468 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25,

NO. 2, FEBRUARY 2014

Key-Aggregate Cryptosystem for Scalable
Data Sharing in Cloud Storage

Cheng-Kang Chu, Sherman S.M. Chow, Wen-Guey Tzeng, Jianying Zhou, and
Robert H. Deng, Senior Member, IEEE

Abstract—Data sharing is an important functionality in cloud storage. In this paper, we show how to securely, efficiently, and flexibly
share data with others in cloud storage. We describe new public-key cryptosystems that produce constant-size ciphertexts such that
efficient delegation of decryption rights for any set of ciphertexts are possible. The novelty is that one can aggregate any set of secret
keys and make them as compact as a single key, but encompassing the power of all the keys being aggregated. In other words, the
secret key holder can release a constant-size aggregate key for flexible choices of ciphertext set in cloud storage, but the other
encrypted files outside the set remain confidential. This compact aggregate key can be conveniently sent to others or be stored in a
smart card with very limited secure storage. We provide formal security analysis of our schemes in the standard model. We also
describe other application of our schemes. In particular, our schemes give the first public-key patient-controlled encryption for flexible

hierarchy, which was yet to be known.

Index Terms—Cloud storage, data sharing, key-aggregate encryption, patient-controlled encryption

1 INTRODUCTION

CLOUD storage is gaining popularity recently. In enter-
prise settings, we see the rise in demand for data
outsourcing, which assists in the strategic management of
corporate data. It is also used as a core technology behind
many online services for personal applications. Nowadays,
it is easy to apply for free accounts for email, photo album,
file sharing and/or remote access, with storage size more
than 25 GB (or a few dollars for more than 1 TB). Together
with the current wireless technology, users can access
almost all of their files and emails by a mobile phone in any
corner of the world.

Considering data privacy, a traditional way to ensure it is
to rely on the server to enforce the access control after
authentication (e.g., [1]), which means any unexpected
privilege escalation will expose all data. In a shared-tenancy
cloud computing environment, things become even worse.
Data from different clients can be hosted on separate virtual
machines (VMs) but reside on a single physical machine.
Data in a target VM could be stolen by instantiating another
VM coresident with the target one [2]. Regarding avail-
ability of files, there are a series of cryptographic schemes
which go as far as allowing a third-party auditor to check

o C.-K. Chu and]. Zhou are with the Department of Cryptography and
Security, Institute for Infocomm Research, Singapore 138632.

e S.S.M. Chow is with the Department of Information Engineering, Chinese
University of Hong Kong, Hong Kong.

o W.-G. Tzeng is with the Department of Computer Science, National Chiao
Tung University, Taiwan.

e RH. Deng is with the School of Information Systems, Singapore
Management University, Singapore 188065.

Manuscript received 17 Sept. 2012; revised 17 Mar. 2013; accepted 29 Mar.
2013; published online 9 Apr. 2013.

Recommended for acceptance by X. Li, P. McDaniel, R. Poovendran, and
G. Wang.

For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number
TPDSSI-2012-09-0953.

Digital Object Identifier no. 10.1109/TPDS.2013.112.

1045-9219/14/$31.00 © 2014 IEEE

the availability of files on behalf of the data owner without
leaking anything about the data [3], or without compromis-
ing the data owners anonymity [4]. Likewise, cloud users
probably will not hold the strong belief that the cloud server
is doing a good job in terms of confidentiality. A crypto-
graphic solution, for example, [5], with proven security
relied on number-theoretic assumptions is more desirable,
whenever the user is not perfectly happy with trusting the
security of the VM or the honesty of the technical staff.
These users are motivated to encrypt their data with their
own keys before uploading them to the server.

Data sharing is an important functionality in cloud
storage. For example, bloggers can let their friends view a
subset of their private pictures; an enterprise may grant her
employees access to a portion of sensitive data. The
challenging problem is how to effectively share encrypted
data. Of course users can download the encrypted data
from the storage, decrypt them, then send them to others for
sharing, but it loses the value of cloud storage. Users should
be able to delegate the access rights of the sharing data to
others so that they can access these data from the server
directly. However, finding an efficient and secure way to
share partial data in cloud storage is not trivial. Below we
will take Dropbox' as an example for illustration.

Assume that Alice puts all her private photos on
Dropbox, and she does not want to expose her photos to
everyone. Due to various data leakage possibility Alice
cannot feel relieved by just relying on the privacy protection
mechanisms provided by Dropbox, so she encrypts all the
photos using her own keys before uploading. One day,
Alice’s friend, Bob, asks her to share the photos taken over
all these years which Bob appeared in. Alice can then use
the share function of Dropbox, but the problem now is how
to delegate the decryption rights for these photos to Bob. A
possible option Alice can choose is to securely send Bob the

1. http:/ /www.dropbox.com.

Published by the IEEE Computer Society

CHU ET AL.: KEY-AGGREGATE CRYPTOSYSTEM FOR SCALABLE DATA SHARING IN CLOUD STORAGE 469

secret keys involved. Naturally, there are two extreme ways
for her under the traditional encryption paradigm:

e Alice encrypts all files with a single encryption key
and gives Bob the corresponding secret key directly.

e Alice encrypts files with distinct keys and sends Bob
the corresponding secret keys.

Obviously, the first method is inadequate since all unchosen
data may be also leaked to Bob. For the second method,
there are practical concerns on efficiency. The number of
such keys is as many as the number of the shared photos,
say, a thousand. Transferring these secret keys inherently
requires a secure channel, and storing these keys requires
rather expensive secure storage. The costs and complexities
involved generally increase with the number of the
decryption keys to be shared. In short, it is very heavy
and costly to do that.

Encryption keys also come with two flavors—symmetric
key or asymmetric (public) key. Using symmetric encryp-
tion, when Alice wants the data to be originated from a
third party, she has to give the encryptor her secret key;
obviously, this is not always desirable. By contrast, the
encryption key and decryption key are different in public-
key encryption. The use of public-key encryption gives
more flexibility for our applications. For example, in
enterprise settings, every employee can upload encrypted
data on the cloud storage server without the knowledge of
the company’s master-secret key.

Therefore, the best solution for the above problem is that
Alice encrypts files with distinct public-keys, but only sends
Bob a single (constant-size) decryption key. Since the
decryption key should be sent via a secure channel and
kept secret, small key size is always desirable. For example,
we cannot expect large storage for decryption keys in the
resource-constraint devices like smart phones, smart cards,
or wireless sensor nodes. Especially, these secret keys are
usually stored in the tamper-proof memory, which is
relatively expensive. The present research efforts mainly
focus on minimizing the communication requirements
(such as bandwidth, rounds of communication) like
aggregate signature [6]. However, not much has been done
about the key itself (see Section 3 for more details).

1.1 Our Contributions

In modern cryptography, a fundamental problem we often
study is about leveraging the secrecy of a small piece of
knowledge into the ability to perform cryptographic
functions (e.g., encryption, authentication) multiple times.
In this paper, we study how to make a decryption key more
powerful in the sense that it allows decryption of multiple
ciphertexts, without increasing its size. Specifically, our
problem statement is

“To design an efficient public-key encryption scheme which

supports flexible delegation in the sense that any subset of the

ciphertexts (produced by the encryption scheme) is decryptable by

a constant-size decryption key (generated by the owner of the
master-secret key).”

We solve this problem by introducing a special type of
public-key encryption which we call key-aggregate crypto-
system (KAC). In KAC, users encrypt a message not
only under a public-key, but also under an identifier of

MNetwork Storage
(Dropbox)

Ciphertext |dentifier

Aggregate Ke:
Encrypted Photos Bareg: ¥

for 2,3,6,8

Alice

Fig. 1. Alice shares files with identifiers 2, 3, 6, and 8 with Bob by
sending him a single aggregate key.

ciphertext called class. That means the ciphertexts are
further categorized into different classes. The key owner
holds a master-secret called master-secret key, which can be
used to extract secret keys for different classes. More
importantly, the extracted key have can be an aggregate key
which is as compact as a secret key for a single class, but
aggregates the power of many such keys, i.e., the decryp-
tion power for any subset of ciphertext classes.

With our solution, Alice can simply send Bob a single
aggregate key via a secure e-mail. Bob can download
the encrypted photos from Alice’s Dropbox space and then
use this aggregate key to decrypt these encrypted photos.
The scenario is depicted in Fig. 1.

The sizes of ciphertext, public-key, master-secret key,
and aggregate key in our KAC schemes are all of constant
size. The public system parameter has size linear in the
number of ciphertext classes, but only a small part of it is
needed each time and it can be fetched on demand from
large (but nonconfidential) cloud storage.

Previous results may achieve a similar property featur-
ing a constant-size decryption key, but the classes need to
conform to some predefined hierarchical relationship. Our
work is flexible in the sense that this constraint is
eliminated, that is, no special relation is required between
the classes. The detail and other related works can be found
in Section 3.

We propose several concrete KAC schemes with different
security levels and extensions in this paper. All construc-
tions can be proven secure in the standard model. To the
best of our knowledge, our aggregation mechanism” in KAC
has not been investigated.

2 KEY-AGGREGATE ENCRYPTION

We first give the framework and definition for key-
aggregate encryption. Then we describe how to use KAC
in a scenario of its application in cloud storage.

2. It is obvious that we are not proposing an algorithm to compress the
decryption key. On one hand, cryptographic keys come from a high-
entropy source and are hardly compressible. On the other hand, decryption
keys for all possible combinations of ciphertext classes are all in constant-
size—information theoretically speaking such compression scheme
cannot exist.

470

2.1 Framework
A key-aggregate encryption scheme consists of five
polynomial-time algorithms as follows.

The data owner establishes the public system parameter
via Setup and generates a public/master-secret® key pair
via KeyGen. Messages can be encrypted via Encrypt by
anyone who also decides what ciphertext class is asso-
ciated with the plaintext message to be encrypted. The
data owner can use the master-secret to generate an
aggregate decryption key for a set of ciphertext classes via
Extract. The generated keys can be passed to delegatees
securely (via secure e-mails or secure devices) Finally, any
user with an aggregate key can decrypt any ciphertext
provided that the ciphertext’s class is contained in the
aggregate key via Decrypt.*

e Setup(1*,n): executed by the data owner to setup an
account on an untrusted server. On input a security
level parameter 1* and the number of ciphertext
classes n (i.e., class index should be an integer
bounded by 1 and n), it outputs the public system
parameter param, which is omitted from the input
of the other algorithms for brevity.

o KeyGen: executed by the data owner to randomly
generate a public/master-secret key pair (pk,msk).

e Encrypt(pk,i, m): executed by anyone who wants to
encrypt data. On input a public-key pk, an index ¢
denoting the ciphertext class, and a message m, it
outputs a ciphertext C.

e Extract(msk,S): executed by the data owner for
delegating the decrypting power for a certain set of
ciphertext classes to a delegatee. On input the
master-secret key msk and a set § of indices
corresponding to different classes, it outputs the
aggregate key for set S denoted by K.

e Decrypt(Ks,S,i,C): executed by a delegatee who
received an aggregate key Ks generated by Extract.
On input K, the set S, an index ¢ denoting the
ciphertext class the ciphertext C belongs to, and C, it
outputs the decrypted result m if i € S.

There are two functional requirements:

e Correctness. For any integers A and n, any set
S C{l1,...,n}, any index ¢ € S and any message m,
Pr[Decrypt(Ks,S,i,&) = m : param < Setup(1*,7n),

(pk,msk) < KeyGen(), € < Encrypt(pk, i, m),

Kg + Extract(msk, S)] = 1.

e Compactness. For any integers A, n, any set S, any index
i€S and any message m; param < Setup(1*,n),
(pk,msk) «— KeyGen(), Ks«— Extract(msk,S) and
C « Encrypt(pk,i,m); |Ks| and |C| only depend on
the security parameter A\ but independent of the
number of classes n.

3. We call this as master-secret key to avoid confusion with the delegated
key we will explain later.

4. For simplicity, we omit the inclusion of a decryption algorithm for the
original data owner using the master-secret key. In our specific construc-
tions, we will show how the knowledge of the master-secret key allows a
faster decryption than using Extract followed by Decrypt.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25,

NO. 2, FEBRUARY 2014

Network Storage

E'm'l'pt(pk.(.@) - @ @' @j @'

Setup = param ~
e [} ¥
KeyGen = (pk, mk) = Aggregate key K 3 5 ",,' J
—_— \ B |
Extract(mk,{2,3,5]) = K.
(k. (23,5]) = Kaas Decrypt (Ky 3.5, {2.3.5} i, @.) >
i € (2,3,5)

Fig. 2. Using KAC for data sharing in cloud storage.

2.2 Sharing Encrypted Data

A canonical application of KAC is data sharing. The key
aggregation property is especially useful when we expect
the delegation to be efficient and flexible. The schemes
enable a content provider to share her data in a confidential
and selective way, with a fixed and small ciphertext
expansion, by distributing to each authorized user a single
and small aggregate key.

Here, we describe the main idea of data sharing in cloud
storage using KAC, illustrated in Fig. 2. Suppose Alice
wants to share her data mi,ms,...,m, on the server. She
first performs Setup(1*, n) to get param and execute KeyGen
to get the public/master-secret key pair (pk,msk). The
system parameter param and public-key pk can be made
public and master-secret key msk should be kept secret by
Alice. Anyone (including Alice herself) can then encrypt
each m; by C; = Encrypt(pk, i, m;). The encrypted data are
uploaded to the server.

With param and pk, people who cooperate with Alice
can update Alice’s data on the server. Once Alice is willing
to share a set S of her data with a friend Bob, she can
compute the aggregate key Ks for Bob by performing
Extract(msk, S). Since Ks is just a constant-size key, it is
easy to be sent to Bob via a secure e-mail.

After obtaining the aggregate key, Bob can download the
data he is authorized to access. That is, for each i € S, Bob
downloads C; (and some needed values in param) from the
server. With the aggregate key K, Bob can decrypt each C;
by Decrypt(Ks, S,4,C;) for each i € S.

3 RELATED WORK

This section we compare our basic KAC scheme with other
possible solutions on sharing in secure cloud storage. We
summarize our comparisons in Table 1.

3.1 Cryptographic Keys for a Predefined Hierarchy

We start by discussing the most relevant study in the
literature of cryptography/security. Cryptographic key
assignment schemes (e.g., [11], [12], [13], [14]) aim to
minimize the expense in storing and managing secret keys
for general cryptographic use. Utilizing a tree structure, a key

CHU ET AL.: KEY-AGGREGATE CRYPTOSYSTEM FOR SCALABLE DATA SHARING IN CLOUD STORAGE

471

TABLE 1
Comparisons between Our Basic KAC Scheme and Other Related Schemes

Decryption key size Ciphertext size Encryption type
Key assignment schemes most likely non-constant constant symmetric or public-key
for a predefined hierarchy (e.g., [7]) (depends on the hierarchy)
Symmetric-key encryption with Compact Key (e.g., [8]) constant constant symmetric-key
IBE with Compact Key (e.g., [9]) constant non-constant public-key
Attribute-Based Encryption (e.g., [10]) non-constant constant public-key
KAC constant constant public-key

for a given branch can be used to derive the keys of its
descendant nodes (but not the other way round). Just
granting the parent key implicitly grants all the keys of its
descendant nodes. Sandhu [15] proposed a method to
generate a tree hierarchy of symmetric-keys by using
repeated evaluations of pseudorandom function/block-
cipher on a fixed secret. The concept can be generalized from
a tree to a graph. More advanced cryptographic key assign-
ment schemes support access policy that can be modeled by
an acyclic graph or a cyclic graph [16], [17], [7]. Most of these
schemes produce keys for symmetric-key cryptosystems, even
though the key derivations may require modular arithmetic
as used in public-key cryptosystems, which are generally
more expensive than “symmetric-key operations” such as
pseudorandom function.

We take the tree structure as an example. Alice can first
classify the ciphertext classes according to their subjects like
Fig. 3. Each node in the tree represents a secret key, while
the leaf nodes represents the keys for individual ciphertext
classes. Filled circles represent the keys for the classes to be
delegated and circles circumvented by dotted lines repre-
sent the keys to be granted. Note that every key of the
nonleaf node can derive the keys of its descendant nodes.

In Fig. 3a, if Alice wants to share all the files in the
“personal” category, she only needs to grant the key for the
node “personal,” which automatically grants the delegatee
the keys of all the descendant nodes (“photo,” “music”). This
is the ideal case, where most classes to be shared belong to
the same branch and thus a parent key of them is sufficient.

However, it is still difficult for general cases. As shown in
Fig. 3b, if Alice shares her demo music at work

“work”— “casual”— “demo” and “work”— “confidential”
— “demo”) with a colleague who also has the rights to see
some of her personal data, what she can do is to give more
keys, which leads to an increase in the total key size. One can
see that this approach is not flexible when the classifications
are more complex and she wants to share different sets of files
to different people. For this delegatee in our example, the

One key to be granted Work Personal

" - " .
Confidential Casual Photo Musig

. ». -I.. '.;'.
. ... Four keys 1o be granted
(a) (b)

Fig. 3. Compact key is not always possible for a fixed hierarchy.

Personal

Work

Confidential Casual Phote Music

number of granted secret keys becomes the same as the
number of classes.

In general, hierarchical approaches can solve the
problem partially if one intends to share all files under a
certain branch in the hierarchy. On average, the number of
keys increases with the number of branches. It is unlikely to
come up with a hierarchy that can save the number of total
keys to be granted for all individuals (which can access a
different set of leaf-nodes) simultaneously.

3.2 Compact Key in Symmetric-Key Encryption

Motivated by the same problem of supporting flexible
hierarchy in decryption power delegation (but in sym-
metric-key setting), Benaloh et al. [8] presented an encryp-
tion scheme which is originally proposed for concisely
transmitting large number of keys in broadcast scenario
[18]. The construction is simple and we briefly review its
key derivation process here for a concrete description of
what are the desirable properties we want to achieve. The
derivation of the key for a set of classes (which is a subset of
all possible ciphertext classes) is as follows: A composite
modulus N = p- ¢ is chosen where p and ¢ are two large
random primes. A master-secret key Y is chosen at random
from Z}. Each class is associated with a distinct prime e;.
All these prime numbers can be put in the public system
parameter.” A constant-size key for set S’ can be generated
(with the knowledge of ¢(N)) as

kg = v 1_[765’<cf>mod N.

For those who have been delegated the access rights for &
where §' C S, kg can be computed by

; , (€))
kl‘_['/es\s .
As a concrete example, a key for classes represented by
e1, €2, e3 can be generated as yllerezes) from which each of
yle, yle, and YY% can easily be derived (while
providing no information about keys for any other class,
say, e4). This approach achieves similar properties and
performances as our schemes. However, it is designed for
the symmetric-key setting instead. The encryptor needs to
get the corresponding secret keys to encrypt data, which is
not suitable for many applications. Since their method is
used to generate a secret value rather than a pair of public/
secret keys, it is unclear how to apply this idea for public-
key encryption scheme.

Finally, we note that there are schemes which try to reduce
the key size for achieving authentication in symmetric-key

5. Another way to do this is to apply hash function to the string denoting
the class, and keep hashing repeatedly until a prime is obtained as the
output of the hash function.

472 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25,

encryption, for example, [19]. However, sharing of decryp-
tion power is not a concern in these schemes.

3.3 Compact Key in Identity-Based Encryption (IBE)
IBE (e.g., [20], [21], [22]) is a type of public-key encryption in
which the public-key of a user can be set as an identity-
string of the user (e.g., an email address). There is a trusted
party called private key generator in IBE which holds a
master-secret key and issues a secret key to each user with
respect to the user identity. The encryptor can take the
public parameter and a user identity to encrypt a message.
The recipient can decrypt this ciphertext by his secret key.

Guo et al. [23], [9] tried to build IBE with key aggregation.
One of their schemes [23] assumes random oracles but
another [9] does not. In their schemes, key aggregation is
constrained in the sense that all keys to be aggregated must
come from different “identity divisions.” While there are an
exponential number of identities and thus secret keys, only a
polynomial number of them can be aggregated. Most
importantly, their key-aggregation [23], [9] comes at the
expense of O(n) sizes for both ciphertexts and the public
parameter, where n is the number of secret keys which can be
aggregated into a constant size one. This greatly increases the
costs of storing and transmitting ciphertexts, which is
impractical in many situations such as shared cloud storage.
As we mentioned, our schemes feature constant ciphertext
size, and their security holds in the standard model.

In fuzzy IBE [21], one single compact secret key can
decrypt ciphertexts encrypted under many identities which
are close in a certain metric space, but not for an arbitrary
set of identities and, therefore, it does not match with our
idea of key aggregation.

3.4 Other Encryption Schemes

Attribute-based encryption (ABE) [10], [24] allows each
ciphertext to be associated with an attribute, and the
master-secret key holder can extract a secret key for a
policy of these attributes so that a ciphertext can be
decrypted by this key if its associated attribute conforms
to the policy. For example, with the secret key for the policy
(2Vv 3V 6V8), one can decrypt ciphertext tagged with class
2,3, 6, or 8. However, the major concern in ABE is collusion-
resistance but not the compactness of secret keys. Indeed,
the size of the key often increases linearly with the number
of attributes it encompasses, or the ciphertext-size is not
constant (e.g., [25]).

To delegate the decryption power of some ciphertexts
without sending the secret key to the delegatee, a useful
primitive is proxy re-encryption (PRE) (e.g., [26], [27], [28],
[29]). A PRE scheme allows Alice to delegate to the server
(proxy) the ability to convert the ciphertexts encrypted
under her public-key into ones for Bob. PRE is well known
to have numerous applications including cryptographic file
system [30]. Nevertheless, Alice has to trust the proxy that it
only converts ciphertexts according to her instruction,
which is what we want to avoid at the first place. Even
worse, if the proxy colludes with Bob, some form of Alice’s
secret key can be recovered which can decrypt Alice’s
(convertible) ciphertexts without Bob’s further help. That
also means that the transformation key of proxy should be
well protected. Using PRE just moves the secure key storage
requirement from the delegatee to the proxy. It is, thus,
undesirable to let the proxy reside in the storage server.

NO. 2, FEBRUARY 2014

That will also be inconvenient since every decryption
requires separate interaction with the proxy.

4 CoNCRETE CONSTRUCTIONS OF KAC

Let G and Gy be two cyclic groups of prime order p and
é: G x G — G be a map with the following properties:

e Bilinear: Vg, 90 € @, a,b € Z, é(g",) = é(g1, g2)™.

e Nondegenerate: for some g € G, é(g,g) # 1.
G is a bilinear group if all the operations involved above
are efficiently computable. Many classes of elliptic curves
feature bilinear groups.

4.1 A Basic Construction

The design of our basic scheme is inspired from the
collusion-resistant broadcast encryption scheme proposed
by Boneh et al. [31]. Although their scheme supports
constant-size secret keys, every key only has the power for
decrypting ciphertexts associated to a particular index. We,
thus, need to devise a new Extract algorithm and the
corresponding Decrypt algorithm.

e Setup(1*,n): Randomly pick a bilinear group G of
prime order p where 2} < p < 2’1, a generator g €
G and o € Z,. Compute g; = ¢ € G fori=1,...,
n,n+2,...,2n. Output the system parameter as
param = (g, g1, - - -, Gns Gn+2; - - -, §2n) (@ can be safely
deleted after Setup).

Note that each ciphertext class is represented by
an index in the integer set {1,2,...,n}, where n is
the maximum number of ciphertext classes.

e KeyGen(): Pick v €grZ,, output the public and
master-secret key pair: (pk = v = g7, msk = 7).

e Encrypt(pk, i, m): For amessage m € Gy and anindex
i €{1,2,...,n}, randomly pick ¢ €r Z, and compute
the ciphertext as C = (¢', (vg;)',m - é(g1, gn)")-

e Extract(msk = v, S): For the set S of indices j’s, the
aggregate key is computed as Ks = [[;c59,1 ;-
Since S does not include 0, g,41-; = ¢”"""’ can always
be retrieved from param.

e Decrypt(Ks,S,i,C = (c1,¢,¢3)): If i ¢S, output L.
Otherwise, return the message: m =c3-é(Ks-
H]‘es,ﬁéi Iny L= J+1, Cl)/é(Hljes Gni1-j, C2)-

For the data owner, with the knowledge of ~, the
term é(g1, gn)t can be easily recovered by é(ci,g,)" =
é(gtvgn)’y = é(glvgn)t'

For correctness, we can see that

c3 - é<KS‘ H gn+1j+7‘>cl> /é <H9n+1]‘,02>
JES i jes

e é(H]‘es 9:;/,+17j : H]‘gs,j# gn+1—j+ivgt)
é(H]‘ES g7L+1—j7 (ng)f)

=C3- é(H 9n+1—j+7z,9t) /é (H 9n+1—j79§>
JES,j#i Jjes

é(HjeS In+1—j+iy gt)/é(gn+1a gt)
e([Ljes 9n+1-4+ir 9')
~é(91,9n)" /e(gns1,9') = m.

:Cg-

CHU ET AL.: KEY-AGGREGATE CRYPTOSYSTEM FOR SCALABLE DATA SHARING IN CLOUD STORAGE 473

Fig. 4. Key assignment in our approach.

4.1.1 Performance

For encryption, the value é(gi, g,) can be precomputed and
put in the system parameter. On the other hand, we can see
that decryption only takes two pairings while only one of
them involves the aggregate key. That means we only need
one pairing computation within the security chip storing
the (secret) aggregate key. It is fast to compute a pairing
nowadays, even in resource-constrained devices. Efficient
software implementations exist even for sensor nodes [32].

4.1.2 Discussions

The “magic” of getting constant-size aggregate key and
constant-size ciphertext simultaneously comes from the
linear-size system parameter. Our motivation is to reduce
the secure storage and this is a tradeoff between two kinds of
storage. The parameter can be placed in nonconfidential
local storage or in a cache provided by the service company.
They can also be fetched on demand, as not all of them are
required in all occasions.

The system parameter can also be generated by a trusted
party, shared between all users and even hard-coded to the
user program (and can be updated via “patches”). In this
case, while the users need to trust the parameter-generator
for securely erasing any ephemeral values used, the access
control is still ensured by a cryptographic mean instead of
relying on some server to restrict the accesses honestly.

4.2 Public-Key Extension

If a user needs to classify his ciphertexts into more than
n classes, he can register for additional key pairs
(pky, msks), ..., (pky, mske). Each class now is indexed by
a two-level index in {(i,7) |1 <i</{¢,1<j<n} and the
number of classes is increased by n for each added key.

Since the new public-key can be essentially treated as a
new user, one may have the concern that key aggregation
across two independent users is not possible. It seems that
we face the problem of hierarchical solution as reviewed in
Section 1, but indeed, we still achieve shorter key size and
gain flexibility as illustrated in Fig. 4. Fig. 4 shows the
flexibility of our approach. We achieve “local aggregation,”
which means the secret keys under the same branch can
always be aggregated. We use a quaternary tree for the last
level just for better illustration of our distinctive feature.
Our advantage is still preserved when compared with
quaternary trees in hierarchical approach, in which the
latter either delegates the decryption power for all four
classes (if the key for their parent class is delegated) or the
number of keys will be the same as the number of classes.
For our approach, at most two aggregate keys are needed
in our example.

Below we give the details on how encryption and
decryption work when the public-key is extended, which
is similar to the “y/n-approach” [31].

e Setup and KeyGen: Same as the basic construction.

e Extend(pk,,msk;): Execute KeyGen() to get (vii1,
Yi+1) € G x Z,, output the extended public and
master-secret keys as pk;,; = (pk;, V1), mskpy 1 =
(msky, Yi41)-

e Encrypt(pk;, (a,b),m): Let pk; = {v1,...,v;}. For an
index (a,b),1 <a <1,1 <b < n,pickt €g Z,, output
the ciphertext as C = (g', (vags)’, m - €(g1,9n)")-

e Extract(msk,;, S;): Let msk; = {y1,72,...,7:}. For a set
S; of indices (7,7),1 <i<1,1<j<mn, get gni1-; =

@ from param, output:

H gn+1 J° H g7z+1 g

(1,5)eS (2,7)€S

Ks, =

H gn+1 7

(Ly)eS

e Decrypt(Ks,, S, (a,b),C): If (a,b) ¢S;, output L.
Otherwise, let Ks = (di,...,d;) and C = {(c1, ¢z, c3).
Output the message:

é(da . H(a,j)esr,jﬂ) In+1—j+bs Cl)
e([T(ajes, Gn+1-ir c2)

Just like the basic construction, the decryption can be
done more efficiently with the knowledge of v;’s
Correctness is not much more difficult to see

cgeld [onrrginan /é | | pp—
(a,))€S1,j#b (a,5)€S

Ta

I ooy 11

A t
=c3-€ In+1—j+br 9 /
(a.5)€S: (a,5)€81,5#b

é H Int+1—js Uagb)

(a,j)€S

In+1—7j+b, gt /é
(a.j)€S1,j#b

H In+1—7, gb

(a,§)ES
=m-&(g1,91)" /é(gni1,g") = m.

We can also prove the semantic security of this extended
scheme. The proof is very similar to that for the basic
scheme and therefore is omitted. The public-key of our CCA
construction to be presented below can also be extended
using the same Extend algorithm.

4.2.1 Discussions

To make the best out of our extended scheme (i.e., to make
the key size as small as possible), we suggest that the
ciphertext classes for different purposes should be corre-
sponded to different public-keys. This is reasonable in
practice and does not contradict our criticism on hierarch-
ical methods that an efficient assignment of hierarchy
requires a priori knowledge on what to be shared. Using
our example, pk; and pk, correspond to “personal” and

474 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25,

NO. 2, FEBRUARY 2014

TABLE 2
Compression Ratios for Different Delegation Ratios and Tree Heights

h T 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

Na 6224.8 11772.5 16579.3 20545.8 23520.7 25263.8 25400.1 23252.6 17334.6 11670.2
16 ”W“ 4.75% 8.98% 12.65% 15.68% 17.94% 19.27% 19.38% 17.74% 13.23% 8.90%

ng | 24895.8 47076.1 66312.4 82187.1 94078.8 101052.4 | 101594.8 93025.4 69337.4 46678.8
18 "W“ 4.75% 8.98% 12.65% 15.68% 17.94% 19.27% 19.38% 17.74% 13.23% 8.90%

ng | 99590.5 | 188322.0 | 265254.1 | 328749.5 | 376317.4 | 404205.0 | 406385.1 | 372085.2 | 277343.1 | 186725.4
20 "W“ 4.75% 8.98% 12.65% 15.68% 17.94% 19.27% 19.38% 17.74% 13.22% 8.90%

“work.” It is likely to have many subcategories under either
of them but it may not be equally likely to share both of
them (if the user does not gossip about office drama with
friends and do not expose party photos to colleagues).
Another example, say a user’s categorization include
“music” and “game.” One day she becomes a graduate
student and needs to publish, and therefore find the new
need to add a category “paper,” which is probably

independent of “music” and “game.”

4.2.2 Other Implication

This key extension approach can also be seen as a key
update process. In case a secret value is compromised, we
can replace the compromised pk; with a new key pk,. The
small aggregate key size minimizes the communication
overhead for transferring the new key.

5 PERFORMANCE ANALYSIS

5.1 Compression Factors

For a concrete comparison, we investigate the space
requirements of the tree-based key assignment approach
we described in Section 3.1. This is used in the complete
subtree scheme, which is a representative solution to the
broadcast encryption problem following the well-known
subset-cover framework [33]. It employs a static logical key
hierarchy, which is materialized with a full binary key tree
of height h (equals to 3 in Fig. 3), and thus can support up to
2" ciphertext classes, a selected part of which is intended for
an authorized delegatee.

In an ideal case as depicted in Fig. 3a, the delegatee can
be granted the access to 2" classes with the possession of
only one key, where h, is the height of a certain subtree
(e.g., hs =2 in Fig. 3a). On the other hand, to decrypt
ciphertexts of a set of classes, sometimes the delegatee may
have to hold a large number of keys, as depicted in Fig. 3b.
Therefore, we are interested in n,, the number of symmetric-
keys to be assigned in this hierarchical key approach, in an
average sense.

We assume that there are exactly 2" ciphertext classes, and
the delegatee of concern is entitled to a portion r of them.
That is, r is the delegation ratio, the ratio of the delegated
ciphertext classes to the total classes. Obviously, if r = 0, n,
should also be 0, which means no access to any of the classes;
if r = 100%, n, should be as low as 1, which means that the
possession of only the root key in the hierarchy can grant the
access to all the 2" classes. Consequently, one may expect
that n, may first increase with r, and may decrease later. We
set r =10%,20%,...,90%, and choose the portion in a
random manner to model an arbitrary “delegation pattern”

for different delegatees. For each combination of r and h, we
randomly generate 10? different combinations of classes to
be delegated, and the output key set size n, is the average
over random delegations.

We tabulate the results in Table 2, where h = 16, 18,20
respectively.® For a given h, n, increases with the delegation
ratio 7 until r reaches ~ 70%. An amazing fact is that, the
ratio of n, to N(= 2" — 1), the total number of keys in the
hierarchy (e.g., N =15 in Fig. 3), appears to be only
determined by r but irrelevant of h. This is because when
the number of ciphertext classes (2") is large and the
delegation ratio (r) is fixed, this kind of random delegation
achieves roughly the same key assignment ratios (n,/N).
Thus, for the same r, n, grows exponentially with h. We can
easily estimate how many keys we need to assign when we
are given r and h.

We then turn our focus to the compression” factor F for a
certain £, i.e., the average number of delegated classes that
each granted key can decrypt. Specifically, it is the ratio of
the total number of delegated classes (r2") to the number of
granted keys required (n,). Certainly, higher compression
factor is preferable because it means each granted key can
decrypt more ciphertexts. Fig. 5a illustrates the relationship
between the compression factor and the delegation ratio.
Somewhat surprisingly, we found that F' =3.2 even for
delegation ratio of » = 0.9, and F < 6 for r = 0.95, which
deviates from the intuition that only a small number of
“powerful” keys are needed for delegating most of the
classes. We can only get a high (but still small) compression
factor when the delegation ratio is close to 1.

A comparison of the number of granted keys between
three methods is depicted in Fig. 5b. We can see that if we
grant the key one by one, the number of granted keys
would be equal to the number of the delegated ciphertext
classes. With the tree-based structure, we can save a
number of granted keys according to the delegation ratio.
On the contrary, in our proposed approach, the delegation
of decryption can be efficiently implemented with the
aggregate key, which is only of fixed size.

In our experiment, the delegation is randomly chosen. It
models the situation that the needs for delegating to
different users may not be predictable as time goes by,
even after a careful initial planning. This gives empirical
evidences to support our thesis that hierarchical key
assignment does not save much in all cases.

6. Legend: h: The height of the binary tree: there are total 2" ciphertext
classes, n,: The number of keys to be assigned, N: The total number of keys
in the hierarchy, 7: The delegation ratio: the ratio of the delegated ciphertext
classes to the total classes.

7. As discussed, we are not proposing a compression mechanism, yet we
effectively save the costly secure storage requirement.

CHU ET AL.: KEY-AGGREGATE CRYPTOSYSTEM FOR SCALABLE DATA SHARING IN CLOUD STORAGE

u @

B

[¥]

Compression Factor (F)
(]

(=]

01 ©02 03 04 ©05 06 07 08 09
Delegation Ratio (r)

(@)

70000

-
= s0000
-
z
v S0000 -+
2 aoo00
R —8- KAE
5 30000 +
= —4—Tree-based
= 20000 \\ One-to-cne
2 N
= . |
E 10000 |- /l
0 l - 4 o o

01 02 D3 04 0OS 06 07 D8 09 085
Delegation Ratio (r)

(b)

Fig. 5. (a) Compression achieved by the tree-based approach for
delegating different ratio of the classes. (b) Number of granted keys (n,)
required for different approaches in the case of 65,536 classes of data.

5.2 Performance of Our Proposed Schemes

Our approaches allow the compression factor F' (F' =n in
our schemes) to be a tunable parameter, at the cost of O(n)-
sized system parameter. Encryption can be done in
constant time, while decryption can be done in O(|S|)
group multiplications (or point addition on elliptic curves)
with two pairing operations, where S is the set of
ciphertext classes decryptable by the granted aggregate
key and |S| < n. As expected, key extraction requires O(|S|)
group multiplications as well, which seems unavoidable.
However, as demonstrated by the experiment results, we
do not need to set a very high n to have better compression
than the tree-based approach. Note that group multi-
plication is a very fast operation.

Again, we confirm empirically that our analysis is true.
We implemented the basic KAC system in C with the
pairing-based cryptography (PBC) Library® version 0.4.18
for the underlying elliptic-curve group and pairing opera-
tions. Since the granted key can be as small as one G
element, and the ciphertext only contains two G and one
Gir elements, we used (symmetric) pairings over Type-A
(supersingular) curves as defined in the PBC library which
offers the highest efficiency among all types of curves, even
though Type-A curves do not provide the shortest
representation for group elements. In our implementation,
p is a 160-bit Solinas prime, which offers 1,024-bit of
discrete-logarithm security. With this Type-A curves

8. http:/ /crypto.stanford.edu/pbc.

475

TABLE 3
Performance of Our Basic Construction for h = 16 with Respect
to Different Delegation Ratio r (in Milliseconds)

r 01]02]03[04]05[]06[07]08]097]095
Setup 8.4
Extract 2 [4] 57 [8] 9 [10]T0] 1] 11
Decrypt 4 [6 | 9 12 [141516182 [20

setting in PBC, elements of groups G and G take 512
and 1,024 bits to represent, respectively.

The test machine is a Sun UltraSparc IIli system with dual
CPU (1,002 MHz) running Solaris, each with 2-GB RAM. The
timings reported below are averaged over 100 randomized
runs. In our experiment, we take the number of ciphertext
classes n = 26 = 65,536. The Setup algorithm, while out-
putting (2n+ 1) elements by doing (2n —2) exponentia-
tions, can be made efficient by preprocessing function
offered by PBC, which saves time for exponentiating the
same element (g) in the long run. This is the only “low-level”
optimization trick we have used. All other operations are
implemented in a straightforward manner. In particular, we
did not exploit the fact that é(gi, g,) will be exponentiated
many times across different encryptions. However, we
precomputed its value in the setup stage, such that the
encryption can be done without computing any pairing.

Our experiment results are shown in Table 3. The
execution times of Setup, KeyGen, and Encrypt are
independent of the delegation ratio r. In our experiments,
KeyGen takes 3.3 milliseconds and Encrypt takes 6.8
milliseconds. As expected, the running time complexities
of Extract and Decrypt increase linearly with the delegation
ratio r (which determines the size of the delegated set S).
Our timing results also conform to what can be seen from
the equation in Extract and Decrypt—two pairing opera-
tions take negligible time, the running time of Decrypt is
roughly a double of Exiract. Note that our experiments
dealt with up to 65,536 number of classes (which is also the
compression factor), and should be large enough for fine-
grained data sharing in most situations.

Finally, we remark that for applications where the
number of ciphertext classes is large but the nonconfidential
storage is limited, one should deploy our schemes using the
Type-D pairing bundled with the PBC, which only requires
170-bit to represent an element in Gi. For n = 219, the system
parameter requires approximately 2.6 megabytes, which is
as large as a lower quality MP3 file or a higher resolution
JPEG file that a typical cellphone can store more than a dozen
of them. But we saved expensive secure storage without the
hassle of managing a hierarchy of delegation classes.

6 NEw PATIENT-CONTROLLED ENCRYPTION (PCE)

Motivated by the nationwide effort to computerize Amer-
ica’s medical records, the concept of patient-controlled
encryption has been studied [8]. In PCE, the health record is
decomposed into a hierarchical representation based on the
use of different ontologies, and patients are the parties who
generate and store secret keys. When there is a need for a
healthcare personnel to access part of the record, a patient
will release the secret key for the concerned part of the
record. In the work of Benaloh et al. [8], three solutions have
been provided, which are symmetric-key PCE for fixed
hierarchy (the “folklore” tree-based method in Section 3.1),

476

public-key PCE for fixed hierarchy (the IBE analog of the
folklore method, as mentioned in Section 3.1), and RSA-
based symmetric-key PCE for “flexible hierarchy” (which is
the “set membership” access policy as we explained).

Our work provides a candidate solution for the missing
piece, public-key PCE for flexible hierarchy, which the
existence of an efficient construction was an open question.
Any patient can either define her own hierarchy according
to her need, or follow the set of categories suggested by the
electronic medical record system she is using, such as “clinic
visits,” “x-rays,” “allergies,” “medications,” and so on.
When the patient wishes to give access rights to her doctor,
she can choose any subset of these categories and issue a
single key, from which keys for all these categories can be
computed. Thus, we can essentially use any hierarchy we
choose, which is especially useful when the hierarchy can
be complex. Finally, one healthcare personnel deals with
many patients and the patient record is possible stored in
cloud storage due to its huge size (e.g., high-resolution
medical imaging employing x-ray), compact key size and
easy key management are of paramount importance.

7 CoNcCLUSION AND FUTURE WORK

How to protect users” data privacy is a central question of
cloud storage. With more mathematical tools, cryptographic
schemes are getting more versatile and often involve multi-
ple keys for a single application. In this paper, we consider
how to “compress” secret keys in public-key cryptosystems
which support delegation of secret keys for different
ciphertext classes in cloud storage. No matter which one
among the power set of classes, the delegatee can always get
an aggregate key of constant size. Our approach is more
flexible than hierarchical key assignment which can only
save spaces if all key-holders share a similar set of privileges.

A limitation in our work is the predefined bound of the
number of maximum ciphertext classes. In cloud storage,
the number of ciphertexts usually grows rapidly. So we
have to reserve enough ciphertext classes for the future
extension. Otherwise, we need to expand the public-key as
we described in Section 4.2.

Although the parameter can be downloaded with
ciphertexts, it would be better if its size is independent of
the maximum number of ciphertext classes. On the other
hand, when one carries the delegated keys around in a
mobile device without using special trusted hardware, the
key is prompt to leakage, designing a leakage-resilient
cryptosystem [22], [34] yet allows efficient and flexible key
delegation is also an interesting direction.

ACKNOWLEDGMENTS

This work was supported by the Singapore A*STAR project
SecDC-112172014. The second author is supported by the
Early Career Scheme and the Early Career Award of the
Research Grants Council, Hong Kong SAR (CUHK 439713),
and grants (4055018, 4930034) from Chinese University of
Hong Kong.

REFERENCES

[1] S.SM. Chow, Y.J. He, L.C.K. Hui, and S.-M. Yiu, “SPICE - Simple
Privacy-Preserving Identity-Management for Cloud Environ-
ment,” Proc. 10th Int’l Conf. Applied Cryptography and Network
Security (ACNS), vol. 7341, pp. 526-543, 2012.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25,

(2]
(3]

4

(5]

o]

(71

(8]

B

(10]

(1]

(12]

(13]

(14]

(15]

[16]

[17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

[25]

NO. 2, FEBRUARY 2014

L. Hardesty, Secure Computers Aren’t so Secure. MIT press, http://
www.physorg.com/news176107396.html, 2009.

C. Wang, S.S.M. Chow, Q. Wang, K. Ren, and W. Lou, “Privacy-
Preserving Public Auditing for Secure Cloud Storage,” IEEE Trans.
Computers, vol. 62, no. 2, pp. 362-375, Feb. 2013.

B. Wang, S.5S.M. Chow, M. Li, and H. Li, “Storing Shared Data on
the Cloud via Security-Mediator,” Proc. IEEE 33rd Int’l Conf.
Distributed Computing Systems (ICDCS), 2013.

S.SM. Chow, C.-K. Chu, X. Huang,]J. Zhou, and R.H. Deng,
“Dynamic Secure Cloud Storage with Provenance,” Cryptography
and Security, pp. 442-464, Springer, 2012.

D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and
Verifiably Encrypted Signatures from Bilinear Maps,” Proc. 22nd
Int’l Conf. Theory and Applications of Cryptographic Techniques
(EUROCRYPT '03), pp. 416-432, 2003.

M.]. Atallah, M. Blanton, N. Fazio, and K.B. Frikken, “Dynamic
and Efficient Key Management for Access Hierarchies,” ACM
Trans. Information and System Security, vol. 12, no. 3, pp. 18:1-18:43,
2009.

J. Benaloh, M. Chase, E. Horvitz, and K. Lauter, “Patient
Controlled Encryption: Ensuring Privacy of Electronic Medical
Records,” Proc. ACM Workshop Cloud Computing Security
(CCSW "09), pp. 103-114, 2009.

F. Guo, Y. Mu, Z. Chen, and L. Xu, “Multi-Identity Single-Key
Decryption without Random Oracles,” Proc. Information Security
and Cryptology (Inscrypt '07), vol. 4990, pp. 384-398, 2007.

V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-Based
Encryption for Fine-Grained Access Control of Encrypted Data,”
Proc. 13th ACM Conf. Computer and Comm. Security (CCS '06),
pp. 89-98, 2006.

S.G. Akl and P.D. Taylor, “Cryptographic Solution to a Problem of
Access Control in a Hierarchy,” ACM Trans. Computer Systems,
vol. 1, no. 3, pp. 239-248, 1983.

G.C. Chick and S.E. Tavares, “Flexible Access Control with Master
Keys,” Proc. Advances in Cryptology (CRYPTO ’89), vol. 435,
pp. 316-322, 1989.

W.-G. Tzeng, “A Time-Bound Cryptographic Key Assignment
Scheme for Access Control in a Hierarchy,” IEEE Trans. Knowledge
and Data Eng., vol. 14, no. 1, pp. 182-188, Jan./Feb. 2002.

G. Ateniese, A.D. Santis, A.L. Ferrara, and B. Masucci, “Provably-
Secure Time-Bound Hierarchical Key Assignment Schemes,”
J. Cryptology, vol. 25, no. 2, pp. 243-270, 2012.

R.S. Sandhu, “Cryptographic Implementation of a Tree Hierarchy
for Access Control,” Information Processing Letters, vol. 27, no. 2,
pp- 95-98, 1988.

Y. Sun and K.J.R. Liu, “Scalable Hierarchical Access Control in
Secure Group Communications,” Proc. IEEE INFOCOM '04, 2004.
Q. Zhang and Y. Wang, “A Centralized Key Management Scheme
for Hierarchical Access Control,” Proc. IEEE Global Telecomm. Conf.
(GLOBECOM '04), pp. 2067-2071, 2004.

J. Benaloh, “Key Compression and Its Application to Digital
Fingerprinting,” technical report, Microsoft Research, 2009.

B. Alomair and R. Poovendran, “Information Theoretically Secure
Encryption with Almost Free Authentication,”]. Universal
Computer Science, vol. 15, no. 15, pp. 2937-2956, 2009.

D. Boneh and M.K. Franklin, “Identity-Based Encryption from the
Weil Pairing,” Proc. Advances in Cryptology (CRYPTO '01),
vol. 2139, pp. 213-229, 2001.

A. Sahai and B. Waters, “Fuzzy Identity-Based Encryption,” Proc.
22nd Int’l Conf. Theory and Applications of Cryptographic Techniques
(EUROCRYPT '05), vol. 3494, pp. 457-473, 2005.

S.S.M. Chow, Y. Dodis, Y. Rouselakis, and B. Waters, “Practical
Leakage-Resilient Identity-Based Encryption from Simple As-
sumptions,” Proc. ACM Conf. Computer and Comm. Security,
pp. 152-161, 2010.

F. Guo, Y. My, and Z. Chen, “Identity-Based Encryption: How to
Decrypt Multiple Ciphertexts Using a Single Decryption Key,”
Proc. Pairing-Based Cryptography Conf. (Pairing '07), vol. 4575,
pp. 392-406, 2007.

M. Chase and S.S.M. Chow, “Improving Privacy and Security in
Multi-Authority Attribute-Based Encryption,” Proc. ACM Conf.
Computer and Comm. Security, pp- 121-130. 2009,

T. Okamoto and K. Takashima, “Achieving Short Ciphertexts or
Short Secret-Keys for Adaptively Secure General Inner-Product
Encryption,” Proc. 10th Int’l Conf. Cryptology and Network Security
(CANS ’11), pp. 138-159, 2011.

CHU ET AL.: KEY-AGGREGATE CRYPTOSYSTEM FOR SCALABLE DATA SHARING IN CLOUD STORAGE 477

[26] R. Canetti and S. Hohenberger, “Chosen-Ciphertext Secure Proxy
Re-Encryption,” Proc. 14th ACM Conf. Computer and Comm.
Security (CCS '07), pp. 185-194, 2007.

[27] C.-K. Chu and W.-G. Tzeng, “Identity-Based Proxy Re-encryption
without Random Oracles,” Proc. Information Security Conf.
(ISC '07), vol. 4779, pp. 189-202, 2007.

[28] C.-K. Chu, J. Weng, SS.M. Chow,]J. Zhou, and R.H. Deng,
“Conditional Proxy Broadcast Re-Encryption,” Proc. 14th Austra-
lasian Conf. Information Security and Privacy (ACISP '09), vol. 5594,
pp- 327-342, 2009.

[29] SSM. Chow, J. Weng, Y. Yang, and RH. Deng, “Efficient
Unidirectional Proxy Re-Encryption,” Proc. Progress in Cryptology
(AFRICACRYPT ’10), vol. 6055, pp. 316-332, 2010.

[30] G. Ateniese, K. Fu, M. Green, and S. Hohenberger, “Improved
Proxy Re-Encryption Schemes with Applications to Secure
Distributed Storage,” ACM Trans. Information and System Security,
vol. 9, no. 1, pp. 1-30, 2006.

[31] D. Boneh, C. Gentry, and B. Waters, “Collusion Resistant Broad-
cast Encryption with Short Ciphertexts and Private Keys,” Proc.
Advances in Cryptology Conf. (CRYPTO '05), vol. 3621, pp. 258-275,
2005.

[32] L.B. Oliveira, D. Aranha, E. Morais, F. Daguano, J. Lopez, and R.
Dahab, “TinyTate: Computing the Tate Pairing in Resource-
Constrained Sensor Nodes,” Proc. IEEE Sixth Int’l Symp. Network
Computing and Applications (NCA '07), pp. 318-323, 2007.

[33] D. Naor, M. Naor, and]. Lotspiech, “Revocation and Tracing
Schemes for Stateless Receivers,” Proc. Advances in Cryptology Conf.
(CRYPTO ’01), pp. 41-62, 2001.

[34] T.H. Yuen, S.5S.M. Chow, Y. Zhang, and S.M. Yiu, “Identity-Based
Encryption Resilient to Continual Auxiliary Leakage,” Proc.
Advances in Cryptology Conf. (EUROCRYPT ’12), vol. 7237,
pp. 117-134, 2012.

[35] D. Boneh, X. Boyen, and E.-]. Goh, “Hierarchical Identity Based
Encryption with Constant Size Ciphertext,” Proc. Advances in
Cryptology Conf. (EUROCRYPT '05), vol. 3494, pp. 440-456, 2005.

[36] D. Boneh, R. Canetti, S. Halevi, and]. Katz, “Chosen-Ciphertext
Security from Identity-Based Encryption,” SIAM]. Computing,
vol. 36, no. 5, pp. 1301-1328, 2007.

Cheng-Kang Chu received the PhD degree in
computer science from National Chiao Tung
University, Hsinchu, Taiwan. After a postdoc-
toral fellowship in Singapore Management
University with Prof. Robert H. Deng, he joined
Cryptography and Security Department at the
Institute for Infocomm Research as a research
P scientist. He has had a long-term interest in the
3 development of new technologies in applied
AL"/L cryptography, cloud computing security, wire-
less sensor network security and smart grid security. Now, he is
mainly working on a project to develop security techniques in large-
scale shared storage systems. He has published many research
papers in major conferences like PKC, CT-RSA, ACNS, etc., and
received the best student paper award in ISC 2007. He also served as
vice chair of IEEE CCNC 2012 and on the program committee of many
international conferences including TrustBus, WISTP, IEEE CCNC,
IEEE CloudCom, etc.

Sherman S.M. Chow received the PhD degree
from the Courant Institute of Mathematical
Sciences, New York University. He was a
research fellow at the Department of Combina-
torics and Optimization, University of Waterloo.
He joined the Department of Information En-
gineering at the Chinese University of Hong
Kong as an assistant professor in November
2012. He interned at NTT Research and Devel-
opment (Tokyo), Microsoft Research (Redmond)
and Fuji Xerox Palo Alto Laboratory, and has made research visits to U.
Maryland, U. Calgary, U. Texas, HKU, MIT, and Queensland University
of Technology. These visits resulted in US patent applications and also
in publications at major conferences such as ACM CCS and IACR
EUROCRYPT. His research interests include applied cryptography,
privacy and distributed systems security in general. He serves on the
program committees of several international conferences including
ASIACRYPT 2012-2014, ACNS 2012-2013, ASIACCS 2013-2014,
IEEE-CNS 2013, and Financial Crypt. 2013.

Wen-Guey Tzeng received the BS degree in
computer science and information engineering
from National Taiwan University, 1985 and the
MS and PhD degrees in computer science from
the State University of New York at Stony Brook,
in 1987 and 1991, respectively. He joined the
Department of Computer Science, National
Chiao Tung University, Taiwan, in 1991. He is
currently serving as a chairman of the depart-
ment. His current research interests include
cryptology, information security, and network security.

Jianying Zhou received the PhD degree in
information security from the University of
London. He is a senior scientist at the Institute
for Infocomm Research, and heads the Network
Security Group. His research interests include
computer and network security, mobile and
wireless communications security, cloud secur-
ity, and smart grid security.

Robert H. Deng has been a professor at
the School of Information Systems, Singapore
Management University since 2004. Prior to this,
he was a principal scientist and a manager of
Infocomm Security Department, Institute for
Infocomm Research, Singapore. His research
interests include data security and privacy,
multimedia security, network and system secur-
ity. He was the associate editor of the IEEE
. : Transactions on Information Forensics and
Security from 2009 to 2012. He is currently an associate editor of the
IEEE Transactions on Dependable and Secure Computing, an associate
editor of Security and Communication Networks (John Wiley), and a
member of Editorial Board of Journal of Computer Science and
Technology (the Chinese Academy of Sciences). He is the cochair of
the Steering Committee of the ACM Symposium on Information,
Computer and Communications Security. He received the University
Outstanding Researcher Award from the National University of
Singapore in 1999 and the Lee Kuan Yew Fellow for Research
Excellence from the Singapore Management University in 2006. He
was named Community Service Star and Showcased Senior Information
Security Professional by (ISC)* under its Asia-Pacific Information
Security Leadership Achievements program in 2010. He received the
Distinguished Paper Award of the 19th Annual Network and Distributed
System Security Symposium (NDSS 2012) and the Best Paper Award of
the 13th Joint IFIP TC6 and TC11 Conference on Communications and
Multimedia Security (CMS 2012). He is a senior member of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

