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Abstract—With the increasing number of location-dependent applications, positioning and tracking a mobile device becomes
more and more important to enable pervasive and context-aware service. While extensive research has been performed in
physical localization and logical localization for satellite, GSM and WiFi communication networks where fixed reference points
are densely-deployed, positioning and tracking techniques in a sparse disruption tolerant network (DTN) have not been well
addressed. In this paper, we propose a decentralized cooperative method called PulseCounting for DTN localization and a
probabilistic tracking method called ProbTracking to confront this challenge. PulseCounting evaluates the user walking steps
and movement orientations using accelerometer and electronic compass equipped in cellphones. It estimates user location by
accumulating the walking segments, and improves the estimation accuracy by exploiting the encounters of mobile nodes. Several
methods to refine the location estimation are discussed, which include the adjustment of trajectory based on reference points
and the mutual refinement of location estimation for encountering nodes based on maximum-likelihood. To track user movement,
the proposed ProbTracking method uses Markov chain to describe movement patterns and determines the most possible user
walking trajectories without full record of user locations. We implemented the positioning and tracking system in Android phones
and deployed a testbed in the campus of Nanjing University. Extensive experiments are conducted to evaluate the effectiveness
and accuracy of the proposed methods, which show an average deviation of 9m in our system compared to GPS.

Index Terms—Disruption tolerant network, positioning, tracking, cooperation
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1 INTRODUCTION

Disruption tolerant networks (DTNs) are sparse mo-
bile ad hoc networks where nodes connect with each
other intermittently [1]. Since DTNs allow people
to communicate without network infrastructure, they
are widely used in battlefields, wildlife tracking, and
vehicular communications [2]. Location information
is extremely important to enable context-aware and
location-based applications [3]. However, due to the
lack of fixed infrastructure and continuous network
connection in DTNs, identifying the location of mobile
users and tracking their movement trajectories are
challenging.

The following scenario illustrates the localization
problems in DTNs. Assume a DTN is formed by a
set of wireless nodes (e.g., cellphones) moving within
a field. Each node has a communication range of
distance r (r > 0). Two nodes can communicate
when they move into each other’s communication
range, which is called an encounter of nodes. Since
DTNs are sparse and highly dynamic, a constant
communication path does not exist between any pair
of nodes. As illustrated in Fig. 1, there are four
different components in the system. The landmarks
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Fig. 1. The components of a DTN localization system.

represent fix-deployed infrastructures like WiFi access
points (APs), which can provide network service. An
infostation is a server connecting to the APs to collect
information from mobile nodes. The GPS-nodes are
high-end mobile devices equipped with Global Po-
sitioning System (GPS). There are only a few of them
in the network and they can be used as mobile ref-
erence points. The common-nodes are ordinary mobile
phones without GPS support, which have the majority
number in the system. They are only equipped with
simple sensors (such as accelerometer and electronic
compass), and can communicate with other nodes via
WiFi or Bluetooth occasionally.

The positioning and tracking problem in DTNs is
twofold: the common-nodes (without GPS module)
need to determine their locations based on the limited
number of reference points (APs or GPS nodes) they
encountered; and the infostation needs to track the
trajectories of the common-nodes with the partial
information collected by the APs opportunistically.
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Early positioning systems rely on triangulation us-
ing physical signals from the fixed-deployed infras-
tructures such as GPS satellites [4], [5] and GSM
celltowers [6], [7]. WiFi-based localization strategies
collect the radio fingerprints quantified from the WiFi
signal strengths at many physical positions and mul-
tiple APs, and identify user location by retrieving and
matching the fingerprints [8], [9]. Such methods either
require densely-deployed infrastructures or they need
to collect a large amount of signal samples, which
cannot be applied to sparse networks.

Several recent research focuses on GPS-free localiza-
tion in wireless networks by incorporating fixed land-
marks and surrounding characteristics. Surround-
Sense [10] identifies logical location using the sur-
rounding information like sounds, lights and colors.
CompAcc [11] adopts a distance estimation method
using accelerometer and compass and determines lo-
cation by matching to possible path signatures gen-
erated from an electronic map. Escort [12] provides a
logical navigation system to help a person navigate
to another person in a public place with the aid
of context features. However, these methods need
continuous communication with a centralized server
to process a large amount of surrounding data, which
are not suitable for the decentralized structure and the
opportunistic communication nature of DTNs.

In this paper, we propose a decentralized cooper-
ative method called PulseCounting for DTN localiza-
tion and a probabilistic method called ProbTracking to
track the movement of mobile nodes. PulseCounting
evaluates the number of user walking steps using
the accelerometer data, and decides the orientation of
each step using the electronic compass measurements.
By accumulating the segments of walking steps, it is
able to form an estimation of current location. PulseC-
ounting further takes advantage of the opportunity of
encounters in DTNs to refine the location estimation:
on the one hand, the encountering APs and phones
equipped with GPS could be regarded as reference
points; on the other hand, the encounters of two mo-
bile nodes enable the possibility of mutual adjustment
to reduce estimation error. ProbTracking detects the
movement trajectory based on the partial location
information reported by the other mobile nodes. It
constructs a Markov chain using the movement his-
tory data and uses it to determine the most proba-
ble user walking route without the need for global
location information in DTNs. We implemented the
positioning and tracking system in Android phones,
and deployed a testbed in the campus of Nanjing
University for performance evaluation. Experiments
show that the system has an average deviation of 9m
compared to GPS.

2 RELATED WORK
Disruption tolerant networks (DTNs) have been wide-
ly studied in the last decade. Most existing works

focus on the fundamental problem of data routing in
DTNs. To achieve data transmission without the need
of end-to-end communication paths, several mobility-
assisted routing strategies have been proposed to
reduce the number of hops, the delivery delay and
energy consumption [1], [2], [13], [14]. A few works
addressed the issues of selfish behavior of nodes to
enhance the cooperation for data relays in DTNs [15],
[16]. Different from the existing works, this paper
focuses on the issues of positioning and tracking
mobile nodes in DTNs, which have not been well
addressed in the past.

Previous research on wireless localization rely on
deploying wireless infrastructures (e.g. telecommuni-
cation satellites or cell towers) and installing dedi-
cated hardware (e.g. GPS modules or RFIDs) in the
environment [17], [4]. In these systems, mobile devices
measure the wireless signals to several infrastructures
in known locations and estimate the actual locations
based on their geometric relationships.

Cell tower triangulation is a popular technique for
determining the location of a mobile device [6], [7].
Locating the position of mobile phones by measuring
signals to GSM celltowers was studied in [7], which
showes that GSM devices can achieve a positioning
accuracy with a median error of 94-196 meters.

WiFi-based strategies rely on deploying fixed Ac-
cess Points (APs) and require calibrating WiFi signal
strengths at many physical positions to enable local-
ization. RADAR [8] constructs detailed radio finger-
prints of the available APs and combines empirical
measurements with signal propagation modeling to
determine user location . Place Lab [9] allows com-
modity hardware clients like PDAs and cell phones
to locate themselves by listening for radio beacons
of WiFi and GSM cell towers. It generates a radio
map by war-driving and estimates the location of mo-
bile devices by looking up the overhead WiFi/GSM
beacons in the radio map. Several indoor localization
approaches using WiFi signals was discussed in [18],
[19], [20].

In the recent years, a couple of works address
the issues of localization using fixed landmarks and
surroundings. SurroundSense [10] identifies a user’s
location using the surrounding information collected
by sensors and camera on mobile phones. The main
idea is to fingerprint the location based on its ambient
sound, light, color, RF, as well as the layout-induced
user movement. However, it can only obtain a user’s
logical location like in Starbucks or McDonalds, but
fails to provide the geographical coordinates. AAMPL
[21] introduces a location estimation method using
accelerometer and compass. It can estimate rough
physical coordinates of mobile phones augmenting
with context-aware logical localization. To improve
location accuracy, CompAcc [11] uses the similar es-
timation method like AAMPL, and refines the loca-
tion estimation by matching it against possible path
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signatures generated from a local map. It achieves a
location accuracy of less than 11 meters. However,
it needs to construct path signatures from electron-
ic maps beforehand, which is complex and time-
consuming. Escort [12] provides a logical navigation
system for social localization. Its goal is not to identify
the physical location, but to help a person navigate
to another person in a public place such as a hotel.
By periodically learning the walking trails of different
individuals, as well as how they encounter each other
in space-time, a route is computed between any pair
of persons. However, it needs global information of
users’ movements and their encounters to construct
the navigation graph, which does not apply for DTNs.

3 COOPERATIVE POSITIONING IN DTNS

In DTNs, most of time the common-nodes have no
GPS-nodes and landmarks within their communica-
tion range, which makes them hard to decide their
locations. We propose the PulseCounting method for
Cooperative Positioning in DTNs, which consists the
following six steps.

3.1 Bootstrapping
As the first step, each node needs to know its po-
sition initially. Without the initial position, there is
no reference point for location estimation. In DTNs,
we assume a small number of fixed landmarks (e.g.,
wireless APs) are deployed in the environment with
known locations. We also assume that there are a few
GPS-nodes willing to report their locations to other
nodes. Thus the common-nodes can obtain a rough
initial location when they firstly encounter the land-
marks or GPS-nodes. It is unlikely for all common-
nodes to obtain their initial locations at the same time,
so the initialization process is asynchronous.

With the initial location information, a map in this
area will be downloaded to the user’s cellphone.
We use the Google Map [22] in our implementation
since it provides open access to its data and APIs.
The map is downloaded opportunistically when the
device has a chance to access the Internet (i.e., enter-
ing the communication range of an AP). Unlike the
existing positioning systems such as AAMPL [21] and
CompAcc [11], the proposed PulseCounting method
does not rely on the Map data to aid localization.
It purposes just to help visualizing the movement
trajectory on the cellphone screen.

3.2 Step counting
We introduce the method of using the accelerometer
to measure walking steps. The accelerometer records
user movement in three dimensions: X (the direction
of front and back), Y (the direction of left and right),
and Z (the direction of up and down). As illustrated
in Fig. 2, we plot the accelerometer data of a users
with the cellphone putting in three different positions:
holding horizontally in hand, sticking vertically in
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Fig. 2. The accelerometer measurement of a user.

front pocket, and sticking vertically in back pocket.
Observation to Fig. 2 reveals several characteristics:
(1) The acceleration is non-uniform. It shows a pattern
of “increase-decrease” and fluctuates around some
value. (2) The data is noisy. It is influenced by the
way people walks and the position of their cellphones.
(3) It has obvious periodicity and its shape looks
like a wave. The periodical phenomenon is most
clear in the direction of Z axis (up and down) of all
cellphone positions. During movement, the human’s
center of gravity goes up and down, which causes the
increasing and decreasing of his accelarations. Thus
a period in the accelerometer reading corresponds to
two walking steps in reality.

Based on the periodical characteristics of accelera-
tion, we can estimate the moving distance by counting
the number of steps similar to the method of [11]. The
idea is simple: if the number of walking steps m and
the length of a step L are known, the distance can be
estimated by S = m ∗ L. Since one period consists of
two walking steps, if P periods in the accelerometer
measurement are detected, m can be approximated
by m = 2P . The step size L differs from person to
person. We assume L is measured by users and it is
known ahead. In our implementation, we let users
walk through a fixed-length straight road for multiple
rounds to calculate their average step lengths L. For
more general expression, we denote the step size of
each user as a random variable and assume it follows
the Gaussian distribution: L ∼ N(L, σ2), where L is the
mean value and σ2 is the variance.

3.3 Direction mapping
The other important aspect of movement is direction,
which can be measured by electronic compass. The
cellphone compass records the users orientation in
the form of an angle with respect to magnetic north.
Similar to the accelerometer data, the compass da-
ta is densely sampled (about 22 data per seconds)
and appears fluctuating and noisy, thus it cannot
be used directly. We proposed the direction mapping
method to make the compass data discrete. For a
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rough estimation, we project the compass data to eight
discrete directions: North, Northeast, East, Southeast,
South, Southwest, West, and Northwest, which are
numbered by 0−7 accordingly. Assume Υ is a reading
of the compass taking the value from [0, 360], we
calculate its direction mapping by

(argmink |Υ− 360

8
k|) mod 8. (1)

With Eq. (1), a compass reading is mapped to a
direction with the angle within the departure from
−22.5◦ to +22.5◦. For example, the value Υ = 340◦

will be mapped to 0, which represents the direction
“North”; Υ = 100◦ will be mapped to 2, which
represents the direction “East”.

To reduce the noise and fluctuation of compass
measurement, we use the latest K compass readings
to decide the movement direction. After mapping all
the K readings, if a direction has the majority number,
it will be taken as the movement direction. K is set
to 22 in our system.

Mapping to eight discrete directions is a rough esti-
mation. It implies that the system can tolerate at most
±22.5◦ of deviation in the movement direction. One
can easily extend it to more fine-grained expression
such as 16 or 32 directions.

3.4 Trajectory generation

With the results from step counting and direction
mapping, we are able to describe user movement
trajectories. A movement trajectory is defined as a
series of segments with distance and direction:

T (P0 → P1) = {< S1, θ1 >, · · · , < SM , θM >}, (2)

where P0 is the departure point and P1 is the desti-
nation point of the trajectory. Each tuple < Si, θi >
(i = 1, 2, · · · ,M) indicates a segment of the move-
ment. Si is the moving distance of two consecutive
walking steps (one period of the acceleration); θi is
the movement direction (measured by the angle to the
north) in the steps, which is obtained by the direction
mapping method. M is the total number of segments.

3.5 Location estimation

Given a trajectory T (P0 → P1), if the location of
departure point P0 is known, we can roughly estimate
the location of P1 by accumulating the trajectory
segments. Assume the coordinate of P0 is (x0, y0). Ac-
cording to the segments, the user moves horizontally
in the total displacement

∑M
i=1 Si sin θi, and moves

vertically in the total displacement
∑M

i=1 Si cos θi. So
the location coordinate of P1 is approximated by

(x0 +
M∑
i=1

Si sin θi, y0 +
M∑
i=1

Si cos θi). (3)

Theoretically, if the initial location of a node is
known, we can estimate its location at any time with

P0

P'1

P1

<S1, 1>
<S2, 2>

<S3, 3>

<S4, 4>

<S'1, 1>
<S'2, 2>

<S'3, 3>

<S'4, 4>

rbefore adjustment

after adjustment

P1: estimate location

P'1: reference point

Fig. 3. Trajectory adjustment.

Eq. (3). However, due to the inaccuracy of step size
and orientation measurement, errors may be intro-
duced during the estimation of each segment. With
the number of segments increase, the errors are accu-
mulated, thus the estimated location will be far away
from the actual location. To overcome this drawback,
we use the encounter opportunity of nodes to improve
the estimation accuracy, which is introduced in the
following subsection.

3.6 Refinement

As mentioned previously, the measurement of user’s
step size is a random variable following Gaussian
distribution: L ∼ N(L, σ2). For a trajectory with M
segments where each segment indicates two walking
steps, the estimation of moving distance is

∑M
i=1 Si ∼

N(2ML, 2Mσ2). Let ∆ =
√
2Mσ be the estimation

error. It increases with the increasing of M, making the
estimation more inaccurate. Thus we need to refine
the estimation from time to time. Unlike most previ-
ous work relying on densely-deployed fixed reference
points to help refining location estimation [8], [9], [21],
[11], we propose several novel strategies to improve
location estimation using encounter opportunities of
mobile nodes in sparse DTNs.

Based on the role of the encountering node (a ref-
erence point or a common-node), we apply different
location refinement methods as follows.

3.6.1 Refinement based on reference point

When a common-node meets a GPS-node (or a land-
mark), it can obtain the location from the encounter-
ing node and use it as a reference point to adjust the
estimation.

If a common-node ni encounters a GPS-node nj ,
it means the distance between them is less than the
communication range r (the value of r depends on
the communication technique used, for example, r is
about 2 meters for Bluetooth and about 10 meters
for WiFi). Assume the estimated location is P1(x1, y1)
and the location of reference point is P ′

1(x
′
1, y

′
1). If the

Euclidean distance ||P1 − P ′
1|| is smaller than r, the

estimation is considered valid and no need to adjust.
If ||P1 − P ′

1|| > r, it means using P ′
1 as the estimation

will be more accurate. In the latter, we need to adjust
our location estimation. But we do not simply change
its value to P ′

1: we need to further refine the estimation
of each segment in the trajectory.
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The basic idea to refine the segments is to amortize
the errors. For simplicity we only adjust the length
of each segment and leave the approximate angle
unchanged. An example of trajectory adjustment is
shown in Fig. 3. Assume the trajectory after adjust-
ment is:

T ′(P0 → P ′
1) = {< S′

1, θ1 >, · · · < S′
M , θM >}. (4)

According to Eq. (3), the coordinates of P ′
1(x

′
1, y

′
1) sat-

isfy: x0+
∑M

i=1 S
′
i sin θi = x′

1, and y0+
∑M

i=1 S
′
i cos θi =

y′1. However, there are numerous solutions in accor-
dance with the above equations, which infer different
walking trajectories. We are interested in finding the
shortest path from P0 to P ′

1, hoping that the step size
after adjustment is not far away from its previous
estimation, i.e. within a predefined threshold ε.

In summary, the trajectory adjustment problem can
be expressed as:

minimize
∑M

i=0 S
′
i, (5)

s.t. ∑M
i=1 S

′
i sin θi = x′

1 − x0,∑M
i=1 S

′
i cos θi = y′1 − y0,

S′
i > 0, i = 1, · · · ,M,

||S′
i − Si|| ≤ ε, i = 1, · · · ,M.

This problem is an optimization problem and it can
be solved by using Linear programming [23]. Solving
this problem, we can adjust Si to S′

i (i = 1, · · · ,M ).
After adjustment, the estimation error becomes ∆ ≤ r,
which is more accurate than the previous estimation.

The novelty of the trajectory adjustment method
is that it is decentralized and transitive. Whenever a
common-node encounters a GPS-node or a landmark,
it can adjust its location estimation locally. The more
frequent the encounter occurs, the more accuracy the
location estimation achieves. Furthermore, by solving
the optimization problem, the proposed adjustment
method can not only refine the current location, but
also trace back to refine previous segments, which
can amortize the estimation error and obtain a more
accurate trajectory.

3.6.2 Mutual refinement
When a common-node encounters another common-
node, although both of them have no accurate location
information, it is still possible for them to use each
other as reference point to refine location estimation.
Assume ni and nj are the two common-nodes, we
discuss the following situations of encountering.

a) ni and nj encounter in a straight road.
When two nodes ni and nj encounter in a straight

road, they will exchange their location estimation,
which could be used as reference points to refine their
estimation. There are four different situations for the
relative locations of the encountering nodes (refer to

�� ��
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	� 	�




Fig. 4. Refining location estimation in a straight road.

Appendix A in the supplemental document for more
details). In the following, we introduce a mutual lo-
cation refinement method for the situation illustrated
in Fig. 4. Note that the proposed method also applies
for the other situations with slight modifications.

According to Fig. 4, ni and nj move in the opposite
direction, and A and B are their estimated locations
accordingly. Due to the error of estimation, the dis-
tance between A and B (denoted by L) could be larger
than the communication range r (note that if L ≤ r, no
refinement is needed). Since we know the fact that ni

and nj encounter each other in a straight road, their
distance must be less than r. Such constraint can be
used to refine the location estimation of ni and nj .
To do so, we make new estimation of the locations of
ni and nj , which are indicated by A′ and B′ in Fig.
4. We denote the distance AA′ = d1 and BB′ = d2.
Since ni and nj are within the communication range,
the distance of A′B′ should satisfy

A′B′ = L− d1 − d2 ≤ r. (6)

We introduce a method based on maximum-likelihood
to obtain the new estimation A′ and B′. Assume node
ni moves from P1 to A′, and the moving distance is
a random variable X1 described by a Gaussian distri-
bution X1 ∼ N(µ1, σ

2
1). If P1A

′ is the actual distance,
the conditional probability that the estimated distance
equals to P1A is given by

f1 : Pr{X1 = P1A|distance = P1A
′}

=
1

σ1

√
2π

e
− (P1A−P1A′)2

2σ2
1

=
1

σ1

√
2π

e
− d21

2σ2
1 . (7)

Similarly, for node nj , assume its moving distance
is a random variable X2 ∼ N(µ2, σ

2
2). The conditional

probability of estimated distance P2B is:

f2 : Pr{X2 = P2B|distance = P2B
′}

=
1

σ2

√
2π

e
− d22

2σ2
2 . (8)

To achieve mutual refinement, we take P1A and
P2B as the observed values, and we want to choose
the estimated values P1A

′ and P2B
′ to maximize the

likelihood function. Specifically, the objective is to
decide argmax{d1,d2}f1(d1)f2(d2) subject to the con-
straint of Eq. (6).

We introduce a slack variable a ≥ 0 to transform
Eq. (6) into equality based on the fact that L − d1 −
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Fig. 5. Refining location estimation in an intersection.

d2 ≤ r if and only if there is an a ≥ 0 that satisfies
L − d1 − d2 + a = r. With the new constraints, the
optimization problem can be expressed as

maximize f1(d1)f2(d2)

s.t. L− d1 − d2 + a− r = 0,

a ≥ 0.

The optimization problem can be solved by using
the method of Lagrange multipliers. The details are
found in Appendix C of the supplemental document.
The solution is as follows.

d1 =
σ2
1

σ2
1 + σ2

2

(L− r), (9)

and

d2 =
σ2
2

σ2
1 + σ2

2

(L− r). (10)

Thus with the best probability that the new distance
estimation are P1A + d1 for ni and P2B + d2 for nj .
As a result, the estimated locations of ni and nj are
updated to the coordinates of A′ and B′ accordingly.

In the proposed PulseCounting method, the accu-
mulative estimation error is the sum of the estimation
error of walking steps. If M1 and M2 are the number
of trajectory segments of ni and nj accordingly, since
each segment indicates two walking steps, the accu-
mulative estimation error of ni and nj are represented
by σ2

1 = 2M1σ
2
ni

and σ2
2 = 2M2σ

2
nj

. We can substitute
σ2
1 and σ2

2 to Eq. (9) and Eq. (10) to obtain the refined
estimation of ni and nj accordingly. Thus the encoun-
tering nodes can achieve mutual location refinement
by simply exchanging their local estimations.

b) ni and nj encounter in a road intersection.
When two nodes ni and nj move in non-parallel

directions and they encounter each other, it indicates
that they meet in a road intersection. Their relative
locations have four different situations (refer to Ap-
pendix B in the supplemental document for more
details). Knowing two nodes encountering in a road
intersection can also refine their location estimations.
Without loss of generality, we only discuss the refining
method for the situation illustrated in Fig. 5. The rest
situations can also be adapted to our method with
slight modifications.

In Fig. 5, the movement orientations and the esti-
mated locations of ni and nj (denoted by A and B
in Fig. 5) are known, so the intersection (denoted by

O) of their trajectories are uniquely determined. We
assume the length AB > r (otherwise the two nodes
are close enough and no refinement is needed). The
new estimated locations A′ and B′ are to be decided.

Similar to the analysis in the previous subsection,
we assume the estimated moving distances of ni and
nj are random variables following Gaussian distribu-
tion X1 ∼ N(µ1, σ

2
1) and X2 ∼ N(µ2, σ

2
2) accordingly.

The conditional probabilities of the difference between
the observed location and actual location are given by
Eq. (7) and Eq. (8).

The new estimated distance of A′ and B′ should sat-
isfy A′B′ ≤ r. However, such constraint is non-linear,
which yields a complicated optimization problem. To
reduce the computation complexity, we explore an
enhanced problem. We consider a stronger constrain-
t: OA′ + OB′ ≤ r. Due to the triangle inequality,
A′B′ ≤ OA′ + OB′, so OA′ + OB′ ≤ r is a sufficient
condition for A′B′ ≤ r. The optimization problem
with enhanced constraints can be expressed as

maximize f1(d1)f2(d2)

s.t. L1 − d1 + L2 − d2 + b− r = 0,

b ≥ 0,

where b is a slack variable.
Similarly, this problem can be solved by using the

Lagrange multipliers method. We omit the details and
give the final results:

d1 =
σ2
1

σ2
1 + σ2

2

(L1 + L2 − r), (11)

and
d2 =

σ2
2

σ2
1 + σ2

2

(L1 + L2 − r), (12)

where σ2
1 and σ2

2 can be represented by the accumu-
lative estimation error of walking steps: σ2

1 = 2M1σ
2
ni

and σ2
2 = 2M2σ

2
nj

.
As a result, we can achieve the maximal probability

when the distances are estimated by P1A + d1 for
ni and P2B + d2 for nj . Accordingly, the estimated
locations of ni and nj are updated to the coordinates
of A′ and B′.

The novelty of mutual refinement is that the en-
countering nodes can take each other as a reference
point, and apply the maximum-likelihood method
to reduce the estimation errors. In DTNs, a node
may encounter multiple nodes during movement. The
proposed refining method allows the node to adjust
its location estimation on each pair-wise contact. Thus
the encountering opportunities in DTNs are not on-
ly benefit to data dissemination, but also benefit to
cooperative positioning as described in our work.

One can further consider the meeting duration of
node pairs to improve the estimation accuracy. If the
meeting duration exceeds a predefined threshold, the
mobile nodes should update their location estimation
periodically using the proposed refinement strategies.



1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2014.2310471, IEEE Transactions on Parallel and Distributed Systems

7

By doing so, if the encountering node is a reference
point (i.e., a landmark or a GPS node), the mobile
node can calibrate its location estimation periodically.
If the encountering node is a common-node, they can
do multiple rounds of mutual refinement, which will
also increase the accuracy of location estimation.

4 PROBTRACKING: TRACING MOBILE
USERS IN DTNS

In this section, we introduce the ProbTracking method
for the infostation to track user movement in DTNs.
Most previous works assume continuous communi-
cation between users and infostation, thus tracking a
user is easily achieved by acquiring the user location
constantly. However, due to the opportunistic com-
munication nature of DTNs, tracking the users’ tra-
jectory without continuous connection is non-trivial.

In DTNs, the infostation can only communicate
with the nodes passing by the landmarks. Each node
keeps logging its trajectory while moving, as well
as the partial trajectory information obtained from
the encountering nodes. For a node ni, its log is in
the form {Tni(·)}

∪
{Tnj (·)|∀nj ∈ ϕi}, where Tni(·)

is the trajectory of ni; Tnj (·) is the partial trajectory
of an encountering node nj ; and ϕi is the set of
encountering nodes of ni. When a node encounters
a landmark, it uploads its log to the inforstation.
Thus the infostation has the information of a set of
trajectories: {Tni(·)|i = 1, · · · , N}. Such information is
incomplete: not all trajectories of all nodes are recorded;
and it is non-realtime: it is updated intermittently. The
tracking problem is: given the set of partial trajectory,
how to determine the movement of nodes.

To address this issue we look to the patterns of user
movement. Intuitively user mobility is not random,
and it will follows some patterns. For example, there
are daily activities like going to office at 8:00, going
for lunch at 13:00, and being back home at 19:00.
By exploring the mobility patterns we are possible
to recreate the user’s movement trajectory with some
known knowledge.

A previous research [24] shows that human mobili-
ty follows reproducible patterns with their trajectories
characterized by a significant probability to return to
a few highly frequented locations. In the DTN system,
we use landmarks as the fixed characteristic locations,
and calculate the frequency and probability for the
users moving from one landmark to another. The mo-
bility pattern of a user can be naturally described as a
Markov chain: the landmarks correspond to the states
and the probabilities moving to different landmarks
form the transition matrix of the Markov chain.

In the system implementation, we calculate the vis-
iting frequency and the transition probabilities as fol-
lows. For each trajectory uploaded by a user, we use
T in
k and T out

k to indicate the time stamps that the user
enters and leaves the range of landmark k. Denoted by
vkj the number of visits from landmark k to landmark

j in an observing duration T obs. For each T out
k , we

find the next time stamp T in
j = min{T in

i |T in
i > T out

k }
that the user enter another landmark. If T in

j − T out
k

is less than a predefined threshold ∆T , the user is
considered heading landmark j, and vkj is increased
by 1. In our system, ∆T is set to 1 hour since most
locations in the campus are with the walking distance
of an hour. If T in

j −T out
k > ∆T , the user is considered

to enter an unknown place (which corresponds to a
special state in the Markov chain). After having vkj ,
the probability that the user moving from landmark
k to j can be estimated by Pr{j|k} =

vkj∑
i vki

. The
transition matrix is updated weekly in the system,
thus we set the observing period T obs to be one week.

At the beginning, the infostation needs to collect
enough information of user movement trajectories
to construct the Markov chain. We assume there is
a “warm-up” stage in the tracking system. During
warm-up, the system only collects historical data
and it cannot provide any tracking information. The
warm-up stage can last for one day or one week
depending on the amount of information collected.

Once the Markov chain is formed, the infostation
can recreate and predict the missing trajectories of
user movement. For example, if the infostation knows
that a user appears in location Pi at time t, it can check
the transition matrix of the Markov chain to obtain
the probability that the user moving from Pi to other
locations. With such information, the inforstation can
estimate the location of the user at time t + ∆t by
exploring the most probable historical trajectory from
the trace. An additional example of using Markov
chain to decide user movement trajectory is shown
in Appendix D in the supplemental document.

The novelty of the proposed ProbTracking system
is that it can create the most probable user trajectory
from incomplete observations. According to the his-
torical movement data, it describes the user’s mobility
as a finite state Markov chain, and generates a rough
trajectory for the mobile user based on partial location
records (the encountering locations observed by other
mobile users). However, there are several limitations
of the proposed tracking system. First, it is non-
realtime. Although it can achieve “post-tracking” by
fulfilling a trajectory using partial information, it is
hard to obtain the real-time location of a mobile user.
Second, it only has limited ability of prediction. One
may apply Markov chain to predict the user’s current
movement, and one can obtain the information from
the system such as “with probability p the user is
moving on the way from Pi to Pj”. However, such
information is valuable only when the probability p
is high (the accuracy depends on the routine of user
movement, and it varies from person to person). To
achieve accurate real-time tracking of mobile users in
DTN systems still remains an open question.
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Fig. 6. Experimental scenario in the NJU campus.

5 IMPLEMENTATION AND EVALUATION

In this section, we discuss the implementation issues
and evaluate the system performance.

5.1 Implementation
We implemented the PulseCounting localization
method in the HTC Wildfire phone. The HTC Wild-
fire Android smartphone has built-in GPS, WiFi and
Bluetooth communication modules, as well as sensors
such as accelerometer and compass. The proposed
positioning system was implemented as an Android
App and tested by 12 volunteers.

To track the movement of users, we implement-
ed the ProbTracking method in a PC server, where
MySQL and PHP are adopted to store user historical
data and calculate the movement trajectories. The
tracking service was deployed in an Apache server,
and it can be accessed from a web browser with
JavaScript.

We deployed a testbed in the Gulou campus of Nan-
jing University (NJU) to evaluate the system perfor-
mance. The experimental environment is illustrated
in Fig. 6. Four APs were deployed in the campus
which work as landmarks and provide connection to
Internet. The chosen landmarks corresponds to four
typical locations in the campus: P1 (the Department of
Computer Science), P2 (the library), P3 (the Southeast
building), and P4 (the academic building).

We design several scenarios to test the system. As
shown in Fig. 6, we specify two routes P1 ↔ P4

(marked by the full white line) and P2 ↔ P3 (marked
by the dashed orange line), which represent a longer
and a shorter walking paths accordingly. Both routes
have straight sections and turns, and they intersect
each other. The volunteers were asked to walk along
the two routes back and forth, with the phones placed
in their front pockets. The WiFi modules of the s-
mart phones were turned on. Some random users
were appointed to play the role of GPS-nodes. The
mobile users have the opportunities to encounter on
the straight road or intersections, and their location
estimation are refined dynamically using the methods
proposed in section 3.6. All GPS locations of the users
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Fig. 7. Accuracy of distance estimation.

TABLE 1
The accuracy of directions with different users.

Methods User a User b User c
Compass Reading 80.12% 59.34% 71.43%

Direction Mapping 90.03% 75.12% 87.89%

were logged, which are used as ground truth for
performance comparison.

5.2 Accuracy of distance estimation
We investigate the accuracy of distance estimation
using PulseCounting. We asked the volunteers to walk
through a 100-meter straight road for several rounds.
Using the measurement data from the cellphone ac-
celerometer, the number of steps is obtained, thus the
average step length of each user can be calculated.

After measuring their average step sizes, we esti-
mate their moving distance using the PulseCounting
method. We chose four different road segments in the
NJU campus with length 50m, 100m, 200m, and 400m
accordingly. We asked the users to walk through the
road sections and compared their distance estimation
to the actual distance. The experiment results of three
different users are shown in Fig. 7. According to the
experiments, the distance estimation in the system
is rather accurate: most of them have the accuracy
higher than 90%, which indicates that the average
deviation between the estimated location and the real
location is lower than 10%. The accuracy is also var-
ious from user to user. Some user has high accuracy
approaching to 98%, while other users have lower
accuracy due to estimation errors.

5.3 Accuracy of direction mapping
We conducted an experiment to evaluate the accuracy
of the direction mapping method. In this experiment,
we asked the users walk an octagon shape in the play-
ground. The eight edges of the octagon correspond to
the eight discrete directions described in Section 3.3.
Starting from the north direction, the users walk along
the eight directions sequentially.

The direction accuracy of three different users are
shown in Table 1. According to the table, the compass
reading data is fluctuating and achieves low accuracy,
which is 80.12% for user a, 59.34% for user b, and
71.43% for user c. With the direction mapping method,
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Fig. 8. Screen shots of user movement trajectory.
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the accuracy reaches to 90.03% for user a, 75.12%
for user b, and 87.89% for user c, which implies a
significant improvement in performance.

5.4 The positioning system

As mentioned above, the proposed cooperative po-
sitioning system was implemented as an Android
App and installed in the HTC phones. The App can
estimate user’s location and demonstrate the moving
trajectory in the screen. Fig. 8 illustrated the screen
shots of a user walking from P1 to P4. At the begin-
ning, the user leaved P1 and headed north (Fig. 8(a)).
In the midway, the user encountered a GPS-node at
position A (Fig. 8(b)). After information exchange, the
positioning system used the received GPS coordinates
to refine his trajectory (from P1 to A). The refined
trajectory is demonstrated in colored lines in Fig. 8.
Thereafter, the user moved towards west, then turned
to the north, and finally arrived the destination P4.
Since P4 was a landmark, the latest trajectory (from
A to P4) was refined using the obtained location
information, and the updated trajectory was shown
in the user’s screen as Fig. 8(c).

To show the accuracy of the positioning system and
the effectiveness of the location refinement methods,
we use the GPS logs as ground truth and calculate the
deviation of PulseCounting to GPS during movement.
Fig. 9 shows the instantaneous deviation of a random
user moving from P1 to P4. The “None” data (red cir-
cle dots) mean that no refinement is done to the esti-
mation. The “Partial” data (green cross dots) indicates
that the location estimation is refined only using the
information from other mobile nodes. The “Multiple”
data (blue star dots) indicates that the node considers
all possible information from landmarks and from
other mobile nodes to refine its location estimation.
As shown in the figure, the instantaneous deviation is

P1

P2

P3
P4

A

Fig. 10. Screen shots of the tracking system.

fluctuating, which means that the relative estimation
error compared to GPS varies from time to time. For
shorter distance (e.g., shorter than 200m), the three
curves are close to each other. For longer distance
(e.g., longer than 200m), the deviation of “None” data
is the highest. The location estimation refined by only
mobile node is slightly lower than non-refinement.
The location refined by landmarks and mobile nodes
achieves the lowest deviation, which is significantly
lower than the others.

The average deviations of the three cases are shown
beside their corresponding symbols in Fig. 9. It can be
seen that the average deviation of the three methods
are 11.60m, 9.97m, and 8.61m accordingly.

Note that the positioning accuracy depends on the
communication range of the mobile devices. Theoret-
ically the proposed approach is applicable to different
wireless communication techniques including WiFi,
BlueTooth, ZigBee, etc, and different communication
technique will yield different accuracy accordingly. In
our system, we choose WiFi for implementation since
it is widely available and equipped in most smart
phones. The typical communication range of WiFi is
about 10 meters, and the average accuracy of 9 meters
(compared to GPS) is achieved using the proposed
positioning and refinement approaches.

5.5 The tracking system

The tracking system was implemented in a PC server,
which was connected to the Internet and could be
accessed via web browsers. The tracking server can
emulate the trajectories of mobile nodes and display
their traces on the map.

Fig. 10 illustrates the trajectories of two mobile
nodes in our experiment. In this scenario, node 1
moved from P1 to P4 and node 2 moved from P2

to P3. They encountered at an intersection A. Node 2
reached to its destination first (since it walked along
a shorter path). The server collected data from node 2
via the AP in P3. Based on the knowledge of history
statistics and the trajectories uploaded by node 2, the
server determined that node 1 was moving to P4

with high probability and infer its movement with a
historical trajectory. Thus the browser can display the
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Fig. 11. Deviation of the tracking system.

walking routes of both users without communicating
with them in realtime.

Fig. 11 compares the deviation of the tracking trajec-
tory to the GPS records. According to the figure, in the
walking distance of 350 meters, the deviation varies
from 5 meters to 25 meters. The average deviation is
12.49 meters. Note that such accuracy achieves only
when the system makes a correct prediction of the
user’s route. If the system makes a wrong prediction
(based on Markov chain, this will happen with some
probability), the deviation will be far away from the
real trajectory. Improving the prediction accuracy and
reducing the tracking errors will be our future work.

5.6 Energy consumption

We evaluate the energy efficiency of the proposed
positioning system, and show that its energy con-
sumption is slightly higher than online radio listening,
but much lower than online video watching. The
details are found in Appendix E in the supplemental
document.

5.7 Discussion and comparisons

We further discuss the pros and cons of the proposed
positioning and tracking system, and provide compar-
isons with other related works such as AAMPL [21],
CompAcc [11], and Escort [12]. The details are found
in Appendix F in the supplemental document.

6 CONCLUSION

Localization in DTNs faces two major difficulties: the
mobile node can only use sparse reference points to
estimate its location, and the tracking server need
to determine and predict movement trajectories with
partial location information. To overcome these dif-
ficulties, we propose PulseCounting and ProbTracking
for positioning and tracking in DTNs. We implement
the system in Android phones and evaluate its per-
formance in a testbed in the NJU campus. Extensive
experiments show that the proposed system achieves
an average deviation less than 9m compared to GPS.
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