
1

Enabling Dynamic Data and Indirect Mutual
Trust for Cloud Computing Storage Systems

Ayad Barsoum and Anwar Hasan
Department of Electrical and Computer Engineering,

University of Waterloo, Ontario, Canada.

Abstract—Storage-as-a-Service offered by cloud service providers (CSPs) is a paid facility that enables organizations to outsource
their sensitive data to be stored on remote servers. In this paper, we propose a cloud-based storage scheme that allows the data
owner to benefit from the facilities offered by the CSP and enables indirect mutual trust between them. The proposed scheme has
four important features: (i) it allows the owner to outsource sensitive data to a CSP, and perform full block-level dynamic operations on
the outsourced data, i.e., block modification, insertion, deletion, and append, (ii) it ensures that authorized users (i.e., those who have
the right to access the owner’s file) receive the latest version of the outsourced data, (iii) it enables indirect mutual trust between the
owner and the CSP, and (iv) it allows the owner to grant or revoke access to the outsourced data. We discuss the security issues of the
proposed scheme. Besides, we justify its performance through theoretical analysis and a prototype implementation on Amazon cloud
platform to evaluate storage, communication, and computation overheads.

Index Terms—Outsourcing data storage, dynamic environment, mutual trust, access control

�

1 INTRODUCTION

In the current era of digital world, various organizations
produce a large amount of sensitive data including per-
sonal information, electronic health records, and finan-
cial data. The local management of such huge amount of
data is problematic and costly due to the requirements of
high storage capacity and qualified personnel. Therefore,
Storage-as-a-Service offered by cloud service providers
(CSPs) emerged as a solution to mitigate the burden of
large local data storage and reduce the maintenance cost
by means of outsourcing data storage.

Since the data owner physically releases sensitive data
to a remote CSP, there are some concerns regarding
confidentiality, integrity, and access control of the data.
The confidentiality feature can be guaranteed by the
owner via encrypting the data before outsourcing to
remote servers. For verifying data integrity over cloud
servers, researchers have proposed provable data posses-
sion technique to validate the intactness of data stored
on remote sites. A number of PDP protocols have been
presented to efficiently validate the integrity of data, e.g.,
[1]–[8]. Proof of retrievability [9]–[12] was introduced as
a stronger technique than PDP in the sense that the entire
data file can be reconstructed from portions of the data
that are reliably stored on the servers.

Commonly, traditional access control techniques as-
sume the existence of the data owner and the storage
servers in the same trust domain. This assumption,
however, no longer holds when the data is outsourced
to a remote CSP, which takes the full charge of the out-
sourced data management, and resides outside the trust
domain of the data owner. A feasible solution can be
presented to enable the owner to enforce access control

of the data stored on a remote untrusted CSP. Through
this solution, the data is encrypted under a certain key,
which is shared only with the authorized users. The
unauthorized users, including the CSP, are unable to
access the data since they do not have the decryption key.
This general solution has been widely incorporated into
existing schemes [13]–[16], which aim at providing data
storage security on untrusted remote servers. Another
class of solutions utilizes attribute-based encryption to
achieve fine-grained access control [17], [18].

Different approaches have been investigated that en-
courage the owner to outsource the data, and offer some
sort of guarantee related to the confidentiality, integrity,
and access control of the outsourced data. These ap-
proaches can prevent and detect malicious actions from
the CSP side. On the other hand, the CSP needs to be
safeguarded from a dishonest owner, who attempts to
get illegal compensations by falsely claiming data cor-
ruption over cloud servers. This concern, if not properly
handled, can cause the CSP to go out of business [19].

In this work, we propose a scheme that addresses
important issues related to outsourcing the storage of
data, namely dynamic data, newness, mutual trust, and
access control. The remotely stored data can be not only
accessed by authorized users, but also updated and
scaled by the owner. After updating, authorized users
should receive the latest version of the data (newness
property), i.e., a technique is required to detect whether
the received data is stale. Mutual trust between the data
owner and the CSP is another imperative issue, which
is addressed in the proposed scheme. A mechanism is
introduced to determine the dishonest party, i.e., mis-
behavior from any side is detected and the responsible
party is identified. Last but not least, the access control

Digital Object Indentifier 10.1109/TPDS.2012.337 1045-9219/12/$31.00 © 2012 IEEE

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

2

is considered, which allows the owner to grant or re-
voke access rights to the outsourced data. Appendix A
discusses existing research related to our work.
Main contributions:

• The design and implementation of a cloud-based
storage scheme that has the following features: (i)
it allows a data owner to outsource the data to a
CSP, and perform full dynamic operations at the
block-level, i.e., it supports operations such as block
modification, insertion, deletion, and append; (ii) it
ensures the newness property, i.e., the authorized
users receive the most recent version of the out-
sourced data; (iii) it establishes indirect mutual trust
between the data owner and the CSP since each
party resides in a different trust domain; and (iv) it
enforces the access control for the outsourced data.

• We discuss the security features of the proposed
scheme. Besides, we justify its performance through
theoretical analysis and a prototype implementation
on Amazon cloud platform to evaluate storage,
communication, and computation overheads.

2 OUR SYSTEM AND ASSUMPTIONS

System components and relations. The cloud comput-
ing storage model considered in this work consists of
four main components as illustrated in Fig. 1: (i) a data
owner that can be an organization generating sensitive
data to be stored in the cloud and made available
for controlled external use; (ii) a CSP who manages
cloud servers and provides paid storage space on its
infrastructure to store the owner’s files and make them
available for authorized users; (iii) authorized users –
a set of owner’s clients who have the right to access
the remote data; and (iv) a trusted third party (TTP), an
entity who is trusted by all other system components,
and has capabilities to detect/specify dishonest parties.

�

����

F �����

�	
���

�������
�����

�������

���

�����������������

��������������

Fig. 1: Cloud computing data storage system model.

In Fig. 1, the relations between different system com-
ponents are represented by double-sided arrows, where
solid and dashed arrows represent trust and distrust
relations, respectively. For example, the data owner, the
authorized users, and the CSP trust the TTP. On the other
hand, the data owner and the authorized users have
mutual distrust relations with the CSP. Thus, the TTP is
used to enable indirect mutual trust between these three
components. There is a direct trust relation between the
data owner and the authorized users.

Remark 1. In this work, the auditing process of the
data received from the CSP is done by authorized users,

and we resort to the TTP only to resolve disputes that
may arise regarding data integrity or newness. Reducing
the storage overhead on the CSP side is economically
a key feature to lower the fees paid by the customers.
Moreover, decreasing the overall computation cost in the
system is another crucial aspect. To achieve these goals,
a small part of the owner’s work is delegated to the TTP.

Outsourcing, updating, and accessing. The data owner
has a file F consisting of m blocks. For confidentiality,
the owner encrypts the data before sending to cloud
servers. After data outsourcing, the owner can interact
with the CSP to perform block-level operations on the
file. In addition, the owner enforces access control by
granting or revoking access rights to the outsourced
data. To access the data, the authorized user sends a
data-access request to the CSP, and receives the data file
in an encrypted form that can be decrypted using a secret
key generated by the authorized user (more details will
be explained later).

The TTP is an independent entity, and thus has no
incentive to collude with any party. However, any possi-
ble leakage of data towards the TTP must be prevented
to keep the outsourced data private. The TTP and the
CSP are always online, while the owner is intermittently
online. The authorized users are able to access the data
file from the CSP even when the owner is offline.

Threat model. The CSP is untrusted, and thus the
confidentiality and integrity of data in the cloud may
be at risk. For economic incentives and maintaining
a reputation, the CSP may hide data loss, or reclaim
storage by discarding data that has not been or is rarely
accessed. To save the computational resources, the CSP
may totally ignore the data-update requests, or execute
just a few of them. Hence, the CSP may return damaged
or stale data for any access request from the authorized
users. Furthermore, the CSP may not honor the access
rights created by the owner, and permit unauthorized
access for misuse of confidential data.

On the other hand, a data owner and authorized users
may collude and falsely accuse the CSP to get a certain
amount of reimbursement. They may dishonestly claim
that data integrity over cloud servers has been violated,
or the CSP has returned a stale file that does not match
the most recent modifications issued by the owner.

Security requirements. Confidentiality: outsourced data
must be protected from the TTP, the CSP, and users
that are not granted access. Integrity: outsourced data
is required to remain intact on cloud servers. The data
owner and authorized users must be enabled to rec-
ognize data corruption over the CSP side. Newness:
receiving the most recent version of the outsourced data
file is an imperative requirement of cloud-based storage
systems. There must be a detection mechanism if the
CSP ignores any data-update requests issued by the
owner. Access control: only authorized users are allowed
to access the outsourced data. Revoked users can read

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

3

unmodified data, however, they must not be able to
read updated/new blocks. CSP’s defence: the CSP must
be safeguarded against false accusations that may be
claimed by dishonest owner/users, and such a malicious
behavior is required to be revealed.

3 SYSTEM PRELIMINARIES

3.1 Lazy Revocation

The proposed scheme in this work allows the data owner
to revoke the right of some users for accessing the
outsourced data. In lazy revocation, it is acceptable for
revoked users to read unmodified data blocks. However,
updated or new blocks must not be accessed by such
revoked users. The notation of lazy revocation was first
introduced in [20]. The idea is that allowing revoked
users to read unchanged data blocks is not a significant
loss in security. This is equivalent to accessing the blocks
from cashed copies. Updated or new blocks following
a revocation are encrypted under new keys. Lazy re-
vocation trades re-encryption and data access cost for
a degree of security. However, it causes fragmentation
of encryption keys, i.e., data blocks could have more
than one key. Lazy revocation has been incorporated into
many cryptographic systems [19], [21], [22].

3.2 Key Rotation

Key rotation [13] is a technique in which a sequence
of keys can be generated from an initial key and a
master secret key. The sequence of keys has two main
properties: (i) only the owner of the master secret key
is able to generate the next key in the sequence from
the current key, and (ii) any authorized user knowing
a key in the sequence is able to generate all previous
versions of that key. In other words, given the i-th key
Ki in the sequence, it is computationally infeasible to
compute keys {Kl} for l > i without having the master
secret key, but it is easy to compute keys {Kj} for j < i.

The proposed scheme in this work utilizes the key
rotation technique [13]. Let N = pq denote the RSA
modulus (p&q are prime numbers), a public key = (N, e),
and a master secret key d. The key d is known only to
the data owner, and ed ≡ 1 mod (p− 1)(q − 1).

Whenever a user’s access is revoked, the data owner
generates a new key in the sequence (rotating forward).
Let ctr indicate the index/version number of the current
key in the keys sequence. The owner generates the next
key as Kctr+1 = Kd

ctr mod N . Authorized users can
recursively generate older versions of the current key
as Kctr−1 = Ke

ctr mod N (rotating backward).

3.3 Broadcast Encryption

Broadcast encryption (bENC) allows a broadcaster to
encrypt a message for an arbitrary subset of a group of
users. The users in the subset are only allowed to decrypt
the message. However, even if all users outside the
subset collude they cannot access the encrypted message.
The proposed scheme uses bENC [23] to enforce access

control in outsourced data. The bENC [23] is composed
of three algorithms: SETUP, ENCRYPT, and DECRYPT.

SETUP. This algorithm takes as input the number of
system users n. It defines a bilinear group G of prime
order p with a generator g, a cyclic multiplicative group
GT , and a bilinear map ê : G×G → GT . The algorithm
picks a random α ∈ Zp, computes gi = g(α

i) ∈ G

for i = 1, 2, . . . , n, n + 2, . . . , 2n, and sets v = gγ ∈ G

for γ ∈R Zp. The outputs are a public key PK =
(g, g1, . . . , gn, gn+2, . . . , g2n, v) ∈ G

2n+1, and n private
keys {di}1≤i≤n, where di = gγi ∈ G.

ENCRYPT. This algorithm takes as input a subset
S ⊆ {1, 2, . . . , n}, and a public key PK. It outputs a
pair (Hdr, K), where Hdr is called the header (broadcast
ciphertext), and K is a message encryption key. Hdr
= (C0, C1) ∈ G

2, where for t ∈R Zp, C0 = gt and
C1 = (v ·∏j∈S gn+1−j)

t. The key K = ê(gn+1, g)
t is used

to encrypt a message M (symmetric encryption) to be
broadcast to the subset S.

DECRYPT. This algorithm takes as input a subset S ⊆
{1, 2, . . . , n}, a user-ID i ∈ {1, 2, . . . , n}, the private key
di for user i, the header Hdr = (C0, C1), and the public
key PK. If i ∈ S, the algorithm outputs the key K =
ê(gi, C1)/ê(di ·

∏
j∈S
j �=i

gn+1−j+i, C0), which can be used to

decrypt the encrypted version of M .
In the above construction of the bENC [23], a private

key contains only one element of G, and the broadcast
ciphertext (Hdr) consists of two elements of G. On
the other hand, the public key PK is comprised of
2n + 1 elements of G. A second construction, which
is a generalization of the first one was presented in
[23] to trade the PK size for the Hdr size. The main
idea is to run multiple parallel instances of the first
construction, where each instance can broadcast to at
most B users. Setting B = �√n� results in a system
with O(

√
n) elements of G for each of PK and Hdr. The

private key is still just one element.
In this work, we utilize the second construction to

achieve a balance between the sizes of PK and Hdr. For
an organization (data owner) with 105 users, each of PK
and Hdr contains only 317 elements of G.

4 PROPOSED CLOUD-BASED STORAGE
SCHEME

4.1 Warmup Discussion

Before presenting our main scheme, we discuss a
straightforward solution using authentication tags (dig-
ital signatures) to detect cheating from any side (data
owner or CSP). For a file F = {bj}1≤j≤m, the owner
attaches a tag OWNσj with each block before outsourcing.
The owner sends {bj ,OWNσj}1≤j≤m to the CSP, where the
tags {OWNσj}1≤j≤m are first verified. In case of failed
verification, the CSP rejects to store the data blocks and
asks the owner to re-send the correct tags. If the tags
are valid, both the blocks and the tags are stored on
the cloud servers. The tags {OWNσj}1≤j≤m achieve non-
repudiation from the owner side. When an authorized

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

4

user (or the owner) requests to retrieve the data file, the
CSP sends {bj ,OWNσj ,CSPσj}1≤j≤m, where CSPσj is the
CSP’s signature/tag on bj ||OWNσj . The user first verifies
the tags {CSPσj}1≤j≤m. In case of failed verification,
the user asks the CSP to re-perform the transmission
process. If {CSPσj}1≤j≤m are valid tags, the user then
verifies the owner’s tag OWNσj on the block bj ∀ j. If any
tag OWNσj is not verified, this indicates the corruption
of data over cloud servers. The CSP cannot repudiate
such corruption for the owner’s tags {OWNσj}1≤j≤m are
previously verified and stored by the CSP along with the
data blocks. Since the CSP’s signatures {CSPσj}1≤j≤m

are attached with the received data, a dishonest owner
cannot falsely accuse the CSP regarding data integrity.

Although the previous straightforward solution can
detect cheating from either side, it cannot guarantee
the newness property of the outsourced data; the CSP
can replace the new blocks and tags with old versions
without being detected (replay attack). The above solution
increases the storage overhead on the cloud servers.
Moreover, there is an increased computation overhead
on different system components; for a file F containing
m blocks, it requires 2m signature generations and 3m
signature verifications, which may be computationally a
challenging task for large data files. A file is of size 1GB
with 4KB block size requires 219 signature generations
and 3× 218 signature verifications.

If the CSP receives the data blocks from a trusted
entity, the block tags and the signature operations are
not needed since the trusted entity has no incentive for
repudiation or collusion. Therefore, delegating a small
part of the owner’s work to the TTP reduces both the
storage and computation overheads.

4.2 Overview and Rationale

Validating the outsourced dynamic data and its newness
property requires the knowledge of some metadata that
reflects the most recent modifications issued by the
owner. Moreover, it requires the awareness of block
indices to guarantee that the CSP has inserted, added,
or deleted the blocks at the requested positions. To this
end, the proposed scheme is based on using combined
hash values and a small data structure, which we call
block status table (BST). The TTP establishes the mutual
trust among different system components.

For enforcing access control of the outsourced data,
the proposed scheme utilizes and combines three cryp-
tographic techniques: bENC, lazy revocation, and key
rotation. The bENC enables a data owner to encrypt
some secret information to only authorized users allow-
ing them to access the outsourced data file. Through
lazy revocation, revoked users can read unmodified
data blocks, while updated/new blocks are encrypted
under new keys generated from the secret information
broadcast to the authorized users. Using key rotation, the
authorized users are able to access both updated/new
blocks and unmodified ones that are encrypted under
older versions of the current key.

4.3 Notations

− F = {b1, b2, . . . , bm} is a data file
− h is a cryptographic hash function
− DEK is a data encryption key
− EDEK is a symmetric encryption algorithm under

DEK, e.g., AES (advanced encryption standard)
− E−1

DEK is a symmetric decryption under DEK

− F̃ is an encrypted version of the file blocks
− FHTTP is a combined hash value for F̃ , and is

computed and stored by the TTP
− THTTP is a combined hash value for the BST, and is

computed and stored by the TTP
− ctr is a counter kept by the data owner to indicate

the version of the most recent key
− Rot = 〈ctr, bENC(Kctr)〉 is a rotator, where

bENC(Kctr) is a broadcast encryption of Kctr

− ⊕ is an XOR operator

4.4 Block Status Table

The block status table (BST) is a small dynamic data struc-
ture used to reconstruct and access file blocks outsourced
to the CSP. The BST consists of three columns: serial
number (SN), block number (BN), and key version
(KV). SN is an indexing to the file blocks. It indicates
the physical position of each block in the data file. BN
is a counter used to make a logical numbering/indexing
to the file blocks. Thus, the relation between BN and
SN can be viewed as a mapping between the logical
number BN and the physical position SN . The column
KV indicates the version of the key that is used to
encrypt each block in the data file.

The BST is implemented as a linked list to simplify
the insertion and deletion of table entries. During imple-
mentation, SN is not needed to be stored in the table;
SN is considered to be the entry/table index. Thus, each
table entry contains just two integers BN and KV (8
bytes), i.e., the total table size is 8m bytes, where m is
the number of file blocks.

When a data file is initially created, the owner ini-
tializes both ctr and KV of each block to 1. If block
modification or insertion operations are to be performed
following a revocation, ctr is incremented by 1 and KV
of that modified/new block is set to be equal to ctr.

Fig. 2 shows some examples demonstrating the
changes in the BST due to dynamic operations on a data
file F = {bj}1≤j≤8. When the file blocks are initially
created (Fig. 2a), ctr is initialized to 1, SN j = BN j =
j, and KVj = 1: 1 ≤ j ≤ 8. Fig. 2b shows no change for
updating the block at position 5 since no revocation is
performed. To insert a new block after position 3 in the
file F , Fig. 2c shows that a new entry 〈4, 9, 1〉 is inserted
in the BST after SN 3, where 4 is the physical position
of the newly inserted block, 9 is the new logical block
number computed by incrementing the maximum of all
previous logical block numbers, and 1 is the version of
the key used for encryption.

A first revocation in the system increments ctr by 1
(ctr = 2). Modifying the block at position 5 following a

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

5

revocation (Fig. 2d) results in setting KV5 = ctr. Thus,
the table entry at position 5 becomes 〈5, 4, 2〉. Fig. 2e
shows that a new block is to be inserted after position 6
following a second revocation, which increments ctr to
be 3. In Fig. 2e, a new table entry 〈7, 10, 3〉 is inserted
after SN 6, where KV7 is set to be equal to ctr (the most
recent key version). Deleting a block at position 2 from
the data file requires deleting the table entry at SN 2 and
shifting all subsequent entries one position up (Fig. 2f).
Note that during all dynamic operations, SN indicates
the actual physical positions of the data blocks in F .

Fig. 2: Changes in the BST due to different dynamic operations
on a file F = {bj}1≤j≤8.

4.5 Procedural Steps of the Proposed Scheme

4.5.1 Setup and File Preparation

The system setup has two parts: one is done on the
owner side, and the other is done on the TTP side.

Owner Role. The data owner initializes ctr to 1, and
generates an initial secret key Kctr/K1. Kctr can be
rotated forward following user revocations, and rotated
backward to enable authorized users to access blocks
that are encrypted under older versions of Kctr.

For a file F = {bj}1≤j≤m, the owner generates a
BST with SN j = BN j = j and KVj = ctr. To achieve
privacy-preserving, the owner creates an encrypted file
version F̃ = {b̃j}1≤j≤m, where b̃j = EDEK(BN j ||bj)
and DEK = h(Kctr).2 Moreover, the owner creates a
rotator Rot = 〈ctr, bENC(Kctr)〉, where bENC enables
only authorized users to decrypt Kctr and access the
outsourced file. The owner sends {F̃ ,BST, Rot} to the
TTP, and deletes the data file from its local storage.
Embedding BN j with the block bj during the encryption
process supports in reconstructing the file blocks in the
correct order (more details will be explained later).

TTP Role. To resolve disputes that may arise

2Hash in needed to compress the size of Kctr

regarding data integrity/newness, the TTP computes
combined hash values for the encrypted file F̃ and
the BST. It computes FHTTP = ⊕m

j=1 h(b̃j) and
THTTP = ⊕m

j=1 h(BN j ||KVj), then sends {F̃ ,BST} to
the CSP. The TTP keeps only FHTTP and THTTP on
its local storage.

Remark 2. The BST is used by authorized users to recon-
struct and access the outsourced data file. The proposed
scheme assumes that the owner is intermittently online
and the users are enabled to access the data even when
the owner is offline. To this end, the CSP stores a copy
of the BST along with the outsourced data file. When a
user requests to access the data, the CSP responds by
sending both the BST and the encrypted file F̃ .

Moreover, the BST is used during each dynamic oper-
ation on the outsourced data file, where one table entry
is modified/inserted/deleted with each dynamic change
on the block level. If the BST is stored only on the CSP
side, it needs to be retrieved and validated each time
the data owner wants to issue a dynamic request. To
avoid such communication and computation overheads,
the owner keeps a local copy of the BST, and thus there
are two copies of the BST: one is stored on the owner
side referred to as BSTO, and the other is stored on the
CSP side referred to as BSTC . Recall that the BST is a
small dynamic data structure with a table entry size = 8
bytes. For 1GB file with 4KB block size, the BST size is
only 2MB (0.2% of the file size). Table 1 summarizes the
data stored by each component in the proposed scheme.

TABLE 1: Data stored by each component in the system.

Owner TTP CSP
ctr, Kctr , BSTO Rot, FHTTP , THTTP

˜F , BSTC

4.5.2 Dynamic Operations on the Outsourced Data

The dynamic operations in the proposed scheme are
performed at the block level via a request in the general
form 〈BlockOp, TEntryBlockOp, j, KVj , h(b̃j),
RevFlag, b∗〉, where BlockOp corresponds to block
modification (denoted by BM), block insertion (denoted
by BI), or block deletion (denoted by BD). TEntryBlockOp
indicates an entry in BSTO corresponding to the issued
dynamic request. The parameter j indicates the block in-
dex on which the dynamic operation is to be performed,
KVj is the value of the key version at index j of BSTO

before running a modification operation, and h(b̃j) is
the hash value of the block at index j before modifi-
cation/deletion. RevFlag is a 1-bit flag (true/false and
is initialized to false) to indicate whether a revocation
has been performed, and b∗ is the new block value.

Modification. For a file F = {b1, b2, . . . , bm}, suppose
the owner wants to modify a block bj with a block
b′j . Fig. 3 describes the steps performed by each sys-
tem component (owner, CSP, and TTP) during block
modification. The owner uses the technique of one-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

6

sender-multiple-receiver (OSMR) transmission to send
the modify request to both the CSP and the TTP.

The TTP updates the combined hash value FHTTP

for F̃ through the step FHTTP = FHTTP ⊕h(b̃j)⊕h(b̃′j),
which simultaneously replaces the hash of the old block
h(b̃j) with the new one h(b̃′j). This is possible due to the
basic properties of the ⊕ operator. The same idea is used
when RevFlag = true to update the value THTTP .

Insertion. In a block insertion operation, the owner
wants to insert a new block b̄ after index j in a file
F = {b1, b2, . . . , bm}, i.e., the newly constructed file
F ′ = {b1, b2, . . . , bj , b̄, . . . , bm+1}, where bj+1 = b̄. Fig. 4
describes the steps performed by each system compo-
nent (owner, CSP, and TTP) during block insertion.

Append. It means adding a new block at the end of the
outsourced data. It can simply be implemented via insert
operation after the last block of the data file.

Deletion. When one block is deleted all subsequent
blocks are moved one step forward. Fig. 5 describes the
steps performed by each system component (owner, CSP,
and TTP) during block deletion. The step FHTTP =
FHTTP⊕h(b̃j) is used to delete the hash value of b̃j from
the combined hash FHTTP (properties of ⊕ operator).
The same idea is used with the THTTP value.

4.5.3 Data Access and Cheating Detection

Fig. 6 shows the verifications performed for the data
received from the CSP, and presents how authorized
users get access to the outsourced file.

An authorized user sends a data-access request to
both the CSP and the TTP to access the outsourced
file. For achieving non-repudiation, the CSP generates
two signatures σF and σT for F̃ and BSTC , respectively.
The user receives {F̃ , BSTC σF , σT } from the CSP, and
{FHTTP , THTTP , Rot} from the TTP. The authorized
user verifies the signatures, and proceeds with the data
access procedure only if both signatures are valid.

The authorized user verifies the contents of BSTC

entries by computing THU = ⊕m
j=1 h(BN j ||KVj), and

comparing it with the authentic value THTTP received
from the TTP. If the user claims that THU �= THTTP , a
report is issued to the owner and the TTP is invoked to
determine the dishonest party.

In case of THU = THTTP , the user continues to
verify the contents of the file F̃ by computing FHU =
⊕m

j=1 h(b̃j) and comparing with FHTTP . If there is a
dispute that FHU �= FHTTP , the owner is informed and
we resort to the TTP to resolve such a conflict.

For the authorized user to access the encrypted file
F̃ = {b̃j}1≤j≤m, BSTC and Rot are used to generate the
key DEK that decrypts the block b̃j . The component
bENC(Kctr) of Rot is decrypted to get the most recent
key Kctr. Using the key rotation technique, the user
rotates Kctr backward with each block until it reaches the
version that is used to decrypt the block b̃j . Both ctr and
the key version KVj can determine how many rotation

/* Modification of a block bj with b′j for the outsourced file */
/* RevFlag is initialized to false */
Data Owner

1) If the access of one or more users has been revoked then
a) Rolls Kctr forward (using key rotation)
b) Increments ctr = ctr + 1, and sets RevFlag = true
c) Copies KVj from BSTO to KVj (i.e., KVj = KVj)
d) Sets KVj = ctr in BSTO , and generates Rot =

〈ctr, bENC(Kctr)〉
e) Sends Rot to the TTP

2) Creates an encrypted block b̃′j = EDEK(BN j ||b′j), where
DEK = h(Kctr)

3) Forms a block-modify entry TEntryBM = {BN j ,KVj}
4) Sends a modify request 〈BM, TEntryBM, j, KVj , h(b̃j),

RevFlag, b̃′j〉 to both the CSP and the TTP (OSMR
transmission), where h(b̃j) is the hash of the outsourced
block to be modified. The KVj is not sent in the modify
request if RevFlag = false

5) The CSP accepts the modify request only if {BN j ,KVj}
sent from the owner matches {BN j ,KVj} in BSTC , and
h(b̃j) is equal to the hash of b̃j on the cloud server (to
guarantee that correct values are sent to the TTP).

CSP /* upon accepting the modify request from the owner */
1) Replaces the block bj with b′j in the outsourced file ˜F
2) If RevFlag = true then

....Updates the BSTC entry at index j using TEntryBM.
TTP

1) Updates FHTTP = FHTTP ⊕ h(b̃j)⊕ h(b̃′j)
2) If RevFlag = true then

a) Updates the previously stored Rot with the newly
received value

b) Updates THTTP = THTTP ⊕ h(BN j ||KVj) ⊕
h(BN j ||KVj)

Fig. 3: Block modification procedure in the proposed scheme.

steps for Kctr with each block b̃j . Decrypting the block
b̃j returns (BN j ||bj). Both BN j and BSTC are utilized
to get the physical block position SN j into which the
block bj is inserted, and thus the file F is reconstructed
in plain form.

Optimization. In Fig. 6, the backward key rotation done
in the inner for loop of step 7.b can be highly optimized
by computing a set of keys Q = {Ki} from Kctr. Each Ki

in Q is the result of rotating Kctr backward ctr− i times.
For example, if ctr = 20, a set Q = {K1,K5,K10,K15}
can be computed from Kctr. To decrypt a block b̃j , the
authorized user chooses one key Ki from Q, which
has the minimum positive distance i − KVj . Then, Ki

is rotated backward to get the actual key that is used
to decrypt the block b̃j . A relatively large portion of the
outsourced data is kept unchanged on the CSP, and thus
K1 from Q can be used to decrypt many blocks without
any further key rotation. The size of Q is negligible
compared with the size of the received data file.

Fig. 7 shows how the TTP determines the dishonest party
in the system. The TTP verifies the signatures σT and
σF , which are previously verified and accepted by the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

7

/* Insertion of a block b̄ after index j in the outsourced file */
/* RevFlag is initialized to false */
Data Owner

1) If the access of one or more users has been revoked then
a) Rolls Kctr forward (using key rotation)
b) Increments ctr = ctr + 1, and sets RevFlag = true
c) Generates Rot = 〈ctr, bENC(Kctr)〉
d) Sends Rot to the TTP

2) Constructs a new block-insert table entry TEntryBI =
{BN j+1,KVj+1} = {1 + Max{BN j}1≤j≤m, ctr}, and
inserts this entry in BSTO after index j

3) Creates an encrypted block ˜̄b = EDEK(BN j ||b̄), where
DEK = h(Kctr)

4) Sends a request 〈BI, TEntryBI, j, null, null, RevFlag,
˜̄b〉 to both the CSP and the TTP (OSMR transmission).

CSP /* upon receiving the insert request from the owner */

1) Inserts the block ˜̄b after index j in the outsourced file ˜F
2) Inserts the table entry TEntryBI after index j in the BSTC.

TTP
1) Updates FHTTP = FHTTP ⊕ h(˜̄b)
2) Updates THTTP = THTTP ⊕ h(BN j+1||KVj+1)
3) If RevFlag = true then

...Replaces Rot with the newly received value

Fig. 4: Block insertion procedure in the proposed scheme.

/* Deletion of a block bj from the outsourced file */
Data Owner

1) Copies the entry at index j from BSTO to a block-delete
table entry TEntryBD = {BN j ,KVj}

2) Deletes the entry at index j from BSTO

3) Sends a request 〈BD, TEntryBD, j, null, h(b̃j), false,
null〉 to both the CSP and the TTP (OSMR), where h(b̃j)
is the hash of the outsourced block to be deleted

4) The CSP accepts the delete request only if TEntryBD sent
from the owner matches {BN j ,KVj} in BSTC and h(b̃j)
is equal to the hash of the block b̃j on the cloud server
(to guarantee that correct values are sent to the TTP).

CSP /* upon receiving the delete request from the owner */
1) Deletes the block at index j (block b̃j) from the out-

sourced file ˜F
2) Deletes the entry at index j from the BSTC.

TTP
1) Updates FHTTP = FHTTP ⊕ h(b̃j)
2) Updates THTTP = THTTP ⊕ h(BN j ||KVj)

Fig. 5: Block deletion procedure in the proposed scheme.

authorized user. If any signature is invalid, this indicates
that the owner/user is dishonest for corrupting either
the data or the signatures. In case of valid signatures,
the TTP computes temporary combined hash values
THtemp = ⊕m

j=1 h(BN j ||KVj) and FHtemp = ⊕m
j=1 h(b̃j).

If THtemp �= THTTP or FHtemp �= FHTTP , this indicates
that the CSP is dishonest for sending corrupted data, oth-
erwise the owner/user is dishonest for falsely claiming
integrity violation of received data. The security analysis
of the proposed scheme is given in Appendix B.

1) An authorized user sends a data-access request to both
the CSP and the TTP

2) The CSP responds by sending the outsourced file ˜F =
{b̃j}1≤j≤m associated with a signature σF (CSP’s signa-
ture on the entire file), and sending BSTC associated with
a signature σT (CSP’s signature on the entire table) to the
authorized user

3) The authorized user verifies σF and σT , and accepts the
data only if σF and σT are valid signatures

4) The TTP sends FHTTP , THTTP , and Rot =
〈ctr, bENC(Kctr)〉 to the authorized user

5) Verification of the BSTC entries
a) The user computes THU = ⊕m

j=1 h(BN j ||KVj)
b) If the user claims that THU �= THTTP then

...report ”integrity violation” to the owner and

...invoke cheating detection procedure (Fig. 7)
6) Verification of the data file ˜F

a) The authorized user computes FHU = ⊕m
j=1 h(b̃j)

b) If the user claims that FHU �= FHTTP then
...report ”integrity violation” to the owner and
...invoke cheating detection procedure (Fig. 7)

7) Data access
a) The authorized user gets Kctr by decrypting

bENC(Kctr) part in Rot
b) for j = 1 to m do

/* rotate backward the current Kctr to the version that
is used to decrypt the block b̃j */
...– Set Kj = Kctr

...– for i = 1 to ctr - KVj do

.........Kj = (Kj)
e mod N /* N is the RSA modulus*/

......end for

...– (BN j ||bj) = E−1
DEK(b̃j), where DEK = h(Kj)

...– Get the physical position SN j of bj using BN j

..... and BSTC

...– The authorized user places bj in the correct order

......of the decrypted file F
end for

Fig. 6: Data access procedure in the proposed scheme.

Cheating Detection Procedure
The TTP is invoked to determine the dishonest party:

1) The TTP verifies σT and σF

2) If any signature verification fails then
...TTP reports ”dishonest owner/user” and exits

3) The TTP computes THtemp = ⊕m
j=1 h(BN j ||KVj) and

FHtemp = ⊕m
j=1 h(b̃j)

4) If THtemp �= THTTP or FHtemp �= FHTTP then
...TTP reports ”dishonest CSP” and exits
...../* data is corrupted */
else
...TTP reports ”dishonest owner/user” and exits
...../* data is NOT corrupted */

Fig. 7: Cheating detection procedure in the proposed scheme.

5 PERFORMANCE ANALYSIS

5.1 Settings and Overheads

The data file F used in our performance analysis is of
size 1GB with 4KB block size. Without loss of generality,
we assume that the desired security level is 128-bit. Thus,

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

8

we utilize a cryptographic hash h of size 256 bits (e.g.,
SHA-256), an elliptic curve defined over Galois field
GF (p) with |p| = 256 bits (used for bENC), and BLS
(Boneh-Lynn-Shacham) signature [24] of size 256 bits
(used to compute σF and σT).

Here we evaluate the performance of the proposed
scheme by analyzing the storage, communication, and
computation overheads. We investigate overheads that
the proposed scheme brings to a cloud storage system
for static data with only confidentiality requirement. This
investigation demonstrates whether the features of our
scheme come at a reasonable cost. The computation
overhead is estimated in terms of the used cryptographic
functions, which are notated in Table 2.

Let m and n denote the number of file blocks and
the total number of system users, respectively. Table 3
presents a theoretical analysis for the storage, commu-
nication, and computation overheads of the proposed
scheme. Table 4 summarizes the storage and commu-
nication overheads for our data file F (1GB with 4KB
block size) and 100,000 authorized users.

TABLE 2: Notation of cryptographic functions.

Notation Description Notation Description
h Cryptographic hash Sσ Signature generate
FR Forward rotation Vσ Signature verify
BR Backward rotation bENC−1 bENC Decryption
EDEK Symmetric encryption using the key DEK

5.2 Comments

Storage overhead. It is the additional storage space used
to store necessary information other than the outsourced
file F̃ . The overhead on the owner side is due to stor-
ing BSTO. An entry of BSTO is of size 8 bytes (two
integers), and the total number of entries equals the
number of file blocks m. During implementation SN
is not needed to be stored in BSTO; SN is considered
to be the entry/table index (BSTO is implemented as
a linked list). The size of BSTO for the file F is only
2MB (0.2% of F). BSTO size can be further reduced
if the file F is divided into larger blocks (e.g., 16KB).
Like the owner, the storage overhead on the CSP side
comes from the storage of BSTC . To resolve disputes that
may arise regarding data integrity or newness property,
the TTP stores FHTTP and THTTP , each of size 256
bits. Besides, the TTP stores Rot = 〈ctr, bENC(Kctr)〉
that enables the data owner to enforce access control
for the outsourced data. The ctr is 4 bytes, and bENC
has storage complexity O(

√
n), which is practical for

an organization (data owner) with n = 100,000 users. A
point on the elliptic curve used to implement bENC can
be represented by 257 bits (≈ 32 bytes) using compressed
representation [25]. Therefore, the storage overhead on
the TTP side is close to 10KB, which is independent of
the outsourced file size. Overall, the storage overhead
for the file F is less than 4.01MB (≈ 0.4% of F).

Communication overhead. It is the additional informa-

tion sent along with the outsourced data blocks. During
dynamic operations, the communication overhead on
the owner side comes from the transmission of a block
operation BlockOP (can be represented by 1 byte), a
table entry TEntryBlockOP (8 bytes), and a block index j (4
bytes). If a block is to be modified following a revocation
process, KVj (4 bytes) is sent to the TTP. Moreover, in
case of a block modification/deletion, the owner sends
a hash (32 bytes) of the block to be modified/deleted
to the TTP for updating FHTTP . Recall that the owner
also sends Rot (4 + 32

√
n bytes) to the TTP if block mod-

ifications/insertions are to be performed following user
revocations. Therefore, in the worst case scenario (i.e.,
block modifications following revocations), the owner’s
overhead is less than 10KB. The Rot represents the major
factor in the communication overhead, and thus the
overhead is only 45 bytes if block modification/deletion
operations are to be preformed without revocations
(only 13 bytes for insertion operations). In practical
applications, the frequency of dynamic requests to the
outsourced data is higher than that of user revocations.
Hence, the communication overhead due to dynamic
changes on the data is about 1% of the block size (the
block is 4KB in our analysis).

As a response to access the outsourced data, the CSP
sends the file along with σF (32 bytes), σT (32 bytes),
and BSTC (8m bytes). Moreover, the TTP sends FHTTP

(32 bytes), THTTP (32 bytes), and Rot. Thus, the com-
munication overhead due to data access is 64 + 8m bytes
on the CSP side, and 68 + 32

√
n bytes on the TTP side.

Overall, to access the file F , the proposed scheme has
communication overhead close to 2.01MB (≈ 0.2% of F).

Computation overhead. A cloud storage system for
static data with only confidentiality requirement has
computation cost for encrypting the data before out-
sourcing and decrypting the data after being received
from the cloud servers. For the proposed scheme, the
computation overhead on the owner side due to dy-
namic operations (modification/insertion) comes from
computing DEK = h(Kctr) and encrypting the up-
dated/inserted block, i.e., the overhead is one hash
and one encryption operations. If a block modifica-
tion/insertion operation is to be performed following a
revocation of one or more users, the owner performs
FR to roll Kctr forward, and bENC to generate the Rot.
Hence, the computation overhead on the owner side for
the dynamic operations is h + EDEK + FR + bEnc
(worst case scenario). Updating BSTO and BSTC is done
without usage of cryptographic operations (add, remove,
or modify a table entry).

To reflect the most recent version of the outsourced
data, the TTP updates the values FHTTP and THTTP .
If no revocation has been performed before sending a
modify request, only FHTTP is updated on the TTP side.
Therefore, the maximum computation overhead on the
TTP side for updating both FHTTP and THTTP is 4h.

Before accessing the data received from the CSP, the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

9

TABLE 3: Overhead analysis of the proposed scheme. The overheads shown in square brackets are not always present and
are incurred when revocation(s) actually occur.

Overheads Operations Owner User CSP TTP
Storage (in bytes) 8m — 8m 68+32

√
n

Communication(in bytes) Dynamic Operations 45 + [8 + 32
√
n] — — —

Data Access — — 64 + 8m 68 + 32
√
n

Computation

Dynamic Operations h + EDEK +
[FR+ bENC]

— — 2h + [2h] ‡

Data Access — 2Vσ + 3mh +
2Sσ —

bENC−1 + [BR] ‡
Cheating Detection 2Vσ + [2mh] ‡

‡ The cost of ⊕ is usually negligible and is omitted in the overhead expressions.

TABLE 4: Storage and communication overheads for the data file F (1GB with 4KB block size) and 100,000 authorized users.
The values shown in square brackets are not always present and are incurred when revocation(s) actually occur.

Overheads Operations Owner User CSP TTP
Storage 2MB — 2MB ≈ 10KB †

Communication Dynamic Operations 45 bytes + [≈ 10KB] — — —
Data Access — — ≈ 2MB ≈ 10KB

† Storage overhead is independent of F .

authorized user verifies two signatures (generated by the
CSP), BSTC entries, and the data file. These verifications
cost 2Vσ + 2mh. Moreover, the authorized user decrypts
bENC(Kctr) part in the Rot to get Kctr. For each received
block, Kctr is rotated backward to obtain the actual key
that is used to decrypt the data block. The optimized
way of key rotation (using the set Q) highly affects the
performance of data access; many blocks need a few or
no rotations. Moreover, one hash operation is performed
per block to compute DEK. Overall, the computation
overhead due to data access is 2Vσ + 3mh + bENC−1 +
[BR] on the owner side, and 2Sσ on the CSP side.

For determining a dishonest party, the TTP verifies σT

and σF . In case of valid signatures, the TTP proceeds
to compute THtemp and FHtemp. The values THtemp

and FHtemp are compared with THTTP and FHTTP ,
respectively. Hence, the maximum computation overhead
on the TTP side due to cheating detection is 2Vσ + 2mh.

6 IMPLEMENTATION AND EXPERIMENTAL
EVALUATION

6.1 Implementation

We have implemented the proposed scheme on top of
Amazon Elastic Compute Cloud (Amazon EC2) and
Amazon Simple Storage Service (Amazon S3) [26] cloud
platforms. Our implementation of the proposed scheme
consists of four modules: OModule (owner module),
CModule (CSP module), UModule (user module), and
TModule (TTP module). OModule, which runs on the
owner side, is a library to be used by the owner to
perform the owner role in the setup and file preparation
phase. Moreover, this library is used by the owner
during the dynamic operations on the outsourced data.
CModule is a library that runs on Amazon EC2 and
is used by the CSP to store, update, and retrieve data
from Amazon S3. UModule is a library to be run at

the authorized users’ side, and include functionalities
that allow users to interact with the TTP and the CSP
to retrieve and access the outsourced data. TModule is
a library used by the TTP to perform the TTP role in
the setup and file preparation phase. Moreover, the TTP
uses this library during the dynamic operations and to
determine the cheating party in the system.

Implementation settings. In our implementation we
use a ”large” Amazon EC2 instance to run CModule.
This instance type provides total memory of size 7.5GB
and 4 EC2 Compute Units (2 virtual cores with 2 EC2
Compute Units each). One EC2 Compute Unit provides
the equivalent CPU capacity of a 1.0 - 1.2GHz 2007
Opteron or 2007 Xeon processor. A separate server in
the lab is used to run TModule. This server has Intel(R)
Xeon(TM) 3.6GHz processor, 2.75GB RAM, and Win-
dows XP operating system. The OModule is executed
on a desktop computer with Intel(R) Xeon(R) 2GHz
processor and 3GB RAM running Windows XP. A laptop
with Intel(R) Core(TM) 2.2GHz processor and 4GB RAM
running Windows 7 is used to execute the UModule. We
outsource a data file of size 1GB to Amazon S3. Algo-
rithms (hashing, broadcast encryption, digital signatures,
etc.) are implemented using MIRACL library version
5.5.4. For a 128-bit security level, bENC uses an elliptic
curve with a 256-bit group order. In the experiments,
we utilize SHA-256, 256-bit BLS signature, and Barreto-
Naehrig (BN) [27] curve defined over prime field GF (p)
with |p| = 256 bits and embedding degree = 12.

6.2 Experimental Evaluation

Here we describe the experimental evaluation of the
computation overhead the proposed scheme brings to
a cloud storage system that has been dealing with static
data with only confidentiality requirement.

Owner computation overhead. To experimentally eval-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

10

uate the computation overhead on the owner side due to
the dynamic operations, we have performed 100 differ-
ent block operations (modify, insert, append, and delete)
with number of authorized users ranging from 20,000 to
100,000. We have run our experiment three times, each
time with a different revocation percentage. In the first
time, 5% of 100 dynamic operations are executed follow-
ing revocations. We increased the revocation percentage
to 10% for the second time and 20% for the third time.
Fig. 8 shows the owner’s average computation overhead
per operation. For a large organization (data owner) with
100,000 users, performing dynamic operations and en-
forcing access control with 5% revocations add about 63
milliseconds of overhead. With 10% and 20% revocation
percentages, which are high percentages than an average
value in practical applications, the owner overhead is
0.12 and 0.25 seconds, respectively.

Scalability (i.e., how the system performs when more
users are added) is an important feature of cloud storage
systems. The access control of the proposed scheme
depends on the square root of the total number of system
users. Fig. 8 shows that for a large organization with
105 users, performing dynamic operations and enforcing
access control for outsourced data remains practical.

�

����

���

����

���

����

���

������ �����

C
o
m
p
u
ta
ti
o
n
 O
v
e
rh
e
a
d
 (
S
e
c
)

�	
��
�

��	
��

��	
��

�� ������ ������ �������

of System Users

�������

�������

�������

Fig. 8: Owner’s average computation overhead due to dynamic
operations.

Table 5 shows the computation overheads on the TTP,
the CSP, and the authorized users sides.

TABLE 5: Experimental results of the computation overheads

Component TTP Users CSP
Computation Overhead 0.04 ms / 3.59 s 0.55 s 6.04 s

TTP computation overhead. In the worst case, the TTP
executes only 4 hashes per dynamic request to reflect
the change on the outsourced data. Thus, the maximum
computation overhead on the TTP side is about 0.04
milliseconds, i.e., the proposed scheme brings light over-
head on the TTP during the normal system operations.

To identify the dishonest party in the system in case
of disputes, the TTP verifies two signatures (σF and σT),
computes combined hashes for the data (file and table),
and compare the computes hashes with the authentic
values (THTTP and FHTTP). Thus, the computation
overhead on the TTP side is about 3.59 seconds. Through
our experiments, we use only one server to simulate the
TTP and accomplish its work. The TTP may choose to
split the work among a few devices or use a single device

with a multi-core processor which is becoming prevalent
these days, and thus the computation time on the TTP
side is significantly reduced in many applications.

User computation overhead. The computation overhead
on the user side due to data access comes from five
aspects divided into two groups. The first group involves
signatures verification and hash operations to verify the
received data (file and table). The second group involves
broadcast decryption, backward key rotations, and hash
operations to compute the DEK. The first group costs
about 5.87 seconds, which can be easily hidden in the
receiving time of the data (1GB file and 2MB table).

To investigate the time of the second group, we access
the file after running 100 different block operations
(with 5% and 10% revocation percentages). Moreover, we
implement the backward key rotations in the optimized
way. The second group costs about 0.55 seconds, which
can be considered as the user’s computation overhead
due to data access.

CSP computation overhead. As a response to the data
access request, the CSP computes two signatures: σF and
σT . Thus, the computation overhead on the CSP side due
to data access is about 6.04 seconds and can be easily
hidden in the transmission time of the data (1GB file
and 2MB table).

7 CONCLUSIONS

In this paper, we have proposed a cloud-based storage
scheme which supports outsourcing of dynamic data,
where the owner is capable of not only archiving and ac-
cessing the data stored by the CSP, but also updating and
scaling this data on the remote servers. The proposed
scheme enables the authorized users to ensure that they
are receiving the most recent version of the outsourced
data. Moreover, in case of dispute regarding data in-
tegrity/newness, a TTP is able to determine the dis-
honest party. The data owner enforces access control for
the outsourced data by combining three cryptographic
techniques: broadcast encryption, lazy revocation, and
key rotation. We have studied the security features of
the proposed scheme.

We have investigated the overheads added by our
scheme when incorporated into a cloud storage model
for static data with only confidentiality requirement. The
storage overhead is ≈ 0.4% of the outsourced data size,
the communication overhead due to block-level dynamic
changes on the data is ≈ 1% of the block size, and the
communication overhead due to retrieving the data is ≈
0.2% of the outsourced data size. For a large organization
with 105 users, performing dynamic operations and
enforcing access control add about 63 milliseconds of
overhead. Therefore, important features of outsourcing
data storage can be supported without excessive over-
heads in storage, communication, and computation.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

11

REFERENCES

[1] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Pe-
terson, and D. Song, “Provable data possession at untrusted
stores,” in Proceedings of the 14th ACM Conference on Computer and
Communications Security, ser. CCS ’07, 2007, pp. 598–609.

[2] F. Sebé, J. Domingo-Ferrer, A. Martinez-Balleste, Y. Deswarte, and
J.-J. Quisquater, “Efficient remote data possession checking in
critical information infrastructures,” IEEE Trans. on Knowl. and
Data Eng., vol. 20, no. 8, 2008.

[3] G. Ateniese, R. D. Pietro, L. V. Mancini, and G. Tsudik, “Scalable
and efficient provable data possession,” in Proceedings of the 4th
International Conference on Security and Privacy in Communication
Netowrks, 2008, pp. 1–10.

[4] C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia, “Dynamic
provable data possession,” in Proceedings of the 16th ACM Confer-
ence on Computer and Communications Security, 2009, pp. 213–222.

[5] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, “Enabling public
verifiability and data dynamics for storage security in cloud
computing,” in Proceedings of the 14th European Conference on
Research in Computer Security, 2009, pp. 355–370.

[6] A. F. Barsoum and M. A. Hasan, “Provable possession and
replication of data over cloud servers,” Centre For Applied Cryp-
tographic Research, Report 2010/32, 2010, http://www.cacr.math.
uwaterloo.ca/techreports/2010/cacr2010-32.pdf.

[7] R. Curtmola, O. Khan, R. Burns, and G. Ateniese, “MR-PDP:
multiple-replica provable data possession,” in 28th IEEE ICDCS,
2008, pp. 411–420.

[8] A. F. Barsoum and M. A. Hasan, “On verifying dynamic multi-
ple data copies over cloud servers,” Cryptology ePrint Archive,
Report 2011/447, 2011, 2011, http://eprint.iacr.org/.

[9] K. D. Bowers, A. Juels, and A. Oprea, “HAIL: a high-availability
and integrity layer for cloud storage,” in CCS ’09: Proceedings of
the 16th ACM conference on Computer and communications security.
New York, NY, USA: ACM, 2009, pp. 187–198.

[10] Y. Dodis, S. Vadhan, and D. Wichs, “Proofs of retrievability
via hardness amplification,” in Proceedings of the 6th Theory of
Cryptography Conference on Theory of Cryptography, 2009.

[11] A. Juels and B. S. Kaliski, “PORs: Proofs of Retrievability for
large files,” in CCS’07: Proceedings of the 14th ACM conference on
Computer and communications security. ACM, 2007, pp. 584–597.

[12] H. Shacham and B. Waters, “Compact proofs of retrievability,” in
ASIACRYPT ’08, 2008, pp. 90–107.

[13] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu,
“Plutus: Scalable secure file sharing on untrusted storage,” in
Proceedings of the FAST 03: File and Storage Technologies, 2003.

[14] E.-J. Goh, H. Shacham, N. Modadugu, and D. Boneh, “Sirius:
Securing remote untrusted storage,” in Proceedings of the Network
and Distributed System Security Symposium, NDSS, 2003.

[15] G. Ateniese, K. Fu, M. Green, and S. Hohenberger, “Improved
proxy re-encryption schemes with applications to secure dis-
tributed storage,” in NDSS, 2005.

[16] S. D. C. di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and
P. Samarati, “Over-encryption: Management of access control evo-
lution on outsourced data,” in Proceedings of the 33rd International
Conference on Very Large Data Bases. ACM, 2007, pp. 123–134.

[17] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based
encryption for fine-grained access control of encrypted data,” in
CCS ’06, 2006, pp. 89–98.

[18] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable,
and fine-grained data access control in cloud computing,” in
INFOCOM’10, 2010, pp. 534–542.

[19] R. A. Popa, J. R. Lorch, D. Molnar, H. J. Wang, and L. Zhuang,
“Enabling security in cloud storage SLAs with cloudproof,” in
Proceedings of the 2011 USENIX conference, 2011.

[20] K. E. Fu, “Group sharing and random access in cryptographic
storage file systems,” Master’s thesis, MIT, Tech. Rep., 1999.

[21] W. Wang, Z. Li, R. Owens, and B. Bhargava, “Secure and effi-
cient access to outsourced data,” in Proceedings of the 2009 ACM
workshop on Cloud computing security, 2009, pp. 55–66.

[22] M. Backes, C. Cachin, and A. Oprea, “Secure key-updating for
lazy revocation,” in 11th European Symposium on Research in Com-
puter Security, 2006, pp. 327–346.

[23] D. Boneh, C. Gentry, and B. Waters, “Collusion resistant broadcast
encryption with short ciphertexts and private keys,” in Advances
in Cryptology - CRYPTO, 2005, pp. 258–275.

[24] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the
weil pairing,” in ASIACRYPT ’01: Proceedings of the 7th Interna-
tional Conference on the Theory and Application of Cryptology and
Information Security, London, UK, 2001, pp. 514–532.

[25] P. S. L. M. Barreto and M. Naehrig, “IEEE P1363.3 submission:
Pairing-friendly elliptic curves of prime order with embedding
degree 12,” New Jersey: IEEE Standards Association, 2006.

[26] Amazon Web Service, http://aws.amazon.com/.
[27] P. S. L. M. Barreto and M. Naehrig, “Pairing-friendly elliptic

curves of prime order,” in Proceedings of SAC 2005, volume 3897 of
LNCS. Springer-Verlag, 2005, pp. 319–331.

[28] D. L. G. Filho and P. S. L. M. Barreto, “Demonstrating data
possession and uncheatable data transfer,” Cryptology ePrint
Archive, Report 2006/150, 2006.

[29] D. Naor, M. Naor, and J. B. Lotspiech, “Revocation and tracing
schemes for stateless receivers,” in Proceedings of the 21st Annual
International Cryptology Conference on Advances in Cryptology, ser.
CRYPTO ’01. Springer-Verlag, 2001, pp. 41–62.

[30] M. Blaze, G. Bleumer, and M. Strauss, “Divertible protocols and
atomic proxy cryptography,” in EUROCRYPT, 1998, pp. 127–144.

[31] M. J. Atallah, K. B. Frikken, and M. Blanton, “Dynamic and
efficient key management for access hierarchies,” in Proceedings of
the 12th ACM Conference on Computer and Communications Security,
ser. CCS ’05. ACM, 2005, pp. 190–202.

[32] J. Feng, Y. Chen, W.-S. Ku, and P. Liu, “Analysis of integrity
vulnerabilities and a non-repudiation protocol for cloud data
storage platforms,” in Proceedings of the 2010 39th International
Conference on Parallel Processing, 2010, pp. 251–258.

[33] J. Feng, Y. Chen, and D. H. Summerville, “A fair multi-party
non-repudiation scheme for storage clouds,” in 2011 International
Conference on Collaboration Technologies and Systems, 2011, pp. 457–
465.

Ayad Barsoum is a Ph.D. Candidate in the
Department of Electrical and Computer Engi-
neering at University of Waterloo since 2009.
He received his B.Sc. and M.Sc. degrees in
computer science from Ain Shams University,
Egypt, in 2000 and 2004, respectively. He is a
member of the Centre for Applied Cryptographic
Research at the University of Waterloo.

Barsoum was awarded the Ain Shams Univer-
sity Scholarship of Excellence four times. At the
University of Waterloo, Barsoum has received

the Graduate Research Studentship, the International Doctoral Award,
and the University of Waterloo Graduate Scholarship.

Anwar Hasan received the B.Sc. degree in
electrical and electronic engineering, the M.Sc.
degree in computer engineering, both from the
Bangladesh University of Engineering and Tech-
nology, in 1986 and 1988, respectively, and the
Ph.D. degree in electrical engineering from the
University of Victoria in 1992.

Dr. Hasan joined the Department of Electrical
and Computer Engineering, University of Water-
loo (UW), Ontario, Canada in 1993 and has been
a full professor since 2002. At UW, he is also a

member of the Centre for Applied Cryptographic Research, the Center
for Wireless Communications, and the VLSI Research group.

Dr. Hasan is a recipient of the Raihan Memorial Gold Medal. At
the University of Victoria, he was awarded the President’s Research
Scholarship four times. At UW, he received a Faculty of Engineering Dis-
tinguished Performance Award in 2000, and Outstanding Performance
Awards in 2004 and 2010. He served on the program and executive
committees of several conferences. From 2000 to 2004, he was an
associate editor of the IEEE Transactions of Computers. He is a licensed
professional engineer of Ontario.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

