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Abstract—Millimeter wave (mmWave) MIMO will likely use
hybrid analog and digital precoding, which uses a small number
of RF chains to reduce the energy consumption associated with
mixed signal components like analog-to-digital components not to
mention baseband processing complexity. However, most hybrid
precoding techniques consider a fully-connected architecture
requiring a large number of phase shifters, which is also energy-
intensive. In this paper, we focus on the more energy-efficient
hybrid precoding with sub-connected architecture, and propose a
successive interference cancelation (SIC)-based hybrid precoding
with near-optimal performance and low complexity. Inspired by
the idea of SIC for multi-user signal detection, we first propose
to decompose the total achievable rate optimization problem
with non-convex constraints into a series of simple sub-rate
optimization problems, each of which only considers one sub-
antenna array. Then, we prove that maximizing the achievable
sub-rate of each sub-antenna array is equivalent to simply seeking
a precoding vector sufficiently close (in terms of Euclidean
distance) to the unconstrained optimal solution. Finally, we
propose a low-complexity algorithm to realize SIC-based hybrid
precoding, which can avoid the need for the singular value de-
composition (SVD) and matrix inversion. Complexity evaluation
shows that the complexity of SIC-based hybrid precoding is only
about 10% as complex as that of the recently proposed spatially
sparse precoding in typical mmWave MIMO systems. Simulation
results verify that SIC-based hybrid precoding is near-optimal
and enjoys higher energy efficiency than the spatially sparse
precoding and the fully digital precoding.

Index Terms—MIMO, mmWave communications, hybrid pre-
coding, energy-efficient, 5G.

I. INTRODUCTION

THe integration of millimeter-wave (mmWave) and mas-
sive multiple-input multiple-output (MIMO) technique

can achieve orders of magnitude increase in system throughput
due to larger bandwidth [1] and higher spectral efficiency [2],
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which makes it promising for future 5G wireless communica-
tion systems [3]. On one hand, massive MIMO with a very
large antenna array (e.g., 256 antennas) at the base station
(BS) can simultaneously serve a set of users through the use
of precoding [4]. It has been theoretically proved that massive
MIMO can achieve orders of magnitude increase in spectral
efficiency, since it can provide more multi-user gain [2]. On
the other hand, mmWave with high frequencies enables such
large antenna array in massive MIMO to be packed in small
physical dimension [5]. Furthermore, the large antenna array
can also provide sufficient array gain by precoding [6], [7]
to overcome the free-space pathloss of mmWave signals and
establish links with satisfying signal-to-noise ratio (SNR) [8].

For MIMO in conventional cellular frequency band (e.g.,
2-3 GHz), precoding is entirely realized in the digital domain
to cancel interference between different data streams. For a
conventional digital precoding, each antenna requires a dedi-
cated energy-intensive radio frequency (RF) chain (including
digital-to-analog converter, up converter, etc.), whose energy
consumption is a large part (about 250 mW per RF chain [9])
of the total energy consumption at mmWave frequencies due
to the wide bandwidth. If the conventional digital precoding is
applied in mmWave massive MIMO system with a large num-
ber of antennas, the corresponding large number of RF chains
will bring high energy consumption, e.g., 16 W is required
by a mmWave massive MIMO system with 64 antennas. To
solve this problem, the hybrid analog and digital precoding has
been proposed [10]. The key idea is to divide the conventional
digital precoder into a small-size digital precoder (realized
by a small number of RF chains) to cancel interference and
a large-size analog precoder (realized by a large number of
analog phase shifters (PSs)) to increase the antenna array
gain. In this way, hybrid precoding can reduce the number of
required RF chains without obvious performance loss, which
makes it enjoy a much higher energy efficiency than digital
precoding [10].

The existing hybrid precoding schemes can be divided
into two categories. The first category of hybrid precoding
based on spatially sparse precoding was proposed in [11]–[13],
which formulated the achievable rate optimization problem
as a sparse approximation problem and solved it by the
orthogonal matching pursuit (OMP) algorithm [14] to achieve
the near-optimal performance. The second category of hybrid
precoding based on codebooks was proposed in [15]–[17],
which involved an iterative searching procedure among the
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predefined codebooks to find the optimal hybrid precoding
matrix. However, these algorithms are all designed for the
hybrid precoding with the fully-connected architecture, where
each RF chain is connected to all BS antennas via PSs. As the
number of BS antennas is very large (e.g., 256 as considered
in [11]), the fully-connected architecture requires thousands
of PSs, which may bring three additional limitations: 1) it
consumes more energy for excitation like the giant phased
array radar [18]; 2) it requires more energy to compensate
for the insertion loss of PS [18]; 3) it involves higher com-
putational complexity, which will also bring more energy
consumption [19]. In contrast, the hybrid precoding with the
sub-connected architecture, where each RF chain is connected
to only a subset of BS antennas, can significantly reduce the
number of required PSs. Therefore, the sub-connected archi-
tecture is expected to be more energy-efficient and easier to
be implemented for mmWave MIMO systems. Unfortunately,
designing the optimal hybrid precoding with the sub-connected
architecture is still a challenging problem [10], [20], since such
architecture changes the constraints on the original problem of
hybrid precoding with the fully-connected architecture.

In this paper, we propose a successive interference cancela-
tion (SIC)-based hybrid precoding with sub-connected archi-
tecture. The contributions of this paper can be summarized as
follows.

1) Inspired by the idea of SIC derived for multi-user signal
detection [21], we propose to decompose the total achievable
rate optimization problem with non-convex constraints into a
series of simple sub-rate optimization problems, each of which
only considers one sub-antenna array. Then, we maximize the
achievable sub-rate of each sub-antenna array one by one until
the last sub-antenna array is considered.

2) We prove that maximizing the achievable sub-rate of each
sub-antenna array is equivalent to seeking a precoding vector
which has the smallest Euclidean distance to the unconstrained
optimal solution. Based on this fact, we can easily obtain the
optimal precoding vector for each sub-antenna array.

3) We further propose a low-complexity algorithm to realize
the SIC-based precoding, which avoids the need for singular
value decomposition (SVD) and matrix inversion. Complexity
evaluation shows that the complexity of SIC-based precoding
is only about 10% as complex as that of the spatially sparse
precoding [11] in typical mmWave MIMO systems. Simulation
results verify that the proposed SIC-based hybrid precoding
is near-optimal and enjoys higher energy efficiency than the
spatially sparse precoding [11] and the fully digital precoding.

It is worth pointing out that to the best of the authors’
knowledge, our work in this paper is the first one that considers
the hybrid precoding design with sub-connected architecture.

The rest of the paper is organized as follows. Section II
briefly introduces the system model of mmWave MIMO.
Section III specifies the proposed SIC-based hybrid precoding,
together with the complexity evaluation. The simulation results
of the achievable rate and energy efficiency are shown in
Section IV. Finally, conclusions are drawn in Section V.

Notation: Lower-case and upper-case boldface letters denote
vectors and matrices, respectively; (·)T , (·)H , (·)−1, and
|·| denote the transpose, conjugate transpose, inversion, and

NM N

N

M

N

Fig. 1. Two typical architectures of the hybrid precoding in mmWave MIMO
systems: (a) Fully-connected architecture, where each RF chain is connected
to all BS antennas; (b) Sub-connected architecture, where each RF chain is
connected to only a subset of BS antennas.

determinant of a matrix, respectively; ∥·∥1 and ∥·∥2 denote
the l1- and l2-norm of a vector, respectively; ∥·∥F denotes the
Frobenius norm of a matrix; Re{·} and Im{·} denote the real
part and imaginary part of a complex number, respectively;
E(·) denotes the expectation; Finally, IN is the N×N identity
matrix.

II. SYSTEM MODEL

Fig. 1 illustrates two typical architectures for hybrid pre-
coding in mmWave MIMO systems, i.e., the fully-connected
architecture as shown in Fig. 1 (a) and the sub-connected
architecture as shown in Fig. 1 (b). In both cases the BS
has NM antennas but only N RF chains. From Fig. 1, we
observe that the sub-connected architecture will likely be
more energy-efficient, since it only requires NM PSs, while
the fully-connected architecture requires N2M PSs. To fully
achieve the spatial multiplexing gain, the BS usually transmits
N independent data streams to users employing K receive
antennas [10].

In the sub-connected architecture as shown in Fig. 1
(b), N data streams in the baseband are precoded by
the digital precoder D. In cases where complexity is a
concern, D can be further specialized to be a diago-
nal matrix as D = diag [d1, d2, · · · , dN ], where dn ∈ R for
n = 1, 2, · · · , N [10]. Then the role of D essentially performs
some power allocation. After passing through the correspond-
ing RF chain, the digital-domain signal from each RF chain
is delivered to only M PSs [22] to perform the analog
precoding, which can be denoted by the analog weighting
vector ān ∈ CM×1, whose elements have the same amplitude
1/

√
M but different phases [22]. After the analog precoding,

each data stream is finally transmitted by a sub-antenna array
with only M antennas associated with the corresponding RF
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chain. Then, the received signal vector y = [y1, y2, · · ·, yK ]T

at the user in a narrowband system1 can be presented as

y =
√
ρHADs+ n =

√
ρHPs+ n, (1)

where ρ is the average received power; H ∈ CK×NM denotes
the channel matrix, A is the NM ×N analog precoding
matrix comprising N analog weighting vectors {ām}Nm=1 as

A =


ā1 0 . . . 0
0 ā2 0
...

. . .
...

0 0 . . . āN


NM×N

, (2)

s = [s1, s2, · · ·, sN ]T represents the transmitted signal vector
in the baseband. In this paper, we assume the widely used
Gaussian signals [10]–[13], [15]–[17] with normalized signal
power E(ssH) = 1

N IN , while the practical system with finite-
alphabet inputs [23], [24] will be also briefly discussed in
Section IV. P = AD presents the hybrid precoding matrix of
size NM ×N , which satisfies ∥P∥F ≤ N to meet the total
transmit power constraint [11]. Finally, n = [n1, n2, · · ·, nN ]T

is an additive white Gaussian noise (AWGN) vector, whose
entries follow the independent and identical distribution (i.i.d.)
CN (0, σ2).

It is known that mmWave channel H will not likely follow
the rich-scattering model assumed at low frequencies due to
the limited number of scatters in the mmWave prorogation
environment [3]. In this paper, we adopt the geometric Saleh-
Valenzuela channel model to embody the low rank and spatial
correlation characteristics of mmWave communications [10]–
[13], [15]–[17], [25] as

H = γ
L∑

l=1

αlΛr (ϕ
r
l , θ

r
l ) Λt

(
ϕt
l , θ

t
l

)
fr (ϕ

r
l , θ

r
l ) f

H
t

(
ϕt
l , θ

t
l

)
,

(3)
where γ =

√
NMK

L is a normalization factor, L is the number
of effective channel paths corresponding to the limited number
of scatters, and we usually have L ≤ N for mmWave commu-
nication systems. αl ∈ C is the gain of the lth path. ϕt

l (θtl )
and ϕr

l (θrl ) are the azimuth (elevation) angles of departure and
arrival (AoDs/AoAs), respectively. Λt (ϕ

t
l , θ

t
l ) and Λr (ϕ

r
l , θ

r
l )

denote the transmit and receive antenna array gain at a specific
AoD and AoA, respectively. For simplicity but without loss
of generality, Λt (ϕ

t
l , θ

t
l ) and Λr (ϕ

r
l , θ

r
l ) can be set as one

within the range of AoDs/AoAs [26]. Finally, ft (ϕt
l , θ

t
l ) and

fr (ϕ
r
l , θ

r
l ) are the antenna array response vectors depending

on the antenna array structures at the BS and the user, respec-
tively. For the uniform linear array (ULA) with U elements,
the array response vector can be presented as [18]

fULA (ϕ) =
1√
U

[
1, ej

2π
λ d sin(ϕ), · · ·, ej(U−1) 2π

λ d sin(ϕ)
]T

,

(4)
where λ denotes the wavelength of the signal, and d is the
antenna spacing. Note that here we abandon the subscripts

1While mmWave systems are expected to be broadband as in prior work [3],
the narrowband system can be regarded as a reasonable first step. The
extension to broadband system is an interesting topic.

{t, r} in (3) and we also do not include θ since the ULA
response vector is independent of the elevation angle. Addi-
tionally, when we consider the uniform planar array (UPA)
with W1 and W2 elements (W1W2 = U ) on horizon and
vertical, respectively, the array response vector can be given
by [18]

fUPA (ϕ, θ) =
1√
U

[
1, · · · , ej 2π

λ d(x sin(ϕ) sin(θ)+y cos(θ)),

· · ·, ej 2π
λ d((W1−1) sin(ϕ) sin(θ)+(W2−1) cos(θ))

]T
,

(5)

where 0 ≤ x ≤ (W1 − 1) and 0 ≤ y ≤ (W2 − 1).

III. SIC-BASED HYBRID PRECODING FOR MMWAVE
MIMO SYSTEMS

In this section, we propose a low-complexity SIC-based
hybrid precoding to achieve the near-optimal performance. The
evaluation of computational complexity is also provided to
show its advantages over current solutions.

A. Structure of SIC-based hybrid precoding

In this paper, we aim to maximize the total achievable rate
R of mmWave MIMO systems2, while other criteria such
as the max-min fairness criterion [27] are also of interest.
Specifically, R can be expressed as [11]

R = log2

(∣∣∣IK +
ρ

Nσ2
HPPHHH

∣∣∣) . (6)

According to the system model (1) in Section II, s-
ince the hybrid precoding matrix P can be represented
as P = AD = diag {ā1, · · · , āN} · diag {d1, · · · , dN}, there
are three constraints for the design of P:

Constraint 1: P should be a block diagonal matrix similar to
the form of A as shown in (2), i.e., P = diag {p̄1, · · · , p̄N},
where p̄n = dnān is the M × 1 non-zero vector of the nth
column pn of P, i.e., pn =

[
01×M(n−1), p̄n, 01×M(N−n)

]T ;

Constraint 2: The non-zero elements of each column of P
should have the same amplitude, since the digital precoding
matrix D is a diagonal matrix, and the amplitude of non-zero
elements of the analog precoding matrix A is fixed to 1/

√
M ;

Constraint 3: The Frobenius norm of P should satisfy
∥P∥F ≤ N to meet the total transmit power constraint, where
N is the number of RF chains equal to the number of
transmitted data streams.

Unfortunately, these non-convex constraints on P make
maximizing the total achievable rate (6) very difficult to
be solved. However, based on the special block diagonal
structure of the hybrid precoding matrix P, we observe that
the precoding on different sub-antenna arrays are independent.
This inspires us to decompose the total achievable rate (6) into

2The maximization sum-rate criterion can also suppress the interference as
much as possible, and the mathematical quantification of such interference
will be an important topic for future work.
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a series of sub-rate optimization problems, each of which only
considers one sub-antenna array.

In particular, we can divide the hybrid precoding matrix
P as P = [PN−1 pN ], where pN is the N th column of P,
and PN−1 is an NM × (N − 1) matrix containing the first
(N − 1) columns of P. Then, the total achievable rate R in (6)
can be rewritten as

R = log2

(∣∣∣IK +
ρ

Nσ2
HPPHHH

∣∣∣)
= log2

(∣∣∣IK +
ρ

Nσ2
H [PN−1 pN ] [PN−1 pN ]

H
HH

∣∣∣)
= log2

(∣∣∣IK +
ρ

Nσ2
HPN−1P

H
N−1H

H

+
ρ

Nσ2
HpNpH

NHH
∣∣∣)

(a)
= log2 (|TN−1|) + log2

(∣∣∣IK +
ρ

Nσ2
T−1

N−1HpNpH
NHH

∣∣∣)
(b)
= log2 (|TN−1|) + log2

(
1+

ρ

Nσ2
pH
NHHT−1

N−1HpN

)
,

(7)

where (a) is obtained by defining the auxiliary ma-
trix TN−1 = IK + ρ

Nσ2HPN−1P
H
N−1H

H , and (b) is true
due to the fact that |I+XY| = |I+YX| by defining
X = T−1

N−1HpN and Y = pH
NHH . Note that the second term

log2
(
1 + ρ

Nσ2p
H
NHHT−1

N−1HpN

)
on the right side of (7) is

the achievable sub-rate of the N th sub-antenna array, while
the first term log2 (|TN−1|) shares the same form as (6).
This observation implies that we can further decompose
log2 (|TN−1|) using the similar method in (7) as

log2 (|TN−2|)+log2

(
1+

ρ

Nσ2
pH
N−1H

HT−1
N−2HpN−1

)
.

Then, after N such decompositions, the total achievable rate
R in (6) can be presented as

R =

N∑
n=1

log2

(
1 +

ρ

Nσ2
pH
n HHT−1

n−1Hpn

)
, (8)

where we have Tn = IK + ρ
Nσ2HPnP

H
n HH and T0 = IN .

From (8), we observe that the total achievable rate optimiza-
tion problem can be transformed into a series of sub-rate
optimization problems of sub-antenna arrays, which can be
optimized one by one3. After that, inspired by the idea of
SIC for multi-user signal detection [21], we can optimize the
achievable sub-rate of the first sub-antenna array and update
the matrix T1. Then, the similar method can be utilized to
optimize the achievable sub-rate of the second sub-antenna
array. Such procedure will be executed until the last sub-
antenna array is considered. Fig. 2 shows the diagram of the
proposed SIC-based hybrid precoding. Next, we will discuss
how to optimize the achievable sub-rate of each sub-antenna
array.

3Note that different precoding orders of sub-antenna arrays will lead to the
same performance, since the total achievable rate R in (8) can be exactly
represented by the summation of the sub-rate of each sub-antenna array
without any performance loss.

N

N

NN

Fig. 2. Diagram of the proposed SIC-based hybrid precoding.

B. Solution to the sub-rate optimization problem

In this subsection, we focus on the sub-rate optimization
problem of the nth sub-antenna array, which can be directly
applied to other sub-antenna arrays. According to (8), the sub-
rate optimization problem of the nth sub-antenna array by
designing the nth precoding vector pn can be stated as

popt
n = argmax

pn∈F
log2

(
1 +

ρ

Nσ2
pH
n Gn−1pn

)
, (9)

where Gn−1 is defined as Gn−1 = HHT−1
n−1H, F is the set

of all feasible vectors satisfying the three constraints described
in Section III-A. Note that the nth precoding vector pn

only has M non-zero elements from the (M(n− 1) + 1)th
one to the (Mn)th one. Therefore, the sub-rate optimization
problem (9) can be equivalently written as

p̄opt
n = argmax

p̄n∈F̄
log2

(
1 +

ρ

Nσ2
p̄H
n Ḡn−1p̄n

)
, (10)

where F̄ includes all possible M × 1 vectors satisfying Con-
straint 2 and Constraint 3, Ḡn−1 of size M ×M is the
corresponding sub-matrix of Gn−1 by only keeping the rows
and columns of Gn−1 from the (M(n− 1) + 1)th one to the
(Mn)th one, which can be presented as

Ḡn−1 = RGn−1R
H = RHHT−1

n−1HRH , (11)

where R =
[
0M×M(n−1) IM 0M×M(N−n)

]
is the cor-

responding selection matrix.
Define the singular value decomposition (SVD) of the

Hermitian matrix Ḡn−1 as Ḡn−1 = VΣVH , where Σ is an
M ×M diagonal matrix containing the singular values of
Ḡn−1 in a decreasing order, and V is an M ×M unitary
matrix. It is known that the optimal unconstrained precoding
vector of (10) is the first column v1 of V, i.e., the first
right singular vector of Ḡn−1 [11]. However, according to
the constraints mentioned in Section III-A, we cannot directly
choose p̄opt

n as v1 since the elements of v1 do not obey the
constraint of same amplitude (i.e., Constraint 2). To find a
feasible solution to the sub-rate optimization problem (10),
we need to further convert (10) into another form, which is
given by the following Proposition 1.

Proposition 1. The optimization problem (10)

p̄opt
n = argmax

p̄n∈F̄
log2

(
1 +

ρ

Nσ2
p̄H
n Ḡn−1p̄n

)
is equivalent to the following problem

p̄opt
n = argmin

p̄n∈F̄
∥v1 − p̄n∥22 , (12)
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where v1 is the first right singular vector of Ḡn−1.

Proof: See Appendix A.
Proposition 1 indicates that we can find a feasible pre-

coding vector p̄n, which is sufficiently close (in terms of
Euclidean distance) to the optimal but unpractical precoding
vector v1, to maximize the achievable sub-rate of the nth sub-
antenna array. Since p̄n = dnān according to (1), the target
∥v1 − p̄n∥22 in (12) can be rewritten as

∥v1 − p̄n∥22
= (v1 − dnān)

H
(v1 − dnān)

= vH
1 v1 + d2nā

H
n ān − 2dnRe

(
vH
1 ān

)
(a)
= 1 + d2n − 2dnRe

(
vH
1 ān

)
=
(
dn − Re

(
vH
1 ān

))2
+
(
1−

[
Re
(
vH
1 ān

)]2)
, (13)

where (a) is obtained based on the facts that vH
1 v1 = 1 and

āHn ān = 1, since v1 is the first column of the unitary matrix
V and each element of ān has the same amplitude 1/

√
M .

From (13), we observe that the distance between
p̄n and v1 consists of two parts. The first one is(
dn − Re

(
vH
1 ān

))2
, which can be minimized to ze-

ro by choosing dn = Re
(
vH
1 ān

)
. The second one is(

1−
[
Re
(
vH
1 ān

)]2)
, which can be minimized by maximiz-

ing
∣∣Re (vH

1 ān
)∣∣. Note that both ān and v1 have a fixed power

of one, i.e., vH
1 v1 = 1 and āHn ān = 1. Therefore, the optimal

āoptn to maximize
∣∣Re (vH

1 ān
)∣∣ is

āoptn =
1√
M

ejangle(v1), (14)

where angle(v1) denotes the phase vector of v1, i.e., each
element of āoptn shares the same phase as the corresponding
element of v1. 4. Accordingly, the optimal choice of doptn is

doptn =Re
(
vH
1 ān

)
=

1√
M

Re
(
vH
1 ejangle(v1)

)
=

∥v1∥1√
M

.

(15)
Based on (14) and (15), the optimal solution p̄opt

n to the opti-
mization problem (12) (or equivalently (10)) can be obtained
by

p̄opt
n = doptn āoptn =

1

M
∥v1∥1e

jangle(v1). (16)

It is worth pointing out that v1 is the first column of the u-
nitary matrix V, each element vi of v1 (for i = 1, · · · ,M ) has
the amplitude less than one. Therefore, we have ∥p̄opt

n ∥22 ≤ 1.
Note that for all sub-antenna arrays, the optimal solution
p̄opt
n for n = 1, 2, · · · , N have a similar form. Thus, we can

conclude that∥∥Popt
∥∥2
F
=
∥∥diag {p̄opt

1 , · · · , p̄opt
N

}∥∥2
F
≤ N, (17)

which demonstrates that the total transmit power constraint
(Constraint 3) is satisfied.

4It is worth pointing out that the analog precoding vector ān can be
also restricted to a DFT vector to save the overhead of quantization for
limited feedback systems [11]. However, since more constraints are set on
the design of analog precoding, such scheme may lead to some performance
loss compared to the proposed one (14).

After we have acquired p̄opt
n for the nth sub-antenna

array, the matrices Tn = IK + ρ
Nσ2HPnP

H
n HH (8) and

Ḡn = RHHT−1
n HRH (11) can be updated. Then, the

method described above for the nth sub-antenna array can
be reused again to optimize the achievable sub-rate of the
(n+ 1)th sub-antenna array. To sum up, solving the sub-rate
optimization problem of the nth sub-antenna array consists of
the following three steps.

Step 1: Execute the SVD of Ḡn−1 to obtain v1;

Step 2: Let p̄opt
n = 1

M ∥v1∥1ejangle(v1) as the optimal solution
to the current nth sub-antenna array;

Step 3: Update matrices Tn = IK + ρ
Nσ2HPnP

H
n HH and

Ḡn = RHHT−1
n HRH for the next (n+ 1)th sub-antenna

array.

Note that although we can obtain the optimal solution p̄opt
n

by the method above, we need to compute the SVD of Ḡn−1

(Step 1) and the matrix Ḡn (Step 3) involving the matrix
inversion of large size, which leads to high computational
complexity as well as high energy consumption for computa-
tion [19]. To this end, next we will propose a low-complexity
algorithm to obtain p̄opt

n without the complicated SVD and
matrix inversion.

C. Low-complexity algorithm to obtain the optimal solution

We start by considering how to avoid the SVD involving
high computational complexity as well as a large number of
divisions, which are difficult to be implemented in hardware.
We observe from Step 1 that the SVD of Ḡn−1 does not
need to be computed to acquire Σ and V, as only the first
column v1 of V is enough to obtain p̄opt

n . This observation
inspires us to exploit the simple power iteration algorithm [28],
which is used to compute the largest eigenvalue and the
corresponding eigenvector of a diagonalizable matrix. Since
Ḡn−1 is a Hermitian matrix, it follows that: 1) Ḡn−1 is
also a diagonalizable matrix; 2) The singular values (right
singular vectors) of Ḡn−1 are the same as the eigenvalues
(eigenvectors). Therefore, the power iteration algorithm can
be also utilized to compute v1 as well as the largest singular
value Σ1 of Ḡn−1 with low complexity.

More specifically, as shown by the pseudo-code in Algorith-
m 1, the power iteration algorithm starts with an initial solution
u(0) ∈ CM×1, which is usually set as [1, 1, · · · , 1]T without
loss of generality [28]. In each iteration, it first computes
the auxiliary vector z(s) = Ḡn−1u

(s−1) (s is the number
of iterations) and then extracts the element of z(s) having
the largest amplitude as m(s). After that, u(s) is updated
as u(s) = z(s)

m(s) for the next iteration. The power iteration
algorithm will stop until the number of iterations reaches the
predefined number S. Finally, m(S) and u(S)/

∥∥u(S)
∥∥
2

will
be output as the largest singular value Σ1 and the first right
singular vector v1 of Ḡn−1, respectively.

According to [28], we know that

m(s) = Σ1

[
1 +O

((
Σ2

Σ1

)s)]
, (18)
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Input: (1) Ḡn−1;
(2) Initial solution u(0);
(3) Maximum number of iteration S

for 1 ≤ s ≤ S
1) z(s) = Ḡn−1u

(s−1)

2) m(s) = argmax
z
(s)
i

∣∣∣z(s)i

∣∣∣
3) if 1 ≤ s ≤ 2

n(s) = m(s)

else
n(s) =

m(s)m(s−2)−(m(s−1))
2

m(s)−2m(s−1)+m(s−2)

end if
4) u(s) = z(s)

n(s)

end for
Output: (1) The largest singular value Σ1 = n(S)

(2) The first singular vector v1 = u(S)

∥u(S)∥
2

Algorithm 1: Power iteration algorithm

where Σ2 is the second largest singular value of Ḡn−1.
From (18), we conclude that m(s) will converges to Σ1 as long
as Σ1 ̸= Σ2. Similarly, when Σ1 ̸= Σ2, u(s)/

∥∥u(s)
∥∥
2

will also
converge to v1, i.e.,

lim
s→∞

m(s) = Σ1, lim
s→∞

u(s)∥∥u(s)
∥∥
2

= v1. (19)

Although the power iteration algorithm is convergent, its
convergence rate may be slow if Σ1 ≈ Σ2 based on (18).
To solve this problem, we propose to utilize the Aitken
acceleration method [29] to further increase the convergence
rate of the power iteration algorithm. Specifically, we can
compute{

n(s) = m(s), for 1 ≤ s ≤ 2,

n(s) =
m(s)m(s−2)−(m(s−1))

2

m(s)−2m(s−1)+m(s−2) , for 2 < s ≤ S.
(20)

Then, u(s) and Σ1 will be correspondingly changed to
u(s) = z(s)

n(s) and Σ1 = n(S), respectively.
Next, we will focus on how to reduce the complex-

ity to compute the matrices Tn = IK + ρ
Nσ2HPnP

H
n HH

and Ḡn = RHHT−1
n HRH , which involve the complicated

matrix-to-matrix multiplication and matrix inversion of large
size. In particular, with some standard mathematical manipu-
lations, the computation of Ḡn can be significantly simplified
as shown by the following Proposition 2.

Proposition 2. The matrix Ḡn = RHHT−1
n HRH , where

Tn = IK + ρ
Nσ2HPnP

H
n HH , can be simplified as

Ḡn ≈ Ḡn−1 −
ρ

Nσ2Σ
2
1v1v

H
1

1 + ρ
Nσ2Σ1

, (21)

where Σ1 and v1 are the largest singular value and first right
singular vector of Ḡn−1, respectively.

Proof: See Appendix B.
Proposition 2 implies that we can simply exploit Σ1 and

v1 that have been obtained by Algorithm 1 as described
above to update Ḡn, which only involves one vector-to-vector
multiplication instead of the complicated matrix-to-matrix

multiplication and matrix inversion. Note that the evaluation of
computational complexity will be discussed in detail in Section
III-E.

D. Summary of the proposed SIC-based hybrid precoding

Based on the discussion so far, the pseudo-code of the
proposed SIC-based hybrid precoding can be summarized in
Algorithm 2, which can be explained as follows. The proposed
SIC-based hybrid precoding starts by computing the largest
singular value Σ1 and first right singular vector v1 of Ḡn−1,
which is achieved by Algorithm 1. After that, according to
Section III-B, the optimal precoding vector for the nth sub-
antenna array can be obtained by utilizing v1. Finally, based
on Proposition 2, Ḡn can be updated with low complexity
for the next iteration. This procedure will be executed until
the last (N th) sub-antenna array is considered. Finally, after
N iterations, the optimal digital, analog, and hybrid precoding
matrices D, A, and P can be obtained, respectively.

Input: Ḡ0

for 1 ≤ n ≤ N
1) Compute v1 and Σ1 of Ḡn−1 by Algorithm 1
2) āoptn = 1√

M
ejangle(v1), doptn =

∥v1∥1√
M

,
p̄opt
n = 1

M ∥v1∥1ejangle(v1) (14)-(16)

3) Ḡn=Ḡn−1−
ρ

Nσ2 Σ2
1v1v

H
1

1+ ρ

Nσ2 Σ1
(Proposition 2)

end for
Output: (1) D = diag

{
dopt1 , · · · , doptN

}
(2) A = diag

{
āopt1 , · · · , āoptN

}
(3) P = AD

Algorithm 2: SIC-based hybrid precoding

It is worth pointing out that the idea of SIC-based hybrid
precoding can be also extended to the combining at the user
following the similar logic in [11]. When the number of RF
chains at the BS is smaller than that at the user, we first
compute the optimal hybrid precoding matrix P according to
Algorithm 2, where we assume that the combining matrix
Q = I. Then, given the effective channel matrix HP, we
can similarly obtain the optimal hybrid combining matrix Q
by referring to Algorithm 2, where the input Ḡ0 and the
optimal unconstrained solution v1 should be correspondingly
replaced. Conversely, when the number of RF chains at the
BS is larger than that at the user, we can assume P = I and
obtain the optimal hybrid combining matrix Q. After that,
the optimal precoding matrix P can be acquired given the
effective channel matrix QH. Additionally, to further improve
the performance, we can combine the above method with
the “Ping-pong” algorithm [22], which involves an iteration
procedure between the BS and the user, to jointly seek the
optimal hybrid precoding and combining matrices pair. Further
discussion about hybrid combining will be left for future work.

E. Complexity evaluation

In this subsection, we provide the complexity evaluation
of the proposed SIC-based hybrid precoding in terms of the



0733-8716 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2016.2549418, IEEE Journal
on Selected Areas in Communications

7

required numbers of complex multiplications and divisions.
From Algorithm 2, we observe that the complexity of SIC-
based hybrid precoding comes from the following four parts:

1) The first one originates from the computation of
Ḡ0 = RHHHRH according to (11). Note that R is a selec-
tion matrix and H has the size K ×NM . Therefore, this part
involves KM2 times of multiplications without any division.

2) The second one is from executing Algorithm 1. It is
observed that in each iteration we need to compute a matrix-
to-vector multiplication z(s) = Ḡn−1u

(s−1) together with the
Aitken acceleration method (20). Therefore, we totally require
S
(
M2 + 2

)
− 4 and (2S − 2) times of multiplications and

divisions, respectively.
3) The third one stems from acquiring the optimal solution

p̄opt
n in step 2 of Algorithm 2. We find that this part is quite

simple, which only needs 2 times of multiplications without
any division, since v1 has been obtained and 1√

M
is a fixed

constant.
4) The last one comes from the update of Ḡn. According to

Proposition 2, we know that this part mainly involves a outer
product v1v

H
1 . Thus, it requires M2 times of multiplications

with only one division.

TABLE I
COMPLEXITY COMPARISON

Number of
Multiplications

Number of
Divisions

SIC-based hybrid
precoding

O
(
M2 (NS+K)

)
O (2NS)

Spatially sparse
precoding [11]

O
(
N4M+N2L2+N2M2L

)
O

(
2N3

)

To sum up, the proposed SIC-based hybrid precoding ap-
proximately requires O

(
M2 (NS+K)

)
times of multiplica-

tions and O (2NS) times of divisions. Table I provides the
complexity comparison between SIC-based hybrid precoding
and the recently proposed spatially sparse precoding [11],
which requires O

(
N4M +N2L2 +N2M2L

)
times of mul-

tiplications and O
(
2N3

)
times of divisions. Here, L is the

number of effective channel paths as defined in (3). Con-
sidering the typical mmWave MIMO system with N = 8,
M = 8, K = 16, L = 3 [11], we observe that the complexity
of SIC-based hybrid precoding is about 4× 103 times of
multiplications and 102 times of divisions, where we set
S = 5 (note that S ≥ 5 is usually sufficient to guarantee the
performance, which is verified through intensive simulations).
By contrast, the complexity of the spatially sparse precoding
is about 5× 104 times of multiplications and 103 times of
divisions. Therefore, the proposed SIC-based hybrid precoding
enjoys much lower complexity, which is only about 10% as
complex as that of the spatially sparse precoding.

IV. SIMULATION RESULTS

In this section, we provide the simulation results of the
achievable rate and energy efficiency to evaluate the per-
formance of the proposed SIC-based hybrid precoding. We
compare the performance of SIC-based hybrid precoding with
the recently proposed spatially sparse precoding [11] and the

optimal unconstrained precoding based on the SVD of the
channel matrix, which are both with fully-connected archi-
tecture. Additionally, we also include the conventional analog
precoding [30] and the optimal unconstrained precoding (i.e.,
p̄opt
n = v1) which are both with sub-connected architecture as

benchmarks for comparison.
The simulation parameters are described as follows. We

generate the channel matrix according to the channel mod-
el [31] described in Section II. The number of effective
channel paths is L = 3 [11]. The carrier frequency is set as
28GHz [15]. Both the transmit and receive antenna arrays are
ULAs with antenna spacing d = λ/2. Since the BS usually
employs the directional antennas to eliminate interference and
increase antenna gain [3], the AoDs are assumed to follow the
uniform distribution within

[
−π

6 ,
π
6

]
. Meanwhile, due to the

random position of users, we assume that the AoAs follow the
uniform distribution within [−π, π], which means the omni-
directional antennas are adopted by users. Furthermore, we set
the maximum number of iterations S = 5 to run Algorithm
2. Finally, SNR is defined as ρ

σ2 .
Firstly, we consider the perfect channel state information

(CSI) scenario. Fig. 3 shows the achievable rate comparison
in mmWave MIMO system, where NM ×K = 64× 16 and
the number of RF chains is N = 8. We observe from Fig. 3
that the proposed SIC-based hybrid precoding outperforms the
conventional analog precoding with sub-connected architecture
in whole simulated SNR range. Meanwhile, Fig. 3 also verifies
the near-optimal performance of SIC-based hybrid precoding,
since it can achieve about 99% of the rate achieved by the
optimal unconstrained precoding with sub-connected architec-
ture.

Fig. 4 compares the achievable rate in mmWave MIMO
system with NM ×K = 128× 32 and N = 16, where we
observe similar trends as those from Fig. 3. More importantly,
Fig. 3 and Fig. 4 show that the performance of SIC-based
hybrid precoding is also close to the spatially sparse precoding
and the optimal unconstrained precoding with fully-connected
architecture. For example, when SNR = 0 dB, our method
can achieve more than 90% of the rate achieved by the near-
optimal spatially sparse precoding in both simulated mmWave
MIMO configurations. Considering the low computational
complexity of the proposed SIC-based hybrid precoding as
analyzed before, we further conclude that SIC-based hybrid
precoding can achieve much better trade-off between the
performance and computational complexity.

Fig. 5 provides a achievable rate comparison in mmWave
MIMO systems against the numbers of BS and user antennas,
where NM = K, the number of RF chains is fixed to N = 8,
and SNR = 0 dB. We find that the performance of the proposed
SIC-based hybrid precoding can be improved by increasing the
number of BS and user antennas, which involves much lower
energy consumption than increasing the number of energy-
intensive RF chains [18].

Fig. 6 shows the achievable rate comparison against the
numbers of user antennas K, where NM = 64, N = 8, and
SNR = 0 dB. We imply from Fig. 6 that the performance
loss of SIC-based hybrid precoding due to the sub-connected
architecture can be compensated by increasing the number
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Fig. 3. Achievable rate comparison for an NM ×K = 64× 16 (N = 8)
mmWave MIMO system.
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Fig. 4. Achievable rate comparison for an NM ×K = 128× 32 (N = 16)
mmWave MIMO system.

of user antennas K. For example, the achievable rate of
SIC-based hybrid precoding when K = 30 is the same as
that of the spatially sparse precoding when K = 20. Note
that in this case, the required number of PSs of SIC-based
hybrid precoding is NM = 64, while for the spatially sparse
precoding, the number of required PSs is N2M = 512. That
means much energy can saved by SIC-based hybrid precoding,
which will be also verified by simulation results later. In
contrast, the cost of increasing the number of user antennas
K will be negligible since the energy consumption of user
antenna is usually small [18].

Next we evaluate the impact of imperfect CSI on the
proposed SIC-based hybrid precoding. The estimated channel
matrix (imperfect CSI) Ĥ can be modeled as [4]

Ĥ = ξH+
√
1− ξ2E, (22)

where H is the actual channel matrix, ξ ∈ [0, 1] presents the
CSI accuracy, and E is the error matrix with entries following
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Fig. 5. Achievable rate comparison against the numbers of BS and user
antennas (NM = K), where N = 8 and SNR = 0 dB.
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Fig. 6. Achievable rate comparison against the number of user antennas K,
where NM = 64, N = 8, and SNR = 0 dB.

the distribution i.i.d. CN (0, 1). Fig. 7 shows the achiev-
able rate comparison for an NM ×K = 64× 16 (N = 8)
mmWave MIMO system, where the perfect CSI and the
imperfect CSI with different ξ scenarios are considered. We
observe that the proposed SIC-based hybrid precoding is not
sensitive to the CSI accuracy. For example, the achievable
rate of SIC-based hybrid precoding when ξ = 0.9 is quite
close to that in the perfect CSI scenario, where the SNR gap
is about 1 dB. Even when the CSI accuracy is quite poor
(i.e., ξ = 0.5), SIC-based hybrid precoding with imperfect CSI
can still achieve more than 88% of the rate in the perfect
CSI scenario. Additionally, Fig. 8 shows the achievable rate
comparison for an NM ×K = 128× 32 (N = 16) mmWave
MIMO system, where similar conclusions as those from Fig.
7 can be derived.

After that, we will also evaluate the proposed SIC-based
hybrid precoding in practical systems with finite-alphabet
signals instead of ideal Gaussian signals. Here, we also aim
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Fig. 7. Impact of imperfect CSI on SIC-based hybrid precoding for an
NM ×K = 64× 16 (N = 8) mmWave MIMO system.

−30 −25 −20 −15 −10 −5 0
0

5

10

15

20

25

SNR (dB)

A
ch

ie
va

bl
e 

ra
te

 (
bp

s/
H

z)

 

 

SIC−based precoding, perfect CSI
SIC−based precoding, imperfect CSI wiht ξ=0.9
SIC−based precoding, imperfect CSI wiht ξ=0.7
SIC−based precoding, imperfect CSI wiht ξ=0.5

Fig. 8. Impact of imperfect CSI on SIC-based hybrid precoding for an
NM ×K = 128× 32 (N = 16) mmWave MIMO system.

to maximize the achievable sum-rate, since it has been shown
in [23, Section IV] that maximizing the achievable sum-rate
is an excellent criterion for precoding, and it also has direct
impact on the coded bit error rate performance. For the finite-
alphabet signals s̃, whose values are taken from a practical
constellation Q, the achievable rate R̃ can be presented as [23]

R̃ = N log2 |Q| − 1

|Q|N
|Q|N∑
m=1

Eñ

log2

|Q|N∑
k=1

e−um,k

 , (23)

where N is the number of RF chains (also the number of
transmitted data streams), |Q| is the cardinality of Q, Eñ

denotes the expectation with respect to the noise vector ñ,
um,k is defined as

um,k =
∥HP (̃sm − s̃k) + ñ∥22 − ∥ñ∥22

σ̃2
, (24)

H and P are the channel matrix and precoding matrix,
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Fig. 9. Achievable rate of SIC-based hybrid precoding with finite-alphabet
inputs, where N=8, NM=K=64, and BSPK is adopted.
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Fig. 10. Energy efficiency comparison against the numbers of RF chains N ,
where NM = K = 64.

respectively, σ̃2 is the power of noise, and s̃m is a possible
signal vector with N elements taking values from Q.

From (23) we know that the achievable rate of practical sig-
naling is quite different from ideal Gaussian signaling, where
the upper bound is determined by N log2 |Q| [24], [32]. Fig. 9
shows the achievable rate of SIC-based hybrid precoding with
finite-alphabet inputs, where NM ×K = 64× 16, N = 8,
and the simple BPSK modulation (|Q| = 2) is considered as an
example. We can observe that as the SNR becomes large, the
proposed SIC-based hybrid precoding can also achieve the per-
formance quite close to the upper bound N log2 |Q| = 8bits.

In the end, we evaluate the energy efficiency of the proposed
SIC-based hybrid precoding. Based on the energy consumption
model in [33], [34], the energy efficiency η can be defined as

η=
R

Ptotal
=

R

Pt +NRFPRF +NPSPPS
(bps/Hz/W) , (25)



0733-8716 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2016.2549418, IEEE Journal
on Selected Areas in Communications

10

where Ptotal
∆
= Pt +NRFPRF +NPSPPS is the total energy

consumption, Pt is the transmitted energy, PRF is the energy
consumed by RF chain, PPS is the energy consumed by PS
(including the energy for the excitation and the energy for the
compensation of insertion loss [18]), NRF and NPS are the
numbers of required RF chains and PSs, respectively.

In this paper, we use the practical values PRF=250mW [9],
PPS = 1mW [18], and Pt = 1W (about 30 dBm) in a small
cell transmission scenario [35], since mmWave is more like-
ly to be applied in small cells. Fig. 10 shows the energy
efficiency comparison against the number of RF chains N ,
where SNR = 0 dB, NM = K = 64 (N = 1, 2, 4, · · · , 64
to ensure that M is an integer). We observe that both the
conventional spatially sparse precoding and the proposed SIC-
based precoding can achieve higher energy efficiency than
the optimal unconstrained precoding (also known as the fully
digital precoding), especially when the number of RF chains
N is limited (e.g., N < 30). Besides, we also observe that the
proposed SIC-based precoding is more energy efficient than
the conventional spatially sparse precoding.

V. CONCLUSIONS

In this paper, we proposed a SIC-based hybrid precoding
with sub-connected architecture for mmWave MIMO systems.
We first showed that the total achievable rate optimization
problem with non-convex constraints can be decomposed into
a series of sub-rate optimization problems, each of which only
considers one sub-antenna array. Then, we proved that the
sub-rate optimization problem of each sub-antenna array can
be solved by simply seeking a precoding vector sufficiently
close to the unconstrained optimal solution. Finally, a low-
complexity algorithm was proposed to realize SIC-based pre-
coding without the complicated SVD and matrix inversion.
Complexity evaluation showed that the complexity of the
proposed SIC-based hybrid precoding is only about 10% of
that of the recently proposed spatially sparse precoding with
fully-connected architecture in typical mmWave MIMO sys-
tem. Simulation results verified the near-optimal performance
and high energy efficiency of the proposed SIC-based hybrid
precoding. Our further work will focus on the limited feedback
scenario, where the angles of PSs are quantified.

APPENDIX A
PROOF OF PROPOSITION 1

Define the target of the optimization problem (10) as

Rn = log2

(
1 +

ρ

Nσ2
p̄H
n Ḡn−1p̄n

)
, (26)

and the SVD of Ḡn−1 as Ḡn−1 = VΣVH . Then, by sepa-
rating the matrices Σ and V into two parts:

Σ =

[
Σ1 0
0 Σ2

]
, V = [v1 V2] , (27)

Rn in (26) can be rewritten as

Rn = log2

(
1 +

ρ

Nσ2
p̄H
n Ḡn−1p̄n

)
= log2

(
1 +

ρ

Nσ2
p̄H
n VΣVH p̄n

)
= log2

(
1 +

ρ

Nσ2

×p̄H
n [v1 V2]

[
Σ1 0
0 Σ2

]
[v1 V2]

H
p̄n

)
= log2

(
1 +

ρ

Nσ2
p̄H
n v1Σ1v

H
1 p̄n

+
ρ

Nσ2
p̄H
n V2Σ2V

H
2 p̄n

)
. (28)

Since we aim to find a vector p̄n sufficiently “close” to v1, it
is reasonable to assume that p̄n is approximately orthogonal
to the matrix V2, i.e., p̄H

n V2 ≈ 0 [11]. Then, (28) can be
simplified as

Rn ≈ log2

(
1 +

ρΣ1

Nσ2
p̄H
n v1v

H
1 p̄n

)
(a)
= log2

(
1 +

ρΣ1

Nσ2

)
+ log2

(
1−

(
1 +

ρΣ1

Nσ2

)−1
ρΣ1

Nσ2

(
1−p̄H

n v1v
H
1 p̄n

))
(b)
≈ log2

(
1 +

ρΣ1

Nσ2

)
+ log2

(
p̄H
n v1v

H
1 p̄n

)
(29)

where (a) is obtained by using the formula
I+XY = (I+X)

(
I− (I+X)

−1
X (I−Y)

)
[11], where

we define X = ρΣ1

Nσ2 and Y = p̄H
n v1v

H
1 p̄n; (b) is valid by

employing the high SNR approximation [36], i.e.,(
1 +

ρΣ1

Nσ2

)−1
ρΣ1

Nσ2
≈ 1. (30)

From (29), we observe that maximizing Rn is equivalent
to maximizing p̄H

n v1v
H
1 p̄n =

∥∥p̄H
n v1

∥∥2
2
, the square of inner

product between two vectors p̄n and v1. Note that v1 is a
fixed vector. Therefore, exploring a vector p̄n, which has the
largest projection on v1, will lead to the smallest Euclidean
distance to v1 as well. Based on this fact, we conclude that
the optimization problem (10) is equivalent to the following
problem

p̄opt
n = argmin

p̄n∈F̄
∥v1 − p̄n∥22 . (31)

APPENDIX B
PROOF OF PROPOSITION 2

We first consider the matrix Tn = IK + ρ
Nσ2HPnP

H
n HH ,

which should be inversed to compute Ḡn (11). By partitioning
Pn as Pn = [Pn−1 pn], Tn can be rewritten as

Tn = IK +
ρ

Nσ2
HPnP

H
n HH

= IK +
ρ

Nσ2
H [Pn−1 pn] [Pn−1 pn]

H
HH

= IK +
ρ

Nσ2
HPn−1P

H
n−1H

H +
ρ

Nσ2
Hpnp

H
n HH

= Tn−1 +
ρ

Nσ2
Hpnp

H
n HH . (32)
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Then, by utilizing the Sherman-Morrison formula [28, Eq
2.1.4] (

A+ uvT
)−1

= A−1 − A−1uvTA−1

1 + vTA−1u
, (33)

T−1
n can be presented as

T−1
n =

(
Tn−1 +

ρ

Nσ2
Hpnp

H
n HH

)−1

= T−1
n−1 −

ρ
Nσ2T

−1
n−1Hpnp

H
n HHT−1

n−1

1 + ρ
Nσ2pH

n HHT−1
n−1Hpn

. (34)

Substituting (34) into Gn = HHT−1
n H, we have

Gn = HHT−1
n H

= HH

(
T−1

n−1 −
ρ
σ2T

−1
n−1Hpnp

H
n HHT−1

n−1

1 + ρ
σ2pH

n HHT−1
n−1Hpn

)
H

= Gn−1 −
ρ
σ2Gn−1pnp

H
n Gn−1

1 + ρ
σ2pH

n Gn−1pn
. (35)

Then, according to (11), Ḡn can be obtained by

Ḡn = RGnR
H

= R

(
Gn−1 −

ρ
Nσ2Gn−1pnp

H
n Gn−1

1 + ρ
Nσ2pH

n Gn−1pn

)
RH

= Ḡn−1 −
ρ

Nσ2 Ḡn−1p̄np̄
H
n Ḡn−1

1 + ρ
Nσ2 p̄H

n Ḡn−1p̄n

. (36)

Note that in Section III-B, we have obtained the precoding
vector p̄n sufficiently close to v1, i.e., p̄n ≈ v1. Thus, (36)
can be well approximated by replacing p̄n with v1 as

Ḡn = Ḡn−1 −
ρ

Nσ2 Ḡn−1p̄np̄
H
n Ḡn−1

1 + ρ
Nσ2 p̄H

n Ḡn−1p̄n

≈ Ḡn−1 −
ρ

Nσ2 Ḡn−1v1v
H
1 Ḡn−1

1 + ρ
Nσ2vH

1 Ḡn−1v1

(a)
= Ḡn−1 −

ρ
Nσ2Σ

2
1v1v

H
1

1 + ρ
Nσ2Σ1

, (37)

where (a) is true due to fact that vH
1 Ḡn−1 = Σ1v

H
1 , since

Ḡn−1 is an Hermitian matrix.
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