Frame Interpolation for Cloud-Based Mobile Video Streaming

Muhammad Usman, Member, IEEE, Xiangjian He, Senior Member, IEEE, Kin M. Lam, Senior Member, IEEE, Min Xu, Member, IEEE, Syed Mohsin M. Bokhari, Member, IEEE, and Jinjun Chen, Senior Member, IEEE

Abstract—Cloud-based High Definition (HD) video streaming is becoming more and more popular day by day. On one hand, it is important for both end users and large storage servers to store their huge amount of data on different servers at different locations from security and mobile availability point of views, especially for end users having small amount of storage in their mobile devices. On the other hand, it is becoming a big challenge for network service providers to provide constant and reliable connectivity to the network users. There have been many studies over cloud-based video streaming for Quality of Experience (QoE) for services like Youtube. Packet losses and bit errors are very common in transmission networks, producing annoying effects such as frame freezing and blocky artifacts, which affects the user feedback over cloud-based media services. To cover up packet losses and bit errors, Error Concealment (EC) techniques are usually applied at decoder/receiver side to estimate the lost information. This paper proposes a time efficient and quality oriented EC method. The proposed method considers H.265/HEVC based Intra-encoded videos for the estimation of whole Intra-frame loss. The unsliced mode of H.265 is targeted for the proposed approach. The main emphasis in the proposed approach is the recovery of Motion Vectors (MVs) of a lost frame in real-time. The search to find the optimum MV is performed in parallel in nearby four sub-blocks in the reference frame. To boost-up the search process for the lost MVs, a bigger block size and searching in parallel are both considered. The simulation results clearly show that our proposed method outperforms the traditional Block Matching Algorithm (BMA) by approximately 2.5 dB and Frame Copy (FC) by up to 12 dB at a Packet Loss Rates of 1%, 3% and 5% with different Quantization Parameters (QPs). The computational time of the proposed approach outperforms the BMA by approximately 1,788 seconds. The proposed technique can readily be applied for real-time cloud-based HD video streaming.

Index Terms—High Definition, Quality of Experience, Packet Retransmission, Error Concealment, Block Matching Algorithm, Motion Vectors, H.265/HEVC, Intra Frame, Packet Loss Rate, Quantization Parameter.

I. INTRODUCTION

THERE is a tremendous growth in the usage of streaming videos nowadays. It has been reported in [1] that the global Internet consumer video traffic will be 80 percent of all Internet consumer traffic in 2019, which is an increase of 64 percent from what was reported in 2014. In the case of mobile-users, the increase will be 10-fold from 2014 to 2019. This report indicates a huge amount of video streaming that may lead to degradation in QoE for end users.

The cloud services are becoming more and more popular day by day on both computing and storage aspects and producing a major impact on current IT and research industry [2]. Today’s companies are shifting IT activities to third party storage servers and computing platforms. The most famous cloud-based media services include Youtube, Dailymotion, Microsoft Azure and Putlocker. A general framework of cloud-based media streaming is shown in Fig. 1. Cloud computing provides not only high computation power but also huge amount of storage space, so that it enables end users to utilize best services without having an expensive and complex architecture at their side [3]. However, cloud architecture suffers from transmission degradations, especially transmission errors and security threats in cloud networks [4]. The QoE is becoming a criterion in quality testing for end users to rate media streaming services provided by clouds [5].

Nowadays, videos are becoming more attractive in resolution, and we now see HD and Ultra HD (UHD) techniques. To process and store such high resolution videos, cloud computing provides an effective platform for computing, storage and transmission. There are many media servers which are actually cloud data centers. Some well-known cloud based media servers are MediaFire, YouTube, DailyMotion, PutLocker and many more.

Current video processing standards such as H.264 and H.265 are dealing with immense amount of data, which ultimately demands either parallel or distributed processing platforms. In the case of cloud computing, many Video Service Providers (VSPs) can rent out the distribution architecture from Cloud Service Providers (CSPs) to deliver video streams to a large number of mobile end users [6, 7].

Manuscript submitted on September 01, 2015 and asterisk indicates corresponding author.

Muhammad Usman, Prof. *Xiangjian He, Dr. Min Xu and Associate Prof. Jinjun Chen are with Global Big Data Technologies Center (GBDTC), School of Computing and Communications, University of Technology Sydney, Australia. (e-mail: Muhammad.Usman-2@student.uts.edu.au, Xiangjian.He@uts.edu.au, Min.Xu@uts.edu.au, Jinjun.Chen@uts.edu.au).

Dr. Syed Mohsin Matloob Bokhari is with Department of Electronic Engineering, University of Engineering and Technology Peshawar, Pakistan (e-mail: Mohsin.Bokhari@uetpeshawar.edu.pk).

Prof. Kin Man Lam is with Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong (e-mail: enkmlam@polyu.edu.hk).
The main advantage of such approaches is the computing power, which is available any time at the VSP side while the drawback is extra management and cost.

In order to tackle with QoE, a VSP needs to intelligently deal with both cloud and network service providers. The HD video streaming is always bandwidth sensitive, so it leads to many challenges 1) Distribution of data at different locations demands proper management of available sources, 2) Different geographical locations will be connected through Internet, which is based on best effort service 3) As the Internet is a combination of low and high speed networks, which may cause data buffering at many locations during data transmission, out of order delivery or packet loss or drops may occur 4) Video streaming applications run on connectionless protocols, which does not provide guaranteed and safe delivery of transmitted packet [8].

In the case of cloud server-based media streaming, unreliable transmission channels are the biggest issue. The current video coding standard H.265/HEVC provides approximately half bit rate with same visual quality as compared to previous standard H.264/AVC [9]. As H.265 encoded videos are highly compressed, little packet loss or smaller bit errors may still lead to huge quality degradations. There are mainly two modes of encoding in H.264 and H.265 i.e. Intra and Inter. In case of Intra mode, each video frame is treated independently and known as Intra or I-frame. On the other hand, Inter mode is a combination of I, P (Predictive) and B (Bidirectional) frames. In this mode, video frames are always encoded as a Group Of Pictures (GOP). In each GOP, there is always one I-frame, which is always the first frame. Then there are P-frames which occur at regular intervals and always dependent on either previous I or P-frame. The B-frames occur mostly and are dependent on previous and upcoming I and P-frames. Unlike Intra encoded videos, such errors can easily propagate to subsequent frames in inter encoded videos, if they are not handled appropriately. To protect the binary encoded streams, the Error Resilience (ER) techniques are usually applied at encoder side. The ER techniques may protect the binary streams from content modification but cannot fight against the packet drops. The EC techniques are used at decoder side, are very popular to deal with such problems and can estimate the lost information without demanding any change in decoder architecture [10].

The main idea behind the EC is to estimate the video packet, lost during transmission. The lost video packet may contain parts of a video frame or one complete frame, depending upon the encoding parameters. The EC techniques utilize the correlation between the frames of the same shot in a video sequence. Usually, there are two types of correlations in video streams, namely Spatial and Temporal. Based upon these two categories, EC techniques can be classified into three types which are Spatial Error Concealment (SEC), Temporal Error Concealment (TEC) and a combination of both. SEC techniques are mostly used for concealment of Intra frames (I-frames) while TEC techniques are mostly used for concealment of Inter frames (I, B and P-frames). As Inter frames also involve I-frames, TEC techniques can also be applied to Intra-frames [11].

In this paper, we propose a new algorithm for concealment of whole frame loss of Intra encoded videos, stored on cloud-based media servers. The proposed algorithm conceals the Intra frames lost during the media streaming with following contributions:

- Our proposed algorithm does not require any changes in decoder architecture. Rather it works as a separate processing module, which is called by decoder, whenever required. The existing work for EC mostly focuses on performing such tasks at cloud side using H.264 [12]. The main drawback of the existing approach is the processing overload at the streaming server, which may cause delays and slow down the

![Fig. 1. The generic architecture of cloud-based media streaming](image-url)
performance of the streaming server. Our proposed approach runs at user side and reduces the processing load of cloud-based media server by utilizing the processing capability of end-user mobile devices.

- Our proposed algorithm performs in parallel, so it can be implemented on the microprocessors of user mobile devices. These parallel computations are threshold based and are not running all the time iteratively, so they produce minimum computational overhead and hence can easily support real-time HD video streaming. The experimental results show that our proposed algorithm produces less computational time as compared to traditional Boundary Matching Algorithm (BMA) [14].
- The proposed approach has also considered power saving. The user mobile devices always run on chargeable batteries. The duration and amount of stored charge decrease as the processing power increases [13]. The threshold-based parallel processing decreases the computational time and ultimately saves the stored charge.
- The experimental results show that our proposed algorithm produces better visual quality in terms of average PSNR. The experimental results also show an improvement of approximately 2.5 dB from the traditional BMA [14] and approximately 12 dB from Frame Copy (FC) [15].

The remainder of this article is organized as follows. The related work of EC is presented in Section II. In Section III, the proposed algorithm is introduced. The experimental setup, results and comparison are presented in Section IV. Finally, the paper is concluded in Section V.

II. RELATED WORK

To cover up video packet delays and drops during transmission, EC techniques play an important role. EC techniques always run at receiver side and work as a separate module, which does not demand any change in decoder architecture. This section summarizes classic error concealment techniques.

A. Spatial Error Concealment

The Spatial Error Concealment (SEC), also known as Intra EC, is pixel based approach and use information from neighborhood blocks to estimate the missing ones [16].

In [17], the texture modeling is used to perform geometric interpolation to estimate the lost pixels. Though it produces better results, is suitable for large block sizes only. The mean square estimation is used in combination with probability distribution function to restore the missing block of pixels [18]. The technique produces fine quality at the cost of computational complexity.

The directional edge analysis is used to estimate the edges of missing areas in a video frame [19]. This approach works well with sufficient information from nearby edges but does not produce better results in heavy losses. The relevant edges in the presence of digital drop out errors are estimated through canny edge detector [20]. This approach produces better results in linear motion only. To estimate whole frame lost, pixel-wise disparity matching technique is used in [21]. This technique works well for whole frame loss with affordable reconstruction quality but does not support consecutive frame losses.

B. Temporal Error Concealment

The Temporal Error Concealment (TEC), also known as Inter EC, uses the correlation between video frames to find out the MVs of lost block of pixels [16].

The boundary matching score in combination with object detection is used to estimate the MVs of lost blocks in a frame [22]. This approach works well in the presence of multiple objects in a video frame. The dynamic programming is used to recover the MVs of lost blocks in a frame iteratively [23]. This approach produces better results at the cost of computational time. In [12], the MVs of neighborhood frames are used to estimate a corrupted block in a frame. This approach is simple and has simpler computations but does not produce better results in slow motion videos. The auto-regressive modeling is used to refine the estimated MVs of lost blocks in a video frame [24]. This approach only supports videos having linear motions only.

The depth information in a 3D video is used to estimate the MVs of lost blocks in a frame of the video in [25]. The lost MVs are reconstructed using previous Intra-frames [26]. Instead of using depth information, the Motion Vector Extrapolation (MVE) algorithm is used to estimate the lost MVs [27]. The approaches in [25-27] produce better reconstruction quality but support 3D videos only.

C. Hybrid Error Concealment

The Hybrid Error Concealment (HEC) techniques are either a combination of techniques from the SEC and TEC domains or techniques from other domains of signal and image processing to perform concealment. The Multiple Description Coding (MDC) is combined with the SEC and TEC domain techniques to produce better concealment results [28]. This technique produces better results but is limited to random packet loss only. To support random packet losses, the MDC is combined with Set Partitioning in Hierarchical Trees (SPIHT) to restore missing blocks [29]. To restore the region of interest, videos are transmitted in two streams, having high and low resolutions respectively [30]. The techniques presented in [29, 30] produce better reconstruction quality at the cost of availability of high bandwidth.

III. FRAME INTERPOLATION

In this section, we present our proposed technique. Motivated by the BMA and FC, we propose an EC technique based on multiple threading. The proposed EC technique, named as Frame Interpolation (FI) is illustrated in Fig. 2. For each lost Intra-frame, the MVs are derived first. The lost MVs are estimated through a Motion Estimation (ME) scheme. The main time consuming process during video encoding is always the ME. The ME consumes 40% to 80% of computational time [31]. In our approach, the main emphasis is to reduce computational complexity and time, as we cannot expect a high computational power in any end-user mobile device. This reduction in complexity of computations ultimately reduces
computational time, which helps in supporting real-time processing. The ME process is performed by using two frames at a time, i.e., the previous and the next frame. The blocks in the previous and the next frames represent the tail and head of estimated MVs respectively, i.e., the starting point of any MV is known as tail while the ending point of any MV is known as head as shown in Fig. 2. The BMA is used as a base algorithm for further enhancement of the ME process. The estimated MVs then help to interpolate the missing/lost frame. The interpolated frames are passed through an adaptive filter to remove the false estimation noises, if any. The details of the FI are discussed in the following subsections.

A. Block Size Selection

Before starting the procedure of the EC, it is important to divide the current frame into blocks but there is no specific criterion for that. This division totally depends upon the nature of information and applications.

For the division of a frame into blocks, we could either consider the whole frame as one block or divide the frame into blocks of equal/unequal size. The first option demands large buffer memory and may slow down the performance of the system. These drawbacks can be minimized by segmenting a frame into number of either fixed or variable sized blocks. In the proposed FI, we divide the frame into number of blocks of fixed size. During experiments, the size of 16×16 is proved to be an optimal size on average. As our algorithm is basically designed for HD and higher resolution videos, a larger block size creates shorter computational overhead. On contrast, smaller and variable sized divisions produce better fineness in results but at the cost of longer processing overhead and higher computational complexity.

The shape of a block can be square, rectangular, triangular and irregular. Out of all these possibilities, the square shape is widely adopted. One main reason for the popularity of square shape is the even resolution of test videos. The test videos are always available in even resolution as shown in Table II. In square shape, only starting and ending point is required while in irregular shapes, checks and breaks are required in rows and columns to create hexagonal or diamond shape. In our proposed algorithm, to reduce the amount of information, required during the processing, a square block shape is considered. Experiments show that using a square shape produces better results and requires less time as compared to other shapes.

In FI, each Input Video (IV) is read in frame by frame. If frame N is missing, then frame N-1 and N+1 are selected for the EC process. Otherwise frame is written to Output Video (OV) file. To process HD frames quickly, a block size of 16×16 is used to perform EC at a decoder side. The blocks of the current frame are denoted as Input Blocks (IBs) and the blocks of a reference frame are denoted as Reference Blocks (RBs).

B. Reference Frame Segmentation

The second step in any EC scheme is to divide each reference frame into areas, known as Search Windows (SWs). Again, there is no specific criterion for such divisions.

In our proposed FI, we choose to divide each reference frame into multiple SWs of a fixed size. When determining the size of SWs, we assume that the motion of pixels is not very fast. Therefore, the SW size is selected to be four times of the IB size in FI. Thus, the SW size is 64x64. It has been proved that the SW size can be further reduced for more efficient computations if needed. In terms of shape of SWs, the shape can be square, square, rectangular, triangular, irregular and adaptive [32]. In order to be adapted to videos of any resolution, square shape is adopted in our proposed algorithm.
C. Scanning Pattern

The next step in our proposed FI is how to find the best matching block in a reference frame. In our proposed technique, the FS is used due to its high accuracy with modifications. Unlike the traditional FS, our approach does not search every pixel in an SW. Our approach considers the assumption that pixels cannot move that far in consecutive frames. There is another possibility that more than one match are found during the matching process at different locations. To overcome this problem, we set a threshold and terminate the search process as soon as the first best or near match is found.

To further speed up the searching process, in our proposed method, multiple threads based parallel processing is considered. Each SW is divided into N number of partitions, known as RBs. The size of each RB is equal to the IB size. A random value is set as an initial threshold. The block matching process is performed in parallel in each partition. The matching is performed pixel by pixel just like the FS. If the matching value is below the initial threshold, the search moves on to the next pixel in sequence until a matching value greater than the initial threshold is found to terminate the searching process. As soon as the search is terminated, the threshold value is replaced by the minimum value, found in the set of previously searched minimum values.

D. Motion Vector Estimation

The Motion Vector (MV) is used to represent a similarity match between a block in current and reference frame [9]. To find out the best match, there are many mathematical techniques i.e. Sum of Squared Differences (SSD), Zero-mean Sum of Absolute Differences (ZSAD), Minimum Absolute Differences (MAD), etc. These techniques involve time complexities from \(N \) to \(N^2 \) [33].

In our proposed approach, we adopt MAD, which involves difference operations only. During the search process, the MAD is calculated for each pixel until the difference is below a threshold. If the difference is not below the threshold in a row, the search process will continue and move to next row in the SW. This process is repeated until all rows in the SW are searched. After that the minimum value is searched from a set of calculated values. Then \(X-Y \) coordinates of the pixels, in the current and reference frame respectively, are found out. These \(X-Y \) coordinates determine the head and tail locations of the corresponding MV. After that another search is performed to find out a MV that has the minimum value from the set of calculated MVs. The MV, having minimum value is selected as the representing MV of the current block. The above process is a Forward Motion Estimation (FME) that is to find the Forward Motion Vector (FMV) for each IB. The same process as that shown from subsections A to D is performed for a Backward Motion Estimation (BME) to find the Backward Motion Vector (BMV) for each IB by considering frame \(N-1 \) and \(N+1 \) as the current and reference frames respectively.

E. Frame Interpolation

The frame or motion interpolation is a process in which intermediate animated video frames are generated between the existing ones to provide a clear, fluid or smooth motion. Although this technique leads to crystal and clear visual quality, it requests complex hardware [34].

To perform a simple frame interpolation between a pair of frames \(F_{N-1} \) and \(F_{N+1} \), at time \(t_{N-1} \) and \(t_{N+1} \), frame \(F_i \) can be inserted as:

\[
F_{i,x,y} = (1 - t_i)F_{N-1,x,y} + t_iF_{N+1,x,y}
\]

Let \(V_{x,y} \) be the MV between blocks in the current frame and a reference frame As \(V_{x,y} \) defines the motion vector of pixels between the current and reference frames, the tail coordinates can be defined as \([x_h, y_h] \) and head coordinates as \([x_f, y_f] \). The values of \([x_h, y_h] \) and \([x_f, y_f] \) can be found as:

\[
[x_h, y_h] = [x, y] - t_iV_{x,y}
\]

\[
[x_f, y_f] = [x, y] + (1 - t_i)V_{x,y}
\]

where the point \([x, y] \) represents a point in the interpolated frame [35]. This approach works pixel by pixel at whole frame level and consumes lots of processing time.

In our proposed algorithm, we use the above technique but at block level. In our proposed approach, the MVs are estimated at block level rather than pixel level, so our approach saves the computational time and does not demand the process at every pixel in a block. After estimating the MV for each block of missing frame, the missing blocks are interpolated by modifying (2) to:

\[
B_{i,x,y} = (1 - t_i)B_{N-1,x,y} + t_iB_{N+1,x,y}
\]

where \(B_i \) is the block of missing frame, \(B_{N-1} \) is the block in current frame and \(B_{N+1} \) is the block in reference frame. The final concealed frame can be found by:

\[
CF = \frac{F_{i,x,y}}{2}
\]

The main reason behind adopting the simple frame interpolation is its mathematical simplicity, less computational complexity and time. However, it is observed in experiments that in some interpolated frames, there are thin lines at the edges of reconstructed blocks because of placement of pixels at false locations.

F. Adaptive Filtering

Sometimes it may happen that the concealed image contains blocky artifacts or thin hair-like lines. These types of distortions are very common in block based approaches. The solutions for such case are either to select the neighborhood adaptively or to perform filtering adaptively. The adaptive filter approach also requires the detection of corrupted pixels. To declare a pixel as corrupted one, a difference of \(\Delta_1 \) and \(\Delta_2 \) is used, where \(\Delta_1 \) is the cumulated weighted distance allocated to the central pixel of filtering window and \(\Delta_2 \) is the output of weighted vector median filter. The next step is to define a threshold value \(T_a \) for comparison purpose. The adaptive filter can be defined by:
where \(AFO \) is the Adaptive Filter Output, \(CF \) is the concealed image pixel and \(CF_{AMF} \) is the output of Arithmetic Mean filter (AMF), which is computed from those pixels, declared as corrupted in the \(CF \) [36]. Although this approach is very simple and produces less computational complexity, it may produce false results, which are unavoidable at some times.

In our proposed algorithm, we choose and modify the adaptive filter approach. In thin hair-like lines, it is very obvious that there would be corrupted pixels in more than one row. Based upon that assumption, the filtering process may become speedy and produce less computational time if the filtering is performed in parallel. Another check is also performed for the detection of thin hair-like lines in homogeneous regions. If the hair-like line errors are in homogeneous regions, then intensity averaging is applied to save the computational time. In our proposed FI, the estimated frame is passed through the modified adaptive filter to remove line errors, if there are any. Another reason to use this modified filter is the presence of noise, which may or may not be present in the estimated frame. In this case, the adaptive filter approach proves to be very quick compared to the adaptive neighborhood approach. The entire procedure of the FI algorithm is described in pseudo code in Algorithm 1.

TABLE I. Simulation environment

<table>
<thead>
<tr>
<th>Hardware</th>
<th>CPU: Intel ® Core ™ i5-3470 CPU @ 3.20 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAM</td>
<td>8 GB</td>
</tr>
<tr>
<td>Software</td>
<td>H.265/HEVC Codec HM 16.2 Matlab R2015a</td>
</tr>
<tr>
<td>Video</td>
<td>Format: 4:2:0</td>
</tr>
<tr>
<td>QP</td>
<td>Varying between 10 to 37</td>
</tr>
<tr>
<td>PLR</td>
<td>1, 3, 5 %</td>
</tr>
<tr>
<td>Methods</td>
<td>Frame Copy, BMA and Proposed Method</td>
</tr>
</tbody>
</table>

IV. EXPERIMENTAL SETUP AND RESULTS

In order to evaluate the performance of the proposed technique, experiments are performed using HM 16.2 [37] and Matlab R2015a. The experiments are carried out using various video sequences of both High Definition (HD) and non-HD. Fifteen popular video sequences are used for simulation purposes. The details of experimental model and platform can be found in Table I.

The details of input video sequences, such as resolution, total number of frames, frame rate, Quantization Parameter (QP) and encoding bit rates are illustrated in Table II. All videos are encoded in unsliced and Intra only mode, and the first 150 frames are used from each sequence for experiments. The video sequences are encoded using different QPs ranging from 10 to 37 as shown in Table II. There are two main reasons to use different QPs. The first reason is to generate different bit rates for testing the efficiency of our proposed approach from reconstructed frame quality point of view. The second reason is to follow the same experimental setup, as used in [14], in order to test the efficiency of FI. To simulate the packet loss, we use H.265 RTP loss model proposed in [38], which is a well-known model and widely used in many research articles. In our experiments, three different Packet Loss Rates (PLRs), 1%, 3% and 5% are tested. We also implement the Frame Copy (FC) [15] and Block Matching Algorithm (BMA) [14] under the same experimental conditions, as proposed in [14, 15] for the comparison purpose.

Tables III and IV in [39] summarize the simulation results for the BMA, FC and the FI in terms of average Peak Signal to Noise Ratio (PSNR) with different PLRs for selected HD and non-HD video sequences. The Mean Square Error (MSE) metric is used to calculate the distortion effects. The PSNR in
simulations is based on the MSE value for each estimated block. The video sequences, used in simulations have variety of motions in terms of speed, ranging from slow to high. The videos are categorized into three main categories, i.e. moving objects with static camera, static objects with moving camera and moving objects with moving camera. Tables V and VI in [39] describe the average computational time with different PLRs, both for BMA and FI for selected HD and non-HD videos respectively. As shown in Table III and IV, FI produces better performance as compared to FC and BMA in terms of average PSNR by approximately 12 dB and 2.5 dB respectively. In Table V and VI, FI leads BMA in average computational time, by approximately 1,788 seconds. The two main motives behind the development of FI are an acceptable/affordable average PSNR and low computational time. The low computational time is particularly focused because the EC algorithms execute at end-user side. In the case of mobile users, the end-users may have low processing devices such as smart phones, tablets and personal laptops. These end-user devices have slow processors with limited number of hardware sources such as small amount of Random Access Memory (RAM) and limited number of temporary storage buffers with slow speed data buses. In real-time streaming, delays are always time critical, so the low processing time and minimum hardware resources requirements for the EC applications are always recommended.

The visual comparison between the proposed and reference algorithms is presented in Fig. 3 in [39] under different PLRs and QPs with different video sequences. In Fig. 3, column (a) represents the lost frame, (b) represents the output of FC algorithm, (c) represents the output of BMA and (d) represents the output of FI. These sample images are taken from three different videos, having different resolutions with motion of camera and/or objects. The first sample is taken from an HD video, Rush_hour with QP 32, the second one is a non-HD video, Flowervase (832×480) with QP 22, and the last one is from a non-HD video BlowingBubbles with QP 30. It can be seen very clearly that there is no bigger and notable visual difference among the original, FC and FI technique while BMA is showing lots of blurred lines. The only notable difference is present in BlowingBubbles samples, which is red encircled. As there is no significant motion between consecutive video frames, the visual difference cannot be noticed much in the FC algorithm. However, in the case of higher PLRs, the FC algorithm may not perform well and may produce frame-freezing effects.

Fig. 4 in [39] shows the performance graphs of FC, BMA and FI in terms of average PSNR under different PLRs. Fig. 5 in [39] shows the performance graphs of BMA and FI in terms of average computational time under different PLRs. In Figs. 4 and 5, first, second and third rows represent the average PSNRs and computational time for the HD video Rush_hour with QP 32, the non-HD videos Flowervase (832×480) with QP 22 and BlowingBubbles with QP 30 respectively. The first, second and third columns represent 1%, 3% and 5% PLRs respectively. It can be seen very easily that the average PSNR performance of FI is better than FC and BMA. FI outperforms BMA in average computational time, which proves its suitability for real-time processing.

V. CONCLUSION

In this paper, we have proposed a fast and quality oriented frame interpolation considering parallel processing for mobile end-user devices, having low processing power and hardware resources. The importance of less computational time and acceptable quality has been raised after the recent developments in H.265/HEVC standard. The computational time has gained more importance, with the arrival of HD and Ultra HD media streaming with 4K and 8K resolutions. However, no matter if the media streaming is live or stored-file-based (i.e. multimedia cloud servers), network channels can never give guarantee for no packet loss.

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Resolution</th>
<th>Total Number of Frames</th>
<th>Frame Rate</th>
<th>QP</th>
<th>Bit Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue_sky</td>
<td>1920×1080</td>
<td>250</td>
<td>27, 32, 37</td>
<td>23982.949, 14977.315, 9261.401</td>
<td></td>
</tr>
<tr>
<td>BQTerra ce</td>
<td>1920×1080</td>
<td>600</td>
<td>27, 32, 37</td>
<td>81257.312, 43334.454, 23746.781</td>
<td></td>
</tr>
<tr>
<td>Cactus</td>
<td>1920×1080</td>
<td>500</td>
<td>27, 32, 37</td>
<td>49908.523, 27077.061, 14652.869</td>
<td></td>
</tr>
<tr>
<td>Kimono</td>
<td>1920×1080</td>
<td>240</td>
<td>27, 32, 37</td>
<td>13262.299, 7864.826, 4628.346</td>
<td></td>
</tr>
<tr>
<td>Rush_hour</td>
<td>1920×1080</td>
<td>500</td>
<td>27, 32, 37</td>
<td>6219.905, 3745.957, 2291.689</td>
<td></td>
</tr>
<tr>
<td>Tractor</td>
<td>1920×1080</td>
<td>761</td>
<td>27, 32, 37</td>
<td>22311.997, 12958.396, 7528.085</td>
<td></td>
</tr>
<tr>
<td>BasketballDrillText</td>
<td>832×480</td>
<td>500</td>
<td>26, 29, 38</td>
<td>14347.965, 9443.944, 3429.003</td>
<td></td>
</tr>
<tr>
<td>BasketballPass</td>
<td>416×240</td>
<td>500</td>
<td>21, 23, 30</td>
<td>5563.536, 4537.888, 2126.491</td>
<td></td>
</tr>
<tr>
<td>BlowingBubbles</td>
<td>416×240</td>
<td>500</td>
<td>21, 23, 30</td>
<td>10858.829, 8930.136, 4176.013</td>
<td></td>
</tr>
<tr>
<td>Flowervase</td>
<td>416×240</td>
<td>301</td>
<td>10, 11, 17</td>
<td>4416.958, 4067.218, 2544.066</td>
<td></td>
</tr>
<tr>
<td>Keiba</td>
<td>416×240</td>
<td>300</td>
<td>19, 22, 27</td>
<td>7426.966, 5610.571, 3492.112</td>
<td></td>
</tr>
<tr>
<td>RaceHorses</td>
<td>832×480</td>
<td>300</td>
<td>13, 17, 24</td>
<td>6285.877, 4526.310, 2434.555</td>
<td></td>
</tr>
<tr>
<td></td>
<td>832×480</td>
<td>301</td>
<td>33, 37, 42</td>
<td>2483.947, 1558.250, 827.222</td>
<td></td>
</tr>
<tr>
<td></td>
<td>416×240</td>
<td>300</td>
<td>17, 21, 29</td>
<td>7516.494, 5418.634, 2358.395</td>
<td></td>
</tr>
<tr>
<td></td>
<td>832×480</td>
<td>300</td>
<td>27, 29, 37</td>
<td>11593.811, 9347.834, 3148.022</td>
<td></td>
</tr>
</tbody>
</table>

We have studied FC and BMA for the implementation and comparison purposes over H.265 platform. The proposed
algorithm provides better results in terms of both average PSNR and computational time. With the continuously updating threshold, the number of searching points has been decreased and the process to find the matching block has become fast.

In our study, we have used various types of videos, having different types of motion. The experimental results have proven that our proposed scheme is independent of the nature and contents of video sequence. The experimental results have proven that the proposed algorithm gives better performance in terms of visual quality compared to FC and BMA. It has also been proven that the computational time is far better than the classical BMA approach and can easily be applied at low processing end-user devices.

The simulation results produced in this paper will act as a base for the development of real-time EC algorithms for end user devices with error-prone transmission channels. Future developments may take this study further to modify HEVC decoder in such a way, so that it should incorporate efficient EC methods.

ACKNOWLEDGMENTS

Xiangjian He is the corresponding author.

REFERENCES

Muhammad Usman is currently pursuing the Ph.D. degree from the School of Computing and Communications, University of Technology Sydney, Australia. His research interests include audio, image and video processing, compression, communication, fast video encoding algorithms and error concealment techniques.

Xiangjian He received a Ph.D. in computing sciences from the University of Technology, Sydney, Australia, in 1999. Since 1999, he has been with the University of Technology, Sydney. He is currently a full professor and the director of Computer Vision and Pattern Recognition Laboratory there.

Kin-Man Lam received the Ph.D. degree from the Department of Electrical Engineering, University of Sydney. Sydney, Australia, in August 1996. Since 1990, he has been with The Hong Kong Polytechnic University, Hong Kong. He is currently a full professor. His current research interests include human face recognition, image and video processing, and computer vision.

Min Xu received the Ph.D. degree from University of Newcastle, Australia in 2010. She is currently a Senior Lecturer at University of Technology, Sydney, Australia. Her research interests include multimedia content analysis, multimedia affective computing, social multimedia, pattern recognition and computer vision.

Syed Mohsin Matloob Bokhari received the Ph.D. degree in Electrical and Electronics Engineering from the University of Bristol, Bristol, U.K. in 2012. Since 2012, he has been with University of Engineering and Technology Peshawar, Pakistan. He is currently an assistant professor. His research interests include image and video processing, compression, and communication.

Jinjun Chen is an Associate Professor from Faculty of Engineering and IT, University of Technology Sydney, Australia. He holds a PhD in Computer Science and Software Engineering (2007) from Swinburne University of Technology, Melbourne, Australia. His research interests include cloud computing, big data and data intensive systems. He has published more than 130 papers in high quality journals and conferences.

[37] https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-16.2/

[39] https://researchoutputs.uts.edu.au/login.html?returnurl=repository%2Ffiles%2F%3D1%26pub%3D694683%26file-url%3Dhttp%253A%252F%252Fopus.lib.uts.edu.au%252Frt4ds%252Ffile%252F578611%252FAPPENDIX.pdf