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C-RAN With Spatial Compression and Forward
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Abstract—MIMO and cloud radio access network (C-RAN) are
promising techniques for implementing future wireless communi-
cation systems, where a large number of antennas are deployed
either being co-located at the base station or totally distributed at
separate sites called remote radio heads (RRHs), both to achieve
enormous spectrum efficiency and energy efficiency gains. Here,
we consider a general antenna deployment method for wireless
networks, termed multi-antenna C-RAN, where a flexible number
of antennas can be equipped at each RRH to more effectively bal-
ance the performance and fronthaul complexity tradeoff beyond
the conventional massive MIMO and single-antenna C-RAN. To
coordinate and control the fronthaul traffic over multi-antenna
RRHs, under the uplink communication setup, we propose a
new “spatial-compression-and-forward (SCF)” scheme, where
each RRH first performs a linear spatial filtering to denoise and
maximally compress its received signals from multiple users to
a reduced number of dimensions, then conducts uniform scalar
quantization over each of the resulting dimensions in parallel, and
finally sends the total quantized bits via a finite-rate fronthaul link
to the baseband unit (BBU) for joint information decoding. Under
this scheme, we maximize the minimum SINR of all users at the
BBU by a joint resource allocation over the wireless transmission
and fronthaul links. Specifically, each RRH determines its own
spatial filtering solution in a distributed manner to reduce the
signaling overhead with the BBU, while the BBU jointly optimizes
the users’ transmit power, the RRHs’ fronthaul bits allocation,
and the BBU’s receive beamforming with fixed spatial filters
at individual RRHs. Numerical results show that, given a total
number of antennas to be deployed, multi-antenna C-RAN with
the proposed SCF and joint optimization significantly outperforms
both massive MIMO and single-antenna C-RAN under practical
fronthaul capacity constraints.

Index Terms—Beamforming, fronthaul constraint, massive
multiple-input multiple-output (MIMO), multi-antenna cloud
radio access network (C-RAN), power control, signal-to-inter-
ference-plus-noise ratio (SINR) maximization, spatial-compres-
sion-and-forward (SCF).
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I. INTRODUCTION

I T is anticipated that the mobile data traffic will grow 1000
times higher in the next decade with a rate of roughly a

factor of two per year [1]. As a result, the fifth-generation or
5G wireless system on the roadmap has to make a major par-
adigm shift to accommodate this dramatic explosion in future
demands for wireless data communications. Both as highly
promising candidate techniques for the 5G wireless network,
massive multiple-input multiple-output (MIMO) [2], [3] and
cloud radio access network (C-RAN) [4] have recently drawn
significant attentions. Both techniques advocate the use of very
large number of antennas and centralized signal processing
to achieve enormously improved efficiency in spectrum and
energy usage. However, they are practically implemented with
different performance and complexity trade-off considerations.
In a massive MIMO system, as depicted in Fig. 1(a), a large

number of antennas are deployed at the base station (BS) to reap
all the benefits of the conventional multi-user MIMO system
but with a much greater scale. It is shown in [2] that in the
asymptotic regime where the number of antennas at the BS is
much larger than that of the users, the channels of different
users are orthogonal with each other, and thus a simple matched
filter, i.e., maximal ratio combining (MRC) in the uplink and
maximal ratio transmission (MRT) in the downlink, is capacity-
achieving. Moreover, the required transmit energy per bit van-
ishes as the number of antennas goes to infinity [5]. Despite
the above appealing benefits, there are many issues that poten-
tially limit the performance of massive MIMO in practice. For
instance, due to the limited space for installation, the number
of antennas at the BS is finite and their channels are gener-
ally correlated; as a result, the theoretical performance limit in
the asymptotic regime cannot be fully achieved in practice with
simple MRC/MRT. Moreover, similar to conventional MIMO
system, the performance of the cell-edge users in the massive
MIMO system is still a bottleneck since their channel condi-
tions may be still weak due to more significant path attenuation.
On the other hand, in a single-antenna C-RAN as shown in

Fig. 1(b), each antenna is deployed at one separate site called re-
mote radio head (RRH), which is connected to the central unit
(CU) via a high-speed fronthaul link (fiber or wireless) where
joint information processing is performed. Unlike the BS in the
massive MIMO system which decodes or encodes the user mes-
sages locally, in C-RAN each RRH merely forwards the signals
from/to the CU via its fronthaul link, while leaving the joint en-
coding/decoding complexity to a baseband unit (BBU) in the
CU. As a result, if the data can be perfectly transmitted be-
tween the BBU and RRHs over the fronthaul links without any
error, the single-antenna C-RAN can be viewed as another form
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Fig. 1. Comparison of massive MIMO, single-antenna C-RAN, and multi-an-
tenna C-RAN in the uplink transmission. (a)MassiveMIMO. (b) Single-antenna
C-RAN. (c) Multi-antenna C-RAN.

of massive MIMO but with the antennas densely distributed
over the whole served region such that all the mobile users
can be served by some adjacent antennas with strong channel
conditions. However, one obstacle constraining the practically
achievable throughput of C-RAN is the limited-capacity fron-
thaul link between each RRH and BBU. According to [4], the
capacity of the current commercial fibers, which is about sev-
eral Gbps (gigabits per second), can be easily overwhelmed in

C-RAN even undermoderate data traffic; whereas wireless fron-
thaul techniques such as those exploiting the millimeter-wave
bands in general operate with even lower data rate per link
and shorter distance as compared to the fiber based solution.
In the literature, a considerable amount of effort has been ded-
icated to study fronthaul quantization/compression techniques
in the uplink communication [6]–[12]. Specifically, the “quan-
tize-and-forward (QF)” scheme [13]–[15] is adopted to reduce
the communication rates between the BBU and RRHs, where
each single-antenna RRH samples, quantizes and forwards its
received signals to the BBU over its fronthaul link. Moreover,
the QF scheme is usually studied under an information-theo-
retical Gaussian test channel model, and the quantization noise
levels of all the RRHs are jointly optimized to maximize the
end-to-end throughput subject to the capacity constraints of in-
dividual fronthaul links. Different from the complex quanti-
zation schemes considered in [9]–[12], the simplest and prob-
ably most widely used quantization technique in practice is the
so-called uniform scalar quantization, where the step size be-
tween adjacent quantization levels is constant. Recently, [16]
reveals that subject to the capacity of the current commercial
fibers, the above theoretical performance upper bound can be
approached by applying a simple uniform scalar quantization
at each RRH for orthogonal frequency division multiplexing
(OFDM) based single-antenna C-RAN. Moreover, another line
of research in C-RAN studies the control of the overall fron-
thaul traffic by selectively activating only a small subset of all
the RRHs to meet the user demands [17].
In the aforementioned massive MIMO system and single-an-

tenna C-RAN, the antennas are deployed in a totally co-located
and separated manner, respectively. In addition to these two
extreme cases, a more general solution is to distribute the an-
tennas at a reduced number of sites as compared to single-an-
tenna C-RAN, while the RRH at each site is equipped with mul-
tiple antennas. This so-called multi-antenna C-RAN design can
provide both improved channel conditions to the users as in
single-antenna C-RAN as well as local spatial multiplexing gain
as in massive MIMO; furthermore, by adjusting the number of
antennas at each RRH and the number of RRHs, these bene-
fits can be flexibly traded-off with a given total number of an-
tennas deployed. However, the fronthaul issue becomes more
severe in the multi-antenna C-RAN as compared to conven-
tional single-antenna counterpart, since the limited fronthaul
capacity at each RRH needs to be allocated over the outputs
of more antennas, thus leading to more quantization errors in
general. To tackle this challenge and address the above design
trade-off, in this paper we focus our study on the uplink com-
munication in C-RAN with multi-antenna RRHs each subject to
a finite fronthaul capacity constraint. The main contributions of
this paper are summarized as follows.
• We propose a novel “spatial-compression-and-forward
(SCF)” scheme for multi-antenna RRHs to balance be-
tween the information conveyed to the BBU and the data
traffic over the fronthaul links. Specifically, each RRH first
performs spatial filtering to its received signals at different
antennas from the users such that the signals are denoised
and maximally compressed into a reduced number of
dimensions. Then, each RRH applies the simple uniform
scalar quantization [16] over each of these dimensions



LIU AND ZHANG: OPTIMIZED UPLINK TRANSMISSION IN MULTI-ANTENNA C-RAN WITH SPATIAL COMPRESSION AND FORWARD 5085

in parallel by appropriately allocating the number of
quantization bits over them under a total rate constraint.
Last, the quantized bits by all RRHs are sent to the BBU
for joint information decoding via their fronthaul links.
It is worth noting that spatial filtering by means of e.g.,
Karhunen-Loeve transform, has been widely adopted in
the literature for compressing and denoising spatially cor-
related signals with additive noise/interference [18], [19].
It is also worth noting that at each RRH, the compression
of the correlated signals received by all its antennas is ful-
filled by a simple linear filter, rather than the complicated
distributed source coding, e.g., Wyner-Ziv coding, as in
single-antenna C-RAN where all antennas are physically
separated [11], [12].

• With the proposed SCF scheme, we formulate the opti-
mization problem of joint users’ power allocation, RRHs’
spatial filter design and quantization bits allocation, as
well as BBU’s receive beamforming to maximize the min-
imum signal-to-interference-plus-noise ratio (SINR) of all
the users in the uplink. We propose an efficient solution
to this complicated design problem for ease of practical
implementation. First, each RRH computes its own spatial
filter in a distributed manner based on its locally received
signal covariance matrix. This distributed solution helps
save significant fronthaul resources for exchanging control
signals with the BBU. Then, the BBU jointly optimizes
the other parameters to maximize the minimum SINR of
all users based on the alternating optimization technique.
Specifically, with given quantization bits allocation at
each RRH, we extend the well-known fixed-point method
[20] to obtain the optimal transmit power levels for the
users and receive beamforming vectors at the BBU. On
the other hand, given the above optimized parameters, the
corresponding quantization bits allocation at each RRH is
efficiently solved.

• Last, we investigate the following interesting question:
Given a total number of antennas for a target area, should
all of them be deployed at one BS, i.e., massive MIMO,
or one at each RRH, i.e., single-antenna C-RAN, or
optimally divided over a certain number of RRHs, i.e.,
multi-antenna C-RAN, given a practical total fronthaul
capacity constraint for C-RAN? Through numerical ex-
amples, it is shown that with the proposed SCF scheme
and joint wireless-fronthaul-BBU optimization, multi-an-
tenna C-RAN generally performs noticeably better than
both massive MIMO and single-antenna C-RAN under
practical fronthaul rate constraints.

The rest of this paper is organized as follows.
Section II presents the system model for C-RAN with the
SCF scheme. Section III formulates the minimum-SINR
maximization problem. Section IV presents the proposed
solution for this problem. Section V provides numerical results
to verify the effectiveness of the proposed multi-antenna
C-RAN with SCF. Finally, Section VI concludes the paper.
Notation: Scalars are denoted by lower-case letters, vectors

by bold-face lower-case letters, and matrices by bold-face
upper-case letters. and denote an identity matrix and an
all-zero matrix, respectively, with appropriate dimensions. For
a square matrix , ( ) means that is positive

(negative) semi-definite. For a matrix of arbitrary size,
and denote the conjugate transpose and rank of ,
respectively. denotes a diagonal matrix with the main
diagonal given by the vector , while de-
notes a block diagonal matrix with the diagonal given by square
matrices . denotes the statistical expectation.
The distribution of a circularly symmetric complex Gaussian
(CSCG) random vector with mean and covariance matrix is
denoted by ; and stands for “distributed as”.
denotes the space of complex matrices. denotes the
Euclidean norm of a complex vector . For two real vectors
and , means that is greater than or equal to in a
component-wise manner.

II. SYSTEM MODEL

This paper considers the uplink communication in a multi-
antenna C-RAN. As shown in Fig. 1(c), the system consists of
one BBU, RRHs, denoted by the set , and

users, denoted by the set . It is assumed that
each RRH is equipped with antennas, while each user is
equipped with one single antenna. It is further assumed that each
RRH is connected to the BBU via a digital error-free fronthaul
link with a capacity of bits per second (bps). In the uplink,
each RRH processes the signals received from all the users into
digital bits and forwards them to the BBU via its fronthaul link.
Then, the BBU jointly decodes the users’ messages based on
the signals from all the RRHs. The details of our studied uplink
multi-antenna C-RAN are given as follows.
It is assumed that all the users transmit over quasi-static

flat-fading channels over a given bandwidth of Hz.1 The
equivalent baseband complex symbol received at RRH is
then expressed as

(1)

where with denoting
the transmit symbol of user which is modelled as a
CSCG random variable with zero-mean and unit-variance,

with denoting the transmit power of
user , with
denoting the channel vector from user to RRH , and

denotes the additive white Gaussian noise
(AWGN) at RRH . It is assumed that ’s are independent
over .
At each multi-antenna RRH, we consider the use of the SCF

scheme to forward the received baseband symbol to the
BBU via the finite-capacity digital fronthaul link. An illustra-
tion of the SCF scheme is shown in Fig. 2, where each RRH
first converts the signal received at each antenna to the base-
band and then into digital bits by analog-to-digital converter
(ADC), which is assumed to be perfect with no conversion
error. After that, each RRH processes the digital signals from
all of its antennas via spatial filtering, then conducts a scalar

1It is worth noting that this paper studies the narrowband wireless channel,
while the results obtained can be readily extended to broadband based C-RAN
by viewing each frequency subchannel as one norrowband channel considered
here and accordingly scaling down the fronthaul capacity by the number of
frequency subchannels in use.
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quantization over each of the output dimensions in parallel, and
finally forwards the total quantized bits from all dimensions
to the BBU via the fronthaul link. Specifically, RRH first
implements spatial filtering to its received signal to obtain

(2)

where denotes the filtering
matrix at RRH with denoting the (reduced) dimension
of the output signal after filtering. Specifically, in this paper
we set such that there is no information loss
due to spatial filtering at each RRH [18], [19]. Then, a simple
uniform scalar quantization is applied to each element of

at RRH . Note that each complex symbol
can be represented by its in-phase (I) and quadrature (Q)

parts as

(3)

where , and the I-branch symbol and Q-branch
symbol are both real Gaussian random variables with zero
mean and variance . A typ-
ical method to implement the uniform quantization is via sepa-
rate I/Q scalar quantization, the details of which can be found in
[16]. After uniform scalar quantization, the baseband quantized
symbol of is then given by

(4)

where with , , denoting
the quantization error for with zero mean and variance .
Let denote the number of bits that RRH uses to quantize
the I-branch or Q-branch of , i.e., or . The quantiza-
tion noise level due to for uniform quantization is then
given by [16]

if ,

if .
(5)

Note that ’s are independent over due to independent scalar
quantization for each element of , and also over due to in-
dependent processing at different RRHs. As a result, the covari-
ance matrix of is a function of , as
well as , which is given by

(6)

Then, each RRH forwards the quantized bits to the BBU via
the fronthaul link. The transmission rate in RRH ’s fronthaul
link is expressed as [16]

(7)

Fig. 2. Illustration of C-RAN with SCF applied at each multi-antenna RRH.

It is worth noting that if , then the symbol at the
spatial filter output dimension is not quantized at RRH and
thus is not forwarded to the BBU; as a result, ac-
cording to (5). To summarize, our proposed SCF scheme is a
two-stage compression method, where the output signal dimen-
sion at each RRH is first reduced from to (if )
by spatial filtering, and then further reduced by allocating the
limited fronthaul quantization bits to only out of the
output dimensions with .
The received signal at the BBU from all RRHs is expressed

as

(8)

where , ,
, and . To decode , we

consider that a linear beamforming2 is applied to , i.e.,

(9)

where is the receive
beamformer for . Note that if the th signal

2It is worth noting that the subsequent results also hold similarly for the case
with the non-linear successive interference cancellation scheme with any fixed
decoding order, which is not considered in this paper due to its high complexity
for implementation.
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dimension at RRH is not quantized, i.e., . According
to (9), the SINR for decoding is expressed as

(10)

where

III. PROBLEM FORMULATION

In this paper, we aim to maximize the minimum SINR of all
the users by optimizing the users’ power allocation, i.e., , the
spatial filter and quantization bits allocation at each RRH, i.e.,

and , , and the receive beamforming vectors at the
BBU, i.e., , . Specifically, we aim to solve the following
problem:

(11)

(12)
(13)

(14)

(15)

where denotes the common SINR target for all the users
and denotes the transmit power constraint of user .
It can be observed that problem (11) is a non-convex op-

timization problem since the design variables are complicat-
edly coupled in its constraint (12). Note that with given ’s
and by setting , , problem (11) reduces to the
well-known SINR balancing problem via transmit power con-
trol and receive beamforming only. This problem has been ef-
ficiently solved by [21], [22] based on the non-negative matrix
theory [23]. However, due to the new quantization noise term
in the SINR expression, i.e., , it can be
shown that the algorithm proposed in [21], [22] cannot be di-
rectly applied to obtain the optimal power control and beam-
forming solution to problem (11) even with given ’s and fi-
nite values of ’s. As a result, with the additional variables

’s and integer variables ’s, it is generally difficult to glob-
ally solve problem (11).
In this paper, we propose an efficient algorithm to solve

problem (11) suboptimally, for which the main procedures
are illustrated in Fig. 3. Specifically, in the channel training
phase, all the users send orthogonal pilot signals to the RRHs
with equal power . Let
denote the received signal at RRH during the channel training

Fig. 3. A diagram for illustrating the proposed algorithm for Problem (11).

phase. Then, each RRH estimates the MIMO channel
(assumed to be perfect) and computes the covariance matrix
of its received signal (with the presumed knowledge of and
), i.e.,

(16)

Then each RRH independently determines its spatial filter
based on . Next, each RRH sends the effective channel

to the BBU. Then, based
on its global channel state information (CSI), i.e., ’s,

, the BBU computes , ’s and ’s by solving the
following reduced problem of problem (11):

(17)

(18)
(19)

(20)

(21)

where . Finally, the BBU sends to
RRH , , via its fronthaul link for the implemen-
tation of scalar quantization, and to one RRH (say RRH ),
which then broadcasts to all the users in the downlink. In the
following section, we first show how each RRH computes its
spatial filter in a distributed manner, and then discuss how the
BBU solves problem (17).
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IV. PROPOSED ALGORITHM FOR PROBLEM (11)
In this section, we present details of the two-stage algorithm

for solving problem (11) based on the diagram shown in Fig. 3.

A. Distributed Spatial Filter Design at RRHs
First, we show how to obtain the spatial filter at each RRH. It

is observed from problem (11) that each user’s SINR at the BBU
depends on ’s, , at all RRHs, which are also
coupled with other design variables. As a result, it is difficult
to obtain the jointly optimal spatial filters at all RRHs. There-
fore, in the following we propose to design ’s in a distributed
manner, where each RRH computes its own spatial filter only
based on its local information, i.e., in (16). First, each RRH
obtains the eigenvalue decomposition (EVD) of as

(22)

where with
denoting the eigenvalues of , and

is a unitary matrix with de-
noting the eigenvector of associated with the eigenvalue

, . Notice that can also be obtained
as the singular vectors of from its singular value decom-
position (SVD). Note that since the rank of is

, if , and thus
each RRH only needs to extract the first user
signal subspace by setting its spatial filter as

(23)

As a result, the equivalent channel from all users to RRH after
filtering is given by

(24)

which is sent to the BBU in channel training as discussed in
Section III.
The reasons to set the spatial filter at each RRH as in (23) are

as follows. First, if , denoises the received signal be-
fore quantization by extracting the user signal subspace from the
received signal plus noise without loss of information [18], [19].
Second, if , the signal dimension is reduced from to

at each RRH , which simplifies the subsequent uni-
form scalar quantization at each dimension. Last but not least,
with this spatial filer applied at RRH in data transmission, the
filter output given in (2) has the following covariance matrix,

(25)

which is (approximately) diagonal if the transmit power of
users, i.e., ’s, are (closely) equal, i.e., the elements in are
approximately uncorrelated. As a result, independent scalar
quantization at each output dimension of as shown in (4)
becomes more effective.

B. Joint Optimization at BBU
Next, given the spatial filter at each RRH , ,

as in (23), we jointly optimize users’ power allocation, RRHs’
quantization bits allocation, and BBU’s receive beamforming
by solving problem (17).

We propose to apply the alternating optimization technique
to solve problem (17). Specifically, first we fix the quantization
bits allocation , , in problem (17) and optimize
the users’ power allocation and BBU’s receive beamforming
solution by solving the following problem.

(26)

(27)
(28)

Let and ’s denote the solution to problem
(26). Then, we fix the users’ power allocation and BBU’s re-
ceive beamforming solution as , ’s, respectively,
and optimize the RRHs’ quantization bits allocation by solving
the following problem.

(29)

(30)

(31)

(32)

Let ’s denote the solution to problem (29). The above pro-
cedure is iterated until convergence. In the following, we show
how to solve problems (26) and (29), respectively.
1) Solution to Problem (26): First, we solve problem (26).

As mentioned in Section III, due to the additional term accoci-
ated with the quantization noise, i.e., ’s,
in the SINR expression, which is coupled with and ’s, the
algorithm proposed in [21] and [22] cannot be applied to obtain
the optimal solution to problem (26). In the following, we pro-
pose to apply the bisection method [24] together with the cele-
brated fixed-point method [20] to globally solve problem (26).
Specifically, given any common SINR target for all the users,
we solve the following feasibility problem.

(33)

(34)
(35)

The feasibility problem (33) is still a non-convex problem. In
the following, we show that the feasibility of problem (33) can
be efficiently checked by solving a sum-power minimization
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problem without the individual power constraints in (35). The
sum-power minimization problem is formulated as

(36)

(37)

Note that given any power allocation , the optimal linear re-
ceive beamforming solution to problem (36) is the minimum-
mean-square-error (MMSE) based receiver given by

(38)

With the above MMSE receivers, the SINR of user given in
(10) reduces to

(39)

As a result, problem (36) reduces to the following power control
problem.

(40)

(41)

Define with the th
element denoted by

(42)

Then, problem (40) reduces to the following problem.

(43)

(44)

Lemma 4.1: given in (42) is a standard interference
function [20]. In other words, it satisfies if ;

TABLE I
ALGORITHM I: ALGORITHM FOR PROBLEM (26)

2. if , then ; and , it follows that
.

Proof: Please refer to Appendix A.
Based on Lemma 4.1, we have the following corollaries.
Corollary 4.1: If is not achievable for all the users in

problem (40), the iterative fixed-point method
with the initial point , where denotes the power
allocation solution obtained in the th iteration of the above
fixed-point method, will converge to .

Proof: Please refer to Appendix B.
Corollary 4.2: If is achievable for all the users in

problem (40), the iterative fixed-point method
will converge to the optimal solution to problem (43) with any
initial point .

Proof: Please refer to [20, Theorem 2].
Corollary 4.3: If is achievable for all the users in

problem (40), the optimal power solution to problem (43) is
component-wise minimum in the sense that any other feasible
power solution that satisfies (44) must satisfy .

Proof: Please refer to Appendix C.
According to Corollaries 4.1–4.3, the feasibility of problem

(33) can be efficiently checked as follows. First, we apply the
fixed-point method in Corollary 4.1 to solve the sum-power
minimization problem (43) with the initial point . If the
obtained solution, denoted by , is infinity (unbounded), then
cannot be achieved by all the users simultaneously even

without the individual power constraints. Therefore, problem
(33) is not feasible. Otherwise, if is of finite value, can
be achieved by all the users without the individual power con-
straints. In this case, we check whether satisfies all the given
individual power constraints. If does not satisfy all the in-
dividual power constraints, according to Corollary 4.3, all the
power solutions that satisfy the SINR constraints cannot satisfy
the given individual power constraints. As a result, problem (33)
is not feasible. Otherwise, if satisfies all the individual power
constraints, it is a feasible solution to problem (33), i.e., problem
(33) is feasible.
Let denote the optimal value of problem (26). The algo-

rithm to solve problem (26) based on the bisection method is
summarized in Table I. Note that in Step 1, can be set
as , where is obtained by setting

and , , in (39).
2) Solution to Problem (29): Next, we consider problem

(29). Note that the quantization noise power given in (5), i.e.,
, is a continuous function over quantization bits allocation
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(assuming it is continuous), except when . To deal
with this issue, we approximate the quantization noise power
with the following continuous function of , i.e.,

(45)

The difference of (45) from (5) is that when ,
equals instead of infinity.
This indicates that even with , some quantized infor-
mation at the th signal dimension of RRH is forwarded to
the BBU. However, since
is generally much larger than the signal power of any user ,
i.e., ’s, its effect on the user SINR given in (10)
is negligible. Therefore, we use (45) to approximate the quan-
tization noise power for solving problem (29). Note that when
the actual SINR is computed using (10), the quantization noise
power is set to be infinity if the obtained is zero.
With the approximation (45), problem (29) is still challenging

to solve due to the integer constraints for ’s. Let problem
(29)-NoInt denote the relaxation of problem (29) without the in-
teger constraints in (32). In the following, we first solve problem
(29)-NoInt, the solution to which may not satisfy all the integer
constraints. Then, we propose an efficient algorithm to obtain
a set of integer solutions for all ’s based on the solution of
relaxed problem (29)-NoInt.
Similar to problem (26), problem (29)-NoInt can be globally

solved by the bisection method. Given any common SINR target
for all the users, we need to solve the following feasibility

problem.

(46)

(47)

(48)

Note that we have

(49)

where denotes the th element of , ,
, and

(50)

Note that can be interpreted as the effective quantization
noise power due to the th quantized dimension at RRH in

TABLE II
ALGORITHM II: ALGORITHM FOR PROBLEM (29)-NOINT.

decoding at the BBU. Then, problem (46) is equivalent to
the following problem.

(51)

(52)

(53)

Problem (51) can be shown to be a convex feasibility problem,
and thus can be efficiently solved via the interior-point method
[24]. Let denote the optimal value of problem (29)-NoInt.
The algorithm for problem (29)-NoInt is then summarized in
Table II. Note that in Step 1, can be similarly set as in
Algorithm I.
It is worth noting that the solution obtained by Algorithm

II may not satisfy all the integer constraints given by (32) in
problem (29). In the following, we show how to obtain a set of
integer solutions for problem (29) based on the solution
of relaxed problem (29)-NoInt. Similar to [16], we propose to
round each to its nearby integer as follows.

if ,
otherwise, (54)

where , , and , denote the maximum
integer that is no larger than and the minimum integer that is
no smaller than , respectively. Note that we can always find a
feasible solution of ’s by simply setting , , in (54)
since in this case we have .
In the following, we show how to find a generally better feasible
solution by optimizing ’s. Since ’s decrease with ’s,
as ’s become smaller, the resulting ’s from (54) achieve
higher SINRs for all the users, but the fronthaul constraints
for the RRHs become more difficult to be satisfied. Hence, we
propose to apply a simple bisection method to find the optimal
values of ’s, and then substitute ’s into (54) to obtain

’s. The algorithm is summarized in Table III.
3) Overall Algorithm for Problem (17): After problems (26)

and (29) are solved by Algorithm I and Algorithms II and III,
respectively, we are ready to propose the overall algorithm for
problem (17) with given , , based on the alternating
optimization technique, which is summarized in Table IV. The
algorithm starts with equal quantization bits allocation for all
the spatial filter output dimensions at each RRH, i.e.,
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TABLE III
ALGORITHM III: ALGORITHM TO FIND FEASIBLE INTEGER

SOLUTION ’S FOR PROBLEM (29)

TABLE IV
ALGORITHM IV: ALGORITHM FOR PROBLEM (17) WITH GIVEN

, . Note that the proposed algorithm termi-
nates in either of the following two cases:
, i.e., the minimum SINR of users cannot be improved above
the positive threshold; and , i.e., the min-
imum SINR obtained at the current iteration is even reduced
compared with that at the previous iteration. The second case
may occur since problem (29) is generally not globally solved
by Algorithms II and III due to the integer constraints in (32).

V. NUMERICAL RESULTS

In this section, we provide numerical results to verify our
results. In the following numerical examples, the bandwidth of
the wireless link is , while the path loss model
of the wireless channel is given as dB
[25], where (in meter) denotes the distance between the user
and the RRH. The transmit power constraint for each user is

, . The power spectral density of the back-
ground noise at each RRH is assumed to be ,
and the noise figure due to the receiver processing is 7 dB. Fur-
thermore, it is worth noting that current wireless systems are
mostly broadband to support high-rate multimedia traffic. As
mentioned in Section II, our studied narrowband system can be
viewed as one frequency subchannel in an OFDM-based broad-
band C-RAN. To make our simulation results more practically
relevant to broadband communications, in this section we con-
sider as the normalized fronthaul capacity of RRH for each
frequency subchannel, which is obtained by dividing the prac-
tical fronthaul capacity (typically tens of Gbps) over the number
of subchannels used (32, 64, etc.). Last, it is assumed that all the
RRHs possess the identical normalized fronthaul capacity, i.e.,

, .

Fig. 4. Performance comparison of different distributed spatial filtering de-
signs at RRH versus per-RRH fronthaul capacity.

A. Effectiveness of Distributed Spatial Filtering at RRHs

First, we illustrate the effectiveness of the proposed RRHs’
distributed spatial filtering via SCF. In this example, there are

RRHs and users randomly distributed in a
circle area of radius 500 m. Besides the proposed spatial filter
design given in (23) at each RRH, we also consider the fol-
lowing schemes for performance benchmark: 1. Matched fil-
tering, i.e., , ; 2. Zero-forcing (ZF) filtering, i.e.,

, ; and 3. Without spatial filtering,
i.e., , . Note that for the matched and ZF filtering,
like the proposed design, the signal dimension is reduced from

to at each RRH, since in this example we set .
Fig. 4 shows the maximized minimum (max-min) SINR of

all the users achieved by Algorithm IV with different spatial fil-
tering designs at the RRHs, where each RRH is equipped with

antennas and the per-RRH fronthaul capacity varies
from to . It is observed that the
max-min SINR achieved with the proposed spatial filtering in
(23) based on the EVD of the covariance matrix (or SVD
of ) is higher than that achieved by the other benchmark
schemes for all values of fronthaul capacities. This observation
also holds in other simulation setups, which are omitted due to
the space limitation. The performance gain is explained as fol-
lows. For matched filtering, the dimension of the spatial filter
output given in (2) is reduced from to , but its
elements are still correlated at each RRH , which makes the
subsequent scalar quantization ineffective. On the other hand,
with ZF filtering, each output dimension of RRH only con-
tains one user’s message, while some users’ signals with low
signal-to-noise ratio (SNR) at RRH are not quantized and for-
warded to the BBU if for some after performing Al-
gorithm IV.With this user selection based scheme at each RRH,
although the signal dimension is reduced and the elements in

are decorrelated in general, the noise effect becomes more
severe due to ZF filtering (and is further amplified by subse-
quent quantization), which degrades the performance of joint
decoding at the BBU. Furthermore, with , , our pro-
posed SCF scheme reduces to the antenna selection based quan-



5092 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 19, OCTOBER 1, 2015

Fig. 5. Performance comparison of different spatial filter designs at RRH
versus per-RRH number of antennas.

tization where the received signals from some antennas are not
forwarded to the BBU if the quantization bits allocation ob-
tained from Algorithm IV yields for antenna at
RRH . With limited per-RRH fonthaul capacity, this scheme
is not effective as substantial user signal information is dis-
carded at each RRH due to antenna selection, even with opti-
mized quantization bits allocation. Last, it is observed that as the
per-RRH fronthaul capacity increases to 1.5 Gbps, the max-min
SINRs achieved with all spatial filter solutions converge to the
same value. This is because when the fronthaul capacity is large
enough, the quantization error becomes negligible as compared
to the receiver noise at each RRH.
Fig. 5 shows the max-min SINR of all the users achieved by

Algorithm IVwith different spatial filtering designs at the RRHs
versus the number of antennas at each RRH, where the per-RRH
fronthaul capacity is fixed as . It is observed
that the proposed filter outperforms both matched filter and ZF
filter for all values of . Moreover, it is also observed that as

increases, the performance gap between the schemes with
versus without filtering is enlarged. This is because when
is large, we need to compress the signals received at each RRH
more significantly by spatial filtering before scalar quantization,
i.e., with .

B. Performance Gain of Joint Wireless and Fronthaul
Resource Allocation

Next, we show the performance gain of joint optimization
for wireless and fronthaul resource allocation. In addition to the
proposed Algorithm IV, we consider the following three bench-
mark schemes as well as one performance upper bound for per-
formance comparison.
• Benchmark Scheme 1: Optimized quantization bits al-
location without power control. In this scheme, all the
users transmit at their maximum power, i.e., , ,
while the BBU iteratively updates its MMSE based receive
beamforming as given in (38) and RRHs’ quantization bits
allocation via Algorithms II and III.

Fig. 6. Performance comparison of different resource allocation schemes in the
case of small number of users.

• Benchmark Scheme 2: Optimized power control with
equal quantization bits allocation. In this scheme, each
RRH equally allocates its fronthaul capacity to all the
dimensions of the output signal after spatial filtering, i.e.,

, . Then, the BBU computes the
users’ power allocation as well as its beamforming solu-
tion ’s using Algorithm I.

• Benchmark Scheme 3: Equal quantization bits alloca-
tion without power control. In this scheme, all the users
transmit at their maximum power, and each RRH equally
allocates its fronthaul capacity to all the dimensions of
the filter output signal, while the BBU computes the re-
sulting MMSE receive beamforming.

• Performance Upper Bound. For this performance upper
bound, it is assumed that each RRH has an infinite fron-
thaul capacity, i.e., , , in problem (11). In this
case, there is no quantization error at each RRH, thus spa-
tial compression is not necessary, i.e., we can set

, , in problem (11). Moreover, the optimal
users’ power allocation and BBU’s receive beamforming
solutions to problem (17) can be efficiently obtained by
Algorithm II with , .

Fig. 6 shows the performance comparison of different
schemes versus per-RRH fronthaul capacity under the same
setup as for Fig. 4. It is observed that the proposed joint op-
timization of wireless and fronthaul resource allocation, i.e.,
Algorithm IV, achieves higher max-min SINR over Benchmark
Schemes 1–3 with separate resource allocation. Moreover,
it is observed that under small and moderate per-RRH fron-
thaul capacity, Benchmark Scheme 1 performs closer to
Algorithm IV, as compared to Benchmark Schemes 2 and 3,
which equally quantize all the signal dimensions at each RRH.
In other words, in this example, most of the joint resource allo-
cation gain is due to joint quantization bits allocation at RRHs.
Note that in this example, the total number of antennas from all
RRHs is , which is much larger than that of the users

. Since there are sufficient spatial dimensions to separate
the users’ signals, power control becomes less effective than
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TABLE V
NUMBER OF QUANTIZED DIMENSIONS AT EACH RRH.

Fig. 7. Performance comparison of different resource allocation schemes in the
case of large number of users.

quantization bits allocation. Table V shows the number of quan-
tized dimensions with , , at each RRH
when the per-RRH fronthaul capacity is ,
respectively. It is observed that when , each
RRH should quantize 3 out of signal
dimensions. As the fronthaul capacity increases, more signal
dimensions can be quantized. Particularly, when the fronthaul
capacity is sufficiently large, i.e., , all the 8 signal
dimensions after spatial filtering should be quantized at all
RRHs. Last but not least, it is observed that when ,
the gap between the max-min SINR achieved by our proposed
joint optimization solution or Benchmark Scheme 2 against the
performance upper bound vanishes. The reason is as follows.
When the common fronthaul capacity is large enough, the
impact of quantization error on the max-min SINR performance
is negligible, and thus the scheme with optimal users’ power
control can achieve the performance upper bound closely.
Fig. 7 shows the performance comparison for the case of large

number of users with . It is observed that Algorithm IV
still outperforms Benchmark Schemes 1–3. However, different
from the case with smaller number of users ( ) shown in
Fig. 6, it is observed that with , Benchmark Scheme 2
performs better than Benchmark Schemes 1 and 3. This is be-
cause with more users but fixed total number of spatial degrees
of freedom , the inter-user interference is more se-
vere and thus power control becomes more effective.

C. Multi-Antenna C-RAN Versus Massive MIMO
As discussed in Section I, besides multi-antenna C-RAN

considered in this paper, massive MIMO and single-antenna

C-RAN are two promising techniques proposed for 5G wireless
networks. Therefore, an interesting as well as important ques-
tion we seek to address in this subsection is as follows: given a
total amount of antennas to be deployed, should we equip them
in one single BS, i.e., massive MIMO, or distribute them over a
given area by connecting to the BBU via finite-rate fronthaul
links, i.e., C-RAN? Moreover, if C-RAN is preferred, what is
the optimal antenna deployment solution, i.e., single-antenna
C-RAN versus multi-antenna C-RAN? Intuitively, if more
single-antenna RRHs are deployed in the network, with higher
probability each user can be served by one or more nearby
RRHs with strong channel conditions. However, with multi-an-
tenna RRHs, we can efficiently perform SCF at each RRH
to better utilize the limited fronthaul capacity given for each
RRH. In the following, we provide a case of study to show
the advantage of multi-antenna C-RAN over its two extreme
counterparts: massive MIMO with all the antennas deployed at
one BS and single-antenna C-RAN with only one antenna at
each RRH, i.e., .
To make a fair comparison, we assume that there are in total
antennas to serve users in a given area. Specifically, for

the massive MIMO system, we assume that there is only one BS
which is equipped with all antennas, while for the C-RAN,
we assume that there are , , RRHs each equipped
with antennas.3Moreover, we assume there is a total fron-
thaul capacity for all RRHs in C-RAN, denoted by , which is
a constant regardless of the number of RRHs . Note that this
is a valid assumption since in practice the signals from different
RRHs in the same area are usually first multiplexed at a local
hub, which then forwards the signals to the BBU via a fronthaul
link with capacity . For simplicity, we set for all
the RRHs in the case of C-RAN.
Fig. 8 shows the max-min SINR performance comparison

between massive MIMO versus C-RAN with different number
of RRHs and fronthaul sum-capacity. The total number of an-
tennas is . Moreover, there are users ran-
domly located in a circle area of radius 700 m. For the massive
MIMO, the BS is located in the center of the circle, while for the
C-RAN, the RRHs are randomly located in the circle. Note that
since the BS in massive MIMO system directly decodes the user
messages, the optimal power allocation for users and decoding
beamforming vectors at the BS can be obtained by Algorithm I
with , . It is observed from Fig. 8 that if the fron-
thaul sum-capacity is sufficiently large, i.e., or 5
Gbps, the max-min SINR in C-RAN is larger than that in mas-
sive MIMO when the number of RRHs . This is because
the densification gain due to larger number of RRHs dominates
the performance of C-RAN. However, if the fronthaul sum-ca-
pacity is limited, i.e., , the performance of C-RAN
with any is inferior to that of massive MIMO, since quanti-
zation errors dominate its performance. Moreover, for the case
of single-antenna C-RAN with single-antenna RRHs
(which is not shown in Fig. 8 for brevity), the achieved max-min
SINRs for the cases of are 2.25, 10.23 and
22.08, respectively, which are significantly lower than the max-
imum SINRs achieved in multi-antenna C-RAN with the corre-

3In the case that is not an integer, we can simply let someRRHs possess
antennas, while the others possess antennas such that the total

number of antennas is equal to .
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Fig. 8. Performance comparison between multi-antenna C-RAN and massive
MIMO.

sponding optimal number of RRHs shown in Fig. 8. This is be-
cause in the case of single-antenna C-RAN, the received signals
at nearby RRHs are highly correlated, and as a result indepen-
dent scalar quantization at these RRHs without spatial filtering
is inefficient in utilization of the given fronthaul sum-capacity.
Last, it is observed that the achievedmax-min SINR inmulti-an-
tenna C-RAN first increases with the number of RRHs, but then
decreases after a certain optimal number of RRHs for all three
cases of . This validates the effectiveness of
multi-antenna C-RAN by more flexibly balancing between the
performance and fronthaul trade-off. As increases, it is ob-
served that more RRHs should be deployed in C-RAN to exploit
better channels from all users.

VI. CONCLUSIONS

This paper considers a flexible antenna deployment design for
C-RAN termedmulti-antenna C-RAN and proposes a new “spa-
tial-compression-and-forward (SCF)” scheme for efficient and
low-complexity processing at each RRH in the uplink multiuser
communication. With the proposed distributed spatial filters at
multi-antenna RRHs, a joint optimization across the wireless
transmission, the fronthaul quantization and the decoding at the
BBU is performed to maximize the minimum SINR of all the
users. Our results show that the proposed SCF schemewith joint
resource allocation achieves significant performance gains over
the conventional “quantize-and-forward” based single-antenna
C-RAN as well as massive MIMO, thanks to the more flexibly
optimized antenna deployment in multi-antenna C-RAN.

APPENDIX

Proof of Lemma 4.1:

First, since

we have if . The first property in Lemma 4.1 is
proved.
Next, if , then we have

(55)

Lemma A.1: [23, Corollary 7.7.4] If , , and
, then .

According to Lemma A.1, it follows that

(56)

As a result, we have if . The second property
in Lemma 4.1 is thus proved.
Last, if , then we have

(57)

According to Lemma 4.1, we have

(58)

As a result, it follows that , . The third
property of Lemma 4.1 is thus proved.
To summarize, given in (42) is a standard interference

function. Lemma 4.1 is thus proved.

Proof of Corollary 4.2:
If the initial point of the fixed-point method is , then

we have . Moreover, according
to the second property of Lemma 4.1, if , then

. As a result, with the
initial point , the resulted power solution increases after
each iteration, i.e., . Suppose that at
the th iteration, the above procedure converges to a finite power
solution . Then we have . As a result,

can satisfy the SINR constraints (44), which contradicts to
the fact that cannot be achieved by all the users. To summarize,
the power solution by the fixed-point method with will
increase to an infinity power allocation. Corollary 4.2 is thus
proved.



LIU AND ZHANG: OPTIMIZED UPLINK TRANSMISSION IN MULTI-ANTENNA C-RAN WITH SPATIAL COMPRESSION AND FORWARD 5095

Proof of Corollary 4.3:
Let denote a feasible solution to problem (43). Since it

satisfies (44), we have . In the following,
we show that holds by induction. Suppose

. Then we have
, where is due to the second property in Lemma 4.1.

Since we have , we thus have holds
. In other words, given any feasible power solution

as the initial point, a monotonic convergence can be guaranteed
by the fixed-point method, i.e., . Corollary 4.3 is thus
proved.
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