation method and
the LASSO method, which demonstrates that the proposed
sigmoid-based DE performs much better than these two
typical feature selection models in stock selection.

As for various CI-based benchmarks, Table 9 reports the
comparison results, in which Max. and Min. refer to the

maximum and the minimum returns of the portfolios in all
cases, respectively, Prob.(R1) and Prob.(R2) are the ratios
of cases with higher returns respectively than R1 and R2
in total cases, and HitRate is the ratio of the cases with
positive returns [3]. Both the corresponding average values
and standard deviations (in bracket) are listed, and the best
results are highlighted. As shown in Table 9, the proposed
model with the sigmoid-based DE algorithm appears its
distinct effectiveness and robustness, in terms of the highest
MR and SharpeRatio and the least deviations.

Compared with DE variants, the proposed sigmoid-
based DE algorithm performs the best in terms of the
highest MR, SharpeRatio, Prob.(R1) and HitRatio, and
the lowest deviations of MR, SharpeRatio and HitRatio.
Furthermore, the results of one-tailed t tests with the null
hypothesis that the MR of the proposed model is not higher
than those of benchmarks further confirm the superiority
of the proposed sigmoid-based DE algorithm, since that
all p-values are far less than the significance level of 1%
except Round-DE (see Panel B in Table 9). Actually, though
the proposed sigmoid-based DE algorithm and Round-DE
can fall into one category using the posterior conversion
operators both following statistical probability distributions,
the former does outperform the latter in terms of MR and
SharpRatio, although such superiority is not so significant
as those to other DE variants.

The main reasons for the superiority of the novel
sigmoid-based DE algorithm can be generally summarized
into the three following aspects. First, different from Res-
DE and Any-DE, the novel sigmoid-based DE algorithm re-
mains the mutation operator of the original DE form, which
effectively guarantees the diversity of population. Second,
different from AMDE using a searching process with an un-
necessary great computational burden, the sigmoid-based
DE algorithm resorts to a simple but effective way directly
manipulating the bit-strings. Third, when comparing the
two similar DE variants using the posterior conversion
operators both based on statistical probability distributions,
the novel algorithm with the most popular approach in
binary classification (i.e., the sigmoid model following a
logistic probability distribution) defeats Round-DE with a
relatively simple conversion process (rounding the contin-
uous value xp,d,g ∈ [0, 1] to the nearest integer 0 or 1
based on a Bernoulli distribution). Therefore, the proposed
sigmoid-based DE algorithm with the simple but efficient
binary conversion method of sigmoid model outperforms
other existing DE variants for discrete or mixed discrete-
continuous problems.

Comparing with other three popular CI tools of FA, GA
and PSO, the sigmoid-based DE algorithm also performs
the best in terms of the highest MR, SharpeRatio, Max.,
Prob.(R1) and HitRatio. GA ranks the best in terms of
Min and FA performs the best in terms of Prob.(R2). A
one-tailed t test is also performed, as the results listed in
Panel B of Table 9. The corresponding results statistically
confirm that the novel method with the sigmoid-based DE
algorithm can be statistically proved to be better than most
benchmarks (except the model with PSO) in terms of MR,
under the confidence level of 99%. Das and Suganthan [18]
similarly observed the effectiveness of the DE algorithm
compared with PSO and GA.
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TABLE 9
Comparison Results Amongst Stock Selection Models with Different Model Optimization Algorithms

Panel A: Model Performance
Model Sig-DE Round-DE AMDE Res-DE Any-DE FA GA PSO

MR(%)
7.70 7.67 6.90 6.97 7.00 7.23 7.17 7.62

(0.14) (0.20) (0.32) (0.26) (0.22) (0.41) (0.18) (0.22)

SharpeRatio(%)
31.66 31.26 29.54 29.60 29.67 30.45 30.49 31.50
(0.68) (0.79) (1.32) (1.13) (0.81) (1.73) (0.78) (0.88)

Max.(%)
50.89 51.00 46.20 46.05 46.69 49.95 46.29 50.08
(1.34) (1.58) (3.30) (2.04) (2.16) (3.21) (0.99) (1.64)

Min.(%)
-28.72 -31.84 -27.74 -27.42 -27.67 -28.56 -27.21 -28.59
(1.02) (0.77) (1.23) (0.96) (0.85) (1.72) (0.59) (1.09)

Prob.(R1,%)
86.44 86.11 84.22 84.78 84.22 86.13 84.33 86.11
(3.27) (2.78) (3.60) (2.99) (2.89) (4.17) (2.50) (3.04)

Prob.(R2,%)
72.78 72.78 73.22 72.78 72.00 74.33 72.78 73.44
(2.33) (1.97) (2.55) (2.49) (1.88) (2.63) (1.54) (2.70)

HitRatio(%)
66.67 66.56 66.67 66.67 66.67 66.40 66.67 66.67
(0.00) (0.61) (0.00) (0.00) (0.00) (1.13) (0.00) (0.00)

Panel B: Statistical Test
Model Sigmoid-based DE Round-DE AMDE Res-DE Any-DE FA GA PSO

Normality test (p-value) 0.135 0.424 0.184 0.500 0.500 0.298 0.224 0.012
One-tailed t tests t-value 0.873 12.32 12.83 16.05 6.41 13.55 1.54

H0:MRS ≤ MRB p-value 0.195 <0.001 <0.001 <0.001 <0.001 <0.001 0.067

Note: MRS indicates the MR of the proposed model with the sigmoid-based DE algorithm as the optimization algorithm, and MRB is the
MR of the corresponding benchmark model with other optimization algorithms.

Generally, all above mentioned results demonstrate that
the proposed model with the novel sigmoid-based DE al-
gorithm for model optimization can achieve a significantly
better performance than the considered benchmarks with
both the existing modified DE variants for discrete or mixed
discrete-continuous problems and popular CI algorithms.

5.4 Summarizations
According to above analyses, it can be concluded that the
proposed stock selection model with the sigmoid-based DE
algorithm can be statistically proved to be significantly more
powerful and efficient than other designed benchmarks, in
terms of investment returns and model robustness.

On the one hand, the portfolio formulated by the pro-
posed stock selection model can obtain much higher returns
than the market average performance (i.e., the portfolio
based on all candidate stocks without selection) and Shang-
hai A share index in the Chinese stock market. Moreover,
such effectiveness can be also confirmed for different secto-
rial subsets.

On the other hand, by comparing with series of bench-
mark models with different model designs and model
optimization techniques, statistical tests further prove the
superiority of the novel model under the confidence level of
99%. First, for decision variable design, the proposed model
considering feature selection and weight optimization great-
ly outperforms all benchmark models with other decision
variable designs. Second, for fitness functions, the proposed
model with IC can be statistically proved to be much better
than all benchmarks with penalties on number of selected
features or other popular fitness functions. Finally, for model
optimization, the proposed method with the sigmoid-based

DE algorithm defeats the benchmarks with linear feature
selection models, other existing DE variants (modified for
discrete or mixed discrete-continuous problems) and other
popular CI optimization algorithms (FA, PSO and GA).

6 CONCLUSIONS

This paper proposes a novel stock selection model with
discrete and continuous variables, i.e., feature selection and
weight optimization, in which the traditional DE algorithm
is introduced and extended to a sigmoid-based DE algorith-
m for this mixed discrete-continuous problem. Compared
with the existing DE variants for discrete or mixed discrete-
continuous optimization, the novel sigmoid-based DE al-
gorithm makes contributions from two main perspectives.
First, it might be the first try to introduce the simple but
efficient sigmoid-based conversion into the traditional DE
algorithm for mixed discrete-continuous optimization. Sec-
ond, this novel sigmoid-based DE algorithm is then incor-
porated into the proposed stock selection model for feature
selection and weight optimization, which finely verifies the
effectiveness of the novel mixed discrete-continuous DE
variant in stock selection, different from the previous studies
based on simple numerical examples.

Using the Shanghai A share market of China as the study
sample, the empirical results indicate that the proposed
stock selection model can be used as a very powerful and
efficient tool for stock selection. First, the proposed stock
selection model can obtain much higher returns than the
market average performance, for both the whole market and
different industries. Furthermore, statistical tests prove the
superiority of the novel model to benchmark models with
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different model designs and model optimization techniques,
under the confidence level of 99%. Particularly, the pro-
posed method with the sigmoid-based DE algorithm defeats
the benchmarks with typical linear feature selection model
(e.g., Pearson and LASSO), other existing DE variants (mod-
ified for discrete or mixed discrete-continuous problems)
and other popular CI optimization algorithms (e.g., FA, PSO
and GA).

However, the proposed stock selection model can be
further improved from the following four perspectives.
First, by introducing some other important objectives, the
proposed model can be extended into multiple objective
models to provide different satisfactory portfolios according
to different goals. For instance, investment risk is another
essential issue in stock selection, which can be also consid-
ered in the proposed model. Second, stock market timing is
also a crucial task in stock investment, and the model can
be improved not only to select promising stocks but also
to give helpful advices for the buying and selling points.
Third, besides the data splitting strategy used in this study,
other popular strategies (e.g., the regular sliding window
procedure with a fixed training sample size) can be also
employed to test the robustness of the proposed model. Fi-
nally but the most importantly, the proposed model should
be extended to other capital markets for further testing its
generalizations. We will look into these interesting issues in
the near future.
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