
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. *, NO. *, * * 1

QoS Ranking Prediction for Cloud Services
Zibin Zheng, Member, IEEE , Xinmaio Wu, Yilei Zhang, Student Member, IEEE ,

Michael R. Lyu, Fellow, IEEE, and Jianmin Wang

Abstract—Cloud computing is becoming popular. Building high quality cloud applications is a critical research problem. QoS rankings
provide valuable information for making optimal cloud service selection from a set of functionally equivalent service candidates. To
obtain QoS values, real-world invocations on the service candidates are usually required. To avoid the time-consuming and expensive
real-world service invocations, this paper proposes a QoS ranking prediction framework for cloud services by taking advantage of the
past service usage experiences of other consumers. Our proposed framework requires no additional invocations of cloud services
when making QoS ranking prediction. Two personalized QoS ranking prediction approaches are proposed to predict the QoS rankings
directly. Comprehensive experiments are conducted employing real-world QoS data, including 300 distributed users and 500 real-world
Web services all over the world. The experimental results show that our approaches outperform other competing approaches.

Index Terms—Quality-of-Service, cloud service, ranking prediction, personalization

�

1 INTRODUCTION

Cloud computing is Internet-based computing, whereby
shared configurable resources (e.g., infrastructure, plat-
form, and software) are provided to computers and other
devices as services [1]. Strongly promoted by the leading
industrial companies (e.g., Amazon, Google, Microsoft,
IBM, etc.), cloud computing is quickly becoming popular
in recent years. Applications deployed in the cloud
environment (named cloud applications in this paper)
are typically large-scale and complex. With the rising
popularity of cloud computing, how to build high-
quality cloud applications becomes an urgently-required
research problem.

Similar to traditional component-based systems, cloud
applications typically involve multiple cloud compo-
nents communicating with each other over application
programming interfaces, such as through Web services.
Figure 1 shows an example of cloud applications. As
shown in the figure, Cloud application 1 is a tourism
Website deployed in the cloud (e.g., Amazon EC2
http://aws.amazon.com/ec2), providing various types
of tourism services to customers. The business process
of this cloud application is composed by a number of
software components, where each component fulfills a
specified functionality. To outsource part of business to
other companies, some of these components invoke other

• Zibin Zheng, Yilei Zhang, and Michael R. Lyu are with the Shenzhen
Research Institute, and Department of Computer Science & Engineering,
The Chinese University of Hong Kong. Zibin Zheng is also with State key
Laboratory of Networking and Switching Technology (Beijing University
of Posts and Telecommunications), Beijing, China. Michael R. Lyu is
also with School of Computer Science, National University of Defence
Technology, Hunan, China. Xinmiao Wu and Jianmin Wang are with the
Department of Computer Science, Sun Yat-sen University, China. E-mail:
zbzheng@cse.cuhk.edu.hk, oceanwxm@126.com, ylzhang@cse.cuhk.edu.hk,
lyu@cse.cuhk.edu.hk, mcswjm@mail.sysu.edu.cn
Corresponding Author: Jianmin Wang

Manuscript received March 01, 2012; revised Aug. 01, 2012;

Service a2

Service a1

Cloud Application 1

Service c2

Service c1

Hotel Booking ServicesAirplane Ticket Services

Cloud

Service b2

Service b1

Car Rental Services

Cloud

Application 2

Cloud

Application 3

Fig. 1. Motivating Example

cloud services (e.g., airplane ticket services, car rental
services, and hotel booking services in Figure 1). These
cloud services (can be implemented as Web services) are
provided and deployed in the cloud by other companies.
These cloud services can also be employed by other
cloud applications (e.g., Cloud application 2 and Cloud
application 3 in Figure 1). Since there are a number of
functionally equivalent services in the cloud, optimal
service selection becomes important. In this paper, ser-
vice users refer to cloud applications that use/invoke the
cloud services. In the context of a service invocation, the
user-side (or client-side) refers to the cloud applications
and server-side refers to the cloud services.

Non-functional performance of cloud services is usu-
ally described by Quality-of-Service (QoS). QoS is an
important research topic in cloud computing. When
making optimal cloud service selection from a set of
functionally equivalent services, QoS values of cloud
services provide valuable information to assist decision

Digital Object Indentifier 10.1109/TPDS.2012.285 1045-9219/12/$31.00 © 2012 IEEE

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. *, NO. *, * * 2

making. In traditional component-based systems, soft-
ware components are invoked locally, while in cloud
applications, cloud services are invoked remotely by
Internet connections. Client-side performance of cloud
services is thus greatly influenced by the unpredictable
Internet connections. Therefore, different cloud applica-
tions may receive different levels of quality for the same
cloud service. In other words, the QoS ranking of cloud
services for a user(e.g., Cloud application 1) cannot be
transferred directly to another user (e.g., Cloud application
2), since the locations of the cloud applications are quite
different. Personalized cloud service QoS ranking is thus
required for different cloud applications.

The most straightforward approach of personalized
cloud service QoS ranking is to evaluate all the candidate
services at the user-side and rank the services based
on the observed QoS values. However, this approach
is impractical in reality, since invocations of cloud ser-
vices may be charged. Even if the invocations are free,
executing a large number of service invocations is time
consuming and resource consuming, and some service
invocations may produce irreversible effects in the real
world. Moreover, when the number of candidate services
is large, it is difficult for the cloud application designers
to evaluate all the cloud services efficiently.

To attack this critical challenge, we propose a personal-
ized ranking prediction framework, named CloudRank, to
predict the QoS ranking of a set of cloud services without
requiring additional real-world service invocations from
the intended users. Our approach takes advantage of
the past usage experiences of other users for making
personalized ranking prediction for the current user.
Extended from its preliminary conference version [24],
the contribution of this paper is two-fold:

• This paper identifies the critical problem of person-
alized QoS ranking for cloud services and proposes
a QoS ranking prediction framework to address the
problem. To the best of our knowledge, CloudRank
is the first personalized QoS ranking prediction
framework for cloud services.

• Extensive real-world experiments are conducted to
study the ranking prediction accuracy of our rank-
ing prediction algorithms compared with other com-
peting ranking algorithms. The experimental results
show the effectiveness of our approach.

• We publicly release our service QoS dataset1 for
future research, which makes our experiments re-
producible.

The rest of this paper is organized as follows: Section
2 introduces our system architecture. Section 3 describes
the proposed CloudRank framework. Section 4 presents
experiments. Section 5 discusses related work and Sec-
tion 6 concludes the paper.

Similarity

Computation

CloudRank Framework

Find Similar

Users Training Data

User (Application) 2

CloudRank1

User (Application) 1

User (Application) m

C
lo
u
d
 N
e
tw
o
rk
in
g
 In
fra
s
tru
c
tu
re

CloudRank2

QoS Ranking Prediction

Fig. 2. System Architecture of CloudRank

2 SYSTEM ARCHITECTURE

Quality-of-Service (QoS) can be measured at the server-
side or at the client-side. While server-side QoS prop-
erties provide good indications of the cloud service
capacities, client-side QoS properties provide more re-
alistic measurements of the user usage experience.
The commonly-used client-side QoS properties include
response-time, throughput, failure probability, etc. This
paper mainly focuses on ranking prediction of client-side
QoS properties, which likely have different values for
different users (or user applications) of the same cloud
service. Figure 2 shows the system architecture of our
CloudRank framework, which provides personalized
QoS ranking prediction for cloud services. The target
users of the CloudRank framework are the cloud appli-
cations, which need personalized cloud service ranking
for making optimal service selection. A user is called ac-
tive user if he/she is requesting ranking prediction from
the CloudRank framework. As shown in Figure 2, a user
(e.g., Cloud application 1 in Figure 1) can obtain service
ranking prediction of all available cloud services from
the CloudRank framework by providing observed QoS
values of some cloud services. More accurate ranking
prediction results can be achieved by providing QoS
values on more cloud services, since the characteristic
of the active user can be mined from the provided data.

Within the CloudRank framework, there are several
modules. Firstly, based on the user-provided QoS values,
similarities between the active user and training users
can be calculated. Secondly, based on the similarity
values, a set of similar users can be identified. After
that, two algorithms are proposed (i.e., CloudRank1 and
CloudRank2) to make personalized service ranking by
taking advantages of the past service usage experiences
of similar users. Finally, the ranking prediction results
are provided to the active user. The training data in the
CloudRank framework can be obtained from: (1) the QoS

1. http://www.zibinzheng.com/tpds2012

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. *, NO. *, * * 3

values provided by other users; and (2) the QoS values
collected by monitoring cloud services.

In our previous work [21], a user-collaborative mecha-
nism is proposed for collecting client-side QoS values of
Web services from different service users. The observed
Web service QoS values can be contributed by users
by running a client-side Web service evaluation appli-
cation [21]. Different from service-oriented applications,
the usage experiences of cloud services are much easier
to be obtained in the cloud environment. The cloud
applications can invoke and record the client-side QoS
performance of the invoked cloud services easily by
using monitoring infrastructure services provided by the
cloud platform. The cloud provider can collect these
client-side QoS values from different cloud applications
easily with approval of application owners. The frame-
work can be used at both design time and runtime.
At runtime, the cloud application may obtain new QoS
values on some cloud services. By providing these values
to our CloudRank server, new QoS ranking prediction
can be obtained. Based on the service QoS ranking,
optimal system reconfiguration can be achieved.

3 QOS RANKING PREDICTION

This section presents our CloudRank QoS ranking pre-
diction framework for cloud services. Section 3.1 calcu-
lates the similarity of the active user with training users
based on their rankings on the commonly-invoked cloud
services. Section 3.2 identifies a set of similar users. Sec-
tion 3.3 presents two QoS ranking prediction algorithms,
named CloudRank1 and CloudRank2, respectively. Section
3.4 analyzes the computational complexity.

3.1 Similarity Computation

Ranking similarity computations compare users’ QoS
rankings on the commonly-invoked services. Suppose
we have a set of three cloud services, on which two
users have observed response-times (seconds) of {1, 2,
4} and {2, 4, 5}, respectively. The response-time values
on these services observed by the two users are clearly
different; nevertheless their rankings are very close as
the services are ordered in the same way. Given two
rankings on the same set of services, the Kendall Rank
Correlation Coefficient (KRCC) [14] evaluates the degree
of similarity by considering the number of inversions of
service pairs which would be needed to transform one
rank order into the other. The KRCC value of user u and
user v can be calculated by :

Sim(u, v) =
C −D

N(N − 1)/2
, (1)

where N is the number of services, C is the number
of concordant pairs between two lists, D is the number
of discordant pairs, and there are totally N(N − 1)/2
pairs for N cloud services. Since C = N(N − 1)/2 −D,
Eq. (1) is equal to Sim(u, v) = 1 − 4D

N(N−1) . Employing

KRCC, the similarity between two service rankings can
be calculated by:

Sim(u, v) = 1−
4×

∑
i,j∈Iu∩Iv

Ĩ((qu,i − qu,j) (qv,i − qv,j))

|Iu ∩ Iv| × (|Iu ∩ Iv| − 1)
,

(2)
where Iu ∩ Iv is the subset of cloud services commonly
invoked by user u and user v, qu,i is the QoS value (e.g.,
response-time, throughput, etc.) of service i observed by
user u, and Ĩ(x) is an indicator function defined as:

Ĩ(x) =

{
1 if x < 0
0 otherwise . (3)

From above definition, the ranking similarity between
two rankings is in the interval of [-1,1], where -1 is
obtained when the order of user u is the exact reverse of
user v, and 1 is obtained when order of user u is equal to
the order of user v. Since KRCC compares service pairs,
the intersection between two users has to be at least 2
(|Iu ∩ Iv| ≥ 2) for making similarity computation.

3.2 Find Similar Users
By calculating similarity values between the current
active user with other training users, the similar users
can be identified. Previous approaches [12], [18] usually
employ information of all the users for making rank-
ing prediction of the current user, which may include
dissimilar users. However, employing QoS values of
dissimilar users will greatly influence the prediction
accuracy. To address this problem, we exclude the users
with negative correlations (negative similarity values)
and only employ the Top-K similar users for making
QoS ranking prediction. In our approach, a set of similar
users S(u) is identified for the active user u by:

N(u) = {v|v ∈ Tu, Sim(u, v) > 0, v �= u}, (4)

where Tu is a set of the Top-K similar users to the
user u and Sim(u, v) > 0 excludes the dissimilar users
with negative similarity values. The value of Sim(u, v)
in Eq. (4) is calculated by Eq. (2).

3.3 QoS Ranking Prediction
Rating-oriented collaborative filtering approaches first
predict the missing QoS values before making QoS rank-
ing (details are provided in Appendix A). The target of
rating-oriented approaches is to predict QoS values as
accurate as possible. However, accurate QoS value pre-
diction may not lead to accurate QoS ranking prediction.

For example, as shown in Figure 3, assume the ex-
pected response times of three services are 2, 3, and 5
seconds, respectively. There are two predictions using
rating-oriented approaches: (3, 2, 4) and (1, 2, 3). Since
rating-oriented approaches try to predict the QoS value
as accurate as possible, Prediction 1 is better than Predic-
tion 2, since it has a smaller MAE value (MAE refers to
Mean Absolute Error, which is an evaluation metric for

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. *, NO. *, * * 4

���������	�
���
���
��������������������
���
���
��
����
��
������������������������������ ������� �������!�����

����
��
������������������������������ ������� �������!�����"�

���������	#�$
�%��
��&�
��&�
�
����
��
������
��&�
��&�
���
����
��
������
��&�
��&�
�

Fig. 3. Rating-oriented vs. Ranking-oriented

rating-oriented prediction results. Details of MAE will be
introduced in Section 4.2). However, from the ranking-
oriented perspective, Prediction 1 is worse than Prediction
2 since the former leads to incorrect ranking based on the
predicted QoS values.

To address this problem, we propose two ranking-
oriented approaches, named as CloudRank1 and
CloudRank2, in the following. Our ranking-oriented
approaches predict the QoS ranking directly without
predicting the corresponding QoS values.

3.3.1 CloudRank1
A user’s preference on a pair of services can be modeled
in the form of Ψ : I × I → R, where Ψ(i, j) > 0
means that quality of service i is better than service
j and is thus more preferable for the active user and
vice versa. The value of the preference function Ψ(i, j)
indicates the strength of preference and a value of zero
means that there is no preference between two services.
The preference function Ψ(i, j) is anti-symmetric, i.e.
Ψ(i, j) = −Ψ(j, i). We set Ψ(i, i) = 0 for all i ∈ I .

Given the user-observed QoS values on two cloud
services, the preference between these two services can
be easily derived by comparing the QoS values, where
Ψ(i, j) = qi − qj . To obtain the preference values re-
garding pairs of services that have not been invoked
or observed by the current user, the preference values
of similar users S(u) are employed. The basic idea is
that the more often the similar users in S(u) observe
service i as higher quality than service j, the stronger
the evidence is of Ψ(i, j) > 0 for the current user. This
leads to the following formula for estimating the value
of the preference function Ψ(i, j), where service i and
service j are not explicitly observed by the current user
u:

Ψ(i, j) =
∑

v∈N(u)ij

wv(qv,i − qv,j), (5)

where v is a similar user of the current u, N(u)ij is a
subset of similar users, who obtain QoS values of both
services i and j, and wv is a weighting factor of the
similar user v, which can be calculated by:

wv =
Sim(u, v)∑

v∈N(u)ij Sim(u, v)
. (6)

wv makes sure that a similar user with higher similarity
value has greater impact on the preference value predic-
tion in Eq. (5).

Algorithm 1: CloudRank1
Input: an employed service set E, a full service set I, a

preference function Ψ
Output: a service ranking ρ̂
F = E;1
while F �= ∅ do2

t = arg maxi∈F qi;3
ρe(t) = |E| − |F |+ 1;4
F = F − {t};5

end6
foreach i ∈ I do7

π(i) =
∑

j∈I Ψ(i, j);8
end9
n = |I|;10
while I �= ∅ do11

t = arg maxi∈I π(i);12
ρ̂(t) = n− |I|+ 1;13
I = I − {t};14
foreach i ∈ I do15

π(i) = π(i)−Ψ(i, t)16
end17

end18
while E �= ∅ do19

e = arg mini∈E ρei;20
index = mini∈E ρ̂(i);21
ρ̂(e) = index;22
E = E − {e};23

end24

With Eq. (5) and Eq. (6), the preference value between
a pair of services can be obtained by taking advantage
of the past usage experiences of similar users. Assuming
there are n services to be ranked and QoS values of a
services have already be observed by user u, the total
number of service pairs that can be derived explicitly is
a(a−1)/2, and the total number of pairs that need to be
predicted from similar users is: n(n− 1)/2− a(a− 1)/2.

Given a preference function Ψ which assigns a score
to every pair of services i, j ∈ I , we want to choose
a quality ranking of services in I that agrees with the
pairwise preferences as much as possible. Let ρ be a
ranking of services in I such that ρ(i) > ρ(j) if and
only if i is ranked higher than j in the ranking ρ. We
can define a value function V Ψ(ρ) as follows, which
measures the consistency of the ranking ρ with the
preference function:

V Ψ(ρ) =
∑

i,j:ρ(i)>ρ(j)

Ψ(i, j). (7)

Our goal is to produce a ranking ρ∗ that maximizes
the above objective value function. One possible solution
is to search through the possible rankings and select the
optimal ranking ρ∗ that maximizes the value function de-
fined in Eq. (7). However, there are n! possible rankings
for n services, and the optimal ranking search problem is
NP-Complete [6]. To enhance the calculation efficiently,
we propose a greedy-based algorithm in Algorithm 1
(named as CloudRank1) for finding an approximately
optimal ranking. Algorithm 1 includes the following
steps:

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. *, NO. *, * * 5

• Step 1 (lines 1 - 6): Rank the employed cloud services
in E based on the observed QoS values. ρe(t) stores
the ranking, where t is a cloud service and the
function ρe(t) returns the corresponding order of
this service. The values of ρe(t) are in the range
of [1, |E|], where a smaller value indicates higher
quality.

• Step 2 (lines 7 - 9): For each service in the full
service set I , calculate the sum of preference values
with all other services by π(i) =

∑
j∈I Ψ(i, j). Since

Ψ(i, i) = 0, including Ψ(i, i) in the calculation does
not influence the results. Larger π(i) value indicates
more services are less preferred than i (i.e., Ψ(i, j) >
0). In other words, service i should be ranked in a
higher position.

• Step 3 (lines 10 - 18): Services are ranked from the
highest position to the lowest position by picking
the service t that has the maximum π(t) value. The
selected service is assigned a rank equal to n−|I|+1
so that it will be ranked above all the other remain-
ing services in I . The ranks are in the range of [1, n],
where n is the number of services and a smaller
value indicates higher quality. The selected service
t is then removed from I and the preference sum
values Ψ(i) of the remaining services are updated
to remove the effects of the selected service t.

• Step 4 (lines 19 - 24): Step 3 treats the employed
services in E and the non-employed service in
I − E identically which may incorrectly rank the
employed services. In this step, the initial service
ranking ρ̂ is updated by correcting the rankings
of the employed services in E. By replacing the
ranking results in ρ̂ with the corresponding correct
ranking of ρe, our approach makes sure that the
employed services in E are correctly ranked.

Compared with the greedy algorithm in [6], our ap-
proach guarantees that the employed services are cor-
rectly ranked. As will be shown in the experiments in
Section 4, our approach provides better ranking accuracy
more consistently than the traditional greedy algorithm.

3.3.2 CloudRank2
The preference values Ψ(i, j) in the CloudRank1 algo-
rithm can be obtained explicitly or implicitly. When the
active user has QoS values on both the service i and
service j, the preference value is obtained explicitly.
On the other hand, the preference value is obtained
implicitly when employing QoS information of similar
users. Assuming there are three cloud services a, b, and
c. The active users have invoked service a and service
b previously. The list below shows how the preference
values of Ψ(a, b), Ψ(a, c), and Ψ(b, c) can be obtained
explicitly or implicitly:

• Ψ(a, b): obtained explicitly.
• Ψ(a, c): obtained implicitly by similar users with

similarities of 0.1, 0.2, and 0.3.
• Ψ(b, c): obtained implicitly by similar users with

similarities of 0.7, 0.8, and 0.9.

Algorithm 2: CloudRank2
Input: an employed service set E, a full service set I, a

preference function Ψ, confidence values C
Output: a service ranking ρ̂
F = E;1
while F �= ∅ do2

t = arg maxi∈F qi;3
ρe(t) = |E| − |F |+ 1;4
F = F − {t};5

end6
foreach i ∈ I do7

π(i) =
∑

j∈I C(i, j)×Ψ(i, j);8
end9
n = |I|;10
while I �= ∅ do11

t = arg maxi∈I π(i);12
ρ̂(t) = n− |I|+ 1;13
I = I − {t};14
foreach i ∈ I do15

π(i) = π(i)− C(i, j)×Ψ(i, t)16
end17

end18
while E �= ∅ do19

e = arg mini∈E ρei;20
index = mini∈E ρ̂(i);21
ρ̂(e) = index;22
E = E − {e};23

end24

In the above example, we can see that different pref-
erence values have different confidence levels. It is clear
that C(a, b) > C(b, c) > C(a, c), where C represents
the confidence values of different preference values. The
confidence value of Ψ(b, c) is higher than Ψ(a, c), since
the similar users of Ψ(b, c) have higher similarities.

In the CloudRank1 algorithm, differences in preference
values are treated equally, which may hurt the QoS rank-
ing prediction accuracy. By considering the confidence
values of different preference values, we propose a QoS
ranking prediction algorithm, named CloudRank2, which
uses the following rules to calculate the confidence val-
ues:

• If the user has QoS values of these two services i
and j. The confidence of the preference value is 1.

• When employing similar users for the preference
value prediction, the confidence is determined by
similarities of similar users as follows:

C(i, j) =
∑

v∈N(u)ij

wvSim(u, v), (8)

where v is a similar user of the current active user
u, N(u)ij is a subset of similar users, who obtain
QoS values of both services i and j, and wv is a
weighting factor of the similar user v, which can be
calculated by:

wv =
Sim(u, v)∑

v∈N(u)ij Sim(u, v)
. (9)

wv makes sure that a similar user with higher simi-
larity value has greater impact on the confidence cal-
culation. Eq. (8) guarantees that similar users with

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. *, NO. *, * * 6

higher similarities will generate higher confidence
values.

Algorithm 2 shows the details of the CloudRank2 algo-
rithm, which considers the confidence values of different
preference values when calculating the preference sum.
In this way, more accurate ranking prediction can be
achieved.

3.4 Computational Complexity Analysis
Assuming there are n cloud services and m users, this
section analyzes the worst case computational complex-
ity of the CloudRank1 and CloudRank2 algorithms, re-
spectively.

In Section 3.1, the computational complexity of
Sim(a, u) by KRCC is O(n2), since there are at most
n(n − 1)/2 service pairs on the n commonly-invoked
cloud services. To find similar users for an active user,
we need to calculate the similarities between the active
user with all the m training users. There are totally
m times of similarity computations. Therefore, the total
computational complexity of similarity computation is
O(n2m) when using the KRCC similarity measure.

After the identification of similar users, as introduced
in Section 3.3.1, we need to obtain the preference values
between different pairs of cloud services. There are
totally n(n−1)/2 service pairs. For each pair, in the worst
case, we need to get QoS values from the Top-K similar
users for making preference value estimation. Since there
are at most m similar users, the total computational
complexity of preference value computation of an active
user is O(n2m).

Based on the preference values, the CloudRank1 al-
gorithm and CloudRank2 algorithm make QoS rank-
ing prediction. As shown in Algorithm 1 and Algo-
rithm 2, the computational complexities of CloudRank1
and CloudRank2 are both equal to O(n2).

Based on the above analysis, the total computational
complexity of the whole procedure (including similarity
computation, preference value computation, and ranking
prediction) is O(n2m) +O(n2m) +O(n2) = O(n2m).

4 EXPERIMENTS

4.1 Dataset Description
To evaluate the QoS ranking prediction accuracy, we
conduct a large-scale real-world Web service evaluation
to collect QoS values on real-world Web services. We
have collected addresses of 500 real-world Web services
from the Internet. To collect QoS values of these Web
services, firstly, we generated Web service invocation
codes by Axis22, a Java-based open source package for
Web services. Then, the invocation codes are deployed to
300 distributed computers in Planet-lab3 to monitor these
500 real-world Web services. By this way, QoS values of
the Web services can be obtained. In our experiment,

2. http://axis.apache.org/axis2
3. http://www.planet-lab.org

TABLE 1
Web Service QoS Dataset Descriptions

Statistics Values
Num. of Web service invocations 150,000
Num. of service users 300
Num. of Web services 500
Minimum response-time value 0.005 s
Maximum response-time value 19.89 s
Mean of response-time 1.05 s
Standard deviation of response-time 2.14 s
Minimum throughput value 0.1 kBps
Maximum throughput value 1000 kBps
Mean of throughput 24.73 kBps
Standard deviation of throughput 40.84 kBps

<0.2 0.2−0.40.4−0.80.8−1.61.6−3.2 >3.2
0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

Values of Response−Time (Seconds)

N
um

be
rs

(a)

<6.4 6.4−12.8 12.8−25.625.6−51.251.2−102.4 >102.4
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

Values of Throughput (kBps)

N
um

be
rs

(b)

Fig. 4. Value Distribution of User-Item Matrix

each user invokes each Web service for one time. To-
tally 150,000 Web service invocations are conducted. The
response-time and throughput values of each invocation
are recorded. Response-time refers to the time duration
between the user sending out a request to a service and
receiving a response. Throughput represents the data
transfer rate over the network. The detailed real-world
QoS values are publicly released online4, which makes
our experimental evaluations reproducible.

The QoS values of the 500 Web services observed by
the 300 service users can be presented as a 300 × 500
user-item matrix, where each entry in the matrix is the
QoS value (e.g., response-time or throughput) of a Web
service observed by a user. In the experiments, the QoS
values of response-time and throughput are employed
to rank the services independently. Table 1 shows de-
scriptions of the obtained real-world Web service QoS
values.

As shown in Table 1, the minimum and maximum
values of response-time are 0.005 seconds and 19.89
seconds, respectively. The mean and standard deviation
of all the 150,000 response-time values in the user-item
matrix are 1.05 seconds and 2.14 seconds, respectively,
indicating that the response-time values of different
Web services observed by different users exhibit a great
variation. The mean and standard deviation values of
throughput are 24.73 kilo-Byte per second (kBps) and
40.84 kBps. The throughput values also exhibit a great
variation. The distributions of the response-time and
throughput values of the user-item matrix are shown in

4. http://www.zibinzheng.com/tpds2012

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. *, NO. *, * * 7

Figure 4(a) and Figure 4(b), respectively. Figure 4 shows
that a large part of response-time values are between 0.2
seconds and 1.6 seconds, while most throughput values
are between 6.4 kBps (kilo-Byte per second) and 102.4
kBps.

4.2 Evaluation Metric

Rating-oriented approaches must predict QoS values
as accurate as possible. Therefore, differences between
the predicted values and the true values are usually
employed to evaluate the prediction accuracy. Mean Ab-
solute Error (MAE) and Root Mean Square Error (RMSE)
metrics are two widely adopted evaluation metrics for
rating-oriented approaches. MAE is defined as:

MAE =

∑
i,j |ri,j − r̂i,j |

N
, (10)

and RMSE is defined as:

RMSE =

√∑
i,j(ri,j − r̂i,j)2

N
, (11)

where ri,j denotes the expected QoS value of service j
observed by user i, r̂i,j is the predicted QoS value, and
N is the number of predicted values.

However, since the object of this paper is to predict
service QoS ranking instead of predicting QoS values, we
employ the Normalized Discounted Cumulative Gain
(NDCG) [2] metric, which is a popular metric for evalu-
ating ranking results. Given an ideal service QoS ranking
(used as ground truth) and a predicted QoS ranking,
the NDCG value of the Top-K ranked services can be
calculated by:

NDCGk =
DCGk

IDCGk
, (12)

where DCGk and IDCGk are the discounted cumulative
gain (DCG) values of the Top-K services of the predicted
ranking and ideal ranking, respectively. The value of
DCGk can be calculated by:

DCGk = rel1 +
k∑

i=2

reli
log2i

, (13)

where reli is the QoS value of the service at position i
of the ranking. The premise of DCG is that high quality
service appearing lower in a ranking list should be
penalized as the QoS value is reduced logarithmically
proportional to the position of the result via dividing
by log2i. The DCG value is accumulated from the top
of the ranking to the bottom with the gain of each
result discounted at lower ranks. The ideal rank achieves
the highest gain among different rankings. The NDCGk

value is on the interval of 0 to 1, where larger value
stands for better ranking accuracy, indicating that the
predicted ranking is closer to the ideal ranking. The
value of k is in the interval of 1 to n, where n is the
total number of cloud services.

4.3 Performance Comparison

To study the personalized QoS ranking prediction per-
formance, we compare nine methods. The first six ap-
proaches are rating-oriented methods, which rank the
cloud services based on the predicted QoS values, while
the last three methods are ranking-oriented approaches,
which predict the QoS rankings directly.

• UVS (User-based collaborative filtering method us-
ing Vector Similarity): This method employs vector
similarity for calculating the user similarities and
engages the similar users for the QoS value predic-
tion.

• IVS (Item-based collaborative filtering method us-
ing Vector Similarity): This method employs vector
similarity for computing the item (cloud services)
similarities when making QoS value prediction.

• UIVS (User-based and item-based collaborative fil-
tering using Vector Similarity): This method com-
bines the user-based and item-based collaborative
filtering approaches and employs the vector simi-
larity for the similarity computation for users and
items.

• UPCC (User-based collaborative filtering method
using Pearson Correlation Coefficient): This is a
classical method. It employs PCC for calculating the
user similarities and engages the similar users for
the QoS value prediction [4].

• IPCC (Item-based collaborative filtering method us-
ing Pearson Correlation Coefficient): This method
is widely used in industry company like Amazon.
It employs PCC for the similarity computation and
employs similar items (cloud services) for the QoS
value prediction [15].

• UIPCC (User-based and item-based Collaborative
filtering using Pearson Correlation Coefficient): This
method combines the user-based and item-based
collaborative filtering approaches and employs PCC
for the similarity computation [23].

• Greedy: This method is proposed for ranking a set of
items, which treats the explicitly rated items and the
unrated items equally [6]. It does not guarantee that
the explicitly rated items will be ranked correctly.

• CloudRank1: This method is proposed in Sec-
tion 3.3.1. It calculates reference values between
items and employs these values for making QoS
ranking prediction.

• CloudRank2: This method is proposed in Sec-
tion 3.3.2, which considers confidence levels of
different preference values which help achieve
better ranking accuracy. Both CloudRank1 and
CloudRank2 employ KRCC (i.e., Eq. (2)) for the user
similarity computation.

In real-world, the user-item matrices are usually very
sparse since a user typically only employs a small num-
ber of cloud services. In order to conduct our exper-
iments realistically, we randomly remove entries from
the user-item matrix to make the matrix sparser with

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. *, NO. *, * * 8

TABLE 2
NDCG Comparison of Response Time (Larger value indicates better ranking accuracy)

Matrix Density = 10% Matrix Density = 30% Matrix Density = 50%
Methods NDCG1 NDCG10 NDCG100 NDCG1 NDCG10 NDCG100 NDCG1 NDCG10 NDCG100

UVS 0.3653 0.3094 0.4940 0.5812 0.4828 0.6411 0.6777 0.6092 0.7389
IVS 0.3948 0.2964 0.4984 0.3318 0.3211 0.6548 0.3639 0.4323 0.7336

UIVS 0.4214 0.3355 0.5523 0.6116 0.5060 0.6948 0.6777 0.6110 0.7653
UPCC 0.3649 0.3139 0.5058 0.6043 0.4916 0.6606 0.6966 0.6306 0.7471
IPCC 0.3603 0.2882 0.4937 0.2906 0.2780 0.6067 0.3426 0.4352 0.7640

UIPCC 0.3868 0.3335 0.5536 0.6240 0.5162 0.6964 0.6966 0.6332 0.7961
Greedy 0.4400 0.4299 0.6874 0.7106 0.7072 0.8148 0.7923 0.7808 0.8734

CloudRank1 0.4703 0.4419 0.6992 0.7313 0.7240 0.8292 0.8230 0.8023 0.8849
CloudRank2 0.4892 0.4465 0.7036 0.7346 0.7297 0.8314 0.8273 0.8170 0.8884

TABLE 3
NDCG Performance Comparison of Throughput (Larger value indicates better ranking accuracy)

Matrix Density = 10% Matrix Density = 30% Matrix Density = 50%
Methods NDCG1 NDCG10 NDCG100 NDCG1 NDCG10 NDCG100 NDCG1 NDCG10 NDCG100

UVS 0.3236 0.2262 0.4721 0.5106 0.4376 0.6278 0.6227 0.6058 0.7290
IVS 0.2890 0.1954 0.4379 0.1477 0.1432 0.5208 0.1666 0.1511 0.5900

UIVS 0.3785 0.2591 0.5121 0.5315 0.4535 0.6525 0.6394 0.6229 0.7462
UPCC 0.3390 0.2172 0.4631 0.5117 0.4326 0.6218 0.6103 0.5886 0.7271
IPCC 0.3135 0.2072 0.4323 0.1499 0.1317 0.4638 0.1363 0.1296 0.5335

UIPCC 0.3783 0.2617 0.5049 0.5117 0.4359 0.6363 0.6214 0.5911 0.7402
Greedy 0.5683 0.7039 0.7446 0.6068 0.7567 0.8103 0.6234 0.7939 0.8636

CloudRank1 0.5787 0.7126 0.7559 0.6536 0.7851 0.8356 0.7133 0.8417 0.8921
CloudRank2 0.5834 0.7146 0.7567 0.6607 0.7895 0.8375 0.7204 0.8470 0.8943

different densities. Matrix density (i.e., proportion of
nonzero entries) 10%, for example, means that we ran-
domly select 10% of the QoS entries to predict the QoS
rankings of users. The rankings based on the original
full matrix are employed as ideal rankings to study the
ranking prediction accuracy. The above nine prediction
methods are employed for making personalized QoS
ranking prediction for each user in the user-item matrix
employing the available QoS information in the matrix.
We set Top-K to 5 in the prediction methods in this
experiment.

Table 2 and Table 3 show the NDCG performance of
response-time and throughput, respectively when em-
ploying 10%, 30% and 50% density user-item matrices.
In the second row of the table, NDCG10 indicates that
the ranking accuracy of the top 10 items is investigated.
The value of NDCG10 can be calculated by Eq. (12).
The first six methods in the table are rating-oriented
methods, while the last three methods are ranking-
oriented methods. For each column in the Tables, we
highlight the best performer among the rating-oriented
methods and the ranking-oriented methods.

Table 2 and Table 3 show that:

• Among all QoS ranking prediction methods, the
CloudRank2 approach obtains the best prediction
accuracy (largest NDCG values) for both response-
time and throughput under all the experimental
settings consistently, since CloudRank2 predicts the
ranking directly and considers confidence levels of

different preference values.
• Compared with the rating-oriented methods, the

ranking-oriented methods achieve better prediction
accuracy, since instead of predicting the QoS values
as accurate as possible, the ranking-oriented meth-
ods attempt to directly predict the QoS rankings as
accurate as possible.

• Compared with the Greedy approach, the
CloudRank1 and CloudRank2 methods consistently
achieve better ranking accuracy. We note that
the Greedy method does not guarantee that the
employed services will be ranked correctly. Our
CloudRank1 and CloudRank2 algorithms ensure
that the employed services are correctly ranked.

• When the density of the user-item matrix is in-
creased from 10% to 50%, the ranking accuracy
(in terms of NDCG values) is also enhanced, since
denser user-item matrix provides more information
for the ranking prediction.

• The approaches that combine user-based and item-
based approaches (UIVS and UIPCC) outperform
the user-based approaches (UVS and UPCC) and
item-based approaches (IVS and IPCC) under most
experimental settings. This observation indicates
that by systematically fusing the information from
similar users and similar items (cloud services),
better QoS ranking prediction accuracy can be
achieved.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. *, NO. *, * * 9

5 10 15 20 25 30 35 40 45 50
0.65

0.7

0.75

0.8

0.85

Response−time

Matrix Density

N
D

C
G

10
0

CR1 with KRCC
CR1 with PCC
CR1 with VS

(a)

5 10 15 20 25 30 35 40 45 50

0.7

0.75

0.8

0.85

Response−time

Matrix Density

N
D

C
G

10
0

CR2 with KRCC
CR2 with PCC
CR2 with VS

(b)

5 10 15 20 25 30 35 40 45 50
0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

Throughput

Matrix Density

N
D

C
G

10
0

CR1 with KRCC
CR1 with PCC
CR1 with VS

(c)

5 10 15 20 25 30 35 40 45 50
0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

Throughput

Matrix Density

N
D

C
G

10
0

CR2 with KRCC
CR2 with PCC
CR2 with VS

(d)

Fig. 5. Impact of Similarity Computation

4.4 Impact of Similarity Computation
There are different types of similarity computation meth-
ods. Rating similarity computation methods compare the
QoS values of the commonly-invoked cloud services for
the computation, while ranking similarity computation
methods employ QoS rankings of services for calculating
the similarities. Well-known rating similarity computa-
tion methods include VS and PCC, while well-known
ranking similarity computation methods include KRCC.

To compare the performance of different similarity
computation methods, we implement three versions of
our CloudRank1 and CloudRank2 algorithms, using the
KRCC, PCC, and VS similarity computation methods,
respectively. We change the matrix density from 5% to
50% with a step value of 5%. We set Top-K to 5 in this ex-
periment. CloudRank1 and CloudRank2 algorithms with
different similarity computation methods are compared
in this experiment.

Figure 5 shows the experimental results, where Fig-
ure 5(a) and Figure 5(b) are the NDCG100 results of
response-time of CloudRank1 (labeled as CR1 in the
Figure) and CloudRank2 (labeled as CR2 in the Fig-
ure), respectively. Figure 5(c) and Figure 5(d) are the
NDCG100 results of throughput of CloudRank1 and
CloudRank2, respectively. Figure 5 shows that:

• The ranking prediction accuracies of employing
KRCC are better than PCC and VS in all the ex-
perimental settings, since KRCC computes the user
similarity based on the QoS rankings instead of QoS
values. In the ranking-oriented scenarios, KRCC
provides better similarity computation accuracy.

• With the increase of matrix density, the improve-
ments of CR1 with KRCC and CR2 with KRCC be-
come greater compared with PCC and VS. When the
matrix is sparse, the similarity computation meth-
ods do not have enough information for making
accurate calculation. The advantages of KRCC is
thus not obvious.

• The performance of PCC and VS is similar in this
experiment, since these two similarity computation
methods are similar with each other and are both
rating-oriented.

Due to space limitation, more experimental investiga-
tions of impacts of parameters (e.g., matrix density, Top-
K value, etc) are provided in Appendix B.

5 RELATED WORK AND DISCUSSION

Cloud computing is becoming popular. A number of
works have been carried out on cloud computing [8],
[10], including performance analysis, market-oriented
cloud computing, management tool, workload balance,
dynamic selection, etc. Quality-of-Service (QoS) has been
widely employed for presenting the non-functional char-
acteristics of the software systems and services [19].
QoS of cloud services can be measured from either
the client-side (e.g., response-time, throughput, etc.) or
at the server-side (e.g., price, availability, etc.). Based
on the service QoS measures, various approaches have
been proposed for service selection [3], [19], [20], which
enables optimal service to be identified from a set of
functionally similar or equivalent candidates. To provide
QoS ranking information for the service selection ap-
proaches, this paper focuses on predicting QoS ranking
of cloud services.

Collaborative filtering methods are widely adopted in
recommender systems [5], [15]. memory-based approach
is one type of the most widely studied collaborative
filtering approaches. The most analyzed examples of
memory-based collaborative filtering include user-based
approaches [4], [9], item-based approaches [7], [11], [16],
and their fusion [13], [16], [17], [22], [23]. User-based and
item-based approaches often use the vector similarity
method [4] and the PCC method [15] as the similarity
computation methods. Compared with vector similarity,
PCC considers the differences in the user rating style
when calculating the similarity.

The rating-based collaborative filtering approaches try
to predict the missing QoS values in the user-item ma-
trix as accurately as possible. However, in the ranking-
oriented scenarios, accurate missing value prediction
may not lead to accuracy ranking prediction. There-
fore, ranking-oriented collaborative filtering approaches
are becoming more attractive. Liu et al. [12] propose
a ranking-oriented collaborative filtering approach to
rank movies. Yang et al. [18] propose another ranking-
oriented approach for ranking books in digital libraries.
Different from these previous approaches [12], [18], our
work provides a comprehensive study of how to provide
accurate QoS ranking for cloud services, which is a new
and urgently-required research problem.

Currently, our CloudRank framework is mainly de-

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. *, NO. *, * * 10

signed for cloud applications, because: (1) client-side
QoS values of different users can be easily obtained in
the cloud environment; and (2) there are a lot of re-
dundant services abundantly available in the cloud, QoS
ranking of candidate services becomes important when
building cloud applications. The CloudRank framework
can also be extended to other component-based applica-
tions, in case that the components are used by a number
of users, and the past usage experiences of different users
can be obtained.

6 CONCLUSION AND FUTURE WORK
In this paper, we propose a personalized QoS ranking
prediction framework for cloud services, which requires
no additional service invocations when making QoS
ranking. By taking advantage of the past usage experi-
ences of other users, our ranking approach identifies and
aggregates the preferences between pairs of services to
produce a ranking of services. We propose two ranking
prediction algorithms for computing the service ranking
based on the cloud application designer’s preferences.
Experimental results show that our approaches outper-
form existing rating-based approaches and the tradi-
tional greedy method.

For future work, we would like to improve the ranking
accuracy of our approaches by exploiting additional
techniques (e.g., data smoothing, random walk, matrix
factorization, utilizing content information, etc.). When
a user has multiple invocations of a cloud service at
different time, we will explore time-aware QoS ranking
prediction approaches for cloud services by employing
information of service users, cloud services, and time. As
our current approaches only rank different QoS proper-
ties independently, we will conduct more investigations
on the correlations and combinations of different QoS
properties. We will also investigate the combination of
rating-based approaches and ranking-based approaches,
so that the users can obtain QoS ranking prediction as
well as detailed QoS value prediction. Moreover, we will
study how to detect and exclude malicious QoS values
provided by users.

ACKNOWLEDGMENT
The work described in this paper was fully supported
by the National Basic Research Program of China
(973 Project No. 2011CB302603), the National Natural
Science Foundation of China (Project No. 61100078,
61073132), and the Research Grants Council of the Hong
Kong Special Administrative Region, China (Project No.
CUHK 415311 of General Research Fund and Project
No. N CUHK405/11 of the NSFC/RGC Joint Research
Scheme).

REFERENCES
[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,

A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and
M. Zaharia, “Above the clouds: A berkeley view of cloud com-
puting,” Technical Report, EECS-2009-28, University of California,
Berkeley, 2009.

[2] K. J. arvelin and J. Kekalainen, “Cumulated gain-based evalua-
tion of IR techniques,” ACM Transactions on Information Systems,
vol. 20, no. 4, pp. 422–446, 2002.

[3] P. A. Bonatti and P. Festa, “On optimal service selection,” in Proc.
14th Int’l Conf. World Wide Web (WWW’05), 2005, pp. 530–538.

[4] J. S. Breese, D. Heckerman, and C. Kadie, “Empirical analysis
of predictive algorithms for collaborative filtering,” in Proc. 14th
Annual Conf. Uncertainty in Artificial Intelligence (UAI’98), 1998, pp.
43–52.

[5] R. Burke, “Hybrid recommender systems: Survey and experi-
ments,” User Modeling and User-Adapted Interaction, vol. 12, no. 4,
pp. 331–370, 2002.

[6] W. W. Cohen, R. E. Schapire, and Y. Singer, “Learning to order
things,” Journal of Artificial Intelligent Research, vol. 10, no. 1, pp.
243–270, 1999.

[7] M. Deshpande and G. Karypis, “Item-based top-n recommenda-
tion,” ACM Trans. Information System, vol. 22, no. 1, pp. 143–177,
2004.

[8] A. Iosup, S. Ostermann, N. Yigitbasi, R. Prodan, T. Fahringer, and
D. Epema, “Performance analysis of cloud computing services for
many-tasks scientific computing,” IEEE Trans. Parallel Distributed
System, vol. 22, pp. 931–945, June 2011.

[9] R. Jin, J. Y. Chai, and L. Si, “An automatic weighting scheme
for collaborative filtering,” in Proc. 27th Int’l ACM SIGIR Conf. on
Research and Development in Information Retrieval (SIGIR’04), 2004,
pp. 337–344.

[10] H. Khazaei, J. Misic, and V. B. Misic, “Performance analysis of
cloud computing centers using m/g/m/m+r queuing systems,”
IEEE Trans. Parallel Distributed System, vol. 23, no. 5, pp. 936–943,
May 2012.

[11] G. Linden, B. Smith, and J. York, “Amazon.com recommendations:
Item-to-item collaborative filtering,” IEEE Internet Computing,
vol. 7, no. 1, pp. 76–80, 2003.

[12] N. N. Liu and Q. Yang, “Eigenrank: a ranking-oriented approach
to collaborative filtering,” in Proc. 31st Int’l ACM SIGIR Conf. on
Research and Development in Information Retrieval (SIGIR’08), 2008,
pp. 83–90.

[13] H. Ma, I. King, and M. R. Lyu, “Effective missing data prediction
for collaborative filtering,” in Proc. 30th Int’l ACM SIGIR Conf. on
Research and Development in Information Retrieval (SIGIR’07), 2007,
pp. 39–46.

[14] J. Marden, Analyzing and Modeling Ranking Data. Chapman &
Hall, New York, 1995.

[15] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl,
“Grouplens: An open architecture for collaborative filtering of
netnews,” in Proc. of ACM Conf. Computer Supported Cooperative
Work, 1994, pp. 175–186.

[16] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based
collaborative filtering recommendation algorithms,” in Proc. 10th
Int’l Conf. World Wide Web (WWW’01), 2001, pp. 285–295.

[17] J. Wu, L. Chen, Y. Feng, Z. Zheng, M. Zhou, and Z. Wu, “Predict-
ing qos for service selection by neighborhood-based collaborative
filtering,” IEEE Transactions on System, Man, and Cybernetics, Part
A, to appear.

[18] C. Yang, B. Wei, J. Wu, Y. Zhang, and L. Zhang, “Cares: a ranking-
oriented cadal recommender system,” in Proc. 9th ACM/IEEE-CS
joint conference on Digital libraries (JCDL’09), 2009, pp. 203–212.

[19] T. Yu, Y. Zhang, and K.-J. Lin, “Efficient algorithms for Web
services selection with end-to-end QoS constraints,” ACM Trans.
the Web, vol. 1, no. 1, pp. 1–26, 2007.

[20] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas, J. Kalagnanam, and
H. Chang, “QoS-aware middleware for Web services composi-
tion,” IEEE Trans. Software Engineering, vol. 30, no. 5, pp. 311–327,
2004.

[21] Z. Zheng and M. R. Lyu, “WS-DREAM: A distributed reliability
assessment mechanism for Web services,” in Proc. 38th Int’l Conf.
Dependable Systems and Networks (DSN’08), 2008, pp. 392–397.

[22] Z. Zheng, H. Ma, M. R. Lyu, and I. King, “WSRec: A collaborative
filtering based Web service recommender system,” in Proc. 7th
Int’l Conf. Web Services (ICWS’09), 2009, pp. 437–444.

[23] Z. Zheng, H. Ma, M. R. Lyu, and I. King, “QoS-aware Web service
recommendation by collaborative filtering,” IEEE Transactions on
Service Computing, vol. 4, no. 2, pp. 140–152, 2011.

[24] Z. Zheng, Y. Zhang, and M. R. Lyu, “CloudRank: A QoS-driven
component ranking framework for cloud computing,” in Proc.
Int’l Symposium Reliable Distributed Systems (SRDS’10), 2010, pp.
184–193.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. *, NO. *, * * 11

Zibin Zheng is an associate research fellow
at the Shenzhen research institute, The Chi-
nese University of Hong Kong. He received his
Ph.D. degree from department of Computer Sci-
ence and Engineering, The Chinese University
of Hong Kong in 2010. He received Outstand-
ing Thesis Award of CUHK at 2012, ACM SIG-
SOFT Distinguished Paper Award at ICSE2010,
Best Student Paper Award at ICWS2010, and
IBM Ph.D. Fellowship Award 2010-2011. He
served as program committee member of IEEE

CLOUD2009, SCC2011, SCC2012, ICSOC2012, etc. His research
interests include cloud computing, service computing, and software
engineering.

Xinmiao Wu is currently a master student at
Sun Yat-Sen University, GuangZhou, China. He
received his B.Eng. degree in Network Engineer-
ing from Sun Yat-Sen University, China, in 2010.
He received National Scholarship of China in
2007 and 2008, respectively. His research inter-
ests include services computing, cloud comput-
ing, and data mining.

Yilei Zhang received his B.Sc. degree in Com-
puter Science from the University of Science and
Technology of China, Hefei, China, in 2009. He
is currently a Ph.D. candidate in the department
of Computer Science and Engineering, The Chi-
nese University of Hong Kong. He is an IEEE
student member, an ACM student member, and
a Hong Kong Computer Society student mem-
ber. He also served as reviewer for international
journals as well as conferences including TSE,
TSC, ISF, WWW, WSDM, KDD, SCC, etc. His re-

search interests include service computing, cloud computing, distributed
systems, software reliability engineering.

Michael R. Lyu received the B.S. degree in
electrical engineering from National Taiwan Uni-
versity, Taipei, Taiwan, R.O.C., in 1981; the M.S.
degree in computer engineering from Univer-
sity of California, Santa Barbara, in 1985; and
the Ph.D. degree in computer science from the
University of California, Los Angeles, in 1988.
He is currently a Professor in the Department
of Computer Science and Engineering, Chinese
University of Hong Kong, Hong Kong, China.
His research interests include software reliability

engineering, distributed systems, fault-tolerant computing, mobile net-
works, Web technologies, multimedia information processing, and E-
commerce systems. Dr. Lyu is an IEEE Fellow, an AAAS Fellow, and
a Croucher Senior Research Fellow for his contributions to software
reliability engineering and software fault tolerance. He received IEEE
Reliability Society 2010 Engineering of the Year Award.

Jianmin Wang graduated with B.S in Compu-
tational Mathematics in 1996 from Nankai Uni-
versity, M.S. and Ph.D from Sun Yat-sen Uni-
versity in 1999 and 2003. With more than 30
scientific publications and 40 patents applica-
tion, he is a staff of the Institute of computer
application, and fellow of Engineering Research
Center of Digital Life, Ministry of Education of
China. He has won a number of awards on
research papers and scholarships including Na-
tional Science and Technical Progress Award of

China(second level), and three times Science and Technical Progress
Award of Ministry of Education of China(first level). His research inter-
ests cover network analysis, embedded media technology, Interaction
design. Dr. Wang’s teaching specialism are in embedded HCI, software
architecture design, ubiquitous computing.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

