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Abstract

The paper has two parts. The first one deals with how to use large random matrices as building blocks to model the massive
data arising from the massive (or large-scale) MIMO system. As a result, we apply this model for distributed spectrum sensing and
network monitoring. The part boils down to the streaming, distributed massive data, for which a new algorithm is obtained and its
performance is derived using the central limit theorem that is recently obtained in the literature. The second part deals with the
large-scale testbed using software-defined radios (particularly USRP) that takes us more than four years to develop this 70-node
network testbed. To demonstrate the power of the software defined radio, we reconfigure our testbed quickly into a testbed for
massive MIMO. The massive data of this testbed is of central interest in this paper. It is for the first time for us to model the
experimental data arising from this testbed. To our best knowledge, we are not aware of other similar work.
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I. INTRODUCTION

Massive or large-scale multiple-input, multiple output (MIMO), one of the disruptive technologies of the next generation
(5G) communications system, promises significant gains in wireless data rates and link reliability [1] [2]. In this paper, we
deal with the massive data aspects of the massive MIMO system. In this paper, we use two terms (massive data and big data)
interchangeably, following the practice from National Research Council [3].

The benefits from massive MIMO are not only limited to the higher data rates. Massive MIMO techniques makes green
communications possible. By using large numbers of antennas at the base station, massive MIMO helps to focus the radiated
energy toward the intended direction while minimizing the intra and intercell interference. The energy efficiency is increased
dramatically as the energy can be focused with extreme sharpness into small regions in space [4]. It is shown in [5] that,
when the number of base station (BS) antennas M grows without bound, we can reduce the transmitted power of each user
proportionally to 1/M if the BS has perfect channel state information (CSI), and proportionally to 1√

M
if CSI is estimated

from uplink pilots. Reducing the transmit power of the mobile users can drain the batteries slower. Reducing the RF power of
downlink can cut the electricity consumption of the base station.

Massive MIMO also brings benefits including inexpensive low-power components, reduced latency, simplification of MAC
layer, etc [4]. Simpler network design could bring lower complexity computing which save more energy of the network to
make the communications green.

Currently, most of the research of massive MIMO is focused on the communications capabilities. In this paper, we promote
an insight that, very naturally, the massive MIMO system can be regarded as a big data system. Massive waveform data—
coming in a streaming manner—can be stored and processed at the base station with a large number of antennas, while not
impacting the communication capability. Especially, the random matrix theory can be well mapped to the architecture of large
array of antennas. The random matrix theory data model has ever been validated by [6] in a context of distributed sensing. In
this paper, we extend this work to the massive MIMO testbed. In particular, we studied the function of multiple non-Hermitian
random matrices and applied the variants to the experimental data collected on the massive MIMO testbed. The product of
non-Hermitian random matrices shows encouraging potential in signal detection, that is motivated for spectrum sensing and
network monitoring. We also present two concrete applications that are demonstrated on our testbed using the massive MIMO
system as big data system. From the two applications, we foresee that, besides signal detection, the random-matrix based big
data analysis will drive more mobile applications in the next generation wireless network.

II. MODELING FOR MASSIVE DATA

Large random matrices are used models for the massive data arising from the monitoring of the massive MIMO system. We
give some tutorial remarks, to facilitate the understanding of the experimental results.
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A. Data Modeling with Large Random Matrices

Naturally, we assume n observations of p-dimensional random vectors x1, ...,xn ∈ Cp×1. We form the data matrix X =
(x1, ...,xn) ∈ Cp×n, which naturally, is a random matrix due to the presence of ubiquitous noise. In our context, we are
interested in the practical regime p = 100− 1, 000, while n is assumed to be arbitrary. The possibility of arbitrary sample size
n makes the classical statistical tools infeasible. We are asked to consider the asymptotic regime [7]–[10]

p→∞, n→∞, p/n→ c ∈ (0,∞) , (1)

while the classical regime [11] considers
p fixed, n→∞, p/n→ 0. (2)

Our goal is to reduce massive data to a few statistical parameters. The first step often involves the covariance matrix estimation
using the sample covariance estimator

S =
1

n
XXH =

1

n

n∑
i=1

xix
H
i ∈ Cp×p, (3)

that is a sum of rank-one random matrices [12]. The sample covariance matrix estimator is the maximum likelihood estimator
(so it is optimal) for the classical regime (2). However, for the asymptotic regime (1), this estimator is far from optimal. We
still use this estimator due to its special structure. See [7]–[10] for modern alternatives to this fundamental algorithm. For
brevity, we use the sample covariance estimator throughout this paper.

B. Non-Hermitian Free Probability Theory

Once data are modeled as large random matrices, it is natural for us to introduce the non-Hermitian random matrix theory into
our problem at hand. Qiu’s book [9] gives an exhaustive account of this subject in an independent chapter, from a mathematical
view. This paper is complementary to our book [9] in that we bridge the gap between theory and experiments. We want to
understand how accurate this theoretical model becomes for the real-life data. See Section V for details.

Roughly speaking, large random matrices can be treated as free matrix-valued random variables. “Free” random variables
can be understood as independent random variables. The matrix size must be so large that the asymptotic theoretical results
are valid. It is of central interest to understand this finite-size scaling in this paper.

III. DISTRIBUTED SPECTRUM SENSING

Now we are convinced that large random matrices are valid for experimental data modeling. The next natural question is to
test whether the signal or the noise is present in the data. Both networking monitoring and spectrum sensing can be formulated
as a matrix hypothesis testing problem for anomaly detection.

A. Related Work

Specifically, consider the n samples y1, ...,yn, drawn from a p-dimensional complex Gaussian distribution with covariance
matrix Σ. We aim to test the hypothesis:

H0 : Σ = Ip.

This test has been studied extensively in classical settings (i.e., p fixed, n → ∞), first in detail in [13]. Denoting the sample

covariance by Sn = 1
n

n∑
i=1

yiy
H
i , the LRT is based on the linear statistic (see Anderson (2003) [11, Chapter 10])

L = Tr (Sn)− ln (det Sn)− p. (4)

Under H0, with p fixed, as n→∞, nL is well known to follow a χ2 distribution. However, with high-dimensional data for
which the dimension p is large and comparable to the sample size n, the χ2 approximation is no longer valid. A correction to
the LRT is done in Bai, Jiang, Yao and Zheng (2009) [14] on large-dimensional covariance matrix by random matrix theory.
In this case, a better approach is to use results based on the double-asymptotic given by Assumption 1. Such a study has
been done first under H0 and later under the spike alternative H1. More specifically, under H0, this was presented in [14]
using a CLT framework established in Bai and Silverstein (2004) [15]. Under “H1 : Σ has a spiked covariance structure as in
Model A”, this problem was addressed only very recently in the independent works, [16] and [17]. We point out that [16] (see
also [18]) considered a generalized problem which allowed for multiple spiked eigenvalues. The result in [16] was again based
on the CLT framework of Bai and Silverstein (2004) [15], with their derivation requiring the calculation of contour integrals.
The same result was presented in [17], in this case making use of sophisticated tools of contiguity and Le Cam’s first and
third lemmas [19].
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B. Spiked Central Wishart Matrix

Our problem is formulated as
H0 : Σ = Ip

H1 : Σ ∈ Model A: Spiked central Wishart.
(5)

Model A: Spiked central Wishart: Matrices with distribution CWp (n,Σ,0p×p) (n > p) , where Σ has multiple distinct
“spike” eigenvalues 1 + δ1 > · · · > 1 + δr, with δr > 0 for all 1 ≤ k ≤ r, and all other eigenvalues equal to 1.

Assumption 1. n, p→∞ such that n/p→ c > 1.

Theorem III.1 (Passemier, McKay and Chen (2014) [20]). Consider Model A and define

a =
(
1−
√
c
)2
, b =

(
1 +
√
c
)2
. (6)

Under Assumption 1, for an analytic function f : U → C where U is an open subset of the complex plane which contains
[a, b], we have

p∑
i=1

f

(
λi
p

)
− pµ L−→ N

(
r∑
`=1

µ̄ (z0,`), σ
2

)
,

where

µ =
1

2π

∫ b

a

f (x)

√
(b− x) (x− a)

x
dx (7)

σ2 =
1

2π2

∫ b

a

f (x)√
(b− x) (x− a)

[
P
∫ b

a

f ′ (y)
√

(b− y) (y − a)

x− y
dy

]
dx (8)

with these terms independent of the spikes. The spike-dependent terms µ̄ (z0,`) , 1 6 ` 6 r admit

µ̄ (z0,`) =
1

2π

∫ b

a

f (x)√
(b− x) (x− a)

[√
(z0,` − a) (z0,` − b)

z0,` − x
− 1

]
dx (9)

where

z0,` =

{
(1+cδ`)(1+δ`)

δ`
, for Model A

(1+ν`)(1+ν`)
ν`

, for Model B
.

The branch of the square root
√

(z0,` − a) (z0,` − b) is chosen.

As an application of Theorem III.1 for Model A, we consider the classical LRT that the population covariance matrix is the
identity, under a rank-one spiked population alternative.

Here, we will adopt our general framework to recover the same result as [16] and [17] very efficiently, simply by calculating
a few integrals. Under H1, as before we denote by 1 + δ the spiked eigenvalue of Σ. Since nSn ∼ CWp (n,Σ,0p×p) , we
now apply Theorem III.1 for the case of Model A to the function

fL (x) =
x

c
− ln

(x
c

)
− 1.

Let λi, 1 6 i 6 p, be the eigenvalues of nSn. Since the domain of definition of fL is (0,∞), we assume that c > 1 to ensure
a > 0 (see (6)). Then, under Assumption 1,

L =

p∑
i=1

fL

(
λi
p

)
L→N

(
pµ+ µ̄, σ2

)
,

L =

p∑
i=1

fL

(
λi
p

)
L→N

(
pµ+ µ̄ (z0,1) , σ2

)
,

where r = 1 is used for one spike to obtain

µ = 1 + (c− 1) ln
(
1− c−1

)
, σ2 = −c−1 ln

(
1− c−1

)
with the spike-dependent term

µ̄ = δ1 − ln (1 + δ1) .

The special case of one spike is also considered in [21]. These results are in agreement with [16] and [17].
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C. Distributed Streaming Data

For each server, equation (5) formulates the testing problem. How do we formulate this problem when the data are spatially
distributed across N servers? Our proposed algorithm is as follows: Algorithm 1

1) The i-th server computes the sample covariance matrix Si, i = 1, ..., N.
2) The i-th server computes the linear statistic

Li = Tr (Si)− ln (det Si)− p, i = 1, ..., N.

3) The i-th server communicates the linear statistic Li, i = 1, ..., N to one server that acts as the coordinator.
4) Finally, the coordinator server obtains the linear statistic Li, i = 1, ..., N via communication and sum up the values

LD = L1 + · · ·+ LN .
5) All the above computing and communication are done in in parallel.
The communication burden is very low. The central ingredient of Algorithm 1 is to exploit the Central Limit Theorem of

the used linear statistic L defined in (4). By means of Theorem III.1, we have

L =

p∑
i=1

f

(
λi
p

)
L−→ N

(
pµ+

r∑
`=1

µ̄ (z0,`), σ
2

)
.

Since L1, ..., LN are Gaussian random variables, the sum of Gaussian random variables are also Gaussian; thus LD = L1 +
· · ·+ LN is also Gaussian, denoted as N

(
µD, σ

2
D

)
.

The false alarm probability for the linear statistic can be obtained using standard procedures. If LD > γ, the signal is
present; otherwise, the signal does not exist. The false alarm probability is

Pfa = P (L > γ |H0 ) = P
(
L−µD
σD

> γ−µD
σD
|H0

)
=

∞∫
L−µD
σD

1√
2π

exp
(
−t2/2

)
dt

= Q
(
L−µD
σD

)
where Q (x) =

∫∞
x

1√
2π

exp
(
−t2/2

)
dt. For a desired false-alarm rate ε, the associated threshold should be chosen such that

γ = µD +
1

σD
Q−1 (ε) .

To predict the detection probability, we need to know the distribution of ξ under H1, which has been obtained using
Theorem III.1. The detection probability is calculated as

Pd = P (LD > γ |H1 ) = P
(
ξ−µD
σD

> γ−µD
σD
|H1

)
= Q

(
LD−µD
σD

)
.

IV. MASSIVE MIMO TESTBED AND DATA ACQUISITION

A. System Architecture and Signal Model

The system architecture of the testbed is as Fig. 1.
The general software-defined radio (SDR) universal software radio peripheral (USRP) platform is used to emulate the base

station antenna in our testbed. We deployed up to 70 USRPs and 30 high performance PCs to work collaboratively as an large
antenna array of the massive MIMO base station. These USRPs are well clock synchronized by an AD9523 clock distribution
board. The system design of this testbed can be found in [22].

Our testbed has demonstrated initial capabilities as below:
a) Channel Reciprocity for Channel Measurement: Channel matrix measurement is a critical task for Multi-User Massive

MIMO system. For the antenna i and j, if the uplink and downlink work in TDD mode, the channel reciprocity will be useful
for the pre-coding in MIMO system. Channel reciprocity means hi,j = hj,i if hi,j represents the air channel from antenna i
to antenna j and vice versa.

Given the h is the air channel between antenna i and j, the measured channel hi,j and hj,i follow the model depicted as
Fig. 2, where where T (i), R (j), R (i), T (j) represent the effect from circuits like upper/down conversion, filters, etc., for
both the upper and down links.

Thus we have
hi,j = T (i) · h ·R (j)

hi,j = R (i) · h · T (j)
(10)
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…
..

Fig. 1: System Architecture of Multi-User Massive MIMO Testbed.

T(i) h R(j)

R(i) h T(j)i j

Fig. 2: Reciprocity mode for TDD channel

Usually, the relative calibration is sufficient for the pre-coding as we have

hi,j
hj,i

=
T (i) ·R (j)

R (i) · T (j)
(11)

which is constant in ideal situation.
Channel reciprocity described above includes the circuits impact. Our measurement shows that ratio hi,j/hj,i between the

downlink and uplink channel frequency response for antenna i and j is almost constant. For example, we collect 3 rounds
of data within a time duration that the channel can be regarded as static. Thus 3 such ratios are obtained for a specified link
between USPR node transmitting antenna 3 and receiving antenna 2. Three absolute values of the sampled ratio for h3,2/h2,3
are 1.2486, 1.22, 1.2351 respectively.

b) Massive Data Acquisition for Mobile Users or Commercial Networks: Consider the time evolving model described
as following. Let N be the number of antennas at base station. All the antennas start sensing at the same time. Every time,
on each antenna, a time series with samples length T is captured and denoted as xi ∈ C1×T , i = 1, . . . , N . Then a random
matrix from N such vectors are formed as:

Xj =


x1
x2
...
xN


N×T

(12)

where, j = 1, · · · , L. Here L means we repeat the sensing procedure with L times. Then L such random matrices are obtained.
In the following sections, we are interested in variant random matrix theoretical data models, including the product of the L
random matrices and their geometric/arithmetic mean. We call it time evolving approach.

Besides the time evolving approach, we can also use a different data format to form random matrix. Suppose we select n
receivers at Massive MIMO base station. At each receiver, we collect N ×T samples to get a random matrix Xi ∈ CN×T with
i = 1, · · · , n. Similarly, we are interested in the functions of these random matrices. We call it space distributed approach.

In the next section, we specify which approach is used to form the random matrix when a certain theoretical model is used.

V. RANDOM MATRIX THEORETICAL DATA MODEL AND EXPERIMENTAL VALIDATION

We are interested in the eigenvalue distribution for every data model. The results obtained from the experimental data are
compared with theoretical distributions (if exists). The experimental data come from noise-only case and signal-present case.
Our testbed captures the commercial signal data at 869.5MHz.
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Fig. 3: The eigenvalue distribution for product of non-Hermitian random matrices, noise only, all snapshots.

Fig. 4: The eigenvalue distribution for product of non-Hermitian random matrices, signal present, all snapshots.

A. Product of non-Hermitian random matrix

The eigenvalue distribution for the product of non-Hermitian random matrix, so far, gives us the best visible information to
differentiate the situations of noise only and signal present. Here the timing evolving approach is used. Denote the product of
non-Hermitian random matrix as:

Z =

L∏
j=0

Xj (13)

In the experiment, L is adjustable. In addition, a number of such Z are captured with time evolving, to investigate if the pattern
is changing or not with time. Every Z could be regarded as one snapshot. For both the noise and signal experiments, we took
10 snapshots. All the 10 snapshots are put together to show eigenvalue distribution more clearly.

1) Eigenvalue Distributions for Noise-Only and Signal-Present: Firstly, we visualize the eigenvalue distribution on the
complex plane to see the difference between the cases of noise-only and signal-present.

Noise Only: If the eigenvalue distribution for all the snapshots are put together, we see Fig. 3, in which the red circle
represents the “Ring Law”.

Signal Present: If putting together the eigenvalues of all snapshots, we see Fig. 4, in which the inner radius of the eigenvaule
distribution is smaller than that of the ring law.

We also use the probability density diagram to show the difference between noise only and signal present cases, with different
L. The theorem V.1 actually gives the theoretical values of the inner radius and outer radius of the ring law.
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Fig. 5: Probability of eigenvalue for product of the non-Hermitian random matrix, both cases, with L = 5.

Fig. 6: Probability of eigenvalue for product of the non-Hermitian random matrix, both cases, with L = 10.

Theorem V.1. The empirical eigenvalue distribution of N × T matrix
L∏
i=1

Xi converge almost surely to the same limit given

by

f L∏
i=1

Xi
(λ) =

{
2
πcL |λ|

2/L−2

0
(1− c)L/2 6 r 6 1

elsewhere

as N , n →∞ with the ratio c = N/n 6 1 fixed.

We are interested in the probability density of |λ|. Let r = |λ|, which is described in Eq. 14, derived from the Theorem V.1.

f L∏
i=1

Xi
(r) =

{
2
cLr

2
L−1

0
(1− c)L/2 6 r 6 1

elsewhere
(14)

The PDF is also shown in Fig. 5 and Fig. 6 with different L.
The above results show that eigenvalue distribution follows the ring law in this model for noise only case. The signal present

case also has the ring law while the inner radius is much smaller than the noise only case, especially when L is large.
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Fig. 7: Shrinking eigenvalue ratio within the ring law inner circle between the noise only and signal present cases.

2) Empirical Effect of L to Differentiate Cases of Noise only and Signal Present: Regarding the product of non-Hermitian
random matrices, the main difference observed in cases of noise only and signal present, is about the inner circle radius of
the eigenvalue distribution.

According to the ring law, the inner circle radius of the eigenvalue distribution for the noise only case, is constrained by
Eq. 15, which is a fixed value for determined L and c.

rinner = (1− c)
L
2 (15)

Meanwhile, the radius shrinks for the case of the signal being present. In addition, for both cases, the inner circle radius
decreases with increasing L. The question is whether it is easier to differentiate the two cases when increasing the value L?

For the same L, we define Mnoise (L)|r<rinner
as the number of eigenvalues falling within the ring law inner circle, measured

for the noise only case, and the Msignal (L)|
r<rinner

as the number of eigenvalues falling within the inner circle of the ring law,
measured for signal present case. Thus, we have a ratio denoted as

ρ (L) =
Mnoise (L)|r<rinner

Msignal (L)|
r<rinner

(16)

to represent the impact of L.
Fig. 7 show the trend of the ratio with increasing L. Generally, the ratio decreases with the increasing L, indicating that the

larger L brings better distance between the cases of noise only and signal present. However, the trend is very similar with the
negative exponential function of L. When L is greater than 10, the ratio does not change much.

B. Geometric Mean

Using the same data as last paragraph, the geometric mean of the non-Hermitian random matrix can be obtained as:

Z =

 L∏
j=0

Xj

1/L

(17)

Time evolving approach is used here. In this experiment, we adjust the L and the convergence is observed when L is
increased. All the diagrams below include 10 snapshots of data results. Basically, in this case, the eigenvalues converge to the
outer unit circle and are not changing much with increasing L.

Noise Only: Fig. 8 to Fig. 10 show the eigenvalue distribution of the geometric mean for noise only situation.
Signal Present: Fig. 11 to Fig. 13 show the eigenvalue distribution of the geometric mean for signal situation. Different

with noise case, the convergence of the eigenvalue is sensitive to the value of L. With bigger L, the distribution converges
more to the unit circle.

We also show the PDF of the eigenvalue absolute values for geometric mean, in Fig. 14 and Fig. 15 with different L.
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Fig. 8: The eigenvalue distribution for geometric mean of non-Hermitian random matrix, noise only, all snapshots, L=5.

Fig. 9: The eigenvalue distribution for geometric mean of non-Hermitian random matrix, noise only, all snapshots, L=20.

From all the visualized results for the Geometric mean model, we see that
• the eigenvalue distribution is similar to the ring law, but the radius is not the same as product of non-Hermitian random

matrices.
• the difference between inner radius and the outer radius, for the signal-present case, is larger than that for noise-only case.
• with L increased, the “ring” is converged more to the outer circle. The absolute difference between noise-only and

signal-present is actually not get larger with increasing L.

C. Arithmetic Mean:

The arithmetic mean of the non-Hermitian random matrix is defined as

Z =
1

L

 L∑
j

Xj

 (18)
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Fig. 10: The eigenvalue distribution for geometric mean of non-Hermitian random matrix, noise only, all snapshots, L=60.

Fig. 11: The eigenvalue distribution for geometric mean of non-Hermitian random matrix, signal present, all snapshots, L=5.

For both the noise-only and signal-present cases, we adjust the value of L to see the effect. We select L = 5, 20, 100.
Noise Only: Fig. 16 to Fig. 18 show the eigenvalue distribution of the arithmetic mean of the L non-Hermitian random

matrix, for the noise only case.
Signal Present: Fig. 19 to Fig. 21 show the eigenvalue distribution of the arithmetic mean of the L non-Hermitian random

matrix, for the signal present case.
The corresponding PDFs of the eigenvalue absolute values of arithmetic mean are also shown Fig. 22 and Fig. 23.
From the visualized results of the eigenvalue distribution for Arithmetic mean model, we see
• The eigenvalue distribution for either noise-only and signal-present is following a similar ring law.
• The width of the ring, for signal-present, is larger than that for noise-only.
• We cannot get extra benefit by increasing L, as the width of the ring is not impacted by L.
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Fig. 12: The eigenvalue distribution for geometric mean of non-Hermitian random matrix, signal present, all snapshots, L=20.

Fig. 13: The eigenvalue distribution for geometric mean of non-Hermitian random matrix, signal present, all snapshots, L=60.

D. Product of Random Ginibre Matrices

We study the product of k independent random square Ginibre matrices, Z =
k∏
1

Gi. When the random Ginibre martices, Gi,

are square, the eigenvalues of ZZH have asymptotic distribution ρ(k) (x) in the large matrix limit. In terms of free probability
theory, it is the free multiplicative convolution product of k copies of the Marchenko-Pastur distribution. In this model, we
applied the space distributed approach to for the random matrix.

For k = 2, the spectral density is explicitly given by

ρ(2) (x) =
21/3
√

3

12π

[
21/3

(
27 + 3

√
81− 12x

)2/3 − 6x1/3
]

x2/3
(
27 + 3

√
81− 12x

)1/3 (19)

where x ∈ [0, 27/4]. For general k, the explicit form of the distribution is a superposition of hyper-geometric function of the
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Fig. 14: Probability of eigenvalue for geometric mean of the non-Hermitian random matrix, both cases, with L = 5.

Fig. 15: Probability of eigenvalue for geometric mean of the non-Hermitian random matrix, both cases, with L = 60.

type kFk−1

ρ(k) (x) =

k∑
i=1

Λi,kx
i

k+1−1·

kFk−1

([
{aj}kj=1

]
;
[
{bj}i−1j=1 , {bj}

k
j=i+1

]
;

kk

(k + 1)
k+1

x

)
(20)
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Fig. 16: The eigenvalue distribution for arithmetic mean of non-Hermitian random matrix, noise only, L=5.

Fig. 17: The eigenvalue distribution for arithmetic mean of non-Hermitian random matrix, noise only, L=20.

where aj = 1− 1+j
k + i

k+1 , bj = 1 + i−j
k+1 , and

Λi,k =
1

k3/2

√
k + 1

2π

(
kk/(k+1)

k + 1

)i
· [

i−1∏
j=1

Γ
(
j−i
k+1

)][ k∏
j=k+1

Γ
(
j−i
k+1

)]
k∏
j=1

Γ
(
j+1
k −

i
k+1

) (21)

where pFq

([
{aj}pj=1

]
;
[
{bj}qj=1

]
;x
)

stands for the hypergeometric function of the type pFq .
From the noise data captured by k USRP sensors, we obtained the histogram for the spectral density of the product of the
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Fig. 18: The eigenvalue distribution for arithmetic mean of non-Hermitian random matrix, noise only, L=100.

Fig. 19: The eigenvalue distribution for arithmetic mean of non-Hermitian random matrix, signal present, L=5.

Ginibre random matrices. Fig. 24 to Fig. 26 show that the histograms match the theoretical pdf well, for different k.

E. Summary of Theoretical Validation by Experimental Data

We applied variant data models on the massive data collected by our massive MIMO testbed. Firstly, we found that the
theoretical eigenvalue distribution (if exists) can be validated by the experimental data for noise-only case. The random matrix
based big data analytic model is successfully connected to the experiment. Secondly, the signal-present case can be differentiated
from the noise-only case by applying the same data model. This result reveals the potential usage of the random-matrix based
data model in signal detection, although the future work on the performance analysis is needed.

VI. INITIAL APPLICATIONS OF MASSIVE MIMO TESTBED AS BIG DATA SYSTEM

Besides signal detection, we demonstrated two applications based on the massive data analytic through the random-matrix
method. The theoretical model in section V-A is used, i.e., we mainly apply the product of non-Hermitian random matrices on
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Fig. 20: The eigenvalue distribution for arithmetic mean of non-Hermitian random matrix, signal present, L=20.

Fig. 21: The eigenvalue distribution for arithmetic mean of non-Hermitian random matrix, signal present, L=100.

the collected mobile data to investigate the corresponding eigenvalue distribution. Our aim is to make sense of massive data to
find the hidden correlation between the random-matrix-based statistics and the information. Once correlations between causes
and effects are empirically established, one can start devising theoretical models to understand the mechanisms underlying
such correlations, and use these models for prediction purposes [23].

A. Mobile User Mobility Data

In a typical scenario where the mobile user is communicating with the massive MIMO base station while moving, the uplink
waveform data received at each receiving antenna are collected. We applied the product of Hermitian random matrices to the
data to observe the relationship between the eigenvalue distribution and the behavior of the moving mobile user. We are using
the data from 10 antennas associated with 10 USRP receivers. Another USRP placed on a cart acts as the mobile user, which
moves on the hallway of the 4th floor of the Clement Hall at Tennessee Technological University. The base station with up to
70 USRPs is on the same floor. The experiment results show that the moving speed of the mobile user is directly associated
with the inner circle of the eigenvlaue distribution for the product of the Hermitian random matrices.
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Fig. 22: Probability of eigenvalue for arithmetic mean of the non-Hermitian random matrix, both cases, with L = 5.

Fig. 23: Probability of eigenvalue for arithmetic mean of the non-Hermitian random matrix, both cases, with L = 100.

The experiments include five cases with different the moving speeds.
a) Case 1: The Mobile User Stands in a Certain Place without Moving

In this case, the mobile user has zero speed. What we observed in Figure 27 is that the inner radius of the circle is almost
not changing. The average inner radius is a little less than 0.05 for the whole procedure.

b) Case 2: The Mobile User Moves at a Nearly Constant Walking Speed
In this case, the mobile user moves along a straight line at a nearly constant walking speed from a distant point to a point

near the base station. Figure 28 shows the change of the inner radius of the circle law with time. The moving mobile user is
actually on a cart pushed by a man. We see the inner radius is much bigger at the beginning when the cart is accelerating from
almost motionless to a walking speed than the rest of the time. During the moving stage, the inner radius is much smaller and
very stable at around 0.005.

c) Case 3: The Mobile User Moves at a Very slow speed
In this case, we move the mobile user at a very slow speed that is much smaller than walking speed. We see in Figure 29

that the inner radius is mostly vacillating between 0.02 and 0.05. This value is much smaller than that of the stationary case,
but bigger than the walking-speed case.

d) Case 4: The Mobile User Moves at Varying speed: Half the Time walking, Half the Time at a Very Slow Speed.
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Fig. 24: Spectral density of eigenvalues for product of square Random Ginibre Matrices, k=2

Fig. 25: Spectral density of eigenvalues for product of square Random Ginibre Matrices, k=4

Fig. 26: Spectral density of eigenvalues for product of square Random Ginibre Matrices, k=6
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Fig. 27: Ring law inner radius changing with time for moving mobile user, case 1.

Fig. 28: Ring law inner radius changing with time for moving mobile user, case 2.

In this case, we try to observe the difference for the impacts from different moving speeds on the inner radius in one figure.
Figure 30 shows that the radius in the first half is much smaller than that in the second half. Correspondingly, the moving
speed in the first half is much higher than the latter half.

e) Case 5: The Mobile User Moves at Varying Speed: Half the Distance Walking, Half the Distance at a Very
Slow Speed.

Similar to case 4, the impacts from different speeds are observed. A higher moving speed brings a smaller inner radius of
the eigenvalue distribution. Because the walking speed part has equal distance with the slow speed part, the occupied time of
the former is smaller than the later part, just as shown in Figure 31.

All the above cases reveal a common observation that the faster the mobile user moves, the smaller the inner radius of ring
law is. From the big data point of view, we can get insight that a massive MIMO based station can use the inner radius of
the ring law to estimate the moving status of the mobile user. As we know, basically more correlation in the signal brings a
smaller inner radius of the ring law. Thus, this result is reasonable, as the faster speed of the mobile user causes more Doppler
effect to the random signal received in the massive MIMO base station, i.e., more correlation detected by the product of the
Hermitain random matrices.

B. Correlation Residing in Source Signal

Besides the correlation introduced by the moving environment, as in the above experiment, the correlation residing in the
transmitting signal also has a significant impact on the eigenvalue distribution of the random matrix. Actually, in the section
on theoretical model validation, we only compared the cases of noise-only and signal-present. The correlation within the signal
creates the derivation of the eigenvalue distribution. In this section, we intentionally adjust the auto-correlation level of the
generated signal that is transmitted by the mobile user. The corresponding effect on the inner radius of the ring law is also
investigated by analyzing the collected data from antennas at the massive MIMO base station.

We generate the output signal following Eq. 22:

y (n) = (1 + r)x (n) + ry (n− 1) (22)

which can also be represented by Figure 32. In the experiment, x (n) is set as Gaussian white noise.
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Fig. 29: Ring law inner radius changing with time for moving mobile user, case 3.

Fig. 30: Ring law inner radius changing with time for moving mobile user, case 4.

Essential to this signal generator is an auto-regression filter in which the parameter r is used to control the frequency
response as shown in Figure 33 A bigger r leads a sharper frequency response that introduces more correlation within the
transmitted signal. Thus, we can see that the inner radius of the ring law observed at the massive MIMO base station is as in
Figure 34.

C. Insights from Applications

Both the applications bring us insights that the correlation residing in the signal can be matched to certain events in the
network. In the network under our monitoring, such correlations can be detected and measured by our random-matrix-based
data analysis method and finally be used to visualize the real event, such as the mobile user moving, fluctuation of the source
signal correlation. This is a typical big data approach. The massive MIMO system is not only a communications system but also
an expanded data science platform. We make sense of data by storing and processing the massive waveform data. Information
will not be discarded, thus the energy of every bit/sample can be utilized as possible as we can. To our best knowledge, it is
the first time, by concrete experiments, to reveal the value of the 5G massive MIMO as a big data system. We believe that
more applications emerge in the future.

VII. CONCLUSION

The paper gives a first account for the 70-node testbed that takes TTU four years to develop. Rather than focusing on
the details of the testbed hardware development, we use the testbed as a platform to collect massive datasets. The motivated
application of this paper is massive MIMO. First, by using our initial experimental data, we find that large random matrices
are natural models for the data arising from this tested. Second, the recently developed non-Hermitian free probability theory
makes the theoretical predictions very accurately, compared with our experimental results. This observation may be central to
our paper. Third, the visualization of the datasets are provided by the empirical eigenvalue distributions on the complex plane.
Anomaly detection can be obtained through visualization. Fourth, when no visualization is required, we can formulate spectrum
sensing or network monitoring in terms of matrix hypothesis testing. This formulation is relatively new in our problem at hand
for massive MIMO. To our best knowledge, our work may be the first time. A new algorithm is proposed for distributed data
across a number of servers.
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Fig. 31: Ring law inner radius changing with time for moving mobile user, case 5.

Fig. 32: Auto-regression filter used to generate the signal with adjustable autocorelation.

At this moment of writing [10], we feel that both theoretical understanding and experimental work allows for extension to
other applications. First, thousands of vehicles need be connected. Due to mobility, streaming data that are spatially distributed
across N = 1, 000 becomes essential. We have dealt with hypothesis testing problem. How do we reduce the data size while
retaining the statistical information in the data? Sketching [24] is essential [10]. Second, the testbed allows for the study of data
analytical tools that will find applications in large-scale power grid, or Smart Grid [9]. For example, the empirical eigenvalue
distribution of large random matrices is used for power grid in [25].
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