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Abstract—General health examination is an integral part of healthcare in many countries. Identifying the participants at risk is
important for early warning and preventive intervention. The fundamental challenge of learning a classification model for risk prediction
lies in the unlabeled data that constitutes the majority of the collected dataset. Particularly, the unlabeled data describes the
participants in health examinations whose health conditions can vary greatly from healthy to very-ill. There is no ground truth for
differentiating their states of health. In this paper, we propose a graph-based, semi-supervised learning algorithm called SHG-Health
(Semi-supervised Heterogeneous Graph on Health) for risk predictions to classify a progressively developing situation with the majority
of the data unlabeled. An efficient iterative algorithm is designed and the proof of convergence is given. Extensive experiments based
on both real health examination datasets and synthetic datasets are performed to show the effectiveness and efficiency of our method.

Index Terms—Health examination records, semi-supervised learning, heterogeneous graph extraction.
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1 INTRODUCTION

HUGE amounts of Electronic Health Records (EHRs)
collected over the years have provided a rich base for

risk analysis and prediction [1], [2], [3], [4], [5], [6], [7], [8],
[9]. An EHR contains digitally stored healthcare informa-
tion about an individual, such as observations, laboratory
tests, diagnostic reports, medications, procedures, patient
identifying information, and allergies [10]. A special type of
EHR is the Health Examination Records (HER) from annual
general health check-ups. For example, governments such
as Australia, U.K., and Taiwan [11], [12], [13], offer periodic
geriatric health examinations as an integral part of their
aged care programs. Since clinical care often has a specific
problem in mind, at a point in time, only a limited and
often small set of measures considered necessary are col-
lected and stored in a person’s EHR. By contrast, HERs are
collected for regular surveillance and preventive purposes,
covering a comprehensive set of general health measures
(for example, see Table 1), all collected at a point in time
in a systematic way [14]. Identifying participants at risk
based on their current and past HERs is important for early
warning and preventive intervention. By “risk”, we mean
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unwanted outcomes such as mortality and morbidity.
In this study we formulated the task of risk prediction as

a multi-class classification problem using the Cause of Death
(COD) information as labels, regarding the health-related
death as the “highest risk”. The goal of risk prediction is to
effectively classify 1) whether a health examination partici-
pant is at risk, and if yes, 2) predict what the key associated
disease category is. In other words, a good risk prediction
model should be able to exclude low-risk situations and
clearly identify the high-risk situations that are related to
some specific diseases.

A fundamental challenge is the large quantity of unla-
beled data. For example, 92.6% of the 102,258 participants in
our geriatric health examination dataset do not have a COD
label. The semantics of such “alive” cases can vary from
generally healthy to seriously ill, or anywhere in between.
In other words, there is no ground truth available for the
“healthy” cases. If we simply treat this set of alive cases as
the negative class, it would be a highly noisy majority class.
On the other hand, if we take this large alive set as genuinely
unlabeled, as opposed to cases with known labels removed,
it would become a multi-class learning problem with large
unlabeled data.

Most existing classification methods on healthcare data
do not consider the issue of unlabeled data. They either have
expert-defined low-risk or control classes [1], [2], [3], [4], [5],
[6] or simply treat non-positive cases as negative [7], [8],
[9]. Methods that consider unlabeled data [15], [16], [17],
[18], [19], [20], [21], [22], [23] are generally based on Semi-
Supervised Learning (SSL) [24] that learns from both labeled
and unlabeled data. Amongst these SSL methods, only
[18], [19] handle large and genuinely unlabeled health data.
However, unlike our scenario, both methods are designed
for binary classification and have predefined negative cases.
A closely related approach is Positive and Unlabeled (PU)
learning [25], [26], [27], which can be seen as a special case of
SSL with only positive labels available. While the unlabeled
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Fig. 1: An example of health examination records of partic-
ipant p1 who took examinations in three non-consecutive
years, 2005, 2007, and 2010. Test items are in different
categories (A,B,...) and the abnormal results are marked
black. The main cause of death of p1 was cirrhosis of liver
encoded as K746.

set U in a PU learning problem is similar to our alive set,
its existing applications in healthcare only address binary
classification problem. Nguyen et al. introduced a multi-
class extension called mPUL [28]; however, their method
used a combined set of negative and unlabeled example,
while in our case negative example is not available.

The other key challenge of HERs is heterogeneity. Fig. 1
demonstrates the health examination records of Participant
p1 in three non-consecutive years with test items in differ-
ent categories (e.g., physical tests, mental tests, etc.) and
abnormal results marked black. This example shows that
1) a participant may have a sequence of irregularly time-
stamped longitudinal records, each of which is likely to be
sparse in terms of abnormal results, and 2) test items are
naturally in categories, each conveying different semantics
and possibly contributing differently in risk identification.
Therefore this heterogeneity should be respected in the
modeling.

This paper proposes a semi-supervised heteroge-
neous graph-based algorithm called SHG-Health (Semi-
supervised Heterogeneous Graph on Health) as an
evidence-based risk prediction approach to mining longitu-
dinal health examination records. To handle heterogeneity, it
explores a Heterogeneous graph based on Health Examina-
tion Records called HeteroHER graph, where examination
items in different categories are modelled as different types
of nodes and their temporal relationships as links. To tackle
large unlabeled data, SHG-Health features a semi-supervised
learning method that utilizes both labeled and unlabeled
instances. In addition, it is able to learn an additional K +1
“unknown” class for the participants who do not belong to
the K known high-risk disease classes.

The main contributions of this work are three-fold:

• We present the SHG-Health algorithm to handle a
challenging multi-class classification problem with
substantial unlabeled cases which may or may not
belong to the known classes. This work pioneers in
risk prediction based on health examination records
in the presence of large unlabeled data.

• A novel graph extraction mechanism is introduced
for handling heterogeneity found in longitudinal
health examination records.

• The proposed graph-based semi-supervised learning
algorithm SHG-Health that combines the advantages

from heterogeneous graph learning and class discov-
ery shows significant performance gain on a large
and comprehensive real health examination dataset
of 102,258 participants as well as synthetic datasets.

The rest of the paper is organized as follows. Section 2
reviews existing works on mining health examination data
and learning methods that handle unlabeled health data, fol-
lowed by Section 3 where the background on graph-based
semi-supervised learning is discussed. Section 4 presents
the proposed SHG-Health algorithm for evidence-based risk
prediction. In Section 5, we demonstrate the effectiveness
and efficiency of our proposed algorithm based on both
real datasets and synthetic datasets. Section 6 concludes our
work and discusses future research directions.

2 RELATED WORK

In this section we review existing related studies, namely
those on mining health examination data and those on
classification with unlabeled data in healthcare applications.

2.1 Data Mining on Health Examination Records

Although Electronic Health Records (EHRs) have attracted
increasing research attention in the data mining and ma-
chine learning communities in recent years [2], [3], [5], [6],
[8], [9], [29], mining general health examination data is
an area that has not yet been well-explored, except a few
studies on risk prediction such as the chronic disease early
warning system proposed in [30] and our previous work
on health score classification framework [8], [31]. However,
none of the them considered unlabeled data. In addition, the
approach presented in [8] is limited to a binary classification
problem (using alive/deceased labels) and consequently it
is not informative about the specific disease area in which a
person is at risk. The existing studies on healthcare data that
handled unlabeled data are discussed in the next subsection.

2.2 Classification with Unlabeled Healthcare Data

Unlabeled data classification are commonly handled via
Semi-Supervised Learning (SSL) that learns from both labeled
and unlabeled data [24], and Positive and Unlabeled (PU)
learning, a special case of SSL that learns from positive and
unlabeled data alone [25].

PU learning [25] is often adapted for disease gene classi-
fication when only the labels for disease genes are available
[26], [27]. Recently, Nguyen et al. proposed mPUL [28],
a multi-class PU learning model for activity recognition.
The method trains m 1-vs-others binary probabilistic base
classifiers, each trained with a positive set and a merged set
of negative and unlabeled instances. The class decision is
based on the maximum class probability greater than 0.5;
otherwise the unknown class is predicted. However, it is
not directly applicable to our problem, since we do not have
negative instances available for training.

SSL has attracted increasing attention in healthcare ap-
plications based on EHRs [16], [17], [18], [19], [20], [21], [22],
[23]. At the molecular level, Huang et al. proposed iSELF
[17], a SSL method based on local Fisher discrimination
analysis for disease gene classification. Nguyen et al. [18]
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constructed a protein-protein interaction network, which
defines interacted genes as candidate genes and the rest
as negative genes for SSL based on Gaussian fields and
harmonic functions [24]. At the disease level, many graph-
based SSL were proposed. Garla et al. [19] applied Laplacian
SVM as a SSL approach for cancer case management. Wang
et al. [20] proposed a graph-based SSL method that is able to
learn patient risk groups for patient risk stratification. Kim et
al. [16] proposed a co-training graph-based SSL method for
breast cancer survivability prediction. It iteratively assigns
pseudo-labels to unlabeled data when there is a consen-
sus amongst the learners and includes the pseudo-labeled
instances in the labeled set until the unlabeled set stops
decreasing. Zhang et al. [23] constructed a bipartile graph
for ranking-based lung nodule image classification. Liu et al.
[22] constructed a temporal graph based on event sequence
for temporal phenotyping. However, different from our
case, none of these methods consider an “unknown” class
and they all have predefined instances for all classes, either
by experts [16], [17], [19], [20], [22], [23] or via other mecha-
nisms [18]. In addition, unlike our approach, all the graph-
based SSL methods above used homogeneous graphs.

3 BACKGROUND

Learning from labelled and unlabeled data is often called
semi-supervised learning or transductive inference [32].
Graph-based methods that model data points as vertices
and their relationships as edges on graph, are often used
to exploit the intrinsic characteristics of data [33]. Zhu et
al. [24] proposed an algorithm based on Gaussian fields
and harmonic functions to propagate labels to the unlabeled
data, which can be interpreted as a random walk on graph.
Zhou et al. [32] introduced the Learning with Local and
Global Consistency (LLGC) algorithm that spreads the label
information of each point to its neighbors to achieve both
local and global consistency. A graph can be constructed
either 1) based on real-world networked data [34], [35], [36],
such as from social networks, bibliographic networks, and
webpage networks, or 2) by computing affinity matrices to
encode the similarity between data points [32], [37]. Many
graph-based semi-supervised learning (GSSL) methods can be
viewed as estimating a function of soft labels F based
on two assumptions on graph [20], [24], [32], [37], [38].
The smoothness assumption states that F should not change
much for nearby points, and the fitness assumption requires
that F should not change much from the ground-truth la-
bels. By adapting a graph-based approach and exploring the
underlying graph structure of health examination records
with semi-supervised learning, our method is capable of
handling large unlabeled data.

To further tackle the issues of the absence of ground truth
for the “healthy” cases and the heterogeneity embedded
in the examination records, we utilized class discovery
methods to handle the “unknown” class and heterogeneous
graph representations for GSSL as follows.

3.1 Class Discovery for GSSL

Situations arise when unlabeled data may belong to un-
known or latent classes. Nie et al. [37] introduced a scholastic

graph-based semi-supervised learning (GGSSL) method for
novel class discovery (if the number of classes is known) or
outlier detection (if otherwise). By introducing an instance-
level parameter α that assigns little weight to unlabeled
data and large weight to the labeled data, GGSSL allows
the soft label scores of unlabeled vertices on the graph to be
updated according to their connectivities to labeled vertices.
Wang et al. [20] further modified the model to discover
more than one unseen class for patient risk stratification
based on a patient graph constructed using ICD codes.
Recently Zhao et al. [38] extended GGSSL for classification
on Alzheimer’s Disease, by introducing a compact graph
construction strategy via minimizing local reconstruction
error. However, all of the above algorithms are limited to
homogeneous graphs, where vertices belong to one object
type, and thus are by themselves not capable of handling
the heterogeneity embedded in health examination records.

To train a disease risk prediction model that is capable
of identifying high-risk individuals given no ground truth
for “healthy” cases, we treated the “unknown” class as a
class to be learned from data. We incorporated the class
discovery mechanism of [37] into our method to handle the
“unknown” class.

3.2 Heterogeneous GSSL

Traditional GSSL methods are limited to homogeneous
graphs [16], [19], [20], [32], [37], [38]. However, it has been
recognized in recent years that networks of heterogeneous
types of objects are prevalent in the real world [21], [34],
[35], [39]. For example in healthcare applications, methods
that explore the heterogeneous structure of gene-phenotype
networks have been developed [21], [40]. The term “network
medicine” [39] has been coined to refer to a broad approach
to human disease based on a complex intracellular and in-
tercellular network that connects tissue and organ systems.

For the heterogeneous extensions of GSSL algorithms,
Hwang et al. [21] proposed a heterogeneous label prop-
agation algorithm based on GSSL for disease gene dis-
covery. Their heterogeneous disease-gene graph was con-
structed based on homo-subnetworks that link same-type
objects together and the mutual interactions between homo-
subnetworks. The algorithm iteratively propagates the label
scores via homo-subnetworks and hetero-subnetworks until
convergence. Ji et al. proposed GNetMine [35] to work on
a heterogeneous graph of multi-type objects, known as a
heterogeneous information network [34]. The classification
process can be intuitively viewed as a process of knowledge
propagation throughout the network across different types
of objects through links. GNetMine was originally designed
for bibliographic information networks that are intrinsically
heterogeneous and was shown to outperform other GSSL
methods with homogeneous graphs. They further proposed
RankClass [36] based on the same framework with addi-
tional updates on the local weighted graph for individual
classes. However, the above methods were designed for a
multi-class semi-supervised learning problem with prede-
fined classes, and thus have no mechanism for handling the
“unknown” class. Inspired by GNetMine and RankClass, we
integrated a heterogeneous component into our method to
handle heterogeneity.
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Fig. 2: An overview of the proposed SHG-Health algorithm for risk prediction.

In summary, our proposed SHG-Health algorithm can
be seen as combining the advantages of GGSSL [37] and
GNetMine [35] for solving a practical clinical problem of
risk prediction from longitudinal health examination data
with heterogeneity and large unlabeled data issues.

4 SHG-HEALTH

To solve the problem of health risk prediction based on
health examination records with heterogeneity and large
unlabeled data issues, we present a semi-supervised het-
erogeneous graph-based algorithm called SHG-Health. The
semi-supervised learning problem is formulated as follows:
Problem Definition 1. Given a set of health examination

records of n participants S = {s1, ..., sl, sl+1, ..., sn},
where si = {ri1, ..., rini} is the set of ni records of par-
ticipant i and rij is a tuple (xij , tij) such that xij ∈ Rd
is a d-dimensional vector for the observations at time tij ,
and a set of labels C = {1, ..., c}, the first l participants si
(i ≤ l) are labeled as yi ∈ C and the remaining u = n− l
participants sl+1, ..., sl+u are unlabeled (l � u). The
goal is to predict for unlabeled si(l < i ≤ n) a label
yi ∈ C̃ = {1, ..., c, c+1} where c+1 gives a mechanism
to handle an additional class for unknown cases.

An overview of our proposed solution to the problem
is included in Fig. 2, above. Our SHG-Health algorithm
takes health examination data (GHE) and the linked cause
of death (COD) labels described in Section 5.1 as inputs.
Its key components are a process of Heterogeneous Health
Examination Record (HeteroHER) graph construction and
a semi-supervised learning mechanism with label propaga-
tion for model training. Given the records of a participant pi
as a query, SHG-Health predicts whether pi falls into any of
the high-risk disease categories or “unknown” class whose
instances do not share the key traits of the known instances
belonging to a high-risk disease class.

4.1 HeteroHER Graph
A graph representation allows us to model data that is
sparse. To capture the heterogeneity naturally found in
health examination items, we constructed a graph called
HeteroHER consisting of multi-type nodes based on health
examination records.

4.1.1 Graph Construction
The process of HeteroHER graph construction includes the
following steps:
Step 1. Binarization: As a preparatory step, all the record

values are first discretized and converted into a 0/1
binary representation, which serves as a vector of indi-
cators for the absence/presence of a discretized value.
Specifically, real values, such as age, are first binned into
fixed intervals (e.g., 5 years). Then, all the ordinal and
categorical values are converted into binary representa-
tions.

Step 2. Node Insertion: Every element in the binary repre-
sentation obtained in Step 1 with a value “1” is modeled
as a node in our HeteroHER graph, except that only
the abnormal results are modeled for examination items
(both physical and mental). This setting is primarily
based on the observation that physicians make clinical
judgements generally based on the reported symptoms
and observed signs, and secondarily for the reduction of
graph density.

Step 3. Node Typing: Every node is typed according to the
examination category that its original value belongs to,
for example, the Physical tests (A), Mental tests (B), and
Profile (C) in Fig. 1. In addition, a new type of nodes
is introduced to represent individual records such as
r11, r12, and r13 in the same figure. All the other non-
Record type nodes that are linked to the Record type
nodes can be seen as the attribute nodes of these Record
type nodes. In other words, categories A, B, and C in
Fig. 1 can be regarded as the attributes of the Record
type at a schema level. This leads to a graph schema
with a star shape as shown on the right of Fig. 3 below,
which is known as a star schema [34]. Note that types can
often be hierarchically structured and thus choosing the
granularity of node type may require domain knowledge
or be done experimentally.

Step 4. Link Insertion: Every attribute (non-Record) type
node is linked to a Record type node representing the
record that the observation was originally from. The
weight of the links is calculated based on the assumption
that the newer a record the more important it is in terms
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Fig. 3: The graph on the left shows a HeteroHER graph
extracted from the example in Fig. 1. For instance, there is
a link between r11 (the first record of p1) and a3 (the third
item of category A) if the result of a3 is abnormal in r11. The
link is weighted using Eq. 1. The star-shaped schema on the
right is a type-level schema of such a graph.

of risk prediction. A simple function g(·) can be defined
as:

g(t) = (t− s+ 1)/l (1)

where t is the time of current record, l is the time window
of interest, and s is the starting time of the time window.

Other functions such as truncated Gaussian distribution
and Chi Squared distribution can also be used [31]. The
window length is the time period of records considered
by the model. Note that the window length only sets the
scope. It is the link weighting function that controls the
contribution of time t records to the model. The two should
be considered together according to domain knowledge
and/or experimentally.

We include Fig. 3 as an example based on the records
of participant p1 in Fig. 1 to illustrate the process. In this
simplified example, we assume all the values of examination
items are binary. Different types of examination items in Fig.
1 are treated as different types of nodes on the graph. An
abnormal result of the ith item of type Z in the jth record
of the kth participant is represented as a link between nodes
rkj and zi. For instance, there is a link between r11 and a3
in the left sub-figure of Fig. 3, and the weight of the link is
(2005 − 2005 + 1)/6 ∼= 0.17 using Eq. (1) with a window
width equal to 6 years.

The output of the graph construction process is a het-
erogeneous graph represented as a set W of sparse matrices
Wij for any two node types i, j that are linked to each other
in the schema in Fig. 3.

4.1.2 Normalized Weights
To strengthen the weights in the low density region and
weaken the weights in the high density region, the weights
Wij for i, j = 1, ...,m are further normalized by the row
sum and column sum as in [37]:

W̃ij = D
−1/2
ij W

ij
D
−1/2
ji (2)

where dij,pp =
∑
qWij,pq is the sum of row p in Wij and

Dij is an ni-by-ni diagonal matrix with the (p, p) element
as dij,pp.

4.2 Semi-supervised Learning on HeteroHER Graph
The second component of our method is a semi-supervised
learning algorithm for the constructed HeteroHER graph

(Section 4.1). The algorithm combines the advantages of
[37] for class discovery and [35] for handling heterogeneity
to solve a specific problem induced by evidence-based risk
prediction from health examination records.

In this section, we first define an objective function for
the learning problem and show its convexity, followed by
an optimization procedure to solve the problem. Then we
derive an efficient iterative algorithm and show its conver-
gence. Finally, time complexity is discussed.

4.2.1 Notations
Let us start with definitions and notations for the following
discussions. Assume there are c classes and there is one
additional “unknown” class for the cases that are not known
to belong to any of the c disease classes. In this work we
attach label information of a participant to the Record type
nodes representing their examination records. However, the
model is general enough to include labels for different types
of nodes. Define Y = [Y1, ..., Ym]T ∈ {0, 1}

∑m
i ni×(c+1) such

that Yi = [yi1, ..., yini ]
T ∈ {0, 1}ni×(c+1) encodes the labels

of type i nodes. Let y(k)ip be the kth element of vector yip. If
xip, i.e., node p of type i, is labeled, y(k)ip = 1 if xip belongs
to class k; otherwise y(k)ip = 0. If xip is unlabeled, y(c+1)

ip = 1.
By doing so, we set the initial labels of the unlabeled data to
be the unknown class. However, we will show later (Section
4.3) that these initial labels for the unlabeled data have little
influence on learning their labels.

In addition, we designed the computed labels to be
soft labels. Soft labels are especially desirable for medical
applications because knowing to what degree of certainty a
person is classified into is sometimes as important as know-
ing the class itself. Let F = [F1, ..., Fm]T ∈ R

∑m
i ni×(c+1)

be the computed soft labels of m node types such that
Fip ∈ Rc+1 is a vector indicating the degree of certainty
that xip belongs to any of the c+1 classes. The class label of
xip is computed as argmaxk≤(c+1)F

(k)
ip . Fi can be initialized

uniformly amongst type i nodes for i = 1, ...,m.

4.2.2 Objective Function
We considered a regularized framework on a heteroge-
neous graph for our problem. Denote tr(·) as trace and
denote ‖·‖F as the Frobenius norm of matrix, i.e., ‖M‖2F =
tr(MTM). The classification problem can be viewed as an
optimization problem that minimizes an objective function
J(F ):

J(F ) =
m∑
ij

γij

ni∑
p

nj∑
q

W̃ij,pq ‖Fip − Fjq‖2F

+
m∑
i

ni∑
p

µipd̃ip ‖Fip − Yip‖2F

(3)

where W̃ij is the normalized weights on the links between
type i and j nodes as defined in Eq. (2), and F and Y are
the same as defined in Section 4.2.1.

The first term is the smoothness constraint based on the
assumption that the computed labels between the connected
nodes in the graph should be close. Let z = [z1, ..., zm]

T

such that 0 ≤ zi ≤ 1 be the weights for m node types. Then,
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γij is defined as between-type weight of type i and type j
nodes as follows:

γij =

{
1
2zj if i = j
zj otherwise

(4)

where the weight is reduced to half for links between same-
type nodes to avoid double counting in the summation.

The second term is the fitness constraint that penalizes
when the computed F is different from labels Y . Let d̃ij,pp =∑
q W̃ij,pq and D̃ij be an ni-by-ni diagonal matrix with the

(p, p) element as d̃ij,pp. Then d̃ip in Eq. (3) is the degree of
node p of type i, weighted by its connected node type, i.e.,
d̃ip =

∑m
j

∑ni
p zjD̃ij,pp. On the other hand, µip > 0 controls

the trade-off between the smoothness and fitness constraints
for node p of type i.

4.2.3 Convexity
The strict convexity of Eq. (3) minimization is derived in
this section. For clarity, we will discuss two terms in Eq. (3)
separately. The first term of the objective function denoted
as J1(F ) can be derived as follows:

J1(F ) =
m∑
i

(
m∑
j

γij

ni∑
p

nj∑
q

W̃ij,pq ‖Fip − Fjq‖2F )

=
m∑
i

m∑
j

γijtr(F
T
i D̃ijFi − 2FTi W̃ijFj + FTj D̃jiFi)

= tr(
m∑
i

m∑
i6=j

zj(F
T
i D̃ijFi − 2FTi W̃ijFj + FTj D̃jiFi)

+ ziF
T
i (D̃ii − W̃ii)Fi)

(5)

where W̃ij is defined in the same way as in Eq. (2) and D̃ij

and γij the same as in Section 4.2.2.
Suppose the total number of nodes n =

∑m
i ni. Let L̃ be

a n-by-n block matrix. Let its (i, j) block L̃ij = D̃ij − W̃ij

be a Laplacian matrix with normalized weights. Eq. (5) can
be transformed to the following matrix expression:

J1(F ) = tr(FT IzL̃F ) = tr(FTHF ) (6)

where Iz is a block diagonal matrix with the elements of the
diagonal of (i, i) block equal to zi, and H = IzL̃.

The second term of the objective function can be derived
as follows:

J2(F ) =
m∑
i

ni∑
p

µipd̃ip ‖Fip − Yip‖2F

= tr(
m∑
i

(Fi − Yi)TUiD̃i(Fi − Yi))
(7)

where the diagonal matrix D̃i =
∑m
j zjD̃ij and its (p, p)

entry is d̃ip as defined earlier in Section 4.2.2.Ui is a diagonal
matrix such that Ui,pp = µip.

Combining Eq. (6) and Eq. (7), the objective function can
be transformed into:

J(F ) = tr(FTHF ) + tr((F − Y )TUD̃(F − Y )) (8)

where D̃ is a block diagonal matrix with the diagonal of the
(i, i) block equal to D̃i.

It is easy to verify that L̃ is positive semi-definite and
likewise, H , U , D̃, UD̃ and their traces. Therefore the
objective function is strictly convex.

4.2.4 Optimization Procedure
The closed-form solution for minimizing Eq. (8) can be
obtained by setting the partial derivative of J(F ) with
respect to F to zero:

∂J(F )

∂F

∣∣∣∣
F=F∗

= 2(HF ∗ + D̃U(F ∗ − Y )) = 0 (9)

where we use the fact that H = IzL̃ is symmetrical and that
D̃ and U are diagonal.

By multiplying D̃−1 on both sides of Eq. 9 and rearrang-
ing the equation, we have:

F ∗ = (D̃−1IzL̃+ U)−1UY (10)

By using the fact that U = I−Iα
Iα

=
Iβ
Iα

, we have:

F ∗ = (D̃−1IzL̃Iα + Iβ)
−1IβY

= (Iα(I − IzP ) + Iβ)
−1IβY

= (I − IαIzP )−1IβY
= (I − P̂ )−1IβY

(11)

where L̃ = D̃ − W̃ as before, P = D̃−1W̃ , and P̂ = IαIzP .
Note that the ∞−norm of IαIzP is lower than 1 given

0 ≤ ziαi < 1(i = 1, ..., n). Hence the spectral radius of P̂ is
not greater than the∞−norm. So (I − P̂ ) is invertible.

4.3 Iterative Solution

An iterative algorithm is often more efficient than a closed-
form solution with matrix inverse. Here we describe an
iterative solution for F and prove its convergence. The
optimal Fi for type i nodes can be computed with the
following update rule for i = 1, ...,m:

Fi(t+ 1) = Iαi

m∑
j

zjPijFj(t) + IβiYi (12)

where Pij = D̃iW̃ij , Iβi = I − Iαi , and zj is a type weight
scalar as defined earlier in Section 4.2.2.

Eq. (12) bears a label propagation interpretation. Each
node iteratively spreads label information to its neighbors
until a global stable state is achieved. Particularly, zjPij
can be seen as the normalized links from type j nodes
to type i nodes, scaled by the source type weight zj . Soft
labels of type i nodes at (t + 1) are determined by two
factors, 1) the computed label scores of neighboring nodes
at time t propagated via links, and 2) the initial labels for
type i nodes. The diagonal matrix Iαi controls the trade-off
between these two influences.

It is important to note that Iαi provides a mechanism
to learn an extra outlier class via an instance-level control
over the trade-off. Specifically, αl and αu are introduced as
parameters in the range of [0, 1] that control the influence
from the labeled data and unlabeled data respectively. The
parameters αip (p = 1, ..., ni) in Iαi are defined as αip =
αl if xip is labeled, and αip = αu if otherwise. The larger
αl and αu are, the less influence initial labels from Y has.
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Algorithm 1 SHG-Health

Input: a set of health examination records of n participants
S, the corresponding encoded labels Y

Output: optimized F as the computed soft labels
1: W ← graph construction from S (Section 4.1.1).
2: Calculate the normalized weights for i, j = 1, ...,m by:
W̃ij = D

−1/2
ij W

ij
D
−1/2
ji (2)

3: Initialize Fi uniformly amongst type i nodes for i =
1, ...,m.

4: t = 1
5: repeat
6: Update Fi for i = 1, ...,m by:

Fi(t+ 1) = Iαi
m∑
j
zjPijFj(t) + IβiYi (12)

7: t = t+ 1
8: until convergence
9: return F

Particularly, when αu is set to a value extremely close to 1,
it means that the initial labels of the unlabeled data play
almost no role in the learning so that the computed label for
an unlabeled case is basically determined by its connectivity
in the graph. This mechanism allows the algorithm to learn
an additional (c+ 1) class for nodes that are less connected
to the labeled nodes from high risk disease classes.

The complete algorithm of SHG-Health, combining the
graph construction and iterative solution, is summarized in
Algorithm 1.

4.3.1 Convergence
The proof of the convergence of Eq. (12) is as follows: Let
Iα, Iβ , zj and P = D̂−1Ŵ be the same as defined earlier in
Section 4.2.4. The update rule Eq. (12) for type i = 1, ...,m
can be reorganized as:

Fi(t+ 1) = Iαi

m∑
j

zjPijFj(t) + IβiYi

= IαiPiIziF (t) + IβiYi

= P̂iF (t) + IβiYi

(13)

where P̂i = IziIαiPi. It is equivalent to the following
expression:

F (t+ 1) = P̂F (t) + IβY (14)

It has been proved in [37] that F ∗ = lim
t→∞

F (t) =

(I − P̂ )−1IβY , which is equivalent to the close-form solu-
tion expressed in Eq. (11) and hence our proof is completed.

4.3.2 Time Complexity Analysis
Now we analyze the computational time complexity of the
iterative solution (Step 3-8 of Algorithm 1). Step 3 takes
O(k|V |) time for initialization, where k is the number of
classes (i.e., k = c + 1) and |V | is the number of nodes
in the graph. At each iteration of Step 6, every link needs
to be processed twice, once for the node at each end of
the link. This is done for every class, and consequently
takes O(k|E|) time, where |E| is the number of links. Also,
another O(k|V |) time is needed for incorporating IβiYi.
Therefore, the total time for each iteration isO(k(|E|+|V |)),

and the total time complexity for the entire iterative solution
is O(lk(|E|+ |V |)), where l is the number of iterations.

5 EXPERIMENTS

In this section, we evaluate SHG-Health using both real-
world datasets and synthetic datasets.

5.1 Datasets

5.1.1 Real Datasets
The real datasets contain a geriatric health examination
(GHE) dataset and a Cause of Death (COD) dataset, linked
together via the common attribute Person ID, revealing the
association between examination results and main cause of
death. Records of participants with non-health-related COD
were excluded for the purpose of risk identification.

GHE dataset is a de-identified dataset with all private
information, such as names, contact details, and birth dates
removed. The dataset has 230 attributes, containing 262,424
check-ups of 102,258 participants aged 65 or above, collected
during a period of six years (2005 - 2010). The overall ratio of
male to female participants is 1.03:1. Each de-identified GHE
record is represented by a Person ID and the examination
results from a wide range of lab tests, physical examina-
tions, the Brief Symptom Rating Scale (BSRS) mental health
assessment, the Short Portable Mental Status Questionnaire
(SPMSQ) cognitive function assessment, (de-identified) de-
mographics as well as personal health-related habits, such
as exercise, eating, drinking, and smoking habits. Key at-
tributes are listed in Table 1.

COD dataset. The GHE dataset was linked to the Tai-
wan National Death Registry system using participants’
identification numbers and then encrypted to provide de-
identified secondary data maintained by the Department of
Health of the Taipei City Government. We called this linked
subset of data the Cause of Death (COD) dataset. The main
causes of death are encoded with the WHO International
Classification of Diseases [41], with 9th Revision (ICD-9)
in years (2005 - 2008) and ICD-10 in years (2009 - 2010),
a standard medical ontology for disease classification. There
are in total 522 ICD-9 codes and 925 ICD-10 codes used
in the COD dataset. Attributes available from the linked
information include a 3-4 digit ICD code for main cause of
death and time of death (month and year). For the purpose
of risk prediction, we only included those who passed away
within three years of their last examination record. This left
us with 7,569 (7.4%) participants with COD codes.

The details of GHE attributes and value handling are
as follows. For patient demographics, age was firstly dis-
cretized into five-year bins, i.e., [65, 70), [70, 75), [75,
80), [80, 85), and [85+. Weights (kilogram) and heights
(meter) were used to compute the Body Mass Index
(BMI)=weight/(height)2. BMI is then recorded as an ordi-
nal feature, according to the standard BMI categorization
thresholds. For patient habits, most attributes are binary
except reason-for-taking-medicine which is a patient re-
ported field. The top 7 most frequently reported reasons
were extracted as 7 binary attributes, each indicating the
occurrence of a reason. The rest of the reasons were dis-
carded. For lab tests and physical examinations, there are
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TABLE 1: Selected GHE attributes by categories
Type Category Attribute (example)

Patient Profile Demographics age, marital status, gender, education level, residential suburb
Habits reasons-for-taking-medicine, smoking, drinking, exercise, drink-milk, eat-

vegetable, clean-teeth

Lab Tests
Biochemical glu-ac, total cholesterol (tcho), thyroglobulin (tg), got, gpt, albumin (alb), thyroid

stimulating hormone (tsh)
Blood red blood cell, white blood cell, plate, hematocrit (hct), mean corpuscular

volume (mcv), mean corpuscular hemoglobin (mch), alpha-fetoprotein (afp),
hemoglobin (hb)

Urine outlook, ph, protein, sugar, blood, red blood cell, white blood cell, pus cell,
epithelium cell, casts

Other faecal occult blood test (fobt)

Examinations Physical weight, height, waist, systolic blood pressure, diastolic blood pressure, pulse
rate

External neck, chest, heart, breast, abdomen, back, rectum, limbs, prostate
Other X-ray, EKG, cervical smear, abdominal ultrasound

Mental Health BSRS 5 questions regarding nervousness, anger, depression, comparison with others,
and sleep

Cognitive Function SPMSQ 10 questions, e.g., current date, day of the week, where the person is situated,
home address, age, year of birth, etc.

three fields to record the results, namely observed value,
status, and description. The observed values are generally
numeric. The status fields indicate whether or not the result
of a test is normal. Their values can be either binary or
ordinal, depending on the type of tests. The descriptions are
in free text format. We only used the information from the
status fields for the following reasons. Firstly, the reference
ranges of these items may differ amongst hospitals and the
information regarding where an examination was taken is
not available in the dataset for privacy reasons. Secondly,
the values for the description fields are mostly missing.

The results of 5 mental health assessment (BSRS) ques-
tions were encoded in terms of degree of severity, i.e.,
normal, mild, medium, and severe. The overall result of the
cognitive function assessment (SPMSQ) was scored in terms
of the number of questions that were incorrectly answered.
It is an ordinal attribute with values “sound” (0-5 scores),
“mild” (6-9 scores), “medium” (10-14 scores), and “severe”
(above 15 scores) according to the standard categorization.
All the resulting discrete attributes discussed above were
then binarized if they were not already in the binary form.

The data was collected in a standard annual health
examination program for elderly people, run by the Taipei
City Government. Participants voluntarily took part in the
program, and were encouraged to visit on a yearly basis.
Data related to individual identification was removed before
the dataset acquisition. The acquisition and processing of
the data was approved by the Institutional Review Board
(IRB) of the Taipei City Hospital.

5.1.2 Synthetic Datasets

To test the stability of our method, we also generated two
groups of synthetic datasets based on the distribution of
the processed real datasets. Specifically, we computed the
value distributions for a given disease class, a given year,
and a given feature for 10 disease classes selected based on
COD codes. The selection of the disease classes is reported in
Section 5.2.1. The cumulative distribution functions (CDFs)
were computed, based on which a random number gener-

ator was used to select a value for a given disease class, a
year, and a feature. The resulting synthetic datasets are:

• Balanced datasets: to test the stability with increas-
ing class size in a balanced-class setting, we gener-
ated same number of instances for all disease classes
and the “unknown” (unlabeled) class with increasing
class size in the range of {100, 300, 500, 1000}, and

• Increasing unlabeled size datasets: to test the stabil-
ity given increasing scale of unlabeled data, we gen-
erated 1000 instances for every disease class with the
“unknown” (unlabeled) class size equals to 1000×p,
where p is a scalar in the range of {1, 3, 5, 10, 15, 20}.

Note that the synthetic datasets were generated based on
the assumption that features are independent, which does
not hold in real-world healthcare data. However, by using
synthetic datasets we can better understand algorithm be-
haviors in different class settings.

5.2 Experimental Settings
5.2.1 High-risk Disease Classes
We selected 10 ICD disease categories as high-risk disease
classes. The first 3 digits of ICD 10 were used to define
disease categories and mapped to the corresponding 3-digit
ICD 9 codes for the records taken before 2009. Table 2, below,
shows the size of the 10 disease classes in terms of the
number of participants and number of records.

The number of classes was determined with the inten-
tion to maximize the number of diseases to show a wide
coverage of disease categories, given the constraint on the
number of disease instances available. To make sure the
number of instances per class is sufficient for reasonable
classification, we selected diseases with top-10 frequency
counts. Based on the suggestions from clinical experts, we
excluded diabetes mellitus, which is known to have many
complications, and acute myocardial infarction, an acute
disease. This gave us the first 8 classes in Table 2. To make
the problem closer to a real-world situation, we selected
two additional diseases with less frequency to represent
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TABLE 2: Sizes of 10 disease categories and unlabeled cases in terms of participant (P) and record (R).
Class ICD10 Name ICD9 Size (P) Size (R)

1 J18 Pneumonia, organism unspecified 481,485,486,514 434 851
2 J40-J44 Chronic lower respiratory diseases 490-493,496 277 531
3 C34 Malignant neoplasm of bronchus and lung 162 253 586
4 C22 Malignant neoplasm of liver and intrahepatic bile ducts 155 219 375
5 C16 Malignant neoplasm of Stomach 151 193 355
6 C18 Malignant neoplasm of colon 153 186 371
7 I25 Chronic ischaemic heart disease 412,414,429 185 330
8 C25 Malignant neoplasm of pancreas 157 123 242
9 C23 Malignant neoplasm of gallbladder 156 74 126
10 G20 Parkinson’s disease 332 37 73

Unlabeled (alive) cases 26,771 69,802

minority classes. The unlabeled cases were then randomly
selected from the alive cases with a ratio equal to data
distribution i.e., the deceased/alive ratio as 7.4/92.6. This
gave us 69,802 records from 26,771 unlabeled participants
(Table 2, above).

5.2.2 HeteroHER Graph Construction
Four node types were modeled for constructing our Hetero-
HER graph, namely Record, Physical Test, Mental Assessment,
and Profile. Physical Test refers to all the lab tests and physical
examinations in Table 1, while Mental Assessment covers
both the mental health assessments and cognitive function
assessments. Profile includes all the patient demographics
and habits, and Record indicates the artificial nodes created
for representing individual records. As discussed earlier,
only the abnormal results, both from physical and mental
tests, were included in graph construction. Table 3 shows
the network statistics of the HeteroHER graphs extracted
from both the real and synthetic datasets. The numbers of
nodes for Physical Test (Test), Mental Assessment (Mental),
and Profile types refer to the total number of distinct values
of the extracted features for the type. Note that density is
calculated as the ratio of the number of edges E to the
number of possible edges P . Since HeteroHER Graph has a
star schema (Fig. 3), P is calculated as the number of Record
nodes times the number of all attribute type nodes.

5.2.3 Evaluation Metrics
We designed a two-stage evaluation strategy to evaluate the
proposed SHG-Health.

In the first stage, we evaluated an algorithm’s ability to
identify high-risk cases, regardless of their disease category.
It can be understood as testing the algorithm’s ability to
predict mortality risk. All predicted disease cases were
regarded as predicted positive cases and the true disease
cases were regarded as (true) positive cases. As there is no
ground truth for the negative or healthy cases, we used mea-
sures that focus on positive predictions, namely precision,
recall/sensitivity, and F-score. While precision measures
how correct the positive predictions of an algorithm are,
recall shows its ability to catch the positive cases. F-score
calculates the harmonic mean between precision and recall.

In the second stage, we looked into a method’s ability
to predict the correct disease class given that it predicted a
case to be in one of the high-risk classes. This is a conditional
evaluation that only considers cases that were predicted as
one of the disease classes. Macro-precision and macro-recall

measures were used. Macro-averaging takes the average of
precision or recall scores computed from individual classes
[42]. It assumes that all classes are equally important, so that
the performance of minority classes can be reflected in the
macro-averaged scores.

5.2.4 Algorithms for Comparison
For SHG-Health, we compared three time-weighted func-
tions for graph construction, namely Eq. (1) (Ours), trun-
cated Gaussian (Ours-Gaus), and truncated Chi Squared
(Ours-Chi2) discussed in Section 4.1.1. Other algorithms that
were compared with our method are:

• Support Vector Machines: SVM has been adopted
as one of our baseline methods. Although SVM with
RBF kernel achieved the best results in [8], linear
and RBF kernels had very similar performance in our
experiments. We only report the results of the linear
kernel for its favourable efficiency. The LIBSVM [43]
and LIBLINEAR [44] implementations were used
in our experiments for the RBF and linear kernels
respectively.

• Nearest Neighbor Classifier: KNN classifier is a
common baseline for graph-based models. K was
experimentally set to 1.

• General Graph-based Semi-Supervised Learning:
GGSSL [37] is a state-of-the-art graph-based semi-
supervised method for class discovery. As it is not
directly applicable to heterogeneous graphs, we con-
structed a homogeneous graph by converting all
types of nodes in our heterogeneous graph into
a single-type graph. The MATLAB implementation
available from the author webpage [45] was em-
ployed in our experiments.

• GNetMine: GNetMine [35] is a state-of-the-art
graph-based semi-supervised method on a graph
of heterogeneous nodes. The MATLAB implementa-
tions by the authors, available from GitHub [46], was
employed in our experiments.

For parameter tuning, the parameters c and γ for SVM
were tuned based on the {10−4, 10−2, 1, 102, 104} grid. The
parameters αi and λij in GNetMine denote type weights
and type relationship weights respectively. They were tuned
based on the αi/λij ratio grid {0.01, 0.05, 0.1, 0.5, 1, 5, 10}
with αi fixed to 0.1 as in [35]. For fair comparison to
GNetMine, the type weight parameters zj (j = 1, ...,m)
of SHG-Health were also set uniformly. The parameters
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TABLE 3: Extracted HeteroHER graph statistics

Dataset # people # nodes # links to Record nodes DensityRecord Test Mental Profile Total Test Mental Profile Total
Real GHE@10class 26,771 73,642 55 26 55 73,778 601,062 119,952 523,387 1,244,401 0.1242

Synthetic

(100,100) 1,100 3,013

55 26 55

3,149 28,071 4,611 22,552 55,234 0.1348
(300,300) 3,300 9,054 9,190 84,052 13,982 68,053 166,087 0.1349
(500,500) 5,500 15,092 15,228 139,736 23,134 113,231 276,101 0.1345

(1000,1000) 11,000 30,201 30,337 280,412 46,655 227,932 554,999 0.1351
(1000,3000) 13,000 35,463 35,599 323,101 55,263 265,067 643,431 0.1334
(1000,5000) 15,000 40,695 40,831 365,005 63,974 301,661 730,640 0.1320
(1000,10000) 20,000 53,674 53,810 469,575 85,167 393,486 948,228 0.1299
(1000,15000) 25,000 66,841 66,977 575,360 106,694 485,914 1,167,968 0.1285
(1000,20000) 30,000 79,979 80,115 682,022 128,357 579,269 1,389,648 0.1278

TABLE 4: Evaluation on binary prediction (avg±std%)
Precision Recall/Sensitivity F-Score

Ours 96.24 ± 1.60 43.93 ± 1.11 60.32 ± 1.23
Ours-Chi2 99.33 ± 0.36 43.02 ± 1.40 60.02 ± 1.41
Ours-Gaus 96.99 ± 1.32 43.69 ± 1.14 60.23 ± 0.86

SVM 89.00 ± 10.19 0.49 ± 0.36 0.98 ± 0.71
KNN 37.52 ± 1.48 25.62 ± 1.30 30.45 ± 1.36

GNetMine 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
GGSSL 5.21 ± 0.02 100.00 ± 0.00 9.91 ± 0.03

αl and αu that control the influence from Y for the la-
beled and the unlabeled data respectively, were set to
0.01 for αl as in [37] and tuned based on the grid
{0.9, 0.99, 0.999, 0.9999, 0.99999} for both SHG-Health and
GGSSL methods.

All of the experiments were conducted using 5-fold
stratified cross validation. The performance on the testing
set was obtained by averaging over 5-fold results. All the ex-
periments were run on an Intel(R) Core(TM) CPU@3.40GHz
workstation with 16GB physical memory.

5.3 Result Analysis

In this section we report and analyze the experimental
results. The best λij ,∀i, j ∈ {1, ...,m} for GNetMine was 0.2
in all of our experiments, the same as reported in [35]. The
best αu for SHG-Health is 0.99, while GGSSL tends to bias
toward one disease class with αu = 0.9999 and completely
toward the unknown class with αu less than that.

5.3.1 Identifying High-risk Cases
In this first stage of the two-stage evaluation (Section 5.2.3),
we compared algorithms based on their abilities to identify
high-risk cases regardless of what disease category they
belonged to. All of the cases from different high-risk disease
classes were regarded as belonging to one class, i.e., the
high-risk class. This binary setting evaluates how well an al-
gorithm is able to pick up high-risk cases in general. Table 4,
above, shows that our algorithms achieved the best overall
performance at 99.33% precision (Ours-Chi2), 43.93% recall
(Ours), and 60.32% F score (Ours). GGSSL had 100.00%
recall but extremely low precision at 5.21%, which indicates
that it leaned towards predicting most cases as high-risk. On
the other hand, GNetMine was completely biased toward
the “unknown” class and thus had zero precision, recall,
and F scores. The fact that recall scores for all methods are
less than 50% also shows that capturing positive cases from

TABLE 5: Evaluation on disease class prediction (avg±std%)
Macro-Precision Macro-Recall

Ours 89.14 ± 0.56 89.62 ± 0.38
Ours-Chi2 90.58 ± 0.19 90.73 ± 0.15
Ours-Gaus 89.55 ± 0.56 90.30 ± 0.41

KNN 21.12 ± 1.49 59.92 ± 2.50
SVM 52.50 ± 39.41 63.33 ± 30.55

GNetMine - -
GGSSL 0.11 ± 0 9.09 ± 0

large and noisy unlabeled cases is difficult. Our proposed
SHG-Health could be seen as a conservative model, which
is desirable for a preventive care system because the cost of
false alarms is high [14], [47].

5.3.2 Classifying into Correct Disease Categories
In the second stage, we further evaluated the algorithms’
conditional performance on multi-class classification. Only
the cases that were predicted into one of the disease classes
were considered. The macro-averaging measures were used
to evaluate how correct these predictions were at the disease
category level. Note that any “unknown” case incorrectly
predicted as one of the disease classes was counted as an
incorrect prediction in this calculation.

Table 5, above, shows that our SHG-Health, especially
Ours-Chi2, outperformed all the other algorithms, achieving
90.58% macro-precision and 90.73% macro-recall. Overall,
our algorithm is able to classify high-risk individuals into a
correct disease category quite accurately.

5.3.3 Top Scored Test Items
Based on the COD labels available for the record type nodes,
SHG-Health also computes scores as soft labels for other
types of nodes, such as the Physical Test nodes. Within-class
scores of a node type can reveal the relative importance of
those nodes in the class.

Top-5 scored Physical Test items for 10 disease classes are
listed in Table 6, below. There are some interesting results
identified by our clinical experts. For example, for lung
related disease categories, namely pneumonia, chronic lower
respiratory diseases, and malignant neoplasm of bronchus and
lung, chest examination has the highest score. This bears
the interpretation that participants with these diseases com-
monly have abnormal chest examination results. Another
obvious example can be found in the malignant neoplasm
of liver and intrahepatic bile ducts class. Top-1 ranked item
Alpha-Fetoprotein is a commonly used tumor marker for
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TABLE 6: Top 5 scored test items for 10 disease classes

Top 5 1) Pneumonia, organism
unspecified

2) Chronic lower respiratory
diseases

3) Malignant neoplasm of
bronchus and lung

4) Malignant neoplasm of liver
and intrahepatic bile ducts

1 Chest Exam Chest Exam Chest Exam Alpha-Fetoprotein
2 Albumin Urinary casts Alpha-Fetoprotein Aspartate Aminotransferase

(GOT)
3 Urinary casts Albumin Hemoglobin Glutamic-Pyruvic Transami-

nase (GPT)
4 Hemoglobin Hemoglobin Hematocrit Platelet count
5 Blood urea nitrogen (BUN) Alpha-Fetoprotein Mean corpuscular volume Glucose urine test

Top 5 5) Malignant neoplasm of
Stomach

6) Malignant neoplasm of colon 7) Chronic ischaemic heart
disease

8) Malignant neoplasm of
pancreas

1 Albumin Albumin Creatinine blood test Glucose urine test
2 Hemoglobin Alpha-Fetoprotein Blood urea nitrogen (BUN) Albumin
3 Mean corpuscular volume Chest Glucose urine test Mean corpuscular volume
4 Platelet count Hemoglobin Protein in Urine (Proteinuria) Alpha-Fetoprotein
5 Hematocrit Creatinine blood test Hemoglobin Pus Cell in Urine

Top 5 9) Malignant neoplasm of
gallbladder

10) Parkinson’s disease

1 Alpha-Fetoprotein Urinary casts
2 Aspartate Aminotransferase

(GOT)
Chest

3 Chest Hemoglobin
4 Mean corpuscular volume Albumin
5 Red blood cell count Red blood cell count

liver cancer. GOT and GPT are the enzymes concentrated in
the liver, commonly used as key indicators for evaluating
liver damage.

These results show that SHG-Health is able to identify
important examination items for disease classes. By mod-
eling features (i.e., examination items) as different types of
nodes on a graph, the computing of soft labels for these
nodes is actually a mechanism of feature weighting. It is
the connection to these highly scored features of a class that
determines the class label of a Record node in the graph.

5.3.4 Stability on Synthetic Data
We further compared the stability of the algorithms us-
ing two groups of synthetic data generated based on the
distribution of the real data. The first group is the bal-
anced datasets with increasing size per class in the range
of {100, 300, 500, 1000}. The second group contains the
datasets with increasing number of unlabeled cases in the
scale of {1, 3, 5, 10, 15, 20} times of the size of a labeled class.
For the details on how these datasets were generated, please
refer to Section 5.1.2. We evaluated algorithms in terms of
their ability to identify high-risk cases (Task 1) and their
ability to classify a high-risk case into the correct disease
class (Task 2). The same measures as in the real dataset case
were used. Due to space limitations, it suffices to report the
F scores for Taks 1 and macro-averaging scores for Task 2.

Figure 4, below, shows the results on the balanced
synthetic datasets. It can be seen from the F scores that
all the algorithms performed stably in Task 1 except that
1NN had lower scores when class sizes were small. Our
method is comparable to SVM and they had the highest
performance in Task 1. However, our algorithm achieved
significantly better macro-precision and macro-recall scores
than the other algorithms in Task 2. While our SHG-Health
stably maintained 70% macro-precision, others fluctuated
below 50%. A similar phenomenon can be observed in the
case of macro-recall.

We expected the performance would drop with the in-
creasing scales of unlabeled data. The F scores of Task 1
confirm this intuition in Figure 5. The 1NN, GNetMine, and
GGSSL methods had a steeper descending gradient than
SVM and our approach, as the size of the unlabeled cases
increases from 1,000 to 20,000. However, when it comes
to predicting correct disease classes (Task 2), our SHG-
Health had the highest macro-precision and macro-recall
scores on the synthetic datasets. Note that the performance
of our method went up as the unlabeled sizes increased
from 10,000 to 20,000. It could be that more unlabeled cases
helped our method to differentiate between disease classes
better. It is worth mentioning that SVM had the most stable
performance in Task 2, slightly below 50% for both macro-
averaging measures.

5.3.5 Time Analysis
To investigate the scalability of all the algorithms, we
recorded the training time for experiments on the synthetic
datasets (Section 5.3.4), except that the testing time of 1NN
was recorded. Figure 6, below, compares the time perfor-
mance of all the algorithms with increasing data sizes. It
can be seen that our method is the most time-efficient
method of all, with only 1.41 seconds of training time at
(1000, 20000), i.e., 10×1000=10,000 disease cases plus 20,000
unlabeled cases. Note that the implementations we used for
other methods are either standard implementations (SVM
and 1NN) or from the author provided codes (GNetMine
and GGSSL) and they might not be best tuned for efficiency.
The purpose of Figure 6 is to show that our approach also
enjoys desirable efficiency given its superior effectiveness as
demonstrated in previous sections.

5.3.6 Discussion
The experimental results showed that SHG-Health per-
formed the best amongst all the algorithms compared. Par-
ticularly, its ability 1) to identify high-risk cases and 2) to
predict the correct disease category for high-risk cases has
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Fig. 4: Results of the balanced synthetic datasets with increasing class sizes.
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Fig. 5: Results of the synthetic datasets with increasing unlabeled cases.

been demonstrated and verified on our real datasets and
synthetic datasets (Section 5.1).

From the results of real datasets reported in Table 4 and
Table 5, we can see that although GNetMine also utilizes a
heterogeneous network structure for classification, it tends
to be biased toward the noisy “unknown” class. The reason
could be that GNetMine does not have a mechanism to
control the label influence at the instance level, such as the
α parameters (Section 4.3) in our method and in GGSSL, nor
the ability for class discovery. On the other hand, although
GGSSL has such a mechanism, a homogeneous graph con-
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Fig. 6: Computational time analysis on the synthetic datasets
for the algorithms compared.

struction missed out the type-specific information that can
help the classification. As a result, GGSSL was completely
biased toward the dominant disease class.

In the case of synthetic datasets, the performance for
most methods dropped in Task 2 (Fig. 4 and Fig. 5). This can
be explained by the information lost due to the feature inde-
pendence assumption for generating the synthetic datasets.
The exceptions are GNetMine and GGSSL, which showed
more reasonable performance on synthetic datasets. It could
be that they are better in handling independent features than
correlated ones. The efficiency of our method has also been
demonstrated in Fig. 6 based on the same synthetic datasets.

It is worth noting that the choice of disease combination
can affect the performance. For example, when we selected
5 diseases from the ICD-10 “Malignant neoplasms, digestive
organs” category in a separate experiment, the disease-level
classification performance dropped to below 23% for all
algorithms, due to the less discriminability amongst the
instances of these diseases.

Overall, although SHG-Health is conservative in pre-
dicting cases into high-risk classes, we have shown that
it is able to predict the correct disease classes with high
scores in all evaluation measures. This is very desirable for
the preventive type of Clinical Decision Support Systems
(CDSSs). False positives are especially costly in preventive
care, which could result in unnecessary anxiety, worry, and
invasive diagnostic tests [14], [47]. In addition, it is believed
that CDSSs are to support clinical professionals rather than
to replace them. Therefore, a good system should be able to
identify and draw attention to participants with high risks.
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6 CONCLUSION

Mining health examination data is challenging especially
due to its heterogeneity, intrinsic noise, and particularly the
large volume of unlabeled data. In this paper, we introduced
an effective and efficient graph-based semi-supervised algo-
rithm namely SHG-Health to meet these challenges.

Our proposed graph-based classification approach on
mining health examination records has a few significant
advantages.

• Firstly, health examination records are represented
as a graph that associates all relevant cases together.
This is especially useful for modeling abnormal re-
sults that are often sparse.

• Secondly, multi-typed relationships of data items can
be captured and naturally mapped into a hetero-
geneous graph. Particularly, the health examination
items are represented as different types of nodes
on a graph, which enables our method to exploit
the underlying heterogeneous subgraph structures of
individual classes to achieve higher performance.

• Thirdly, features can be weighted in their own type
through a label propagation process on a heteroge-
neous graph. These in-class weighted features then
contribute to the effective classification in an iterative
convergence process.

Our work shows a new way of predicting risks for
participants based on their annual health examinations. Our
future work will focus on the data fusion for the health
examination records to be integrated with other types of
datasets such as the hospital-based electronic health records
and the participants’ living conditions (e.g., diets and gen-
eral exercises). By integrating data from multiple avail-
able information sources, more effective prediction may be
achieved.
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