
50 Published by the IEEE Computer Society 1089-7801/14/$31.00 © 2014 IEEE IEEE INTERNET COMPUTING

Fe
at

ur
e:

 C
el

lu
la

r
Tr

af
�c

 R
ed

uc
ti

on

DELTA++: Reducing
the Size of Android
Application Updates

Nikolai Samteladze
and Ken Christensen
University of South Florida

This method of creating and deploying update patches improves on Google

Smart Application Update by �rst unpacking the Android Application Package

and then compressing its elements individually. The smartphone user can

then download a smaller patch. Experiments show that performance yields 49

percent more reduction relative to Google’s solution, increasing the savings

in cellular network bandwidth use and resulting in lighter application server

loads. This reduction in Android application-update traf�c could translate to

a 1.7 percent decrease in annual US cellular traf�c. Similar methods applied to

iPhone application updates could yield even greater savings.

A pplication updates continue to add
considerable traf�c to the cellu-
lar network and increase the load

on the data center servers that handle
them. As of late 2013, the Google Play
store was offering more than 1 mil-
lion applications and processing more
than 50 billion application downloads
(http://en.wikipedia.org/wiki/Google_
Play). Given that each application car-
ries its own set of feature updates and
bug �xes, an update release every few
weeks has become the norm. Indeed,
mobile operators spend billions of dol-
lars on network upgrades every year to
keep pace with the burgeoning mobile
traf�c generated by the explosion of
applications and their upkeep.1

Figure 1 shows the growth of the
number of applications in Google Play

in just �ve years. To reduce application
update traf�c, Google developed Google
Smart Application Update,2 which uses
a compression method transparent to
application developers and Android
users. Modi�cations to the Google Play
application and the server software
enable Google Play to construct new ver-
sions of updated applications by apply-
ing a patch to the application version
installed on the user’s Android device.
Although this solution has made inroads
into traf�c reduction, its compression
methods are not optimal. Notably, delta
encoding is at the Android Application
Package (APK) level only, which limits
the possible reduction in patch size.

To address this shortcoming and
reduce update traf�c even more, we
extended our Delta Encoding for Less

IC-18-02-Chris.indd 50 04/03/14 2:26 PM

DELTA++: Reducing the Size of Android Application Updates

MARCH/APRIL 2014 51

Traf�c for Apps (DELTA), an update mecha-
nism based on the bsdiff delta encoding tool.3

In our experiments,4 which predated the release
of Google Smart Application Update, we showed
that DELTA could successfully decrease applica-
tion update traf�c and enable savings in the cel-
lular network and data centers. We then re�ned
DELTA, creating DELTA++, which enables an
even larger traf�c decrease and greater savings.

Both DELTA++ and Google Smart Appli-
cation Update use delta encoding, which com-
putes the difference, or diff, between two �les,
enabling software developers to construct the
newer version from the old �le. Thus, the con-
tent provider can update a smartphone appli-
cation merely by transferring the diff and
then applying the delta patch locally in the
smartphone.

However, unlike Google Smart Applica-
tion Update, DELTA++ unpacks the APK and
then compresses its individual modules. Our
experimental results show that DELTA++ can
reduce application update size by 77 percent
on average, relative to a 55 percent average
size reduction possible with Google Smart
Application Update. This figure represents
a 49 percent improvement in compression
over Google Smart Application Update. The
tradeoff is that DELTA++ requires a more
complex application patch and thus more time
to deploy that patch on the smartphone. Our
experiments show that additional battery use
is negligible.

We have implemented DELTA++ as server-
side software, which constructs update patches
and serves them by request, and as an Android
application that deploys the received patches
and updates the installed applications. Our soft-
ware is a free download available at https://
github.com/NikolaiSamteladze.

Patch Generation
The size of the patch that the delta differencing
algorithm computes depends primarily on the
extent to which the old and new �le versions
differ, but compression can also affect that size.
If two �les have only a few differences, the
compressed �le versions might differ consider-
ably on a binary level because of how they were
processed during compression. The same is true
of the APK, which, as the sidebar “Inside an
Android Application Package File” makes clear,
is basically a compressed archive of all the �les

comprising an Android application. DELTA++
aims to determine the difference between the
application �les within an APK, as opposed to
the APKs themselves.

DELTA generated a patch as a delta difference
between the application’s old and new APK ver-
sions. The bsdiff delta encoding tool produces
this delta patch in the server, and the bspatch
tool deploys the patch in the smartphone. DELTA
works generally like Google Smart Application
Update in that both use delta encoding and nei-
ther unpacks the APK. DELTA++ improves on
both methods by decompressing the APK and
exploiting its speci�c structure. The result is a
much smaller patch.

The method underlying DELTA++ has
two main parts: patch construction and patch
deployment. Patch construction takes place on
the server side in the data center and is done
only once for each application patch version.
Patch deployment, which takes place on the
user’s smartphone, is done each time an appli-
cation updates.

Construction
As Figure 2 shows, DELTA++ patch construc-
tion consists of eight steps: � DELTA++ �rst
decompresses the old and new APK versions and
� traverses the manifest �les to get the names,
paths, and SHA-1 hash digests for all the �les in

Figure 1. Growth of applications in Google Play from March 2009
to June 2013. Updates add a considerable percentage to the
already skyrocketing number of application downloads. Data from
http://en.wikipedia.org/wiki/Google_Play.

0

100

200

300

400

500

600

700

800

900

1,000

M
ar

-0
9

Ju
n-

09

Se
p-

09

D
ec

-0
9

M
ar

-1
0

Ju
n-

10

Se
p-

10

D
ec

-1
0

M
ar

-1
1

Ju
n-

11

Se
p-

11

D
ec

-1
1

M
ar

-1
2

Ju
n-

12

Se
p-

12

D
ec

-1
2

M
ar

-1
3

Ju
n-

13

N
um

be
r

of
 a

pp
s

(1
,0

00
x)

Date

IC-18-02-Chris.indd 51 04/03/14 2:26 PM

Feature: Cellular Traffic Reduction

52 www.computer.org/internet/ IEEE INTERNET COMPUTING

two APKs. It then � marks the �les in the new
version. If the �le is in the new version but not
in the old one, it is marked NEW. If the �le is
in both versions but its SHA-1 sums differ, it is
marked UPDATED. If the �le is in both versions,
and the SHA-1 digests are the same, it is marked
SAME. Finally, if the �le is in the old version but
deleted in the new one, it is marked DELETED.
After marking is complete, DELTA++ � copies
the �les marked NEW into the constructed patch.

To compute differences between the old and
new APK versions, DELTA++ � inputs the �les
marked as UPDATED to the bsdiff delta encod-
ing algorithm and copies this difference into
the constructed patch. Because of the overhead
in creating the delta �le, the difference between
small �les can sometimes exceed the size of the

APK �les themselves. In these cases, DELTA++
� re-marks the updated �le as NEW and cop-
ies it into the patch. The �les marked SAME
remain untouched.

After marking the �les and computing ver-
sion differences, DELTA++ � creates the Patch-
Manifest.xml �le and includes it in the patch.
The �le is essentially a patch description,
comprising information about which applica-
tion version can be updated using the patch,
what NEW �les and delta differences between
UPDATED �les are in the patch, and informa-
tion about �les marked DELETED.

Computation concludes with � patch com-
pression into a zip archive using bzip2. The
compressed patch is then ready to be sent to an
Android device for deployment.

Deployment
Figure 3 shows the seven steps in DELTA++
patch deployment to the user’s Android smart-
phone. Deployment begins by � decompressing
the received patch into a temporary directory.
DELTA++ then � uses the ApplicationInfo class
to load the APK of the current application ver-
sion and � uses the PatchManifest.xml �le in
the patch to delete all the �les that are no longer
required. � By applying all the differences in the
patch to the proper �les, DELTA++ updates them.
It then � copies all the NEW �les from the patch
to the old application version. At this point, the
old and new application versions contain exactly
the same �les. The next step is to � construct

Inside the Android Application Package File

The Android Application Package (APK) is the format for
distributing and installing applications in the Android

operating system. An APK is essentially a zip archive that con-
tains all parts of an Android application, including program
byte code, resources, assets, certi�cates, and the manifest
�le. The application’s author creates an APK �le by compiling
the application’s code and resources and compressing all its
�les into one package. An APK �le usually contains six main
elements:

•	 The META-INF directory contains the application’s manifest
(MANIFEST.MF), certi�cate (CERT.RSA), and resources list
(CERT.SF). The manifest lists all the �les in the APK as well
as their checksums (SHA-1 digest).

•	 Classes.dex is the compiled application’s code in the in.dex
�le format designed for the Android operating system. It is
usually half the size of a .jar (Java Archive) �le derived from

the same code, deriving its reduction in part from the use
of shared strings pools.

•	 The lib directory includes the processor-speci�c compiled
code.

•	 Resources.arsc contains compiled application resources,
such as XML �les.

•	 The res directory has all the application’s resources that can-
not be compiled into resources.arsc, such as icons or pic-
tures that the application uses.

•	 AndroidManifest.xml contains information about the distributed
application and serves as an additional Android manifest �le.

Working at the level of these elements, and viewing the
APK as more than a single �le, can allow a far greater degree of
compression and thus a smaller patch size with all the bene�ts
that this brings to reducing network bandwidth use and reduc-
ing load on the application servers.

Figure 2. Steps in DELTA++ patch construction. DELTA++ hunts for
differences in �les within an APK, not just how the APK has changed.

�
Decompress
old and new

APKs

�
Load

manifests

�
Mark �les
in APK

�
Copy new

�les

�
Compute
deltas for

updated �les

�
Create

patch manifest

�
Compress

patch

�
Replace deltas
that are larger

than �les

IC-18-02-Chris.indd 52 04/03/14 2:26 PM

DELTA++: Reducing the Size of Android Application Updates

MARCH/APRIL 2014 53

the APK by compressing all the �les into a zip
archive with a .apk extension. Finally, DELTA++
� uses the Android PackageInstaller built into the
application to install the resulting APK.

Comparative Evaluation
To evaluate the traf�c reduction possible with
DELTA++, we constructed and deployed delta
patches for 110 of the most popular Google
Play applications in November 2012 (measur-
ing popularity by number of downloads), and
compared DELTA++’s performance to that of
Google Smart Application Update. The delta
patches were based on previous versions of the
applications, which we manually collected and
archived locally.

For the 110 applications, we assumed an
average application size of 6.21 Mbytes, average
download number of 58 million, and an average
time since last update of 29 days.

For all aspects of our evaluation, we used a
PC with an Intel Core i5 2.30-GHz processor and
8 Gbytes of RAM to generate delta patches, and
we deployed the patches on an HTC Thunder-
bolt smartphone with a single core, 1,000-MHz
Snapdragon processor, and 768 Mbytes of RAM.

Application updates consist of four steps:
patch construction, transmission, and deploy-
ment on the device, and �nally installation of
the updated version.

Our response variables of interest were patch
size and deployment time. For patch size, we
looked at how DELTA++ compared with both
the original application size and the patch size
that the Google Smart Application Update gen-
erated. Both these variables relate to patch con-
struction and transmission. Deployment time
includes both download and installation. For
each time measurement, we performed 10 rep-
etitions and took the average value.

Patch Size
Figure 4 shows relative patch size ordered by
total number of application downloads and
evaluated relative to the size of the application’s
latest version. In some cases, both methods pro-
duced patches that were only slightly smaller
than the application’s full version — typi-
cally when the developer had added numerous
resource �les (images, video �les, third-party
libraries, and so on) in the updated application.

Differences in application code between
versions signi�cantly affect patch size in part

because tools such as ProGuard obfuscate byte
code, deliberately making it harder to decom-
pile. Such obfuscation introduces �le differ-
ences on the binary level, causing the delta
encoding algorithm to produce larger patches.

Figure 4 shows that DELTA++ outperforms
Google Smart Application Update in reduc-
ing patch size, which correlates directly to less
transmitted data. The average measured savings
was 50 percent, the minimum was –75 percent
(the patch size increased relative to the appli-
cation size), and the maximum was 97 percent.
DELTA++ signi�cantly reduced application
update size and increased data savings: 77 per-
cent reduction for DELTA++ versus 55 percent
for Google Smart Application Update.

Deployment Time
DELTA++ decreases transmission time by
reducing the transferred �le size but requires
more time to deploy a patch. Figure 5 shows the
time to apply a DELTA++ patch and install the
updated application compared to the same time
for Google Smart Application Update. The aver-
age patch deployment and application installa-
tion time for Google Smart Application Update
is consistent with our assumption that Google’s
method doesn’t compress or decompress APK
�les, which often takes tens of seconds in a
smartphone (for an APK of 6.2 Mbytes) because
of its limited resources.

Estimated Savings
To understand the bandwidth and battery dis-
charge savings possible with DELTA++, we �rst
looked at how many applications an average
user might have and how users behave in updat-
ing applications. According to a December 2011

Figure 3. Patch deployment with DELTA++. Relative to Google
Smart Application Update, DELTA++ constructs smaller patches,
which decreases download time.

�
Decompress

patch

�
Find and load

old version APK

�
Delete

obsolete �les

�
Update �les
using delta
encoding

�
Copy new

�les

�
Construct

new version
APK

�
Install new

app version

IC-18-02-Chris.indd 53 04/03/14 2:26 PM

Feature: Cellular Traffic Reduction

54 www.computer.org/internet/ IEEE INTERNET COMPUTING

Nielsen report,5 an Android smartphone in the US
averaged 32 applications, with a projected annual
growth of 10 percent. Users also tend to rely more
on Wi-Fi networks — Cisco’s networking index
showed that, in 2012, users of§oaded 33 percent
of global mobile traf�c to Wi-Fi networks.6

To characterize user behavior locally, we
conducted a cursory study of students at the
University of South Florida from November

2012 to January 2013. We created and installed
DELTA Statistics, an application to collect user
behavior data, on 20 Android devices (the appli-
cation is free through Google Play). Results
showed that users averaged 47 applications, the
average days between updates was 41, and 37
percent of those updates were deployed through
Wi-Fi. Our local results were very close to those
in the Nielsen report and Cisco projections.

Figure 4. Comparative patch size for Google Smart Application Update and DELTA++ for 110
applications. For Google Smart Application Update (thin blue bar), the average patch size was 45
percent of the latest application version’s size, and the minimum and maximum sizes were 4 percent
(Bike Race Free) and 100 percent (Adobe Air). For DELTA++ (dark blue hash mark) the average
patch size was 23 percent of the latest version size, and the minimum and maximum sizes were 0.1
percent (Brightest Flashlight Free) and 81 percent (WatchESPN).

0

10

20

30

40

50

60

70

80

90

100

Pa
tc

h
si

ze
 (

%
)

Top 110 free android applications

Google Smart Application
Update
DELTA++

Figure 5. Patch deployment and installation time for DELTA++ and Google Smart Application Update. For
DELTA++, the average time was 62.5 sec, the minimum was 4.6 sec (Barcode Scanner), and the maximum
was 212.3 sec (Angry Birds). For Google Smart Application Update, the average time was 12.3 sec, the
minimum was 1.0 sec (ESPN Fantasy Football), and the maximum was 57.5 sec (Temple Run).

0

50

100

150

200

250

T
im

e
(s

ec
)

Top 110 free android applications

Google Smart Application Update
DELTA++

IC-18-02-Chris.indd 54 04/03/14 2:26 PM

DELTA++: Reducing the Size of Android Application Updates

MARCH/APRIL 2014 55

Traf�c Reduction
Table 1 shows a �rst-order estimate of the traf�c
that application updates generate in the US, as
well as the savings possible with DELTA++ if it
were available through Google Play. In 2012, the
US had more than 114 million smartphone users,
with 52 percent (60 million) running the Android
operating system.7 Using an average application
size of 6.2 Mbytes (average in the 110 free appli-
cations we considered), and �guring that each
user updates an average of 32 applications every
29 days, the annual application-update traf�c
is approximately 2.4 Gbytes per Android smart-
phone user. With 60 million users, these updates
total 138 Pbytes of yearly traf�c.

With its 55 percent reduction, Google Smart
Application Update reduces traf�c to 62 Pbytes
(138 × 0.45), but DELTA++ at 77 percent sav-
ings pushes that reduction another 22 percent to
32 Pbytes (138 × 0.23). If 33 percent of updates
are through Wi-Fi, the extra savings in cellular
networks is approximately 20 Pbytes. Accord-
ing to a 2012 report by CTIA,8 US wireless data
traf�c in the �rst half of 2012 was 590 Pbytes,
translating to approximately 1,180 Pbytes per
year. Thus, our savings of roughly 20 Pbytes
represents more than 1.7 percent of all cellular
traf�c — a signi�cant savings. This calculated
savings percentage should still hold even as
applications and users increase.

Battery Discharge
Although DELTA++ is clearly superior to
Google Smart Application Update in patch size
and traf�c reduction, its advantage in deploy-
ment time is less straightforward. Both methods
use the Android PackageInstaller application
to install the update, but it takes DELTA++
approximately 50 seconds longer on average to
deploy the patch.

To determine the effect of this longer deploy-
ment on the smartphone battery discharge, we

Related Work in Delta Encoding

Delta encoding is a well-known traf�c reduction method.
In 1997, Jeff Mogul and colleagues1 showed that delta

encoding could reduce HTTP traf�c by eliminating redundancy
between the cached �le copy and the new version to be down-
loaded. At that time, delta encoding enabled approximately 85
percent byte savings for cached �les.

Targeting a speci�c �le format during delta encoding can
also improve the compression rate and further reduce traf�c.
Google’s Courgette,2 which encodes patches for the Chrome
browser, bene�ts from exploring the speci�cs of the transferred
binary executable �les (see http://dev.chromium.org/developers/
design-documents/software-updates-courgette). The result-
ing patches are 10 times smaller relative to those possible with
other delta encoding techniques.2 DELTA++ in turn targets
Android Application Packages (APKs) and explores their internal
structure to achieve smaller patch sizes.

In mobile devices, over-the-air wireless downloads based on
delta encoding3 are a popular way to distribute operating system
updates. Besides Google Smart Application Update, which focuses
on applications distributed through Google Play, developers can

use Update Direct for Android to update their Android applica-
tions (see http://pocketsoft.com/android_updatedirect.html).
Applications compatible with Update Direct include a new library
that lets the application update itself using a method based on
delta encoding. Although, Update Direct reduces applications
update traf�c, applications can’t be distributed through Google
Play, and the mechanism doesn’t support the Google App Engine.
In contrast, DELTA++ reduces update traf�c, and developers can
distribute their applications through Google Play at no additional
cost.

References
1. J. Mogul et al., “Potential Bene�ts of Delta Encoding and Data Compres-

sion for HTTP,” ACM SIGCOMM Computer Communication Rev., vol. 27,

no. 4, 1997, pp. 181–194.

2. “The Chromium Project, Software Updates: Courgette,” http://dev.chromium.

org/developers/design-documents/software-updates-courgette.

3. B. Bing, “A Fast and Secure Framework for Over-the-Air Wireless Soft-

ware Download Using Recon�gurable Mobile Devices,” IEEE Comm., vol. 44,

no. 6, 2006, pp. 58–63.

Table 1. Estimate of annual traf�c reduction in the US.

Measurement Estimate

Number of Android smartphones 60 million

Number of apps per smartphone 32

Average size of an app update* 6.2 Mbytes

Average days between updates* 29 days

App update traf�c per year per phone 2.4 Gbytes

Total app update traf�c 138 Pbytes

Total app update traf�c w/ Google Smart
Application Update

62 Pbytes

Total app update traf�c w/ DELTA++ 32 Pbytes

Savings with DELTA++ over Google Smart
Application Update

30 Pbytes

Extra savings with DELTA++ in cellular 20 Pbytes
*Derived from Google Play store

IC-18-02-Chris.indd 55 04/03/14 2:26 PM

Feature: Cellular Traffic Reduction

56 www.computer.org/internet/ IEEE INTERNET COMPUTING

created another Android application, DELTA
Energy Pro�ler, and made it free through Google
Play. The application enables every Android user
to see how much power the device components
(CPU, 4G, screen, and so on) are consuming.
The application provides a �rst-order estimate
by maintaining certain conditions (for example,
screen turned on) and measuring battery level
every 30 seconds during a long period. For our
purposes, we set that period to 40 minutes for
experiments with 4G radio and 60 minutes for all
other experiments.

Energy Pro�ler measured power consump-
tion as the percentage of battery consumed per
second during four activities:

•	 Idle. Device is awake with its screen turned
off and only background routines running.

•	 Screen. Device is idle, but its screen is turned
on (maximum brightness).

•	 4G. Device is downloading a �le using 4G
radio.

•	 Patch deployment. Device is applying the
delta encoded patch (includes patch con-
struction and installing the newly con-
structed version).

In all experiments, we used the HTC Thun-
derbolt smartphone from our traf�c-reduction
evaluations, which relies on an out-of-the-
box standard Li-ion 1400 mAh battery, and
we installed the top 32 free applications in the
110-application sample on the device.

We conducted all experiments outside in
an urban environment on a business day. Dur-
ing the experiments with 4G radio, we varied
the downloaded �le size from 512 Kbytes to
10 Mbytes and found that, although energy
cost per megabyte varies across �le size,
energy cost per second stays approximately the
same, primarily because the overhead of estab-
lishing a connection is fairly constant. Thus,
it takes less energy to download 10 Mbytes of
data once than to download 1 Mbyte of data
10 times.

The results showed that the extra 50 seconds
spent on the deployment of a single DELTA++
patch consumed about 0.15 percent of the
smartphone’s battery — the same amount of
battery charge that a screen consumes in less
than 30 seconds. Consequently, the additional
energy that DELTA++ consumes relative to
Google Smart Application Update roughly equals

what a smartphone screen alone consumes in
30 seconds. Moreover, the actual extra battery
discharge from DELTA++ will be even less per
update because of the reduced time to download
the smaller patch. Considering that an average
user updates about one application per day (aver-
age of 32 apps per smartphone updated every 29
days), DELTA++ consumes a negligible portion
of the smartphone’s daily battery use.

The growing popularity of mobile devices that
host multiple applications leads to signi�-

cant network traf�c from application updates.
For Android application updates through Google
Play, DELTA++ signi�cantly improves on Google
Smart Application Update. Adding Apple iPhone
applications could greatly increase the 1.7 per-
cent savings in cellular traf�c (Android appli-
cation updates only). According to comscore.
com,7 Apple devices constituted 33 percent of all
smartphones in 2012. Our study of the top 110
applications in the Apple App Store shows that
the average iPhone application size is 26 Mbytes,
with 64 days from the last update.

Given these statistics, each user generates 6.3
Gbytes of update traf�c annually. Multiplied by
the number of iPhones, the total yearly traf�c
from iPhone application updates in the US is 231
Pbytes. Initial experiments show that DELTA++
can reduce iPhone application updates by 70
percent on average (applied to the iOS Applica-
tion Archive �le, which is the Apple iOS coun-
terpart to the Android APK �le). Consequently,
applying DELTA++ to iPhone updates could
save approximately 108 Pbytes in overall cellu-
lar traf�c. Changing technologies or altering user
behavior (for example, moving to microcells or
using Wi-Fi more often) could change our traf-
�c savings estimates, but we’re con�dent that the
bene�t to the cellular network and data center
servers will remain.

Acknowledgments
This work was partially supported by a Google research

award (Christensen). We thank the anonymous reviewers

for their helpful comments that have improved the quality

of this article.

References
1. J. Wortham, “Customers Angered as iPhones Overload

AT&T,” 26 Sept. 2009; www.nytimes.com/2009/09/03/

technology/companies/03att.html.

IC-18-02-Chris.indd 56 04/03/14 2:26 PM

DELTA++: Reducing the Size of Android Application Updates

MARCH/APRIL 2014 57

2. S. Musil, “Google Play Enables Smart App Updates, Con-

serving Batteries,” CNET News, 16 Aug. 2012; http://

news.cnet.com/8301-1023_3-57495096-93/google-play-

enables-smart-app-updates-conserving-batteries/.

3. C. Percival, “Naive Differences of Executable Code,”

draft, 2003; www.daemonology.net/bsdiff.

4. N. Samteladze and K. Christensen, “DELTA: Delta

Encoding for Less Traf�c for Apps,” Proc. IEEE Conf.

Local Computer Networks, 2012, pp. 212–215.

5. “State of the Media: Mobile Media Report Q3 2011,” Nielsen,

15 Dec. 2011; www.nielsen.com/us/en/reports/2011/state-

of-the-media--mobile-media-report-q3-2011.html.

6. “Cisco Visual Networking Index: Global Mobile Data

Traf�c Forecast Update, 2012–2017,” Cisco, 6 Feb. 2013;

www.cisco.com/en/US/solutions/collateral/ns341/ns525/

ns537/ns705/ns827/white_paper_c11-520862.html.

7. “comScore Reports July 2012 US Mobile Subscriber

Market Share,” comScore, 4 Sept. 2012; www.comscore.

com/Insights/Press_Releases/2012/9/comScore_Reports_

July_2012_US_Mobile_Subscriber_Market_Share.

8. “Background on CTIA’s Semi-Annual Wireless Indus-

try Survey,” CTIA, 2012; http://�les.ctia.org/pdf/

CTIA_Survey_MY_2012_Graphics-_�nal.pdf.

Nikolai Samteladze is employed at C1 Bank in St. Petersburg,

Florida. His primary interest is in developing highly scal-

able performance-oriented systems. Samteladze has an

MS in computer science from the University of South

Florida. He’s a member of IEEE and ACM. Contact him at

nsamteladze@mail.usf.edu.

Ken Christensen is a professor in the Department of Com-

puter Science and Engineering at the University of

South Florida and director of the university’s computer

science and engineering undergraduate program. His

research interests are green networks — reducing the

energy use of computer and communication networks.

Christensen has a PhD in electrical and computer engi-

neering from North Carolina State University. He’s a

senior member of IEEE and a member of ACM and the

American Society for Engineering Education. Contact

him at christen@cse.usf.edu.

Selected CS articles and columns are also available
for free at http://ComputingNow.computer.org.

Advertising Personnel

Marian Anderson: Sr. Advertising Coordinator
Email: manderson@computer.org
Phone: +1 714 816 2139 | Fax: +1 714 821 4010

Sandy Brown: Sr. Business Development Mgr.
Email sbrown@computer.org
Phone: +1 714 816 2144 | Fax: +1 714 821 4010

Advertising Sales Representatives (display)

Central, Northwest, Far East:
Eric Kincaid
Email: e.kincaid@computer.org
Phone: +1 214 673 3742
Fax: +1 888 886 8599

Northeast, Midwest, Europe, Middle East:
Ann & David Schissler
Email: a.schissler@computer.org, d.schissler@computer.org
Phone: +1 508 394 4026
Fax: +1 508 394 1707

Southwest, California:
Mike Hughes
Email: mikehughes@computer.org
Phone: +1 805 529 6790

Southeast:
Heather Buonadies
Email: h.buonadies@computer.org
Phone: +1 973 304 4123
Fax: +1 973 585 7071

Advertising Sales Representatives (Classified Line)

Heather Buonadies
Email: h.buonadies@computer.org
Phone: +1 973 304 4123
Fax: +1 973 585 7071

Advertising Sales Representatives (Jobs Board)

Heather Buonadies
Email: h.buonadies@computer.org
Phone: +1 973 304 4123
Fax: +1 973 585 7071

ADVERTISER INFORMATION

IC-18-02-Chris.indd 57 04/03/14 2:27 PM

